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The Boussinesq system with mixed non-smooth boundary
conditions and do-nothing boundary flow

Andrea N. Ceretani, Carlos N. Rautenberg

Abstract

A stationary Boussinesq system for an incompressible viscous fluid in a bounded domain with
a nontrivial condition at an open boundary is studied. We consider a novel non-smooth boundary
condition associated to the heat transfer on the open boundary that involves the temperature at
the boundary, the velocity of the fluid, and the outside temperature. We show that this condition is
compatible with two approaches at dealing with the “do-nothing” boundary condition for the fluid:
1) the “directional do-nothing” condition and 2) the “do-nothing” condition together with an integral
bound for the backflow. Well-posedness of variational formulations is proved for each problem.

1 Introduction

We address a heat transfer problem for an incompressible viscous fluid in a room, which is allowed
to flow freely through some part of the boundary. The case we consider is motivated by a situation
that naturally occurs when modeling or controlling energy systems in buildings, see e.g. [13, 21]. We
assume the room is heated through some part of its boundary, and the walls are thermally insulated.
Further, we assume the fluid can enter the room through an inlet, and flow without any restriction
across an outlet. The ambient temperature outside the room is assumed to be zero. Two common
configurations are represented in Figure 1.

Figure 1: Rooms with a heated floor (left), and a heated inlet (right).

In addition to diffusing, the fluid temperature is affected by an advective heat transport, originated by
the moving fluid. Further, the fluid velocity is influenced by the buoyancy effects due to temperature
changes. This coupling between the temperature and the velocity will be studied under the Boussi-
nesq approximation [10, 27]. Mixed boundary conditions arise naturally from the particular behavior
of the fluid at the domain boundary. The outlet, across which the fluid flows without restrictions, is
usually known as an open boundary. Coupled Navier-Stokes/energy systems for incompressible heat
conducting fluids in domains with open boundaries were recently studied in [3–5,30,31] (steady prob-
lems), and [4, 7, 8] (unsteady problems). Boussinesq systems with other type of boundary conditions
are also an active area of research, see e.g. [22,23].
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A.N. Ceretani, C. N. Rautenberg 2

It is still a matter of debate which boundary condition represent the unrestricted fluid flow through the
outlet. Several works have been done in this regard. As a classic reference, we mention the work of
Heywood et al. [20]. A survey on different mathematical treatments for open boundaries can be found in
the recent article [9], where the authors also present reference problems, and compare the numerical
performance of different approaches. In this work, the natural flow at the outlet will be represented in
the spirit of the “do-nothing” condition, introduced by Gresho in [19]. Denoting the velocity field by v,
the pressure by p, and the outlet by ∂Ωout, the do-nothing condition is given by

1

Re

∂v

∂n
− pn = 0 on ∂Ωout, (DN)

where Re > 0 is the Reynolds number of the system, and n is the outer normal to the boundary.
At present, (DN) is a well-established boundary condition to represent natural outflows (see e.g., [6]
and the references therein). For a recent discussion on the derivation and physical meaning of the
do-nothing condition (DN), we refer to [26].

One problem concerning (DN) is that it allows the fluid to re-entry the domain at possibly unrestrained
rates. When they are high, the kinetic energy of the system can be severely affected, and energy
estimates might not be possible to obtain for arbitrary data. Aiming to overcome this situation, which
may significantly affect both the theoretical and numerical treatment of the problem, some authors have
proposed to modify (DN) by imposing some restriction on the backflows. Here, we follow two different
approaches. The first one consists in perturbing the do-nothing condition (DN) by some factor that
affects the incoming flows, and enhances the stability of the problem. This approach was introduced
by Bruneau and Fabrie in [12], and then followed by several authors, see e.g. [2,11,17,28]. The other,
is due to Kračmar and Neustupa, and consists in supplementing the do-nothing condition by a bound
for the backflows, see [24–26].

When the first approach is considered in the framework of Navier-Stokes systems, bounds for the
kinetic energy can be obtained for any Reynolds number Re; see [11]. The same occurs with the
second approach, provided some smallness-type condition is assumed on the Reynolds number; [25].
Nevertheless, in presence of buoyancy effects, the kinetic energy is also influenced by changes on the
fluid temperature. Further, the thermal energy is affected by the temperatures driven by the fluid at the
outlet. This scenario requires particular attention on the relation between the velocity and the temper-
ature at the open boundary. In this work, we propose a nonlinearly coupled boundary condition for the
heat transfer at the outlet that is derived from physical assumptions which are consistent with the re-
strictions on the backflows imposed by the modified do-nothing conditions. In particular, this boundary
condition allows to find energy estimates. To the authors’ knowledge, the only precedent work involving
coupled boundary conditions for the heat transfer at the open boundary is due to Pérez et al., see [30].
In that work, the authors consider an ad-hoc modification of a zero flux density condition at the outlet,
which produces the coupled condition, and allows them to prove existence and uniqueness of weak
solutions to a 2D steady Boussinesq system with variable thermophysical parameters. The zero flux
density condition establishes pure convective heat flux at the outlet, and it was also used in several
articles dealing with the Boussinesq equations in domains with open boundaries, see e.g. [3–5,7,8].

Chan and Tien performed numerical and experimental investigations for the non-isothermal fluid flow
in an open cavity, see [14, 15]. They considered a domain with a heated vertical inlet, horizontal in-
sulated walls, a vertical outlet, and ambient temperature equal to zero. Their results show positive
temperatures at the outlet when the fluid is leaving the domain. For heat transfer processes domi-
nated by conduction (i.e. for systems with a Rayleigh number Ra below the critical value), they also
find this feature when the fluid is re-entering. The Figure 9 presented in [14] exhibits the aforemen-
tioned fluid behavior. These results suggest the existence of a conductive heat transfer process at
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The Boussinesq system with mixed non-smooth BCs and do-nothing boundary flow 3

the open boundary, which affects the temperatures driven by the incoming and outgoing fluid. The
boundary condition proposed here aims to consider this phenomena.

The article is organized as follows. In Section 2, we derive a coupled boundary condition for the heat
transfer at the outlet, and present the two Boussinesq systems under study: the problem (P), which
includes a perturbed do-nothing condition; and the problem (Q), in which a bound for the backflow is
assumed. Section 3 is devoted to introduce notation and known results. Finally, Sections 4 and 5 are
dedicated to the study of problems (P) and (Q), respectively. We present variational formulations for
the two problems, and prove existence of weak solutions under some restrictions on data.

2 The problems (P) and (Q)

The room is represented by a a simply connected bounded domain Ω ⊂ Rd with Lipschitz boundary
∂Ω, where d = 2 or d = 3. The velocity field v : Ω → Rd, the temperature u : Ω → R, and the
pressure p : Ω→ R of the fluid, are assumed to satisfy the steady Boussinesq equations on Ω,

(1) v · ∇v − 1

Re
∆v +∇p =

Gr

Re2ue + f1

(2) div v = 0

(3) v · ∇u− 1

RePr
∆u = f2,

(B)

where f1 : Ω → Rd and f2 : Ω → R are external body forces, e is the unit normal in the verti-
cal direction, and Re, Pr, Gr are the Reynolds, Prandtl, and Grashof numbers. They represent the
ratio between inertial to viscous forces, kinematic viscosity to thermal diffusivity, and buoyancy to vis-
cous forces, respectively [27]. Low values of Re are associated to laminar flows, and high values
corresponds to turbulent regimes. Small values of Pr express the heat transfer is primarily due to con-
ductive transport, while large Pr means that convective transport dominates. Finally, Gr has a similar
meaning to Re, and the ratio between Gr and Re2 gives a measure of the relative influence of natural
and forced convection. The former is negligible when Gr� Re2, and the latter when Gr� Re2.

We consider two decompositions of ∂Ω:

D1 = {∂Ωin, ∂Ωwalls, ∂Ωout} , D2 = {∂ΩD, ∂ΩN , ∂Ωout} .
The sets involved in each of them are assumed to be pairwise disjoint open subsets of ∂Ω, all of them
of non-zero measure, the union of their closures being the whole boundary ∂Ω. Further, we assume
that D1 and D2 are related by

∂Ωin ⊂ ∂ΩD, ∂ΩN ⊂ ∂Ωwalls.

We define ∂Ωc
out = ∂ΩD ∪ ∂Ωwalls. Figure 2 illustrates the decompositions D1 and D2 for a two-

dimensional room with a heated floor (see Figure 1).

Figure 2: Decompositions D1 (left) and D2 (right) of the boundary ∂Ω for a 2D room with a heated floor (see

Figure1).
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A.N. Ceretani, C. N. Rautenberg 4

Dirichlet conditions are considered for v and u on the inlet, and for u on the heated part of the
boundary. On the walls, we use a Neumann condition for u to represent insulation, and a non-slip
condition for v. We write

v = vin on ∂Ωin, u = uD on ∂ΩD,

v = 0 on ∂Ωwalls,
∂u

∂n
= 0 on ∂ΩN ,

(BC∂Ωc
out

)

where vin : ∂Ωin → Rd, uD : ∂ΩD → R are given functions, and n is the outer normal to the
boundary.

As it was already mentioned, the unrestricted fluid flow across the outlet will be represented in the
spirit of the do-nothing condition,

1

Re

∂v

∂n
− pn = 0 on ∂Ωout. (DN)

First, we follow the idea introduced by Bruneau and Fabrie in [12], see also [2, 11, 17, 28]. It consists
in perturbing (DN) according to

1

Re

∂v

∂n
− pn +

1

2
v(v · n)− = 0 on ∂Ωout, (DDN)

where (v · n)− denotes the negative part of v · n. Since the perturbation is mainly related with the
influence of the incoming flows, it has received the name of “directional do-nothing” condition [11].
When there is no backflow, i.e. (v · n)− = 0, (DDN) reduces to (DN). By contrast, in presence
of incoming flows, its influence is stabilized by the term 1

2
v(v · n)−. We refer to [11] for a detailed

discussion about the directional do-nothing condition (DDN). Second, we follow the idea introduced by
Kračmar and Neustupa in [24], see also [25,26]. In this case, the do-nothing condition is supplemented
with a bound for the incoming flows across the outlet,

1

Re

∂v

∂n
− pn = 0 on ∂Ωout,

∫
∂Ωout

|(v · n)−|adσ ≤ c0, (DN+Bound)

where a ∈ (2, 4), and c0 ≥ 0. When there is no backflow, the integral condition becomes superfluous,
so only the do-nothing condition is imposed on ∂Ωout.

The heat transfer at the outlet might be affected by three mechanisms: conduction, natural convection
(due to buoyancy effects), and advection (due to the incoming and outgoing fluid). The experimental
and numerical results reported by Chan and Tien in [14, 15] suggest the existence of mutually de-
pendent conductive and advective processes. These authors considered the heat transfer problem for
an open cavity with insulated horizontal walls, a heated inlet opposite to the opening, and ambient
temperature equal to zero. The numerical results from [15], show that the outlet can present positive
temperatures, even when the fluid is re-entering the domain (see Figure 9 in [15]). Further, from the
experimental investigations reported in [14], the authors conclude that the fluid flow through the open
boundary is affected by the heating conditions inside and outside the domain. We will now derive
a boundary condition, aiming to include this phenomena. Along the derivation, the outside ambient
temperature is assumed to be given by a constant value u∞ (which is not necessarily zero).

We make the following assumption at the outlet:

(H1) Natural convection is negligible.
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The Boussinesq system with mixed non-smooth BCs and do-nothing boundary flow 5

This hypothesis (H1) is plausible in geometries with vertical outlets, or for systems with Gr � Re2,
and implies that the heat transfer at the outlet is mainly due to conductive and advectice transport.

From now on, starred letters will denote dimensional quantities. We denote the thermal conductivity
by k∗, the specific heat capacity by c∗, and the density by ρ∗. We recall that we are considering k∗

and c∗ as constants. Further, we will assume that ρ∗ is constant at the outlet, by virtue of assumption
(H1).

Let ∂Ω∗+out be the subset of ∂Ω∗out where u∗ > u∗∞. The heat transfer process at the outlet generates a
“mushy region” outside ∂Ω∗+out, with temperatures between u∗∞ and u∗. The influence of this region on
the heat transfer at the outlet will be represented by an “effective temperature” transported by the fluid
across the opening. We denote this effective temperature as u∗e, and define it as a weighted sum of
the ambient and outlet temperatures, according to a velocity dependent parameter that distinguishes
the fluid flow direction. Further, we limit the influence of the incoming and outgoing flows on the heat
transfer at the outlet, by giving a more relative importance to the temperatures in the flow direction.
More precisely, we set

u∗e = u∗β(v∗ · n∗) + u∗∞(1− β(v∗ · n∗)) on ∂Ω∗+out, (1)

where β : R→ R is a function with the properties

a) β(s) ∈ [0, 1/2] if s ≥ 0, and β(s) ∈ [1/2, 1] if s < 0.

b) β is continuous, except maybe at the origin.
(2)

Thus, the velocity dependent weights β(v∗ · n∗) and (1− β(v∗ · n∗)) in (1) act in the following way.
When the fluid is leaving the domain (v∗ · n∗ > 0), the effective temperature u∗e is given by a convex
sum of the outlet and the external temperatures, where the latter dominates. Similarly, when the fluid
is re-entering (v∗ · n∗ < 0), u∗e is defined as the above weighted average while dominated by the
temperature at the outlet. The effective temperature on the part of the boundary where u∗ < u∗∞ is
defined in a similar manner. Finally, the part of the outlet where u∗ = u∗∞ does not exhibit effective
surrounding mushy region, thus we have u∗e = u∗∞.

The heat flux at the outlet due to the advective transport of the effective temperature is then given by

q∗n,adv = ρ∗c∗u∗e(v
∗ · n∗) = ρ∗c∗ (u∗β(v∗ · n∗) + u∗∞(1− β(v∗ · n∗))) (v∗ · n∗). (3)

We use the Fourier’s law to represent the conductive heat transfer in the normal direction to the outlet,
so it is defined by

q∗n,cond = −k∗ ∂u
∗

∂n∗
. (4)

Then, the effective heat flux normal to the outlet is given by q∗n = q∗n,adv + q∗n,cond. The second
assumption that we make at the outlet is the following:

(H2) The effective heat flux has vanishing average on the open boundary.

This is a consequence of assuming that a local energy balance holds at any neighborhood of the
outlet, which is consistent with the restrictions imposed before on the backflow.

According to the assumption (H2), we can write∫
∂Ω∗out

q∗n dσ
∗ = 0. (5)
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A.N. Ceretani, C. N. Rautenberg 6

Taking into consideration the definitions of q∗n,adv and q∗n,cond given by (3) and (4), we write (5) as∫
∂Ω∗out

(
−k∗ ∂u

∗

∂n∗
+ ρ∗c∗ (u∗β(v∗ · n∗) + u∗∞(1− β(v∗ · n∗))) (v∗ · n∗)

)
dσ∗ = 0. (6)

Thus, we consider the following boundary condition for the heat transfer at the outlet:

k∗
∂u∗

∂n∗
− ρ∗c∗ (u∗β(v∗ · n∗) + u∗∞(1− β(v∗ · n∗))) (v∗ · n∗) = f ∗ on ∂Ω∗out,

where f ∗ is a given function with vanishing average on ∂Ω∗out, which depends on the particular prob-
lem under study.

For simplicity, from now on we assume that u∗∞ = 0 and f ∗ = 0. Then, in dimensionless form, the
above condition becomes

1

RePr

∂u

∂n
− uβ(v · n)(v · n) = 0 on ∂Ωout. (HT)

This is the boundary condition of interest in our framework.

Example 2.1. The simplest case of such boundary condition is given by what follows. If β is the
piecewise constant function defined by

β(s) =

{
1/2 + ε if s < 0
1/2− ε? if s ≥ 0,

with ε, ε? ∈ [0, 1/2], then the boundary condition (HT) becomes

1

RePr

∂u

∂n
+ u

(
1

2
+ ε

)
(v · n)− − u

(
1

2
− ε?

)
(v · n)+ = 0 on ∂Ωout,

where (v · n)+ and (v · n)− denote the positive and negative parts of v · n. Values of ε close to 1/2
means that the effective temperature is close to the outlet temperature when the fluid is re-entering
the domain. Something similar occurs for values of ε? close to 0. Thus, such values are associated
to the mildest effects that the boundary condition (HT) allows for the incoming and outgoing flows on
the advective heat transport at the open boundary.

Summarizing, we will study the following two problems (P) and (Q):

First model: (B) + (BC∂Ωc
out

) + (BCI
∂Ωout

) (P)

Second model: (B) + (BC∂Ωc
out

) + (BCII
∂Ωout

), (Q)

where

(BCI
∂Ωout

) = (DDN) + (HT), (BCII
∂Ωout

) = (DN+Bound) + (HT).

A few words on the coupled boundary condition considered by Pérez et al. in [30] are in order. In
that work, the authors consider a 2D steady Boussinesq system with variable thermophysical proper-
ties in a domain with an open boundary. The conditions at the outlet are given by a do-nothing-type
condition for the fluid flow, and a zero density flux condition for the heat transfer. By following a fixed
point strategy, the authors prove well-posedness for a modified variational formulation of the original
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The Boussinesq system with mixed non-smooth BCs and do-nothing boundary flow 7

problem (provided a smallness-type condition on data holds). When the thermophysical properties are
constant, the alternative variational formulation is formally associated with the directional do-nothing
condition (DDN), and the following coupled condition for the heat transfer at the outlet:

1

RePr

∂u

∂n
+

1

2
u(v · n)− = 0 ∂Ωout. (HT∗)

The latter is a special case of (HT), corresponding to the function β given in the Example 2.1, with
ε = 0 and ε? = 1/2. According to the above discussion, the effective temperature driven by the fluid
across the outlet is then defined by: a) the average between the ambient and outlet temperatures when
the fluid is re-entering the domain (this corresponds to ε = 0), b) the outside ambient temperature
when the fluid is going outside (this corresponds to ε? = 1/2). We recall that the latter is associated
to the mildest effects of the ouflows on the advective heat transfer process that condition (HT) allows.

When Gr = 0, the unknowns v and u in the Boussinesq equations (B), are decoupled. For this special
case, the analysis of problems (P) or (Q) reduces to study an incompressible Navier-Stokes system
for the velocity and the pressure, and a convection-diffusion system for the temperature. The Navier-
Stokes systems associated to each problem are, precisely, the systems studied in the articles [11]
and [25], which motivate the present work. By contrast, when Gr 6= 0, the flow under study takes
into consideration buoyancy effects coming from changes in the temperature distribution, and the
unknowns v, u in the Boussinesq equations (B) cannot be treated separately.

3 General considerations

Norms in Lp and Wm,p on the domain Ω will be denoted by || · ||p and || · ||m,p, respectively. When
considering them on the boundary ∂Ω, or on some part of it, the domain will be specifically indicated
(e.g., || · ||p,∂Ωout or || · ||m,p,∂ΩD

). The inner product in L2 will be denoted by (·, ·).

The weak solutions to problems (P) and (Q) will be obtained in the form

v = v0 + V, u = u0 + U,

where V : Ω→ Rd, U : Ω→ R are known functions such that

V = vin a.e. on ∂Ωin, V = 0 a.e. on ∂Ωwalls,

U = uD a.e. on ∂ΩD, divV = 0 a.e. in Ω.
(7)

The following lemma establishes conditions on vin, uD, and Ω that ensure the existence of the func-
tions V and U . For the proof of the first part, we refer to [25]. The second part is a well known result,
see e.g. [1].

Lemma 3.1.

1. If vin can be extended to ∂Ω by a function vext
in ∈ W 1/2,2(∂Ω)d that satisfies∫

∂Ω

vext
in · n dσ = 0, vext

in = 0 on ∂Ωwalls ∪ {∂Ωout \ S} , and vin = kn on S, (8)

for some non-negative scalar function k, and some open set S contained in ∂Ωout, then there exists
a vector function V ∈ W 1,2(Ω)d which satisfies the first three conditions in (7). Moreover, V can be
chosen with the following properties:

DOI 10.20347/WIAS.PREPRINT.2504 Berlin 2018



A.N. Ceretani, C. N. Rautenberg 8

a.

∫
∂Ωout

(V · n)−dσ = 0,

b. for any divergence-free vector functions w, w̃ ∈ W 1,2(Ω)d with vanishing traces on ∂Ωin ∪
∂Ωwalls, we observe

|(w · ∇V, w̃)| ≤ 1

2Re
||∇w||2 ||∇w̃||2.

2. If uD ∈ W 1/2,2(∂ΩD), then there exists a function U ∈ W 1,2(Ω) which satisfies the last condition
in (7). Moreover,

||U ||1,2 ≤ c∗||uD||1/2,2,∂ΩD
, (9)

for some positive constant c∗ = c∗(d, ∂ΩD).

We denote by V1 and V2 to the function spaces defined by

V1 = E1(Ω)
W 1,2(Ω)d

, and V2 = E2(Ω)
W 1,2(Ω)

.

That is, V1 and V2 are the closure of E1(Ω) and E2(Ω) with respect to the norms of W 1,2(Ω)d and
W 1,2(Ω), respectively, and where

E1(Ω) =
{
w ∈ C∞(Ω)d : divw = 0, suppw ∩ {∂Ωin ∪ ∂Ωwalls} = ∅

}
E2(Ω) =

{
w ∈ C∞(Ω) : suppw ∩ ∂ΩD = ∅

}
,

and C∞(Ω) is the set of restrictions to Ω of infinitely differentiable functions C∞(Rd). We recall that
V1 and V2 are Hilbert spaces with the inner product ((·, ·)) defined by

((ϕ, ψ)) =

∫
Ω

∇ϕ · ∇ψ dx,

where ϕ, ψ belongs to either V1 or V2. The norm induced by ((·, ·)) on V1 and V2 will be denoted as
|| · ||. Under certain regularity assumptions on ∂Ω, ∂Ωin ∪ ∂Ωwalls, and ∂ΩD, the spaces V1 and V2

admit the characterizations

V1 =
{
w ∈ W 1,2(Ω)d : divw = 0 in Ω, w|∂Ωin∪∂Ωwalls

= 0 in the trace sense
}
,

V2 =
{
w ∈ W 1,2(Ω) : w|∂ΩD

= 0 in the trace sense
}
.

(10)

The density result implying the equivalence of both definitions of V2 was proved in [16], and the class
of the domains Ω for which it holds is denoted as C̃0,1, a subset of the Lipschitz domain class C0,1.
The class C̃0,1 involves domains Ω which Lipschitz boundary consisting on a finite number of smooth
parts with finite number of relative maxima, minima, and inflexion points, and in three dimensions, also
a finite number of saddle points. Additionally, the Dirichlet boundary ∂ΩD consists on a finite number
of of relative open parts in ∂Ω, that in the case d = 3 possess a projective boundary Lipschitz
regularity condition; see [16]. The analogous result for V1 follows under identical assumptions over Ω.
We assume throughout the paper that the domain Ω is of class C̃0,1.

DOI 10.20347/WIAS.PREPRINT.2504 Berlin 2018



The Boussinesq system with mixed non-smooth BCs and do-nothing boundary flow 9

Following standard notation from the literature of Navier-Stokes equations, we also introduce the tri-
linear forms b1 and b2, defined by

b1(w, w̃, ŵ) =

∫
Ω

(w · ∇w̃) · ŵ dx w, w̃, ŵ ∈ W 1,2(Ω)d

b2(w, w̃, ŵ) =

∫
Ω

(w · ∇w̃)ŵ dx w ∈ W 1,2(Ω)d, w̃, ŵ ∈ W 1,2(Ω).

We recall that the embedding W 1,2(Ω) ↪→ L4(Ω) and Hölder’s inequality, yield

|b1(w, w̃, ŵ)| ≤ ||w||4||∇w̃||2||ŵ||4, |b2(w, w̃, ŵ)| ≤ ||w||4||∇w̃||2||ŵ||4, (11)

for any w, w̃, ŵ ∈ W 1,2(Ω)d and w̃, ŵ ∈ W 1,2(Ω). Then, the forms b1 and b2 are well defined on the
aforementioned spaces. In particular, when w̃ ∈ W 1,2(Ω)d is divergence-free, and w ∈ W 1,2(Ω)d,
w ∈ W 1,2(Ω), the forms b1, b2 satisfy

b1(w̃,w,w) =
1

2

∫
∂Ω

|w|2(w̃ · n)dσ, b2(w̃, w, w) =
1

2

∫
∂Ω

w2(w̃ · n)dσ. (12)

Finally, the letters c, c̃ and ĉ will denote positive constants such that

||ϕ||1,2 ≤ c||ϕ||, ||ψ||4 ≤ c̃ ||ψ||1,2, ||ψ||q,∂Ωout ≤ ĉ ||ψ||1,2 (q = 2, 4),

for any ϕ which belongs to either V1 or V2, and any ψ which belongs to either W 1,2(Ω)d or W 1,2(Ω).
Their existence is ensured by the embeddings V1 ↪→ W 1,2(Ω)d and V2 ↪→ W 1,2(Ω) (existence
of c > 0), W 1,2(Ω) ↪→ L4(Ω) (existence of c̃ > 0), and W 1,2(Ω) ↪→ Lq(∂Ωout) for 1 ≤ q ≤ 4
(existence of ĉ > 0). Moreover, c, c̃ and ĉ can be chosen to be such that c = c(d,Ω), c̃ = c̃ (d,Ω),
and ĉ = ĉ (d, ∂Ωout).

We consider the following assumptions on the data of the problem:

f1 ∈ L2(Ω)d, f2 ∈ L2(Ω), vin ∈ W 1/2,2(∂Ωin)d, uD ∈ W 1/2,2(∂ΩD).

There exists an extention vext
in ∈ W 1,2(∂Ω)d of vin, with the properties (8).

(A)

4 Weak solutions to problem (P)

Throughout this section, we assume that (A) holds true. Multiplying equations (1) and (3) of (B) by
test functions w ∈ V1 and w ∈ V2, respectively, integrating both expressions over Ω, and taking into
consideration the boundary conditions (BCI

∂Ωout
), we find∫

Ω

(v · ∇v) ·wdx+
1

Re

∫
Ω

∇v · ∇wdx+
1

2

∫
∂Ωout

(v ·w)(v · n)−dσ =
Gr

Re2

∫
Ω

ue ·wdx

+

∫
Ω

f1 ·wdx,

∫
Ω

(v · ∇u)wdx+
1

RePr

∫
Ω

∇u · ∇wdx−
∫
∂Ωout

uwβ(v · n)(v · n)dσ =

∫
Ω

f2wdx.
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Thus, we consider the following weak formulation for problem (P):

Problem (Pw): Find (v0, u0) ∈ V1 × V2 such that

b1(v,v,w) +
1

Re
((v,w))− Gr

Re2 (ue,w) +
1

2

∫
∂Ωout

(v ·w)(v · n)−dσ = (f1,w),

for all w ∈ V1, and

b2(v, u, w) +
1

RePr
((u,w))−

∫
∂Ωout

uwβ(v · n)(v · n)dσ = (f2, w),

for all w ∈ V2, where v = v0 + V, and u = u0 + U.

(Pw)

The existence of solutions to (Pw) is proved via Galerkin’s method. Let B1 = {w1,w2, . . . } and
B2 = {w1, w2, . . . } be orthonormal basis for V1 and V2, respectively. For each n ∈ N, let V n

1 and V n
2

be the finite-dimensional spaces spanned byBn
1 = {w1,w2, . . . ,wn} andBn

2 = {w1, w2, . . . , wn},
respectively. We consider the following finite dimensional problem associated to (Pw):

Problem (Pn
w): Find (vn, un) ∈ V n

1 × V n
2 such that

b1(vn,vn,w) +
1

Re
((vn,w))− Gr

Re2 (une,w) +
1

2

∫
∂Ωout

(vn ·w)(vn · n)−dσ = (f1,w)

for all w ∈ V n
1 , and

b2(vn, un, w) +
1

RePr
((un, w))−

∫
∂Ωout

unwβ(vn · n)(vn · n)dσ = (f2, w)

for all w ∈ V n
2 , where vn = vn + V, and un = un + U.

(Pn
w)

Since the variational equations in (Pn
w) are linear on w ∈ V n

1 and w ∈ V n
2 , the representations

w =
n∑

k=1

a1kwk, and w =
n∑

k=1

a2kwk, (13)

with a11, · · · , a1n ∈ R and a21 · · · , a2n ∈ R enable us to write the following

Equivalent formulation of problem (Pn
w): Find (vn, un) ∈ V n

1 × V n
2 such that

b1(vn,vn,wk) +
1

Re
((vn,wk))− Gr

Re2 (une,wk) +
1

2

∫
∂Ωout

(vn ·wk)(vn · n)−dσ

= (f1,wk)

and

b2(vn, un, wk) +
1

RePr
((un, wk))−

∫
∂Ωout

unwkβ(vn · n)(vn · n)dσ = (f2, wk),

for all k = 1, . . . , n, where vn = vn + V, un = un + U .
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At this point, we observe that the existence of solutions to problem (Pn
w) is equivalent to the existence

of zeros of the operator P : V n
1 × V n

2 → V n
1 × V n

2 defined by

P (w, w) = (P1(w, w), P2(w, w)) ,

where

P1(w, w) =
n∑

k=1

{
−(f1,wk) + b1(w + V,w + V,wk) +

1

Re
((w + V,wk))

+
1

2

∫
∂Ωout

((w + V) ·wk) ((w + V) · n)− dσ −
Gr

Re2 ((w + U)e,wk)

}
wk,

(14)

and

P2(w, w) =
n∑

k=1

{
−(f2, wk) + b2(w + V, w + U,wk) +

1

RePr
((w + U,wk))

−
∫
∂Ωout

wk(w + U)β((w + V) · n) ((w + V) · n) dσ

}
wk.

(15)

In the light of this observation, we make use of the following result. The proof can be found in [18].

Lemma 4.1. LetX be a finite dimensional Hilbert space with inner product [·, ·] and norm [·]. Assume
that P : X → X is a continuous mapping with the following property:

[P (ξ), ξ] > 0 for all ξ ∈ X such that [ξ] = k, for some k > 0. (16)

Then there exists ξ∗ ∈ X such that P (ξ∗) = 0. Moreover, [ξ∗] ≤ k.

We note that X = V n
1 × V n

2 is a finite dimensional Hilbert space with the inner product [·, ·] defined
by

[(w, w), (w̃, w̃)] = ((w, w̃)) + ((w, w̃)). (17)

Note that the map s 7→ β(s)s is continuous by hypothesis (see (2)-b), and additionally |β(s)s| ≤
‖β‖L∞|s|. Then, it follows that Ψ(s) = β(s)s, the Nemytskii operator Ψ : Lq(∂Ωout)→ Lq(∂Ωout)
is continuous for 1 ≤ q < +∞; see [32]. It follows that P : X → X is a continuous operator
in the norm induced by [·, ·]. Then, in order to apply Lemma 4.1, only remains to analyze the inner
product [P (w, w), (w, w)]. Exploiting the representation given in (13) for w ∈ V1, and taking into
consideration that ((wj,wk)) = δj,k for all j, k = 1, · · · , n, we find

((P1(w, w),w)) =
n∑

k=1

n∑
j=1

a1j

{
−(f1,wk) + b1(w + V,w + V,wk) +

1

Re
((w + V,wk))

+
1

2

∫
∂Ωout

((w + V) ·wk) {(w + V) · n}− dσ −
Gr

Re2 ((w + U)e,wk)

}
((wk,wj)),

that is

((P1(w, w),w)) = −(f1,w) + b1(w + V,w + V,w) +
1

Re
((w + V,w))

+
1

2

∫
∂Ωout

{(w + V) ·w} ((w + V) · n)− dσ −
Gr

Re2 ((w + U)e,w).
(18)

DOI 10.20347/WIAS.PREPRINT.2504 Berlin 2018



A.N. Ceretani, C. N. Rautenberg 12

Similarly,

((P2(w, w), w)) =− (f2, w) + b2(w + V, w + U,w) +
1

RePr
((w + U,w))

−
∫
∂Ωout

w(w + U)β((w + V) · n) ((w + V) · n) dσ.
(19)

The following two Lemmas collect some preparatory results to estimate the quantity [P (w, w), (w, w)].

Lemma 4.2. For any w ∈ V1, w ∈ V2, the forms b1 and b2 satisfy

b1(w + V,w + V,w) ≥− 1

2

∫
∂Ωout

|w|2 ((w + V) · n)− dσ

−
(

1

2Re
||w||+ c c̃ 2||V||21,2

)
||w||,

(20)

and

b2(w + V, w + U,w) ≥1

2

∫
∂Ωout

w2 ((w + V) · n) dσ

− c c̃ 2 (c||w||+ ||V||1,2) ||U ||1,2||w||.
(21)

Proof. To prove (20), we estimate separately b1(w + V,w,w), b1(w,V,w) and b1(V,V,w).
First, from (12)1, we find

b1(w + V,w,w) =
1

2

∫
∂Ωout

|w|2 ((w + V) · n) dσ ≥ −1

2

∫
∂Ωout

|w|2 ((w + V) · n)− dσ.

Second, from Lemma 3.1-1(b), we obtain

b1(w,V,w) ≥ −|b1(w,V,w)| ≥ − 1

2Re
||w||2.

Finally, from (11), we find

b1(V,V,w) ≥ −|b1(V,V,w)| ≥ −c c̃ 2||V||21,2||w||. (22)

Now, (20) follows from the linearity of w̃ 7→ b1(w̃, ·, ·) and w̃ 7→ b1(·, w̃, ·). Similarly, to prove (21)
we analyze separately b2(w + V, w, w) and b2(w + V, U, w). We note that w + V has vanishing
trace on ∂ΩN since ∂ΩN ⊂ ∂Ωwalls. Then, from (12)2, we obtain

b2(w + V, w, w) =
1

2

∫
∂Ωout

w2 ((w + V) · n) dσ.

The Minkowski inequality and (11) yield

b2(w + V, U, w) ≥ −c c̃ 2||w + V||1,2||U ||1,2||w||
≥ −c2 c̃ 2||U ||1,2||w|| ||w|| − c c̃ 2||V||1,2||U ||1,2||w||.

Hence (21) follows from the linearity of w̃ 7→ b2(·, w̃, ·).
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Lemma 4.3. For any w ∈ V1, w ∈ V2, the following inequalities hold true:∫
∂Ωout

(V ·w) ((w + V) · n)− dσ ≥ −c ĉ
3 (c||w||+ ||V||1,2) ||V||1,2||w||, (23)

and∫
∂Ωout

wUβ((w + V) · n) ((w + V) · n) dσ ≥ −β∗c ĉ 3 (c||w||+ ||V||1,2) ||U ||1,2||w||, (24)

where 0 ≤ β∗ ≤ 1 denotes the L∞-norm of β in R.

Proof. It is a direct consequence of the Hölder and Minkowski inequalities.

Lemma 4.4. For any (w, w) ∈ X , the following inequalities hold true:

((P1(w, w),w)) ≥ 1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
||w||2 − c2 Gr

Re2 ||w|| ||w|| − A1||w||, (25)

and

((P2(w, w), w)) ≥ 1

RePr
||w||2 − c2c∗

(
β∗ ĉ 3 + c̃ 2

)
||uD||1/2,2,∂ΩD

||w|| ||w|| − A2||w||, (26)

where A1 and A2 are non-negative constants which depend on the data of problem (P).

Proof. From (18) and (20), we find

((P1(w, w),w)) ≥−
(

1

2Re
||w||+ c c̃ 2||V||21,2

)
||w||+ 1

Re
||w||2 +

1

Re
((V,w))

+

∫
∂Ωout

(V ·w) ((w + V) · n)− dσ −
Gr

Re2 ((w + U)e,w)− (f1,w).

Combining this with (23), we find (25) with

A1 = c

(
1

Re
||V||1,2 +

(
c̃ 2 +

ĉ 3

2

)
||V||21,2 +

Gr

Re2 ||U ||1,2 + ||f1||2
)
.

Similarly, from (19), (21), and (24), we find

((P2(w, w), w)) ≥ 1

RePr
||w||2 − c2

(
β∗ ĉ 3 + c̃ 2

)
||U ||1,2||w|| ||w|| − A2||w||, (27)

where

A2 = c

(
1

RePr
||U ||1,2 +

(
c̃ 2 + β∗ ĉ 3

)
||U ||1,2||V||1,2 + ||f2||2

)
.

This, in combination with with (9), yields (26). Note that to derive (27), it was taken into account that∫
∂Ωout

w2

(
1

2
− β(w̃ · n)

)
(w̃ · n) dσ =

∫
∂Ωout,w̃·n>0

w2

(
1

2
− β((w̃ · n)+)

)
(w̃ · n)+ dσ

−
∫
∂Ωout,w̃·n<0

w2

(
1

2
− β(−(w̃ · n)−)

)
(w̃ · n)− dσ≥0,

for any w̃ ∈ W 1,2(Ω)d, due to the properties of the function β (see (2)-a).
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We are now in shape to prove the following result based on Lemma 4.1.

Theorem 4.1. Assume that

c2 Gr

Re2 < min

{
1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
,

1

RePr

}
− η||uD||1/2,2,∂ΩD

and

c2 ĉ 3||V||1,2 <
1

Re
,

(AP)

hold true, where
η = c2c∗

(
β∗ ĉ 3 + c̃ 2

)
> 0, (28)

for β∗ the L∞-norm of β. Then problem (Pn
w) has a solution (vn, un) ∈ V n

1 × V n
2 . Moreover,

||vn|| ≤ k, ||un|| ≤ k, (29)

for some positive constant k, which does not depend on n.

Proof. Let (w, w) ∈ X be given. By adding the estimations for ((P1(w, w),w)) and ((P2(w, w), w))
given in Lemma 4.4, and taking into consideration (AP)2, we obtain

[P (w, w), (w, w)] ≥min

{
1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
,

1

RePr

}(
||w||2 + ||w||2

)
−
(
c2 Gr

Re2 + η||uD||1/2,2,∂ΩD

)
||w|| ||w|| − A1||w|| − A2||w||.

(30)

Let k be some positive given number. Assume that [(w, w)] = k, i.e. ||w||2 + ||w||2 = k2. Noting
that ||w|| ≤ k and ||w|| ≤ k, it follows from (30) that

[P (w, w), (w, w)] ≥ (A0k − (A1 + A2)) k, (31)

where

A0 = min

{
1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
,

1

RePr

}
− η||uD||1/2,2,∂ΩD

− c2 Gr

Re2 .

Assumptions (AP) imply that A0 > 0. Thus, K = A1+A2

A0
is non-negative and the above computa-

tions ensure that P satisfies (16) for any k ≥ K . Finally, we observe that k can be chosen to be
independent on n (e.g. k = K + 1).

We are now in a position to formulate the main result of this Section.

Theorem 4.2. Suppose (AP) holds true. Then problem (Pw) has a solution (v0, u0) ∈ V1 × V2.

Proof. For each n ∈ N, let (vn, un) ∈ V n
1 × V n

2 be a solution to (Pn
w). From Theorem 4.1, we

find that (vn) and (un) are bounded sequences in V1 and V2, respectively. Hence, they admit weakly
convergent subsequences, which we will also denote by (vn) and (un). Let v0 ∈ V1 and u0 ∈ V2 be
the weak limits of (vn) and (un), respectively. We write vn ⇀ v0 and un ⇀ u0. We show now that
(v0, u0) ∈ V1× V2 is a solution to (Pw) by taking the limit for n→ +∞ in both equations of problem
(Pn

w).
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First, we will analyze the convergence of the surface integrals. We begin by proving that∫
∂Ωout

(vn ·w)(vn · n)−dσ →
∫
∂Ωout

(v ·w)(v · n)−dσ, (32)

where w ∈ V1. Recall that vn = vn + V, and v = v0 + V. From the embedding V1 ↪→
W 1,2(Ω)d and the compact embedding W 1,2(Ω) ↪→↪→ Lq(∂Ωout) for 1 ≤ q < 4 ( [29]), we
find V1 ↪→↪→ Lq(∂Ωout)

d for 1 ≤ q < 4. Then, vn → v in Lq(∂Ωout)
d, if 1 ≤ q < 4. From this,

we also find the strong convergence (vn · n)− → (v · n)− in Lq(∂Ωout) when 1 ≤ q < 4,
since Lq(∂Ωout)

d 3 v 7→ (v · n)− ∈ Lq(∂Ωout) is continuous in the strong topology. Therefore,
vn(vn · n)− → v(v · n)− strongly in Lq(∂Ωout)

d for any 1 ≤ q < 2. Now, (32) follows from
Hölder inequality, ∣∣∣∣∫

∂Ωout

(vn(vn · n)− − v(v · n)−) ·wdσ
∣∣∣∣

≤ ||vn(vn · n)− − v(v · n)−||q,∂Ωout||w||q∗,∂Ωout ,

with q = 2− ξ, q∗ = q
q−1

and 0 < ξ < 2
3
.

We now look at the convergence∫
∂Ωout

wunβ(vn · n)(vn · n)dσ →
∫
∂Ωout

wuβ(v · n)(v · n)dσ, (33)

where w ∈ V2. Taking into account that β : R → R is bounded, and the only point where it
is allowed to have a discontinuity is the origin (see (2)), we find s 7→ β(s)s is continuous, and
|β(s)s| ≤ β∗|s|. Then, for Ψ(s) = β(s)s, the Nemytskii operator Ψ : Lq(∂Ωout) → Lq(∂Ωout)
is continuous for 1 ≤ q < +∞; see [32]. By the embeddings in the above paragraph, we know that
(vn · n) → (v · n) in Lq(∂Ωout) for 1 ≤ q < 4. From this and the continuity of Ψ, it follows that
β(vn · n)(vn · n) → β(v · n)(v · n) in Lq(∂Ωout) when 1 ≤ q < 4. Recalling the embedding
V2 ↪→ W 1,2(Ω), we also find that V2 ↪→↪→ Lq(∂Ωout) for 1 ≤ q < 4, so un → u in Lq(∂Ωout)
when 1 ≤ q < 4. Thus, unβ(vn ·n)(vn ·n)→ uβ(v ·n)(v ·n) in Lq(∂Ωout) for 1 ≤ q < 2. Now
(33) follows from the Hölder inequality, as before.

Secondly, we will analyze the convergences of terms involving the trilinear forms b1 and b2. We begin
by proving that

b1(vn,vn,w)→ b1(v,v,w), (34)

where w ∈ V1. Due to the structure of b1, it is enough to prove that
∫

Ω
zn ∂zn

∂xj
w →

∫
Ω
z ∂z
∂xj
w

provided that zn ⇀ z inW 1,2(Ω), j ∈ {1, . . . , d}, andw ∈ W 1,2(Ω). From the compact embedding
W 1,2(Ω) ↪→↪→ L4(Ω), we have that zn → z in L4(Ω), andwzn → wz in L2(Ω). Since ∂zn

∂xj
⇀ ∂z

∂xj

in L2(Ω), then
∫

Ω
zn ∂zn

∂xj
w →

∫
Ω
z ∂z
∂xj
w follows from the strong-weak continuity of the L2(Ω) inner

product (·, ·). The convergence b2(vn, un, w)→ b2(v, u, w) for any w ∈ V2 it is proved similarly.

Finally, ((vn,w)) → ((v,w)), (une,w) → (ue,w) and ((un, w)) → ((u,w)) are direct conse-
quences of the weak convergences vn ⇀ v0 in V1, and un ⇀ u0 in V2.

Remark 1.

1 When Gr = 0, the problem (P) is decoupled into a Navier-Stokes system for v and p, and a
convection-diffusion system for u. The former was studied by Braack and Mucha for the case
vin = 0 in [11], where they proved existence of weak solution without any condition on the
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Reynolds number. This result is recovered here. In fact, when vin = 0, V can be chosen to be
the zero function. Then, conditions (AP) reduce to

η||uD||1/2,2,∂ΩD
<

1

Re
min

{
1

2
,

1

Pr

}
,

which only affects the convection-diffusion system.

2 When d = 2, and β is the function given in the Example 2.1 with ε = 0 and ε? = 1/2,
the problem (P) was studied by Pérez et al. in [30], see also [31]. They consider the more
general case in which the thermophysical properties are allowed to vary with the temperature,
and assume no internal heat generation exists (i.e. f2 = 0). Under certain restriction on data,
they are able to prove existence and uniqueness of weak solutions by decoupling the problem,
and then following a fixed point strategy. In particular, they assume that Gr� Re2 (for physical
consistence with the 2D setting), and small temperature variations (to prove a result of existence
by a fixed point theorem, see (H2) in [30]). Further, when the thermophysical parameters are
assumed to be constant, the first condition is quantified in terms of (see Theorem 4.1 in [30])

C̃
Gr

Re2 < 1, (35)

where C̃ is a positive constant that depends on data. By following the guideline given in [30] to
obtain C̃ (see Proposition 4.1 in [30]), we found C̃ = c2c∗max{1, ĉ 3/2}+c∗. Then, condition
(AP)1 is less restrictive than (35) since it allows to control the value of Gr/Re2 by the boundary
data, and the Prandtl number of the system.

The following corollary establishes conditions on the Reynolds, Prandtl, and Grashof numbers in order
to obtain solutions to problem (Pw). In particular, it shows that if Re and Gr are known and satisfy
some smallness-type conditions, then solutions to problem (Pw) can be obtained for arbitrarily small
Pr.

Corollary 4.1.

1 Assume that vin = 0 and uD = 0. Then there exists a positive constant δ = δ(d,Ω), such
that if

0 < δGr < Re and 0 < Pr ≤ 2, (36)

then problem (Pw) has a solution.

2 Assume that vin 6= 0 or uD 6= 0. Then there exist positive constants δi = δi(d,Ω,vin, uD,
∂Ωout, ∂ΩD), i = 0, · · · , 3, such that if

0 < Gr ≤ δ0, δ1 < Re < δ2, and 0 < Pr ≤ δ3, (37)

then problem (Pw) has a solution.

Proof.

1 The proof follows directly from Theorem 4.2, considering δ = 2c2.
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2 Aiming to keep notation simple, we set α = c2 ĉ 3||V||1,2 + 2η||uD||1/2,2,∂ΩD
. Observe that

α > 0 since ||V||1,2 and ||uD||1/2,2,∂ΩD
are not both zero. Let δ0 be such that

0 < δ0 ≤
1

8c2α
,

and assume that 0 < Gr ≤ δ0. Let δ1 and δ2 be the positive numbers defined by

δ1 =
1

2α

(
1−

√
1− 8c2αδ0

)
and δ2 =

1

2α

(
1 +

√
1− 8c2αδ0

)
,

and assume that δ1 < Re < δ2. Then, condition (AP)2 holds. In fact, if vin = 0, there is
nothing to prove. If vin 6= 0, we find

δ2 <
1

α
≤ 1

c2 ĉ 3||V||1,2
.

Then, 1 − c2 ĉ 3||V||1,2δ2 > 0. This, in conjunction with Re < δ2, gives (AP)2. Let ρ1 and ρ2

be the roots of the equation αx2 − x + 2c2Gr = 0. The assumption on the Grashof number
implies that ρ1 ≤ δ1 ≤ δ2 ≤ ρ2. Then,

αRe2 − Re + 2c2Gr < 0. (38)

Let δ3 be the real number defined by

δ3 =
1

1− c2 ĉ 3||V||1,2δ1

.

If vin = 0, δ3 = 1, so it is positive. If vin 6= 0, we find

δ1 <
1

α
≤ 1

c2 ĉ 3||V||1,2
.

Thus, δ3 is positive. Now, assume that 0 < Pr ≤ δ3. We find that (38) is equivalent to (AP)1.
In fact, the assumptions on Re and Pr imply that

Pr ≤ 1

1− c2 ĉ 3||V||1,2Re
.

Then

min

{
1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
,

1

RePr

}
=

1

2

(
1

Re
− c2 ĉ 3||V||1,2

)
.

Noting that (38) can be written as

c2 Gr

Re2 <
1

2Re
− α

2
,

the equivalence between (38) and (AP)1 follows directly from the definition of α. The existence
of solution to problem (Pw) is then ensured by Theorem 4.2. Only remains to observe that the
constants δi defined in this proof can be selected to be dependent on d, Ω, vin, uD, ∂Ωout and
∂ΩD only.
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We end this Section by showing that weak solutions to problem (Pw) are indeed strong solutions,
provided some additional regularity is assumed for them.

Theorem 4.3. Suppose (v0, u0) solve (Pw) and v0 ∈ W 2,2(Ω)d ∩ V1, u0 ∈ W 2,2(Ω) ∩ V2, with
V ∈ W 2,2(Ω)d, U ∈ W 2,2(Ω). Then there exists a function p ∈ W 1,2(Ω) such that v = v0 + V,
u = u0 + U and p satisfy problem (P) almost everywhere.

Proof. First, we prove that there exists p ∈ W 1,2(Ω) such that v = v0 + V, u = u0 + U and
p satisfy the equation (1) of (B) a.e. in Ω. We set V1 =

{
w ∈ C∞0 (Ω)d : divw = 0

}
. Since any

function w ∈ V1 vanishes on ∂Ω, from the first equation in problem (Pw), we find

b1(v,v,w) +
1

Re
((v,w))− Gr

Re2 (ue,w) = (f1,w), (39)

for all w ∈ V1. Exploiting the Gauss-Green formula,∫
Ω

∇v · ∇wdx =

∫
∂Ω

∂v

∂n
·wdσ −

∫
Ω

∆v ·wdx, (40)

with w ∈ V1, and noting that the surface integral in its r.h.s. vanishes when w ∈ V1, we write (39) as(
v · ∇v − 1

Re
∆v − Gr

Re2ue− f1,w

)
= 0,

for all w ∈ V1. From this, we obtain the existence of a function p ∈ W 1,2(Ω) as desired [18].

Secondly, we examine the directional do-nothing condition in (BCI
∂Ωout

). Adding the term
∫

Ω
∇p·wdx

side by side of the first equation in problem (Pw), and noting that∫
Ω

∇p ·wdx =

∫
∂Ωout

pn ·wdσ,

for w ∈ V1, we find

b1(v,v,w) +
1

Re
((v,w)) +

∫
∂Ωout

(
1

2
v(v · n)− − pn

)
·wdσ − Gr

Re2 (ue,w)

+

∫
Ω

∇p ·wdx = (f1,w), ∀w ∈ V1,

(41)

Using again (40), and taking into consideration that the surface integral in its r.h.s. reduces to an
integral over ∂Ωout when w ∈ V1, we write (41) as(

v · ∇v − 1

Re
∆v − Gr

Re2ue− f1 +∇p,w
)

+

∫
∂Ωout

(
1

Re

∂v

∂n
+

1

2
v(v · n)− − pn

)
·wdσ

= 0,

for all w ∈ V1. Since the first term in the l.h.s. of the above expression vanishes, we find∫
∂Ωout

(
1

Re

∂v

∂n
+

1

2
v(v · n)− − pn

)
·wdσ = 0,

for all w ∈ V1. Thus, v and p satisfy the directional do-nothing condition a.e. on ∂Ωout.
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By proceeding as in the beginning of this proof, we also find(
v · ∇u− 1

RePr
∆u− f2, w

)
= 0,

for all w ∈ C∞0 (Ω), from which follows that v and u satisfy the equation (3) of (B) a.e. in Ω.

Finally, we examine the Neumann condition in (BC∂Ωc
out

), and the heat transfer condition in (BCI
∂Ωout

).
As before, we find that the first equation of problem (Pw) can be written as(

v · ∇u− 1

RePr
∆u− f2, w

)
+

∫
∂Ωout

w

(
1

RePr

∂u

∂n
− uβ(v · n)(v · n)

)
dσ

+
1

RePr

∫
∂ΩN

w
∂u

∂n
dσ = 0,

for all w ∈ V2, which reduces to∫
∂Ωout

w

(
1

RePr

∂u

∂n
− uβ(v · n)(v · n)

)
wdσ +

1

RePr

∫
∂ΩN

w
∂u

∂n
dσ = 0,

for all w ∈ V2, since the first term in its l.h.s. vanishes. In particular, we find∫
∂Ωout

w

(
1

RePr

∂u

∂n
− uβ(v · n)(v · n)

)
dσ = 0,

for all w ∈ V1 with vanishing trace on ∂ΩN . Since ∂ΩN and ∂Ωout are disjoint sets, the above
expression implies that the heat transfer condition holds a.e. on ∂Ωout. Similarly, we find∫

∂ΩN

w
∂u

∂n
dσ = 0,

for all w ∈ V1 with vanishing trace on ∂Ωout, which implies the Neumann condition for u holds a.e.
on ∂ΩN .

The remaining conditions in problem (P) hold straightforward from the definition of the spaces V1 and
V2.

5 Weak solutions to problem (Q)

All through this section, assumptions (A) hold true. We begin by noting that the integral condition in
(BCII

∂Ω) implies that v0 must satisfy∫
∂Ωout

| ((v0 + V) · n)− |
adσ ≤ c0.

Thus, we cannot search for v0 in the whole space V1. Following the ideas in [25], we will formulate a
variational inequality for v0 on the subset K(V) of V1 defined by

K(V) = F (V)
V1
,

that is, K(V) is the closure of F (V) in V1, where

F (V) =

{
w ∈ E1(Ω) :

∫
∂Ωout

| ((w + V) · n)− |
adσ ≤ c0

}
.
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K(V) is a non-empty convex set of V1, which admits the characterization

K(V) =

{
w ∈ V1 :

∫
∂Ωout

| ((w + V) · n)− |
adσ ≤ c0

}
.

We refer to [25] for details on the properties of K(V). The variational inequality is obtained similarly
to the first equation in problem (Pw). The difference is that now we multiply the equation (1) of (B)
by w − v0, where w is a test function in F (V), and relax the resulting equation by considering an
inequality. More precisely, we consider the following weak formulation for problem (Q):

Problem (Qw): Find v0 ∈ K(V) and u0 ∈ V2 such that

b1(v,v,w − v0) +
1

Re
((v,w − v0))− Gr

Re2 (ue,w − v0)− (f1,w − v0) ≥ 0,

for all w ∈ F (V), and

b2(v, u, w) +
1

RePr
((u,w))−

∫
∂Ωout

uwβ(v · n) (v · n) dσ = (f2, w),

for all w ∈ V2,where v = v0 + V, and u = u0 + U.

(Qw)

Following [25], we will prove the existence of solutions to problem (Qw) through the method of Galerkin
in combination with the method of penalization. The finite dimensional problems will be defined on the
same spaces V n

1 and V n
2 considered in Section 4. The penalization is introduced to deal with the

variational inequality through a variational equation, in the finite dimensional setting. We consider
the projector operator π from V1 to K(V), and define the penalization operator θ : V1 → V1 by
θw = w − πw.

More precisely, for each n ∈ N, we consider the following finite dimensional problem associated to
(Qw):

Problem (Qn
w): Find (vn, un) ∈ V n

1 × V n
2 such that

b1(πvn + V,vn,w) +
1

Re
((vn,w))− Gr

Re2 (une,w)− (f1,w) + n((θvn,w)) = 0,

for all w ∈ V n
1 , and

b2(vn, un, w) +
1

RePr
((un, w))−

∫
∂Ωout

unwβ(vn · n) (vn · n) dσ = (f2, w),

for all w ∈ V n
2 , where vn = vn + V, and un = un + U.

(Qn
w)

The existence of solutions to problem (Qn
w) can be proved by following the same steps in the proof

of the existence of solutions to problem (Pw). In the following, we briefly present them, making an
emphasis on the few differences.

In this case, we consider the operator P ∗ : V n
1 × V n

2 → V n
1 × V n

2 defined by

P ∗(w, w) = (P∗1(w, w), P2(w, w)) ,

where

P∗1(w, w) =
n∑

k=1

{
b1(πw + V,w + V,wk) +

1

Re
((w + V,wk))

− Gr

Re2 ((w + U)e,wk)− (f1,wk) + n((θw,wk))

}
wk,

(42)
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and P2 is given by (15). As before, we write X = V n
1 × V n

2 , and note that P ∗ : X → X is a
continuous operator when X is endowed with the norm induced by the inner product [·, ·] defined in
(36).

When computing ((P∗1(w, w),w)), we obtain

((P∗1(w, w),w)) = b1(πw + V,w + V,w) +
1

Re
((w + V,w))

− Gr

Re2 ((w + U)e,w)− (f1,w) + n((θw,w)).
(43)

Let b be the Hölder conjugate of a, i.e. 1
a

+ 1
b

= 1. Since 2 < 2b < 4, the embedding W 1,2(Ω) ↪→
L2b(∂Ωout) holds. Then, there exists a positive constant c? = c?(d, ∂Ωout), such that ||w||2b,∂Ωout ≤
c?||w||1,2 for all w ∈ W 1,2(Ω)d.

Lemma 5.1. For any w ∈ V1, the form b1 satisfies

b1(πw + V,w + V,w) ≥− 1

2

(
1

Re
+ c

1/a
0 (cc?)2

)
||w||2

− c c̃ 2||V||21,2||w||.
(44)

Proof. We estimate b1(πw + V,w,w) and b1(πw,V,w) separately, and use the estimation for
b1(V,V,w) given in (22). Noting that πw + V is divergence free, we use (12)1, and obtain

b1(πw + V,w,w) =
1

2

∫
∂Ωout

|w|2 ((πw + V) · n) dσ

≥ −1

2

∫
∂Ωout

|w|2 ((πw + V) · n)− dσ

≥ −1

2

(∫
∂Ωout

|w|2bdσ
)1/b(∫

∂Ωout

| ((πw + V) · n)− |
adσ

)1/a

≥ −1

2
c

1/a
0 ||w||22b,∂Ωout

≥ −1

2
c

1/a
0 c?2||w||21,2 ≥ −

1

2
c

1/a
0 (cc?)2||w||2.

From Lemma 3.1-1(b), we have

b1(πw,V,w) ≥ − 1

2Re
||πw|| ||w|| ≥ − 1

2Re
||w||2,

since the projection operator π is a contraction. Now (44) follows from the linearity properties of b1.

Lemma 5.2. For any (w, w) ∈ X , the following inequality holds true:

((P∗1(w, w),w)) ≥ 1

2

(
1

Re
− c1/a

0 (cc?)2

)
||w||2 − c2 Gr

Re2 ||w|| ||w|| − A
∗
1||w||, (45)

where A∗1 is a non-negative constant which depends on d, Ω, vin, f1, Re and Gr only.

Proof. It is similar to the proof of (25) in Lemma 4.4.
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Theorem 5.1. Assume that

c2 Gr

Re2 < min

{
1

2

(
1

Re
− c1/a

0 (cc?)2

)
,

1

RePr

}
− η||uD||1/2,2,∂ΩD

,

and

c
1/a
0 (cc?)2 <

1

Re
,

(AQ)

hold true, where η is defined by (28). Then problem (Qn
w) has a solution (vn, un) ∈ V n

1 × V n
2 .

Moreover,
||vn|| ≤ k, ||un|| ≤ k, (46)

for some positive constant k, which does not depend on n.

Proof. It is analogous to the proof of Theorem 4.1.

Theorem 5.2. Assume (AQ) holds true. Then problem (Qw) has a solution v0 ∈ K(V), u0 ∈ V2.

Proof. For n ∈ N, let (vn, un) ∈ V n
1 × V n

2 denote a solution to (Qn
w). From Theorem 5.1, we have

that (vn) and (un) are bounded sequences in V1 and V2, respectively. Hence, they admit weakly
convergent subsequences, which we will also denote by (vn) and (un). Let v0 ∈ V1 and u0 ∈ V2

be the weak limits of (vn) and (un), respectively. From Theorem 4.2, we know that v0 ∈ V1 and
u0 ∈ V2 satisfy the variational equation in problem (Qw). Following the same arguments presented in
the Section 4 of [25], it can be shown that v0 ∈ V1 and u0 ∈ V2 also satisfy the variational inequality
in problem (Qw) (not reproduced here). Finally, we observe that the proof of v0 ∈ K(V) given in [25]
also applies in our case, so the proof is finished.

Remark 2. When Gr = 0, problem (Q) decouples into a Navier-Stokes, and a convection diffusion
system. The former was studied by Kračmar and Neustupa in [25]. They proved existence of solution
to the variational inequality in problem (Qw), provided Re, c0 and a satisfy a relation of the form
c0 <

(
c5
Re

)a
, where c5 is a positive constant which depends on d, Ω, vin, f1, and ∂Ωout. This result is

recovered here. In fact, when Gr = 0, the condition (AQ)1 reduces to

η||uD||1/2,2,∂ΩD
< min

{
1

2

(
1

Re
− c1/a

0 (cc?)2

)
,

1

RePr

}
,

which only affects the convection-diffusion system, and (AQ)2 becomes a condition like the one in [25].

The following result is the analogue to Corollary 4.1, now for problem (Qw).

Corollary 5.1. There exist positive constants δ∗i = δ∗i (c0, a, d,Ω, uD, ∂Ωout, ∂ΩD), i = 0, · · · , 3,
such that if

0 < Gr ≤ δ∗0, δ∗1 < Re < δ∗2, and 0 < Pr ≤ δ∗3, (47)

then problem (Qw) has a solution.

Proof. It is similar to the proof of Corollary 4.1.

We end this Section with two results regarding strong properties of weak solutions to problem (Qw)
when some additional assumptions are considered. Since their proofs can be obtained by a direct
combination of the arguments in the demonstration of Theorem 4.3, with Theorems 1 and 2 from [25],
we do not present them here.
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Theorem 5.3. Suppose v0 ∈ W 2,2(Ω)d ∩ K(V), u0 ∈ W 2,2(Ω) ∩ V2 solve (Qw), with V ∈
W 2,2(Ω)d, U ∈ W 2,2(Ω). Then there exists a function p ∈ W 1,2(Ω) such that v = v0 + V,
u = u0+U and p satisfies problem (Q) almost everywhere, with the do-nothing condition in (BCII

∂Ωout
)

replaced by ∫
∂Ωout

(
1

Re

∂v

∂n
− pn

)
· (w − v0)dσ ≥ 0 ∀w ∈ K(V).

Theorem 5.4. Consider the same assumptions of Theorem 5.3. In addition, assume that there exists
a neighborhood E of zero in V1 such that v0 + w ∈ K(V) for all w ∈ E. Then v = v0 + V and
the function p ∈ W 1,2(Ω) given by Theorem 5.3, satisfy the do-nothing condition in (BCII

∂Ωout
) a.e.

on ∂Ωout.

6 Conclusion

We studied a steady Boussinesq system with mixed boundary conditions that arises when modeling
energy systems in buildings. The heat transfer problem takes place in a room that presents an outlet
where the fluid is allowed to flow without restrictions, an inlet through which the fluid only can enter, a
heat source at some part of its boundary, and insulated walls. The heat transfer at the open boundary
was considered by a nonlinear condition that involves the temperature at the outlet, the velocity of
the fluid, and the ambient temperature. It was derived from physical assumptions, encouraged by
numerical and experimental studies for open cavities, which are consistent with the boundary condition
imposed on the fluid flow at the outlet. The latter was considered from a twofold approach based on
the so called “do-nothing” condition. The two of them were introduced for Navier-Stokes systems,
aiming to control the kinetic energy from the effects of the re-entering fluid flow. First, we considered
the “directional do-nothing” condition, which introduces a perturbation on the do-nothing condition in
terms of the backflow. Second, the do-nothing condition was considered jointly with a bound for the
incoming flows. We presented variational formulations for the two problems, and proved that they are
well-posed. Further, we investigated strong properties of the weak solutions when additional regularity
assumptions are made on them. The present theoretical results encourage future numerical studies
of the Boussinesq system with the novel non-smooth boundary condition for the heat transfer at the
open boundary presented here.
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[5] M. Beneš and P. Kučera. On the Navier-Stokes flows for heat-conducting fluids with mixed bound-
ary conditions. Journal of Mathematical Analysis and Applications, 389(2):769–780, 2012.

DOI 10.20347/WIAS.PREPRINT.2504 Berlin 2018



A.N. Ceretani, C. N. Rautenberg 24
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