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Doping optimization for optoelectronic devices
Dirk Peschka, Nella Rotundo, Marita Thomas

Abstract

We present a mathematical and numerical framework for the optimal design of doping pro-
files for optoelectronic devices using methods from mathematical optimization. With the goal to
maximize light emission and reduce the thresholds of an edge-emitting laser, we consider a drift-
diffusion model for charge transport and include modal gain and total current into a cost functional,
which we optimize in cross sections of the emitter. We present 1D and 2D results for exemplary
setups that point out possible routes for device improvement.

1 Motivation and approach

Silicon photonics has a high potential for novel solutions in microelectronics, e.g., for high-speed data
transfer via optical on-chip communication or for bio-sensing. In this regard, the engineering of me-
chanical strains or of electronic doping provides feasible ways to enhance optoelectronic properties of
semiconductor lasers in a desired direction. This is in particular important for germanium-based lasers,
which aspire to serve as integrated light sources for silicon photonics. However, since germanium is
an indirect band-gap material, low heat generation and low lasing threshold currents are crucial design
properties. However, for most classical device designs this is certainly impossible to achieve without
further optimization.

There have been several studies investigating the mathematical optimization of electronic transport
in semiconductor devices using optimal control methods, e.g., see [1] and [2]. We present an effort
to extend these existing mathematical methods systematically to optoelectronic devices, specifically
to germanium-based emitters. While the proof-of-concept for germanium-based emitters has been
shown by [3], such devices still suffer from unpractically high lasing thresholds which result in device
heating and quick degradation. In order to support the development of Ge-based CMOS-compatible
emitter designs, we present a doping optimization approach below threshold with the attempt to raise
the modal net-gain above the lasing threshold, while simultaneously controlling the electrical current.

It was shown that a combination of tensile strain and high n-doping transforms germanium into a
suitable optically active medium for an edge-emitting laser, cf. [3] and [4]. Without any doubt a certain
amount of mechanical strain is absolutely necessary in order to enhance light emission. However,
beside its obvious impact on the Ohmic resistance of a device, doping can influence optical properties
in various ways. For instance, in [5] it was shown that guiding the electron current through an aperture
into the optically active region can be beneficial for lowering the laser threshold. Such a design can
be realized through pocket doping, e.g. [6]. Furthermore, it has been observed that doping may have
drastic impact on non-radiative recombination, cf. [7]. By indirectly tuning the carrier density, doping
also affects stimulated emission and free carrier absorption. This determines the type of doping in
optically active region.

Motivated by this potential and need for further improvement, we study the problem of finding an
optimal doping profile c : Ω ⊂ Rd → R for spatial dimensions d ∈ {1, 2}, aiming at enhanced laser
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Figure 1: Sketch of a contacted edge-emitter, where the doping profile c(x) in the optically active
region is to be optimized.

light emission, cf. Fig. 1.

In order to properly set up the optoelectronic optimization problem we use the following main three
ingredients: 1.) an optoelectronic model, 2.) a cost functional, and 3.) a regularization of the cost
functional.

Optoelectronic model Cost functional Regularization

e(u, c) = 0 J(u) β
2 ‖c− c0‖2

Optimization problem: Minimize

Q(u, c) = J(u) + β
2
‖c− c0‖2 (?)

for (u, c) so that e(u, c) = 0 holds.

Here e(u, c) = 0 is the partial differential equation (PDE) for charge transport in a semiconductor,
and might contain models from optics such as a Helmholtz problem or rate equations for stimulated
emission. With u we denote solutions of this PDE system, here it will be the electrostatic and quasi-
Fermi potentials, and c(x) denotes the control/design parameter, here the doping. The purpose of
the regularization β

2
‖c− c0‖2 is to make the optimization problem well-posed, so that minimizers

do exist. Furthermore, the regularization might include constraints on the design, e.g., related to the
manufacturability of the doping profile. Additionally, one can use the regularization to impose that the
minimizer is close to an existing and manufacturable reference doping c0(x). In the cost functional
J we encode our physically motivated optimization goals, i.e., high modal gain and low electrical
threshold current. In the following we will discuss how to set up such an optimization problem, including
some practical hints in how certain parameter affect optimal dopings.
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2 Optoelectronic model and doping optimization

We seek the electrostatic potential ψ(t, x), the electron and hole quasi-Fermi potentials φn(t, x),
φp(t, x), and the photon number γk(t), such that

0 = −∇ · (εr∇ψ)− (c+ p− n), (1a)

0 = ṅ−∇ · jn +Rnr + g(n, p, ψ)γkΘ
2, (1b)

0 = ṗ+∇ · jp +Rnr + g(n, p, ψ)γkΘ
2, (1c)

0 = γ̇k −
γk
|Ω|

∫
Ω

(g − `)Θ2dx, (1d)

with charge fluxes jn = −µnn∇φn and jp = −µpp∇φp, non-radiative recombination rates Rnr,
gain g, and losses `. The quasi-Fermi potentials φn, φp are implicitly defined by the general equation
of state

n = NcF
( q(ψ−φn)−Ec

kBT

)
and p = NvF

(Ev−q(ψ−φp)

kBT

)
. (2)

Then, the standard drift-diffusion formulation is obtained by using Boltzmann statistics, i.e.,F (s) = es.
The model (1) is motivated by [8], for which it was shown in [9] that it has a particular gradient structure.
The model (1) is supplemented with Dirichlet conditions with external applied voltage Vext at Ohmic
contacts Γc and with homogeneous natural boundary conditions ν · jn = ν · jp = ν · ∇ψ = 0 on the
remaining boundary.

The non-radiative recombination rates in the model are of the standard formRnr = r(n, p)
(
np−n2

i

)
and contain contributions from Shockley-Read-Hall and Auger recombination. The photon number
γk(t) in (1d) corresponds to an optical mode solving a scalar Helmholtz eigenvalue problem[

∆ + k2 ε̂− κ2
]

Θ = 0, (3)

with wavenumber k and complex dielectric constant ε̂ = (nr + i
2k
g)2. Applying a perturbation ar-

gument on (3) determines the rates in (1). For the moment we perform optimization below threshold,
so that it makes sense to neglect (1d) in e(u, c). Instead, we incoroporate the modal gain into the
cost functional J of the optimization. For brevity of our discussion, we will neglect non-radiative re-
combination Rnr and excluded further cavity losses and stimulated emission from the discussion. By
setting time-derivatives ṅ = ṗ = 0 in (1a-c) we seek stationary solutions, defining the optoelectronic
system e(u, c) = 0. The resulting system of partial differential equations is called the stationary
van-Roosbroeck system and its mathematical analysis can e.g. be found in [10].

In order to find an optimal doping copt, we write the solutions of (1a-c) in the compact vectorial form
u = (ψ, φn, φp). We are interested in high modal gain Jg and low (threshold) currents Jc through
contacts Γc ⊂ ΓD, which results in the constrained optimization problem (?) with cost functional J(u)
defined as

J = Jg + αJc, Jc =
( ∫

Γc1

ν · j da
)m
, Jg =

∫
Ω

−(g − `)Θ2dx, (4)

where g and ` refer to optical gains and losses, j = jn + jp is the total current, and we use m = 1, 2.
The interpretation of the scalar parameter α ≥ 0 is to balance the relative importance of our two
physically motivated optimization goals of high modal gain and low electrical threshold currents, i.e.,
for α = 0 only the modal gain is maximized whereas for α > 0 we trade some of the modal gain in
order to decrease the total electrical current. Moreover, the role of the parameter β is to weight the
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relative importance of the cost J and a mathematical regularization of the doping profile c(x). For this
regularization we use

‖c− c0‖2 =

∫
Ω

(c− c0)2 + |∇(c− c0)|2dx, (5)

theH1-norm with the given reference doping c0(x). ForH1-regularization, the doping at the boundary
is not necessarily fixed, so that at Ohmic contacts the boundary value depends nonlinearly on the
doping. When using an L2-regularization, one must not fix the doping at the boundary, which then
renders Ohmic contacts useless. Further details on the mathematical analysis, in particular the choice
of admissible dopings and regularizations, can be found in [1] and in [11].

Note that, in contrast to low-dimensional parametric optimization, (?) represents an infinite-dimensional
constrained optimization problem in function spaces, which after spatial discretization becomes a high-
dimensional problem for which one desires to show mesh-independent convergence, e.g., as consid-
ered in [12].

3 Numerics for optoelectronic model and optimization solver

The numerical solution of the stationary semiconductor charge transport equation (1a-c) relies on a P1
finite element method, cf. also [13]. We seek the electrostatic potential and the quasi-Fermi potentials
u = (ψ, φn, φp), such that (1) can be written in a weak form 〈eψ, w1〉+ 〈en, w2〉+ 〈ep, w3〉 = 0 as

0 = 〈eψ(u, c), w1〉 =

∫
εr∇ψ · ∇w1 − (c+ p− n)w1 dx, (6a)

0 = 〈en(u, c), w2〉 =

∫
µnn∇φn · ∇w2 −Rnrw2 dx, (6b)

0 = 〈ep(u, c), w3〉 =

∫
µpp∇φp · ∇w3 +Rnrw3 dx, (6c)

for all test functions wi. Using e(u, c) = (eψ, en, ep) and w = (w1, w2, w3) the weak form is abbre-
viated 〈e(u, c),w〉 = 0 for all w ∈ H1(Ω). The densities n, p depend explicitly on u via the equation
of state (2). We solve (6) using a Newton scheme δu = uk+1 − uk = −(∂ue(uk, c))

−1e(uk, c).
Dirichlet boundary conditions are imposed using Lagrange multipliers, which are omitted here for
brevity.

To ensure convergence of the Newton method we first solve the equilibrium problem for Vext = 0,
which reduces to the nonlinear Poisson equation eψ(ueq, c) = 0 since en = ep = 0 are automatically
satisfied with φn = φp = 0. The Newton iteration for the nonlinear Poisson equation is initialized
with u0 = (ψ0, 0, 0) so that local charge neutrality c = (n − p)u0 automatically holds. Then, we
gradually increase Vext and solve (6) initializing with the previous solution until the desired Vext is
reached. Usually 3-5 Newton steps are necessary for Newton’s method to reach numerical precision,
whereas 10-100 uniform increments of Vext are sufficient.

For the doping optimization we also use Newton’s method applied to the the first-order optimality
conditions of the constrained optimization problem (?), which, using the Lagrangian L(u, c, λ) =
Q(u, c) + 〈e(u, c), λ〉, can be written as

L′(uopt, copt, λopt) =

〈eu, λopt〉+Qu

〈ec, λopt〉+Qc

e

 !
= 0, (7)
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Figure 2: Optimal doping at Vext = 0.85V showing the influence of using (left) 3 different β with
α = 0 or using (right) 3 different α with β = 10−6.

where we can also write 〈eu, λ〉 = e∗uλ or 〈ec, λ〉 = e∗cλ, the star denotes the adjoint, and subscript
indices u, c refer to derivatives. The bracket construction has to be understood in the sense 〈e, λ〉 =
〈eψ, λ1〉+ 〈en, λ2〉+ 〈ep, λ3〉 with components as defined in (6). Using second-derivatives of L and
the structure of Q we construct the Newton method, which explicitly reads

L′′
δuδc
δλ

 =

Quu + 〈euu, λ〉 0 e∗u
0 Qcc + 〈ecc, λ〉 e∗c
eu ec 0

δuδc
δλ

 = −

 0
e∗cλ+Qc

0

 , (8)

using that e = 0 and the adjoint equation e∗uλ = −Qu are satisfied. Here we can eliminate δu =
−e−1

u ecδc and δλ = −(e−1
u )∗(Quu + 〈euu, λ〉)δu Âă to finally get

Hδc =
[
Qcc + 〈ecc, λ〉+ e∗c(e

−1
u )∗(Quu + 〈euu, λ〉)e−1

u ec
]
δc = −e∗cλ−Qc. (9)

Our approach is to first discretize Q, e and then compute all needed derivatives with respect to c,u.
Such an approach to device optimization is advantageous due to its fast convergence, which typically
does not depend on the discretization. However, since H involves the inverse of eu and e∗c , it cannot
be constructed explicitly. Instead, we can define its action on an arbitrary vector and compute δc =
ck+1 − ck using an inner CG iteration inside each Newton step.

4 Discussion of optimized doping profiles

Here we present some results obtained for dimensions d = 1 and d = 2. The used gain model
is motivated in [5] and in [11], the numerical values are representative for strained germanium but
are not tuned towards quantitative predictions. For material parameters we use Nc = 1019 cm−3,
Nv = 4 · 1018 cm−3 and a bandgap Eg = 0.7 eV representative for bulk germanium at T = 300K .
In the following we discuss mathematical and physical aspects of the optimization framework in the
context of optoelectronics. Note, for d = 1 we use m = 2, whereas for d = 2 we use m = 1 in Jc.

For d = 1 we optimize in Ω = [0, 1]µm using a smooth pin-type reference doping c0, which is of the
orderN0 = 1019cm−3. The considered range of bias values is Vext = 0.65−0.85V and can be used
to select the total current Jc of the device. In general the lasing threshold is near Vext ≈ e−1(Eg+~ω),
which for our parameter setup is expect to be slightly above e−1Eg. This is why we show representative
optimized dopings at Vext = 0.85V for different α and β in Fig. 2. In general, the shape of copt in Fig. 2
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Figure 3: modal gain Jg for d = 1 (left) as a function of bias Vext and (right) as a function of the
corresponding total current Jc(Vext) for the reference doping c0 and for the optimized doping copt for
different α

suggest a low doping where the optical mode is located is higher doping outside the support of the
mode Θ2. Interestingly, the slight asymmetry in the free carrier absorbtion fp = 5fn in the gain model

g(u) = κ
(
e
−~ω
kBT − e

−qUF

kBT

)(
np
N2

0

)γ
, `(u) = fnn+ fpp, (10)

with qUF = kBT
(
F−1(n/Nc) + F−1(p/Nv)

)
+ Eg leads to an asymmetric doping profile favoring

n doping in the active region.

For β ∼ 1 the optimal doping is close to the reference doping c0, whereas for β → 0 the doping will be
optimized so that the modal gain Jg is maximized. Since the optical mode Θ2 is only supported in the
interval 0.3µm < x < 0.7µm, visible in the dashed red line in Fig. 2, the doping outside this region
is not affected by Jg and therefore still depends on the regularization, as we previously discussed in
[11]. This effect is clearly visible in the extremly high doping for β = 10−6 in the left panel of Fig. 2.
However, carefully selecting α > 0 we can enforce lower electrical currents at the expense of slightly
lower gains. For instance, in the right panel of Fig. 2 with α = 4 and β = 10−6 does not strongly
impact the doping in the region 0.3µm < x < 0.7µm, whereas outside this region lower dopings
are needed in order to achieve lower currents. In addition to the parameters α, β which appear in the
definition of the cost functional, also the external bias Vext is a parameter the optimal doping depends
on. Therefore, in Fig. 3 we show what modal gain Jg can be achieved for exemplary values α = 0
and α = 4 and β = 10−6 as a function of the bias Vext in the left panel or plotted as a function of the
corresponding current Jc in the right panel. We show the correpsonding functionals evalulated for the
reference doping as a comparison.

The simulations for d = 2 are shown in Fig. 4, except for the bias Vext = 0.7V the physical parameters
are the same. The domain is a cavity that is cut into half at x = 0.5µm with the corresponding
optical mode Θ ∼ sin(πx[µm]) sin(4πy[µm]). The two contacts are at x = 0 with y ≤ 0 and
y ≥ 0.25µm. Near the top and bottom, i.e., for all x with y ≤ 0 or y ≥ 0.25µm, the doping is
fixed, in all other places the doping is optimized. The results in Fig. 4 are computed on a rather coarse
tensor-mesh with 2 820 vertices and 8 652 unknowns. Similar as for d = 1, the optimal doping copt

is rather smooth where the optical mode is supported and its sign is determined by the free carrier
absorption fn, fp. Outside this region the doping depends on the regularization, which is why again
we study the limit β → 0 and set β = 10−4. Already for α = 0, the middle panel of Fig. 4 shows
that copt takes values with opposite sign counteracting the the doping near the contacts, which seems
beneficial for the modal gain. As a side effect, the middle panel of Fig. 5 shows that the current for
α = 0 is also focussed towards the center of the optical mode. This is an improvement compared to
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Figure 4: Doping for Ω = [0, 0.5]µm × [−0.025, 0.275]µm showing (left) reference c0 and (middle
and right) optimal copt for β = 10−4 with α = 0 and α = 1/4 respectively for Vext = 0.7V .

Figure 5: total current density (shading) and vector field (arrows) at Vext = 0.7V with logarithmic
scaling (left) for the reference doping c0 (middle) for copt and α = 0, β = 10−4 and (right) α =
1/4, β = 10−4 corresponding to the dopings in Fig. 4

the shortcut current visible for the reference doping in the left panel of Fig. 5. Solving the optimization
problem with α = 1/4 even improves this focussing by creating sharper doping pockets visible in the
right panel of Fig. 4, which appears as if the current would be guided through an aperture created by
the doping in the right panel of Fig. 5.

5 Conclusion

Compared to low-dimensional parameter studies, infinite-dimensional doping optimization provides
a systematic method to gain insight into the achievable optoelectronic performance. When design-
ing such a toolbox, much implementation effort goes into computation higher-order derivatives of the
model. However, this requires direct control over the solver implementation. From a modeling point-of-
view, achieving reasonable optimimal designs also requires a good understanding of the mathematical
parameters involved in the optimization. Further improvements are viable by model improvement and
validation.
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