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Sobolev spaces with non-Muckenhoupt weights, fractional
elliptic operators, and applications

Harbir Antil, Carlos N. Rautenberg

Abstract

We propose a new variational model in weighted Sobolev spaces with non-standard weights
and applications to image processing. We show that these weights are, in general, not of Muck-
enhoupt type and therefore the classical analysis tools may not apply. For special cases of the
weights, the resulting variational problem is known to be equivalent to the fractional Poisson prob-
lem. The trace space for the weighted Sobolev space is identified to be embedded in a weighted
L2 space. We propose a finite element scheme to solve the Euler-Lagrange equations, and for
the image denoising application we propose an algorithm to identify the unknown weights. The
approach is illustrated on several test problems and it yields better results when compared to the
existing total variation techniques.

1 Introduction

In this paper we consider weighted Sobolev spaces where the weight w is not necessarely of Muck-
enhoupt type, and an associated variational model with concrete applications to image processing
that shows advantageous features of such weights. The particular weights w that we consider in this
paper are closely related to fractional Sobolev spaces of differentiability order s ∈ (0, 1) and the frac-
tional spectral Laplacian (−∆)s, and are further motivated by considering a spatially dependent order
x 7→ s(x).

Weighted Sobolev spaces have been a topic of intensive study for around 60 years with a variety of
focuses; we refer the readers to the monographs [15,17,25] and references within, and further [11,16,
20, 27, 28] for an introduction to the subject. In particular, a source of interest for such spaces is that
they represent the correct solution space for several degenerate elliptic partial differential equations
( [17]) and problems in potential theory ( [25]). Recently, the topic has received a new impulse mainly
associated with the extension result of Caffarelli-Silvestre; [5] (Stinga-Torrea; [24]) for fractional elliptic
partial differential operators. In this setting, for example, the solution to (−∆)su = f in the fractional
Sobolev space Hs(Ω) endowed with zero boundary conditions, can be equivalently obtained as (the
restriction to Ω of) the solution of a PDE with a non-fractional elliptic operator in a weighted Sobolev
space with weight w(x, y) = y1−2s in the extended domain C = {(x, y) ∈ Ω× (0,+∞)}.
The type of weights w that have been more thoroughly studied correspond to two main classes: 1)
weights belonging to some Muckenhoupt class; see [11, 27] and 2) composition of functions (mainly
power functions) with the distance function to a particular set; see [15, 20]. In these cases, several
important questions like density of smooth functions and characterization of traces have been, at least
partially, answered; see [11, 15, 20, 28]. In this paper we consider weights of the type w(x, y) =
y1−2s(x) on C = {(x, y) ∈ Ω× (0,+∞)}, which are, in general, neither of 1) or 2) type.

The variational problem of interest in this paper is closely related to fractional elliptic operators. The
spike of research interest on problems with this type of operators is mainly due to the results from
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H. Antil, C. N. Rautenberg 2

Caffarelli and collaborators; see [5, 6, 24]. Following the renowned results in [5], a large number of
contributions on modeling, numerical methods, applications, regularity results, different boundary con-
ditions, and control problems, among others have been considered.

Recently, for image denoising a model was proposed in [1]. The variational problem can be formulated
in our setting as

min
u

1

2
‖(−∆)

s
2v‖2

L2(Ω) +
ζ

2
‖v − f‖2

L2(Ω), (1)

where (−∆)s denotes the fractional power of the Laplacian with zero Neumann boundary conditions
and s ∈ (0, 1); see [2,6]. Additionally, ζ > 0 is a given constant, and f = utrue + noise where utrue

is the desired target of the optimization procedure. The choice of s has a direct consequence on the
global regularity of the solution to problem (1). However, it is desirable, from the reconstruction point
of view, that the regularity of the solution to (1) is low in places in Ω where edges or discontinuities are
present in utrue, and that is high in places where utrue is smooth or contains homogeneous features.
Hence, it is of interest to consider (1) where s : Ω→ [0, 1] is not a constant. The first main roadblock
in letting s to be spatially dependent is the fact that there is no obvious way to define (−∆)s(x). In fact
we will not attempt to do so in this paper, we leave this as an open question. Instead of (1) we consider
the following variational problem:

min
u

1

2

∫
C
y1−2s(x)

(
θ|u|2 + |∇u|2

)
dx dy +

µ

2

∫
Ω

s(x)2|u(x, 0)− f |2 dx, (2)

where C = {(x, y) ∈ Ω × (0,+∞)}, 0 < θ � 1, µ > 0 is a given constant, and u(x, 0)
stands for the trace of u at Ω × {0}. For the solution u of this optimization problem, we expect that
u(·, 0) ' utrue. This problem is the focus of the present paper and the full motivational link between
the problems (1) and (2), is given in the following section.

We next summarize the main contributions of this paper and discuss how the paper is organized in
what follows.

In section 1.1, we provide a rigorous motivation for the study of problem (2) by showing that (2) rep-
resents a generalization of (1), after using the Caffarelli-Silvestre extension, in the case of s non-
constant. For a constant s ∈ (0, 1) the definition of fractional Laplacian in terms of the Caffarelli-
Silvestre or the Stinga-Torrea extension is by now well-known. However such a result remains open
when s(x) ∈ [0, 1] for x ∈ Ω. Towards this end we emphasize that we have formulated our problem
(2) on an unbounded domain C = Ω× (0,+∞), and not directly over Ω.

In order to handle varying s in space, for almost all (f.a.a) x ∈ Ω we assume s(x) ∈ [0, 1], and
consider weighted Sobolev with weights w(x, y) = y1−2s(x) on C. This class of Sobolev spaces is
studied in section 2 and we establish also two fundamental results. The first one is that since we allow
s(x) = 0, for some x ∈ Ω, the weight y1−2s(x) is not, in general, in the Muckenhoupt class A2 (cf.
Proposition 1). Due to the lack of this A2 property we cannot use some of the existing machinery on
weighted Sobolev spaces. In particular, the density of smooth functions is not always given in weighted
spaces in the absence of the properties inherited by the Muckenhoupt class. The second important
result of section 2 characterizes the trace space for this class of weighted Sobolev spaces, this is given
in Theorem 2.2, and it is established that the trace space embeds continuously on the s-weighted L2

space. In addition, we give examples of functions with discontinuous traces in Example 2.

In section 3, we establish properties for the variational problem of interest (2), and a procedure for
the selection of the function s. We finalize the paper with section 4, where we develop a discretization
scheme, and provide numerical tests that positively compared with other methods for image recon-
struction. In particular, in section 4.1 we introduce a finite element method for (6) on a bounded domain
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Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 3

Cτ := C × (0, τ). Since our targeted application is image denosing so we first state an Algorithm to
determine s in Algorithm 1. We apply this approach to several prototypical examples in section 5. In
all cases we obtain better results when compared to the Total Variation (TV) approach.

1.1 Motivation and some notation

Our point of departure for motivation to study the proposed variational model (and associated function
space properties) is Figure 1 where the left panel shows a noisy image, the middle panel shows the

Figure 1: Example 1. Left panel: noisy image. Middle panel: reconstruction using Total Variation (TV)
approach [8]. Right panel: reconstruction using the approach introduced in this paper.

reconstruction using the Total Variation (TV) model, explained in what follows, (we use piecewise linear
finite element discretization for the TV model and we stop the algorithm when the relative error between
the consecutive iterates is smaller than 1e-8.), and the rightmost panel shows the reconstruction using
the new framework introduced in this paper and briefly explained in this section. The Rudin-Osher-
Fatemi (ROF) model, also called the TV model, was introduced in [23] and is given by

min
u∈BV(Ω)

∫
Ω

|Du|+ ζ

2
‖u− f‖2

L2(Ω), (3)

where Ω ⊂ RN with N ≥ 1 is a open bounded Lipschitz domain, and f ∈ L2(Ω) is given by
f = utrue + ξ, where ξ is the “noise”. Moreover, ζ > 0 is the regularization parameter, and

∫
Ω
|Du|

denotes the total variation seminorm of u on Ω ; see [4]. The parameter ζ > 0 in Figure 1 is chosen
so that it maximizes a weighted sum of the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity index (SSIM); as in [14]. These two indexes measure with different criteria how close the
solution utv to (3) is to utrue; see [26]. The fundamental question in such applications is: Is it possible
to capture the sharp transitions (edges) across the interfaces while removing the undesirable noise
from remainder of the domain. Such a question is not limited to image denoising but is fundamental to
many applications in science and engineering. For instance multiphase flows (diffuse interface mod-
els), fracture mechanics, image segmentation etc. Even though the ROF model has been extremely
successful in practice, two main drawbacks are observed in reconstructions: 1) loss of contrast is
always present 2) some corners tend to be rounded (cf. Figure 1, middle panel).

The problem (1) proposed in [1] is obtained if
∫

Ω
|D · | is replaced by 1

2
‖(−∆)

s
2 ·‖2

L2(Ω) where (−∆)s

denotes the fractional powers of the Laplacian with zero Neumann boundary conditions, for s ∈ (0, 1).
Solutions to (1) are given in Hs(Ω), the fractional Sobolev space given by

Hs(Ω) =

{
v ∈ L2(Ω) :

∫
Ω

∫
Ω

|v(x)− v(y)|2

|x− y|n+2s
dx dy < +∞

}
.
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H. Antil, C. N. Rautenberg 4

The minimization problem (1) is appealing, in contrast to (3), as the Euler-Lagrange equations are
linear in u, i.e., if u solves (1), then equivalently it solves

〈(−∆)su, v〉+ ζ(u− f, v) = 0, (4)

for all v ∈ Hs(Ω). Both (1) and hence (4) have unique solutions inHs(Ω). This can be easily deduced
from the definition of Neumann fractional Laplacian and the equivalence between the spectral and
Hs(Ω)-norms (cf. [2, Remark 2.5] and [6]). The Hs(Ω) space further provides flexibility in terms of
the regularity by choosing s appropriately.

The Caffarelli-Silvestre (or Stinga-Torrea) extension technique establishes that if u ∈ Hs(Ω) solves
(4), then there exists U ∈ H(C; y1−2s) where H(C; y1−2s) is the weighted H1 Sobolev space on
C := Ω × (0,∞) with weight w(x, y) = y1−2s, (x, y) ∈ C (see the following section for more
details), such that trΩ U = u, where trΩ operator is the restriction of the trace map to Ω, and U
solves ∫

C
y1−2s∇U · ∇W dx dy + dsζ

∫
Ω

(trΩ U − f) trΩW dx = 0, (5)

for allW ∈ H(C; y1−2s), where ds = 21−2s Γ(1−s)
Γ(s)

. Therefore, for s a constant such that s(x) = s ∈
(0, 1) for all x ∈ Ω, θ = 0 and ζ := µs2d−1

s , if U solves (2), then it equivalently solves (5). This
establishes the connection of (2) with (4), and hence with (1).

Further, if s(·) is not a constant and s : Ω → [0, 1] (with some additional assumptions made explicit
in the following section), and if U ∈ H(C; y1−2s(x)) solves (2), then∫

C
y1−2s(x) (∇U · ∇W + θUW) dx dy + µ

∫
Ω

s(x)2(trΩ U − f) trΩW dx = 0, (6)

for all W ∈ H(C; y1−2s(x)); this is rigorously done in section 3 where the key ingredient is the
characterization of trΩ of H(C; y1−2s(x)). It is clear that for θ � 1, the above problem (whenever
well-posed) represents a generalization of (5) and hence of (1).

Now we are in shape to explain Figure 1. First, note that for s ' 0, we expect low regularity of
solutions, and for s ' 1 we expect higher regularity of solutions: In fact, for constant 0 < s1 < s2 < 1,
we observe Hs2(Ω) ⊂ Hs1(Ω). Then, after a rough identification of edges, we choose s small on
edges, and large on other regions; the exact procedure is provided in section 4.2. The right image in
Figure 1, is obtained via this procedure.

2 Weighted Sobolev space with variable s and their traces

Let Ω ⊂ RN with N ≥ 1 be a non-empty, open, bounded domain with Lipschitz boundary ∂Ω.
We denote by C := Ω × (0,∞) a semi-infinite cylinder with boundary ∂LC := ∂Ω × [0,∞). With
s : Ω→ R measurable and s(x) ∈ [0, 1] for almost all x ∈ Ω, we define

δ(x) := 1− 2s(x) ∈ [−1, 1], and w(x, y) := yδ(x),

so that

w,w−1 ∈ L1
loc(C). (7)
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Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 5

We denote L2(C; yδ(x)) := L2(C;w), where

L2(C; yδ(x)) :=

{
v : C → R : v is measurable and

∫
C
yδ(x)|v|2 dx dy < +∞

}
,

which is a well-defined weighted Lebesgue space.

For u smooth, define the (extended real-valued) functional ‖ · ‖H as

‖u‖H :=

(∫
C
yδ(x)

(
|u|2 + |∇u|2

)
dx dy

) 1
2

. (8)

Note that if ‖u‖H < +∞, the value of s controls how singular the function u is in the neighborhood
of Ω × {0}. Define Aα(s) := {x ∈ Ω : s(x) = α, a.e.}, suppose that for α = 1 its Lebesgue
measure satisfies |A1(s)| > 0, and that u is a constant inA1(s)× (0, h), then

‖u‖2
H ≥ |u|2|A1(s)|

∫ h

0

y−1 dy,

so that u is zero in Ω× (0, h). On the other hand, u is allowed to have a more singular behaviour on
A0(s).

Consider the set
CΩ = (Ω× {0}) ∪ C,

that is, CΩ is the open cylinder C together with the Ω cap, and denote byH ,H0, andW , or equivalently
by H(C; yδ(x)), H0(C; yδ(x)), and W (C; yδ(x)), the spaces H(C;w), H0(C;w) and W (C;w) which
are defined as

H(C;w) is the closure of the set K := {w ∈ C∞(C) : ‖w‖H < +∞} with respect to the ‖ · ‖H
norm.

H0(C;w) is the closure of the set K0 := {w ∈ C∞c (CΩ) : ‖w‖H < +∞} with respect to the
‖ · ‖H norm.

W (C;w) is the space of maps u ∈ L2(C; yδ(x)) ∩ L1
loc(C) with distributional gradients ∇u that

satisfy |∇u| ∈ L2(C; yδ(x)) ∩ L1
loc(C).

A few words are in order concerning the definition of H given the slight difference from the existing lit-
erature: Usually, the definition ofH is given over the completion (of finite energy functions) of C∞(C),
in contrast to C∞(C), with respect to the H norm; see [27]. Provided that ∂C is regular enough, C is
bounded, and w,w−1 are bounded above and below (ε > 0 away from zero) on a neighborhood of
∂C, then the closure in the definition of H can be equivalently taken with C∞(C) or C∞(C), indis-
tinctly. Since in our case the two last conditions are not satisfied, we consider H the way it is defined
here.
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H. Antil, C. N. Rautenberg 6

First note that since K0 ⊂ K , which follows from C∞c (CΩ) ⊂ C∞(C), we have that H0 ⊂ H .
The notation of “H0” comes from the following: If v ∈ K0, then v|∂Ω×{0} = 0, so that restrictions
of elements of H0 to Ω have “zero boundary conditions”. In particular, in the case s ∈ (0, 1) is
constant, the latter remark can be taken out of quotation marks and considered in the sense of the
trace; see [7]. The condition (7) implies (see [16,27]) that the space W is a proper weighted Sobolev
space endowed with the H-norm. While it holds that H(C̃; w̃) ⊂ W (C̃; w̃), for general weights w̃
and domains C̃, it does not necessarily hold that H(C̃; w̃) = W (C̃; w̃). For w̃ = 1, the equality holds
provided conditions on C̃ are given, e.g., if C̃ is bounded and has a Lipschitz boundary. A sufficient
condition forH(C̃; w̃) = W (C̃; w̃), when w̃ and C̃ are benign enough, is that w̃ belongs to theA2(C̃)
Muckenhoupt class, that is(

1

Q

∫
Q

w̃ dx dy

)(
1

Q

∫
Q

w̃−1 dx dy

)
≤M, (9)

for some M > 0 and all open cubes Q ⊂ C̃, see [10, 25]. Further, note that (7), does not imply
(9). Additionally, if 0 < ε ≤ s ≤ 1 − ε a.e., then (x, y) 7→ y1−2s is a Muckenhoupt A2(C) weight.
However, we are particularly interested in cases where s satisfies

ess infx∈Ωs(x) = 0, (10)

as this will allow almost perfect approximation of functions with jump discontinuities. Remarkably
enough condition (10) prevents w to be a Muckenhoupt weight in general as we show next.

Proposition 1. Suppose that for x0 ∈ Ω, s(x) ' |x − x0|q (locally) on x0 for some q > 0, that is,
there exists positive constants R0,M0,m0 such that

m0|x− x0|q ≤ s(x) ≤M0|x− x0|q, (11)

for all x such that |x− x0| ≤ R0. Then, w /∈ A2(C) where w(x, y) := y1−2s(x).

Proof. First step. Suppose first that x0 = 0 ∈ Ω, s(x) = |x|q for x ∈ BR0(0), and let QR =
BR(0)× (0, y0) for 0 < R ≤ R0 < 1 and 0 < y0 < 1.

Using cylindrical coordinates we observe∫
QR

w dx dy ≥ C1

∫ R

0

∫ y0

0

rN−1y1−2rq dy dr ≥ C2

∫ R

0

rN−1y2−2rq

0 dr

≥ C3R
Ny2

0,

where C1, C2, and C3 are positive and independent of R and y0. Similarly,∫
QR

w−1 dx dy ≥ C1

∫ R

0

∫ y0

0

rN−1y−(1−2rq) dy dr ≥ C4

∫ R

0

rN−1−qy2rq

0 dr

≥ C5R
N−qy2Rq

0 ,

where also C4, and C5 are positive and independent of R and y0. Since |QR| ' RNy0, we have(
1

|QR|

∫
QR

w dx dy

)(
1

|QR|

∫
QR

w−1 dx dy

)
≥ C6

y2Rq

0

Rq
,

for some C6 > 0 independent of R. Taking R ↓ 0, we have that the L.H.S. expression is unbounded.
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Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 7

Second step: Consider x0 6= 0, s(x) 6= |x|q, and show that the above inequality holds similarly for a
family of cubes R 7→ Q̃R.

If x0 6= 0 and s(x) = |x|q, then a linear change of coordinates can be performed and the proof above
still holds, so the choice of x0 = 0 is without loss of generality.

Additionally, let Q̃R ⊃ QR be defined as Q̃R = SR(0) × (0, y0) where SR(0) is the smallest
square that contains BR(0). Hence, the quotient |SR(0)|/|BR(0)| is independent of R and for c :=
|Q̃R|/|QR| we observe(

1

|Q̃R|

∫
Q̃R

w dx dy

)(
1

|Q̃R|

∫
Q̃R

w−1 dx dy

)
≥ 1

c2

(
1

|QR|

∫
QR

w dx dy

)(
1

|QR|

∫
QR

w−1 dx dy

)
.

Hence, by taking R ↓ 0, we have that (x, y) 7→ y1−2|x|q is not in A2(C).

Finally, for s(x) 6= |x|q but when (11) holds true, we similarly have(
1

|Q|

∫
Q

w dx dy

)(
1

|Q|

∫
Q

w−1 dx dy

)
≥ c̃

(
1

|Q|

∫
Q

w̃ dx dy

)(
1

|Q|

∫
Q

w̃−1 dx dy

)
,

for some c̃ > 0, where w̃(x, y) := y1−2|x|q and w(x, y) := y1−2s(x), i.e., w /∈ A2(C).

Remark 2.1. Although the above result is quite general with respect of the rate of decrease of s, at
this point, we do not know if there are continuous functions s with zeros within the domain Ω, for
which (x, y) 7→ y1−2s(x) is an element of A2(C).

The study of the trace space of H is of utmost importance in what follows. In particular, we are
interested in the restriction of the trace operator to Ω. The paper [7] studies the trace of H when s is
independent of x and away from 0. However, that approach which is based on [18] cannot be applied
here. We next prove a trace characterization result, the proof is inspired by [20] where the authors
consider bounded domains and weights of distance to the boundary type.

Theorem 2.2. Let s be such that its zero setA0(s) := {x ∈ Ω : s(x) = 0, a.e.} has zero measure.
Then, there exist a unique bounded linear trace operator

trΩ : H,H0 → L2(Ω; (1− δ(x))2) = L2(Ω; s(x)2)

such that trΩ (u) = u|Ω×{0}, for all u ∈ H ∩ C∞(C), and hence also for all u ∈ H0 ∩ C∞c (CΩ).

Proof. Consider u ∈ H such that u ∈ C∞(C). Let (x, y) ∈ C and x /∈ A0(s), then it follows that

u(x, y) = u(x, 0) +

∫ 1

0

yDN+1u(x, ty) dt,

where DN+1 corresponds to the partial derivative with respect to the N + 1 coordinate. Then, multi-
plication by yδ(x)/2 and integrating from 0 to σ > 0 with respect to y leads to

|u(x, 0)|
∫ σ

0

yδ(x)/2 dy ≤
∫ σ

0

|u(x, y)|yδ(x)/2 dy +

∫ σ

0

∫ 1

0

y|DN+1u(x, ty)|yδ(x)/2 dy dt.
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Note that δ(x)/2 ≤ 1/2 and suppose without loss of generality 0 < σ ≤ 1, then y1/2 ≤ yδ(x)/2 for
all y ∈ (0, σ). Therefore,

2

3
σ3/2 ≤

∫ σ

0

yδ(x)/2 dy,

and hence,
|u(x, 0)| ≤ I1 + I2, (12)

for

I1 :=
3

2
σ−3/2

∫ σ

0

|u(x, y)|yδ(x)/2 dy, I2 =
3

2
σ−3/2

∫ 1

0

∫ σ

0

y|DN+1u(x, ty)|yδ(x)/2 dy dt,

and where we have used Tonelli’s theorem to switch the order of integration in the expression that
orginates I2.

Hölder’s inequality implies that, for I1, we have

I1 ≤
3

2
σ−

3
2

(∫ σ

0

dy

) 1
2
(∫ σ

0

|u(x, y)|2yδ(x) dy

) 1
2

≤ 3

2
σ−1

(∫ R

0

|u(x, y)|2yδ(x) dy

) 1
2

,

for any R ≥ σ.

Further, for I2 consider the change of variable z = ty and again by Hölder’s inequality we observe:

I2 ≤
3

2
σ−

1
2

∫ 1

0

∫ σt

0

|DN+1u(x, z)|z
δ(x)

2 t−1− δ(x)
2 dz dt

≤ 3σ−
1
2

2

(∫ 1

0

(
t−

1+δ(x)
4

)2

dt

) 1
2

(∫ 1

0

(∫ σt

0

|DN+1u(x, z)|z
δ(x)

2 t
1+δ(x)

4
−1− δ(x)

2 dz

)2

dt

) 1
2

≤ 3

2
σ−

1
2

(
2

1− δ(x)

) 1
2

(∫ 1

0

t−
3+δ(x)

2

(∫ σt

0

|DN+1u(x, z)|z
δ(x)

2 dz

)2

dt

) 1
2

≤ 3

2

(
2

1− δ(x)

) 1
2
(∫ 1

0

t−
1+δ(x)

2

(∫ σt

0

|DN+1u(x, z)|2zδ(x) dz

)
dt

) 1
2

.

Then, for any R ≥ σ, we have

I2 ≤
3

2

(
2

1− δ(x)

)1/2(∫ 1

0

t−
1+δ(x)

2 dt

)1/2(∫ R

0

|DN+1u(x, z)|2zδ(x) dz

)1/2

≤ 3

1− δ(x)

(∫ R

0

|DN+1u(x, z)|2zδ(x) dz

)1/2

.

Therefore, from (12), we obtain that for any R ≥ σ

|u(x, 0)|(1− δ(x))

≤ 3

2
σ−1(1− δ(x))

(∫ R

0

|u(x, y)|2yδ(x) dy

) 1
2

+ 3

(∫ R

0

|DN+1u(x, z)|2zδ(x) dz

) 1
2

≤ 3σ−1

(∫ R

0

|u(x, y)|2yδ(x) dy

) 1
2

+ 3

(∫ R

0

|DN+1u(x, z)|2zδ(x) dz

) 1
2

≤ 6σ−1

(∫ R

0

|u(x, y)|2yδ(x) dy +

∫ R

0

|DN+1u(x, z)|2zδ(x) dz

) 1
2

.
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Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 9

Integration over Ω with respect to x of the above squared inequality leads to∫
Ω

|u(x, 0)|2(1− δ(x))2 dx

≤M2
σ

(∫
Ω

∫ R

0

|u(x, y)|2yδ(x) dy +

∫
Ω

∫ R

0

|DN+1u(x, z)|2zδ(x) dz

)
≤M2

σ

(∫
Ω

∫ R

0

|u(x, y)|2yδ(x) dy +

∫
Ω

∫ R

0

|∇u(x, z)|2zδ(x) dz

)
,

where Mσ = 6σ−1, R ≥ σ, with σ ∈ (0, 1] and for an arbitrary u ∈ H such that u ∈ C∞(C).

Since R ≥ σ is arbitrary, we have that for an arbitrary u ∈ H ∩ C∞(C), we have

‖u(·, 0)‖L2(Ω;(1−δ(x))2) ≤Mσ‖u‖H .

The operator trΩ is the above extension to H : Since H is the closure of C∞(C) with respect to the
energy norm, we can take σ = 1 with Mσ = 6, and obtain

‖trΩ u‖L2(Ω;(1−δ(x))2) ≤ 6‖u‖H ,

which completes the proof, since (1− δ(x))2 = 4s(x)2. The result for H0 is analogous.

The behaviour of s controls the local regularity on space trΩH , in particular, trΩH contains piecewise
constants in any dimension for appropriate choices of s as we see in the following example.

Example 2. There exists non-constant s : Ω → R maps such that trΩ H contains piecewise
smooth functions. For the sake of simplicity, let Ω = B1/2(0), define s(x) = ŝ(x1), where x =
(x1, x2, . . . , xN), and such that 0 < δ ≤ ŝ(x1) ≤ κ < 1/4 for all |x1| < ε, and 0 < δ ≤ ŝ(x1) for
all x1. Let

w(x, y) :=


0, x1 < −

√
y ;

1
2
√
y
(x1 +

√
y),
√
y ≤ x1 ≤ −

√
y ;

1,
√
y < x1.

so that

|∇w(x, y)|2 =


0, x1 < −

√
y ;

1
4y

+
x2

1

16y3 ,
√
y ≤ x1 ≤ −

√
y ;

0,
√
y < x1.

Define u(x, y) := η(y)w(x, y) for (x, y) ∈ C, with η ∈ C∞c (R), such that η(y) = 1 if y ∈ [0, R∗]
for some R∗, and therefore,∫

Bε(0)

∫ 1

0

y1−2s|∇w(x, y)|2 dx dy ≤
∫
Bε(0)

∫ 1

0

y1−2κ|∇w(x, y)|2 dx dy < +∞.

Then, u ∈ W and smoothing argument involving mollification shows that u ∈ H , and trΩ u =
χ{x1≥0}.

3 The Optimization Problem

Throughout this section we suppose that f ∈ L2(Ω; s(x)2), s(x) ∈ [0, 1] for almost all x ∈ Ω, and
thatA0(s) := {x ∈ Ω : s(x) = 0, a.e.} has zero measure.
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Given a regularization parameter µ > 0, and parameter θ > 0 we consider the following variational
problem

min
u∈H(C;y1−2s(x))

J(u, s) :=

∫
C
y1−2s(x)

(
θ|u|2 + |∇u|2

)
dx dy+

µ

2

∫
Ω

s(x)2|trΩ u− f |2 dx. (13)

Remark 3.1 (Parameter θ). In case the weights w are of class A2, we can set θ = 0, given that the
Poincaré type inequalities are available in this case. However, the weights y1−2s(x) in our case are not
in A2 since we allow s(x) = 0 for some x ∈ Ω. Such Poincaré type inequalities on H(C; y1−2s(x))
are not known yet.

The model (13) provides a completely new approach to approximate nonsmooth functions f with trΩu.
Such a situation often occurs in inverse problems where given f one is interested in a reconstruction
trΩu which is close to f . For instance in image denoising problems where f represents a noisy image,
given by f = utrue + ξ where utrue is the true target to recover,

∫
Ω
ξ = 0, and

∫
Ω
|ξ|2 = σ2 for a

known σ > 0. The first term in (13) is the regularization and the second term is the so-called data
fidelity, together they ensure that the reconstruction trΩ u is close to utrue on Ω.

For a fixed s and given f we next state existence and uniqueness of solution to (13). This follows
immediately from Theorem 2.2.

Theorem 3.2 (existence and uniqueness). There exists a unique solution to (13).

Proof. Existence follows from application of direct methods of calculus of variations, the norm defini-
tion on H and the Theorem 2.2. Uniqueness follows directly from convexity arguments.

The first order necessary and sufficient optimality conditions for the minimization problem (13) are
given by:∫

C
y1−2s(x) (∇u · ∇w + θuw) dx dy+µ

∫
Ω

trΩ u trΩ w s(x)2 dx

= µ

∫
Ω

ftrΩ w s(x)2 dx, for all w ∈ H.
(14)

The first step for computational implementation of the problem above requires to solve the problem
in a bounded domain. Notice that all results above are valid if we replace the unbounded domain C
with boundary ∂LC by a bounded domain Cτ = Ω× (0, τ) with 0 < τ < ∞ and boundary ∂LCτ =
(∂Ω× [0, τ ]) ∪ Ω× {τ}. In that case the problem (14) becomes: find v ∈ Hτ := H(Cτ ; yδ(x))∫

Cτ
y1−2s(x) (∇v · ∇w + θvw) dx dy+µ

∫
Ω

trΩ v trΩ w s(x)2 dx

= µ

∫
Ω

ftrΩ w s(x)2 dx, for all w ∈ Hτ .

(15)

It is known that for a constant s ∈ (0, 1) the solution v to (15) converges to u solving (14) exponentially
with respect to τ > 1, see [21]. Such exponential approximation is also expected in the case of a non-
constant s. Indeed, as we discussed earlier, a constant s implies that trΩ u solves the fractional
equation (4). A relation between (14) and fractional PDE of type (4) with s(x) instead of s is an open
question. We expect that studying (14) or equivalently (13) is a first step in establishing the definition
of fractional (−∆)s(x) for x ∈ Ω.

For given s and f , Theorem 3.2 shows existence of a unique solution to (13) and equivalently (14).
Nevertheless for our model (13) to be useful in practice we need to determine the function s. For this
matter, consider the following important points that will lead to the selection procedure for s.
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Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 11

(i) Precise edge recovery. In example 2, a family of s functions is identified so that u ∈ H(C; y1−2s(x)),
and trΩ u = χ{x1≥0}. This suggests that for the optimization problem (13) to recover edges,
or more precisely for trΩ u to have discontinuities in the same places where utrue has them
(for f = utrue + noise) the function s needs to be close to or equal to zero in these regions.
This suggest to utilize a rough edge detection at first and then force s to be close zero on
neighborhoods of these regions.

(ii) Homogeneous/flat regions recovery. We proceed rather formally first. Suppose first that
θ = 0, and that problem (13) is posed not on H(C; y1−2s(x)), but on the Banach space of
equivalence classes generated by the seminorm

∫
C y

1−2s(x)|∇u|2 dx dy. Consider s(x) = 1
on a certain region Ω0. Suppose that |∇u| ≥ e > 0 on Ω0 × (0, y0), then∫

C
y1−2s(x)|∇u|2 dx dy ≥ ε

∫
Ω0×(0,y0)

y−1 dx dy = +∞.

Hence, the solution to (13), needs to satisfy |∇u| ' 0 near Ω × {0}. This suggest that flat
regions would be recovered if s = 1 on that same region. However, if θ > 0, then analogously,
solutions to problem (13), would be forced to satisfy |u| ' 0 near Ω×{0}. Hence, we consider
0 < θ � 1 and s(x) ' 1, but s(x) < 1, on regions where homogeneous features are present
so that u is not forced to be identically zero but |∇u| ' 0 is enforced there.

We provide an algorithm based on the two points above in what follows. A more detailed bilevel opti-
mization framework (where both u and s are optimization variables) will be considered in a forthcoming
publication.

4 Numerical Method

We now focus on the discretization of the truncated problem (15) and the selection of an appropriate
s function.

4.1 Discretization of (15)

From hereon we will assume that Ω is polygonal/polyhedral Lipschitz. We recall that the results of
previous sections remains valid if we replace the unbounded domain C with boundary ∂LC by Cτ =
Ω× (0, τ) with τ > 0 and boundary ∂LC = (∂Ω× [0, τ ])∪Ω×{τ}. The Euler-Lagrange equations
for the resulting problem on Cτ are given by (15).

We begin by introducing a discretization for (15). We will follow the notation from [3]. For a constant
s such a discretization for v was first considered in [21]. Let TΩ = {E} be a conforming and quasi-
uniform triangulation of Ω, where E ∈ RN is an element that is isoparametrically equivalent to either
to the unit cube or to the unit simplex in RN . We assume #TΩ ∝ MN . Thus, the element size hTΩ

fulfills hTΩ
∝M−1.

Furthermore, let Iτ = {Ik}K−1
k=0 , where Ik = [yk, yk+1], is anisotropic mesh in [0, τ ] in the sense

that [0, τ ] =
⋃K−1
k=0 Ik. For a constant s ∈ (0, 1) we define the anisotropic mesh in y-direction as

yk =

(
k

K

)γ
, k = 0, . . . , K, γ >

1

s
. (16)
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This choice is motivated by the singular behavior of the solution towards the boundary Ω for a constant
s. In that case anisotropically refined meshes are preferable as these can be used to compensate the
singular effects [19,21]. In all our implementations we will choose a fixed constant s in (16).

We construct the triangulations Tτ of the cylinder Cτ as tensor product triangulations by using TΩ

and Iτ . Let T denotes the collection of such anisotropic meshes Tτ . For each Tτ ∈ T we define the
finite element space V(Tτ ) as

V(Tτ ) := {V ∈ C0(Cτ ) : V |T ∈ P1(E)⊕ P1(I) ∀T = E × I ∈ Tτ}.

In case ∂Ω has Dirichlet boundary conditions we define our finite element space as V0(Tτ ) =
V(Tτ ) ∩ {V : V |∂Cτ = 0}, i.e., functions with zero boundary conditions. In case E is a simplex
then P1(E) = P1(E), the set of polynomials of degree at most 1. If E is a cube then P1(E) equals
Q1(E), the set of polynomials of degree at most 1 in each variable. In our numerical illustrations we
shall work with simplices.

We define the finite element space for s as

S(TΩ) := {S ∈ L∞(Ω) : S|E ∈ P0(K) for all E ∈ TΩ}

which is a space of piecewise constant functions defined on TΩ. The discrete version of (15) is then
given by: Find V ∈ V(Tτ )∫

Cτ
y1−2S(x) (∇V · ∇W + θV W ) dx dy + µ

∫
Ω

trΩ V trΩ W S(x)2 dx

= µ

∫
Ω

ftrΩ W S(x)2 dx, for all W ∈ V(Tτ ),

(17)

for S ∈ S(TΩ). We compute the stiffness and mass matrices in (17) exactly. The corresponding
forcing boundary term is computed by a quadrature formula which is exact for polynomials up to
degree 5. For a given S the resulting discrete linear system (17) is solved using the Preconditioned
Conjugate Gradient (PCG) method with a block diagonal preconditioner.

4.2 Parameter selection

In view of what was stated about θ in section 3, we have set θ = 10e-10 in all our examples. We
let τ = 1 + 1

3
(#TΩ), this choice is motivated by the fact that for a constant s such a τ balances

the finite element approximation on Cτ and the truncation error from C to Cτ [21, Remark 5.5]. The
number of points in the y-direction is taken to be K = 20. We use a moderately anisotropic mesh in
the y-direction by setting s = 0.32 in (16). Our experiments suggest that the results are stable under
reducing θ or s or increasing K further.

It then remains to specify the constant µ and the function S in order to realize (17). We have observed
that µ only affects the “contrastör magnitude of trΩ V . Nevertheless one can determine µ using the
well established techniques such as L-curve method [12]. In our case we choose a fixed µ for each
example (no optimization was carried to select µ). On the other hand selecting S which is a function
is much more delicate. One option is to use a bilevel strategy as in [13, 14] to determine both S and
V in an optimization framework. This is a part of our future work. In this paper we propose a different
approach in Algorithm 1.

Even though our targeted application is image denoising the approach we present is general enough
to be applicable to a wider range of applications. We first notice that a typical image is given on a
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rectangular grid (pixels). Since for (17) we are working on simplices we first need to interpolate the
given image from the rectangular grid to a simplicial mesh. This is a delicate question especially given
the fact that typically we only have access to a noisy image. Before we interpolate the noisy image
onto a simplicial mesh we perform an intermediate step.

We solve ROF model (3) using [8] and ζ > 0 chosen to a fixed value for all examples. We stop
the algorithm when the relative difference between two consecutive iterates is smaller than the given
tolerance toltv. We select a mild tolerance toltv in this step as we want to preserve the sharp features
but still remove a certain noise. We call the resulting solution as utv. We then generate a piecewise
linear Lagrange interpolant ITΩ

utv of utv.

We next evaluate ITΩ
utu on the simplicial mesh. In order to reduce the computational cost we use

Adaptive Finite Element Method (AFEM) to generate the appropriate mesh. In the nutshell, we start
with a coarse mesh TΩ = {E} where E is an element in TΩ. For each E ∈ TΩ we then evaluate
gradient of ITΩ

utv onE and we denote this gradient by∇ITΩ
utv|E . We use this gradient to define an

edge indicator function, we call this edge indicator function as the estimator onE. Based on a marking
strategy we then mark a subset of elements in TΩ. Subsequently we perform the mesh refinements.
We execute this loop Nrefine times.

Finally we set S so that it is close to 0 at the sharp edges (large gradient) in the image and close to 1
away from sharp edges. Intuitively smaller the S the lesser the smoothness and otherwise.

Algorithm 1 Selection of S

Data: f ∈ L2(Ω, s(x)2), ζ , toltv, Nrefine, λ, β, ν

1: Solve total variation minimization problem (3) with regularization parameter ζ and tolerance toltv
using for instance [8]. Generate a piecewise linear Lagrange interpolant ITΩ

utv of utv.
2: Construct an Adaptive Finite Element Method (AFEM) based on the following iterative loop with
Nrefine iterations:

Solve→ Estimate→ Mark→ Refine

We describe each of these modules next:

a. Solve: For a given triangulation TΩ = {E} evaluate the elementwise gradient of ITΩ
utv.

We denote the gradient on each element E by∇ITΩ
utv|E .

b. Estimate: Use the edge indicator function

E(E;λ) = 1−
(
1 + λ−2|∇ITΩ

utv|E|2
)−1 ∀E ∈ TΩ

as an estimator. Here, λ > 0 is a given parameter.

c. Mark: Use the Dörfler marking strategy [9] (bulk chasing criterion) with parameter β ∈ (0, 1].
Select a setM⊂ TΩ fulfilling∑

E∈M

E(E;λ)2 ≥ β
∑
E∈TΩ

E(E;λ)2.

d. Refine: Generate a new mesh T ′
Ω = {E ′} by bisecting all the elements contained inM

using the newest-vertex bisection algorithm [22].

3: On each element E ′ ∈ T ′
Ω, set S(E ′) = 1− E(E ′; ν).

Once we have S then we can immediately solve the linear equation (17) for V .
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5 Numerical Examples

In this section we illustrate the proposed scheme with the help of several examples. We consider f
given by f = utrue + ξ where utrue is the true image, and ξ is noise with the following properties:∫

Ω
ξ = 0, and

∫
Ω
|ξ|2 = σ2 for a known σ > 0. In all cases we find S by using Algorithm 1 and then

solve the resulting linear equation (17) for V . We call trΩ V as the reconstruction. We also compare
our reconstruction trΩ V with the reconstruction we obtain by solving (3) with tol∗tv = 10e-8. In this
case we choose the parameter ζ so that a normalized weighted sum of Peak Signal to Noise Ratio
(PSNR) and the Structural Similarity (SSIM) index is maximized, as in section 4.2 of [14]. That is, we
compare our results to the ones of the TV model with an optimized parameter ζ > 0. Note that this
parameter is not the one used in step 1 from algorithm 1.

5.1 Example 1: circle, triangle and square

In our first example we consider an image with a circle, triangle and a square as shown in Figure 2
(top row left). Notice that in this case the right pointing edge of the triangle does not align with the grid.
We consider two different noise levels. In both cases the noise is normally distributed with mean 0 and
standard deviations 0.10 and 0.15 respectively. The results are shown in Figures 2 and 3 for standard
deviations 0.10 and 0.15, respectively. In both cases we first compute S by using Algorithm 1 where
we have set: ζ = 0.2, toltv = 10e-4, Nrefine = 8, λ = 300, β = 0.99, ν = 200 in Algorithm 1. We
further set µ = 8050 in (17). We then solve for V using PCG. We call trΩ V as our reconstruction.

The top row of Figure 2 shows the original and noisy images (left to right). The middle row shows utv

and S obtained using Algorithm 1. In the bottom row we compare the results using the TV approach
(left) and trΩ V (right) computed using our approach by solving (17). Notice that Figure 1 is simply
obtained by viewing Figure 2, in particular, the noisy, reconstruction using TV and trΩ V panels, from
a different angle. Similar description holds for Figure 3. Figure 4 is again viewing Figure 3 from a
different angle.

As we can notice TV tends to round up the corners (cf. Figure 1 (middle)). On the other hand as
our theory predicted we can truly capture the edges in trΩ V (cf. Figure 1 (right)). This is further
corroborated by Table 1 where we have shown a comparison between PSNR and SSIM for these two
approaches for two different standard deviations.

σ PSNR (TV) PSNR (New) SSIM (TV) SSIM (New)
0.1 3.7299e+01 4.8147e+01 9.4016e-01 9.5710e-01
0.15 3.5712e+01 4.0451e+01 9.3439e-01 9.4890e-01

Table 1: Example 1: PSNR and SSIM using two different standard deviations (σ = 0.1 and σ = 0.15)
using TV and proposed scheme (New).

5.2 Example 2: stripes

In our second example we consider 6 stripes with intensities equal to 0.8, 0.7, 0.6, 0.5, 0.4 and 0.35
(from left to right), respectively (cf. Figure 5 (top row left)). As in the previous example we again
consider two additive noise levels with mean 0 standard deviations 0.1 and 0.15 respectively. Our
results are shown in Figures 5 and 6 respectively. Here again we first find S by using Algorithm 1
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Figure 2: Example 1 (σ = 0.1). Top row (from left to right): original and noisy images, respectively.
Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3. Bot-
tom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.

using the parameters ζ = 0.2, toltv = 10e-4, Nrefine = 8, λ = 15, β = 0.99, ν = 100. We
further set µ = 2900 in (17). We then solve for V . We call trΩ V as our reconstruction. A comparison
between PSNR and SSIM is shown in Table 2. As we noticed in the previous example we again obtain
visually almost perfect reconstruction using our approach.
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Figure 3: Example 1 (σ = 0.15). Top row (from left to right): original and noisy images, respec-
tively. Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3.
Bottom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.

σ PSNR (TV) PSNR (New) SSIM (TV) SSIM (New)
0.1 3.6253e+01 2.7917e+01 9.0799e-01 9.4789e-01
0.15 3.3616e+01 2.7419e+01 8.7028-01 9.3000e-01

Table 2: Example 2: PSNR and SSIM using two different standard deviations (σ = 0.1 and σ = 0.15)
using TV and proposed scheme (New).
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Figure 4: Example 1 (σ = 0.15). Left panel: noisy image. Middle panel: reconstruction using Total
Variation (TV) approach with optimal ζ > 0. Right panel: reconstruction using the our approach. TV
tends to smooth out the edges and corners that are not aligned with the grid. On the other hand it is
possible to have perfect recovery using our approach.

5.3 Example 3: cameraman

In the first two examples we considered synthetic images. In our final example we consider a more
realistic situation. We consider a prototypical image of the cameraman (cf. Figure 7). As in the pre-
vious examples we again consider two additive noise levels with standard deviations 0.1 and 0.15
respectively. Our results are shown in Figures 7 and 8, respectively

At first we apply the Algorithm 1 to find S. Here we have set the underlying parameters as ζ = 0.2,
toltv = 10e-4, Nrefine = 8, λ = 0.7, β = 0.99, ν = 20. We further set µ = 104 in (17). We then
solve for V and we call trΩV as our reconstruction. A comparison between PSNR and SSIM is shown
in Table 3. As we noticed in the previous examples we again obtain better reconstructions using our
approach.

6 Conclusion and further directions

A new variational model associated to the fractional Laplacian was introduced. In particular, we have
identified a weighted Sobolev space with respect to the weight w = y1−2s(x) appropriate for the
treatment of the problem. We have shown that in general these weights are not of Muckenhoupt
type, and have established that the trace space embeds in an s−weighted Lebesgue space. We
have provided a discretization method for the full problem, and an algorithm for its resolution that
also builds a selection procedure for s. The full scheme is advantageous when it comes to recovery
of discontinuous features, details, homogeneous regions, and also for contrast preservation, in data
perturbed by additive noise.

Future research directions are multiple, we enumerate some of them.

1) The study of the optimization problem (13), seems to be the first step for the identification of a
possible definition for (−∆)s(x). Such a task does not seem directly approachable via spectral or
functional calculus points of view.

2) Full characterization of the trace space for H and H0. We have identified the embedding of trΩ H
into L2(Ω; s(x)2), but it would be of interest to understand the Sobolev regularity of trΩ H .

3) Differentiability and stability properties of the solution to (13) with respect to s. For the optimal
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Figure 5: Example 2 (σ = 0.1). Top row (from left to right): original and noisy images, respectively.
Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3. Bot-
tom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.

selection of s, it is required to identify a topology over an admissible set for s, so that solutions to (13),
are stable with respect to perturbations. This seems like a complex task where the usual obstacles
from homogenization and convergence of differential operators are present. In addition, difficulty is
increased as the solutions to (13) belong to a state space depending on s as well. The differentiability
issue is further more complex, but such a study will be the first step in establishing stationarity systems
useful for implementation in the optimal selection of s.

4) The extension of the presented methods to a general class of inverse problems. Problem (13),
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Figure 6: Example 2 (σ = 0.15). Top row (from left to right): original and noisy images, respec-
tively. Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3.
Bottom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.

admits the following generalization

min
u∈H(C;y1−2s(x))

∫
C
y1−2s(x)

(
θ|u|2 + |∇u|2

)
dx dy +

µ

2

∫
Ω

s(x)2|K(trΩ u)− f |2 dx,

where K is a bounded linear operator on L2(Ω; s(x)2). This would allow to deal with the problem of
finding y such that Ky = f . In this case, the choice of s could be simply associated with regions of
the domain Ω where it is more important to recover y more accurately.
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σ PSNR (TV) PSNR (New) SSIM (TV) SSIM (New)
0.1 2.7054e+01 2.9640e+01 8.0475e-01 8.3653e-01
0.15 2.4376e+01 2.6884e+01 7.4340e-01 7.9335e-01

Table 3: Example 3:PSNR and SSIM using two different standard deviations (σ = 0.1 and σ = 0.15)
using TV and proposed scheme (New).

Figure 7: Example 3 (σ = 0.1). Top row (from left to right): original and noisy images, respectively.
Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3. Bot-
tom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.

DOI 10.20347/WIAS.PREPRINT.2505 Berlin 2018



Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications 21

Figure 8: Example 3 (σ = 0.15). Top row (from left to right): original and noisy images, respec-
tively. Middle row: utv (left) from Step 1 in Algorithm 1 and the corresponding s (right) from Step 3.
Bottom row: reconstruction using total variation with optimized ζ > 0 (left) and our approach (right),
respectively.
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