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ABSTRACT. This paper is devoted to the inverse problem of identifying a spatially vary-
ing coefficient in a linear elliptic differential equation describing the filtration of ground-
water. Practice suggests that the gradient of the piezometric head, i.e., Darcy's velocity, 
may have discontinuities and the transmissivity coefficient is a piecewise constant func-
tion. 

For solving this problem we have used a direct method of G. Vainikko. Starting at a 
weak formulation of the problem a suitable discretization is obtained by the method of 
minimal error. If necessary this method can be combined with Tikhonov's regularization. 

The main difficulty consists in generating distributed state observations from measure-
ments of the ground water level. For this step we propose an optimized data preparation 
procedure using additional information like knowledge of the sought parameter values at 
some points and lower and upper bounds for the parameter. 

First numerical tests show that locally sufficiently many measurements provide locally 
satisfactory results. 

1. INTRODUCTION 

The two-dimensional steady flow in an isotropic and confined aquifer is governed by the 
linear elliptic boundary value problem ( cf. e. g. [15]) 

- V · (a(x, y)Vh(x, y)) - f (x, y) (x, y) En C R 2 

h(x, y) z(x, y) (x, y) E 801 
a(x, y)Vh(x, y) · v(x, y) - g(x, y) (x, y) E 802 = 80\801, 

(1.1) 
(1.2) 
(1.3) 

where n is a bounded domain with piecewise smooth boundary and v = v(x, y) is the 
outer unit normal on 802. In the sequel, we confine ourselves to the special case that 
801 has a positive Lebesgue measure and z(x, y) = const. Physically, h(x, y) can be 
interpreted as the groundwater level (piezometric head of ground water) inn, and a(x, y) 
as transmissivity coefficient. The function f (x, y) characterizes sources or sinks inn. By 
z the ground water level on an1 and by g(x, y) the inflow or outflow through an2 are 
denoted. The direct (forward) problem consists in the following: 
Given f, z, g, a. Find h. 
In our case the direct problem (1.1)-(1.3) is well-posed in the sense of Hadamard, (i.e. 
there exists a unique solution h which continuously depends on the data f, z, g, a) ([10]). 
Now let us formulate the inverse problem: 
Given f, z, g, h. Find a. 
An inverse problem is ill-posed in general. Due to the lack of continuous dependence on 
the data (i.e. due to the lack of stability) difficulties arise by using noisy data. 
There are a lot of investigations concerning the estimation of the diffusivity from potential 
measurements in the intransient and transient cases. Direct and indirect methods for 
solving such problems can be found in [1],[2], [3], [4], [5], [6], [7], [8], [9], [12], [13]; cf. also 
the survey paper of J. Sprekels [14]. 
To reduce the high computational expense of those methods, in this paper a direct in-
version is proposed being numerically cheap but very sensitive with respect to errors. 
Therefore, it is combined with an optimized data preparation procedure. 
For the identification of the positive, piecewise continuous transmissivity a method of 
G. Vainikko ([16], [17], [18]) is used. Starting at the weak formulation of the problem 
this method consists in a finite element discretization of an operator equation in suitable 
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Hilbert spaces where the operator depends on the measured data. The considered pro-
jection method, the so-called method of least error, takes advantage of the simple form 
of the adjoint operator. The procedure is combined with Tikhonov's regularization. 
This approach needs one measurement at each node. 
But in practice, only very few measurements are at our disposal such that data gained by 
interpolation are very erroneous and not in accordance with the a priori information on 
the coefficient. 
To meet those difficulties the method of Vainikko is combined with a method of "data 
smoothing" whose stabilizing effect consists in restricting the possible data set by a 
"smoothing" process. The goal of this method is an optimal utilization of the given 
information concerning both the coefficient and the data. 
"New" data are sought, optimally fitting the "old" ones and satisfying the discretized state 
equation with a certain tolerance. The state equation is built using an a priori guess of the 
transmissivity. One gets a constrained minimization problem that is solved by the method 
of Lagrange multipliers and Newton's method. (Concerning similar considerations, cf. 
Parker's book [11].) 
Numerical tests with locally sufficiently many measurements have provided better local 
results than the pure direct method. In that case, for slightly disturbed data (1 % ) and 
small jumps of the transmissivity the computational results are satisfactory. 
The paper is organized as follows .. In Section 2 a short survey of Vainikko's method 
is given and the question of identifiability is considered in the case of constant Dirichlet 
conditions on one part of the boundary and Neumann conditions on the other one. Section 
3 deals with the data preparation. Finally, some numerical experiments are presented in 
Section 4. 

2. VAINIKKO'S METHOD 

2.1. Formulation as an operator equation. Let u(x, y) = h(x, y) - z in (1.1)-(1.3), 
where z = const and consider the system 

-V · (a(x, y)Vu(x, y)) = f (x, y) (x, y) En c R 2 

u(x, y) = 0 (x, y) E 8f21 
a(x, y)Vu(x, y) · v(x, y) = g(x, y) (x, y) E 8f22. 

Here 802 can can be empty. 
The introduction of the subspace 

H 1(n, 801) = {w E H 1(0): w(x, y) = o for (x, y) E an1} c H 1(n) 
yields the following weak formulation of the inverse problem: For given u find a E L2 (f2) 
such that 

j a Vu· Vwdx dy = j fwdxdy + j gwdS for all w E H 1 (!1, 8!11). (2.1) 
n n a~ 

The problem (2.1) makes sense for u E W1100 (0), a E L2 (f2), g E H-1/ 2 (802 ) and 
f E H-1 (n). Let G be the space of gradients of the functions w E H 1 (n, 8f2i): 

G = G(n, 8f21) = {Vw : w E H1(0, 801)} c (L2(f2))2. 
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Furthermore, using the orthoprojector 

Qa : (L2(0))2 --+ G 

we define an operator T E .C(L2 (0), G) by 

Ta= Qa(aVu), a E L2 (0) 
and consider the operator equation 

Ta=V'lj;, 

where 'ljJ E H 1(0, 801) is the solution to the following direct problem 

- b..'lf;(x, y) = f(x, y) (x, y) E 0 
'lf;(x, y) = 0 (x, y) E 801 

V'lj;(x, y) · v(x, y) = g(x, y) (x, y) E 802 • 

(2.2) 

The problem (2.1) is equivalent to the operator equation (2.2). The adjoint operator 

T*Vw =Vu· Vw 

where T* E £(G, L2 (0)), has the following properties: 

1°. The range R(T*) is not closed. 

2°. The operator T* as multiplication operator in G is not compact if I Vu 12:: c0 > 0. 

The properties 1° and 2° then are valid for the operator TE .C(L2 (0), G), too. 
Therefore, (2.2) is an ill-posed problem with a non-compact operator, i.e. discretization 
and regularization schemes for ill-posed problems with a compact operator cannot be 
used. Since the adjoint operator has a very simple form we are interested in discretization 
schemes which use T* and not T itself. 

2.2. Identifiability. In the theory of inverse problems, a very important question is 
to know whether the observation data contain sufficient information for identifying the 
unknown parameters. In our consideration the identifiability is equivalent to the unique-
ness of the transmissivity coefficient a(x, y). We reduce our investigations to the problem 
(1.1)-(1.3), where z(x, y) = const and follow the identifiability concept of Vainikko and 
Kunisch ([16]). 

Definition 2.1. The transmissivity coefficient a(x, y) is called L1-identifiable on a sub-
domain 0 C 0 from the data u(x, y) E W1'00 (0) if any solution a E L1 (0) to the homo-
geneous problem 

with 

JaVu·Vwdxdy=O forall wEW1
•
00 (!1,8!11), 

n 

W1'00 (0, 801) = {w E W1'00 (0): w(x, y) = 0 for (x, y) E 801)} C W1'00 (0) 

yields a(x, y) = 0 almost everywhere inn. 

(2.3) 

It is clear that the L1-identifiability of the coefficient a from the data u E W1,00 (0) on 0 
implies the L2-identifiability of a on the same set 0. 
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We consider the case that u E C(n) but Darcy's velocity Vu may have discontinuities on 
piecewise smooth curves Kr (r = 1, · · · , l) inn. Introducing the notation K = U~=1Kr we 
assume that 

(2.4) 
where ne,K is the set of all points (x, y) E 0\K for which the distance from (x, y) to 
the nearest non-smoothness point of an or Kr (r = 1, · · · , l) as well as the distance from 
(x, y) to the nearest intersection point of a pair of curves an, Kr (r = 1, · · · , l) are greater 
than e. 
The identifiability is dependent on the behavior of the streamlines which are solutions of 
the Cauchy-problem 

dy Uy -=-
dx U:x 

y(xo) =Yo· (2.5) 

Therefore, the identifiability is a property of the solution u to the direct problem. We 
write the solution of (2.5) through Po = (x0 , y0 ) in the form 

P = (x, y) = cp(t, Po)= (cp1(t, Po), 'P2(t, Po))T t E (tp0 , ti0 ), 

where (tj?
0

, ti
0

) is a finite or an infinite time interval. 
Furthermore, we assume 
(A) The validity of the compatibility condition: Let P E Kr be a smoothness point of 
Kr, vr(P) a unit normal to Kr at P, a a positive piecewise smooth function with jumps 
on K, and let (2.4) holds. Then 

lim a(P) Vu(P) . Vr(P) = lim a(P) Vu(P) . Vr(P). 
(P-P)·vr(P)>O (P-P)-vr(P)<O 

P~P p~p 

(B) The streamline cp(t, P 0) through P 0 , where Vu(Po) # 0 non-tangentially reaches a 
smoothness point p of an2 = an\ani, i. e. 

lim Vu(cp(t, P 0)) • v(P) # 0 or 
t-+t+ 

Po 
tj,!;0 <+oo 

lim Vu( cp(t, P 0)) • v(P) # 0. 

(C) The streamline cp(t, P 0) through P 0, where Vu(P0) # 0 cuts K only at a finite 
number of smoothness points of K in a non-tangential way. 
Under assumption (A), (B) and (C) the system (2.5) is uniquely solvable and the stream-
lines pass through every Kr (r = 1 · · · l) at a smoothness point of Kr in a non-tangential 
way remaining continuous. 
We introduce the following subsets of 0: 

Oc ={Po E 0: Vu(Po) = O} 

n+ ={Po En: Vu(P0) # 0, ti
0 

= +oo, the streamline through Po satisfies (C)} 

n- ={Po En: Vu(Po) # 0, tj?
0 

= -oo, the streamline through P 0 satisfies (C)} 

ntn2 ={Po En: Vu(Po) # 0, ti
0 

< +oo, the streamline through Po satisfies (B), (C)} 

Oan2 ={Po En: Vu(Po) # 0, tj?
0 

> -oo, the streamline through Po satisfies (B), (C)}. 
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Any of these subsets may be empty, nc is the set of the singular points of (2.5). We cite 
a general L 1-identifiability result obtained by Vainikko and Kunisch ([16]): 
Under the assumptions (2.4) and (A) the coefficient a is 

L 1-identifiable on the sets int(n+), int(n-), ntn2 and nan2. 
In practice the function u(x, y) E W1100 (0) is not arbitrary, but it is obtained from the 
(unknown) parameter a(x, y) and the function f (x, y) as a solution of the equation (1.1) 
on n with appropriate boundary conditions. 

Remark 2.1. If u(x, y) = const in a subregion 0 then Vu= 9 and {2.3) is satisfied for 
every constant function a in 0. Consequently, a is not identifiable in 0. 
Proposition 2.1. Let {2.4), {A), {B), {C) be fulfilled and u(x, y) be a solution of the 
boundary value problem {1.1)-(1.3) where z(x, y) = const. Furthermore, we suppose that 

meas(nc) = meas(an+) = meas(an+) = o. (2.6) 

Then a(x, y) is identifiable on n. 

Proof. Let Po E n, and assume that Vu(P0) i= 0. Then we have for the streamline 
cp(t, Po) through Po 

du( <p~!' Po)) =I Vu( <p(t, P 0) 12> 0 for all t E (tp
0

, tt
0

) 

and u increases along this streamline. Because u(x, y) =canst on 801 we conclude that 
cp(t, P 0) contains at most one point of an1 • If cp(t, Po) reaches an at no other point 
then we have P 0 E n+ or Po E n-. If cp(t, Po) contains a further point Q E an then 
Q E an2 . Because of assumption (B) we have tt0 < +oo or tj?0 > -oo. Hence Po E ntn2 
or Po E nan2. If cp(t, P 0) leaves n in both directions and contains two points of an2 then 
Po E ntn2 n Oan2· 
Using the inclusion [16] 

- - -+- --_-n\nc c n+ u n- u nan2 u nan2 
(2.6) and the identifiability of a on the sets int(n+) and int(n-) we obtain the assertion. 

2.3. Discretization. The equation (2.1) is discretized by the method of minimal error, 
which is a special projection method. 
Consider finite dimensional subspaces 

sh c H1(n, 8n1) 
with the usual admissibility properties and take 

Gh = vsh c G' T*VSh c L2(n) 
as test and trial spaces, respectively. Then from (2.1) 

j ahVu·Vvhdxdy= j fvhdxdy+ j gvhdS \:/vhESh, (2.7) 
n n an2 

where 
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and 

(method of least error). 
Problem (2.7) has a unique solution ah and llah - a!IL2 -+ 0 (h-+ 0). Here a is a minimal 
norm solution of (2.1). 

2.4. Implementation. Let n be a polygonal bounded domain and (for a fixed discretiza-
tion level h) Tit a regular triangulation, where 

f2= LJ E. 
EE7ii 

By N = {Pi }j=1 we denote the set of all nodes of the triangulation Tit that do not live 
on the boundary 801 . Moreover, in the finite dimensional subspace Sh c H1 (n, 801 ) 

we choose a basis with linear base functions { Wj }j=l with Wj = 0 on 8f21 and Wj (Pi) = 
8ii, 1::; i,j::; n. 
We suppose that the coefficient a(x, y) is constant on each element (triangle) EE Tit and 
the discretized coefficient ah can be represented as the vector 

a= (aE)EE7ii· 

Then for the direct problem, where 

u= L UjWj 
1$f::;n 

is asked for, the linear system 

L Lii[a]ui =di, 1 ::; i ::; n, 

where 

L;j[a] def LaE J Vwj · Vw;dxdy, L[a] def (L;;[a]);; 
E E 

(2.8) 

has to be solved (aE and di are given). The values of u on the boundary an1 are already 
_known as u(x, y) = 0 on an1. 

For the inverse problem the linear system 

L Mii[u]ci =di, 1::; i::; n, 

has to be solved where 

M;;[u] def L j (Vu· Vwj)(Vu · Vw;) dxdy 
E E 

(here Vu and di are known). Then ah will be found from 

ah= L ciVu·Vwi. 
1$j$n 

In combination with Tikhonov's regularization (2.9) reads as 

L (aLii + Mii[u])cj =di, 1 ::; i::; n, 
1$j$n 
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where 

L;; def L j Vw; · Vw;dxdy = L;;[l). 
EE 

It is clear that this method of Vainikko will work well in the case when Vu has sufficiently 
good properties. If the matrix (Mij[u])ij in (2.9) is ill-conditioned, Tikhonov's regular-
ization (2.10) with not too small a may produce results. However, if a is chosen too large 
the computed coefficient 

al: = L c<jVu · Vwj 
l~j::=;n 

can not be interpreted as a solution to the inverse problem. 

Remark 2.2. The matrices L[a] = (Lij[a])i,j and M[u] = (Mij[u])i,j can easily be con-
structed using the coefficients 

L~ = j Vw;- Vw;dxdy. 
E 

Since Vwi (1 :::; i::; n) is constant on each element {triangle) E, we have 

LZ = meas(E) Vwj · Vwi, 

Lij[a] = L aE LZ, 
E 

Remark 2.3. If the triangle E (of the triangulation Tii ) has no obtuse angles we have 
the well-known properties 

L~ = L~ < 0, i -1- J·, iJ Ji - I 

L~ > 0, 

L LZ = o if E n arii = 0. 
jE.N 
l~j~n 

3. DATA PREPARATION 

Let 2( be an admissible set of parameters, say 
2( = {a, 0 < aE ::; aE :::; ,BE}, aE, ,BE given, 

and let a 0 E 2( be the a priori guess (from geological considerations). Let measurements 

Uj, Pj EM 
(with error c:) be given in a subset M c N. From these measurements a data vector fi 
can be constructed by interpolation or by putting 

- (- ) - { Ui ' pi E M 
u = ui P iEN ' ui = ui [ ao] ' Pi E N\M ' 
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where u[ao] = (L[a0])-1d is the solution of the direct problem 

L[ao]u = d 

and 

is the matrix in (2.8) and d = (di)i. 
Numerical experiments show the following: 

(3.1) 

In the case when the set M of measurement points fills some subdomain n' c n then 
the inversion of the data ii by Vainikko's method produces in O', i.e. locally, satisfactory 
results. When there is no such subdomain n' and the interpolation ii or the guess ao are 
bad, by merely inverting ii no inference is possible. 
To overcome that difficulty and to exploit the given information concerning ii and a0 in 
an optimal way the following "data smoothing" procedure is proposed. 
We are looking for new data u having a minimal distance from the given data ii with the 
property to satisfy the state equation (3.1) more exactly than ii. I.e., u is a solution to 
the constrained minimum problem 

'I ii- U.11 = min !Iii - ull 
{ u,llL[ao]u-dll:50"} 

(3.2) 

where 8 is a given tolerance, 

0 :::; 8 :::; llL[ao]ii - dll , 
and II · II is the usual norm in IR n. The tolerance 8 should be chosen as a "measure of 
confidence" with respect to the data ii and the a priori guess a0 : If one trusts more to 
the guess a0 than to the data ii, 8 should be small; if the data ii are more trustable than 
the guess a0 , 8 should be large. 

Concerning the solution u of (3.2) we have the 

Theorem 3.1. The problem (3.2) is uniquely solvable with the solution 

u =(µI+ L[a0]2)-1 (µii+ L[a0]d), (3.3) 

where µ, 0 :::; µ :::; oo, is unique with the property 

8 =µII (µI+ L[ao]2
)-1 (L[ao]ii - d) 11 · (3.4) 

As a function of µ the tolerance 8 is monotonously increasing from 0 (µ = 0) to 
llL[ao]ii - di! (µ = oo) and u changes from the "guessed data" u[a0] = L[a0]-1d (µ = 0) 
to the given data ii (µ = oo). 

The iterative approach then may run as follows: 

(i) Start from the a priori guess a0 . 

(ii) Calculate the "guessed data" L[ao]-1d = u[a0] (solution of a direct problem). 
(iii) Chooseµ, 0 :::; µ:::; oo (where the values µ = 0 andµ= oo are not interesting). For 
given 8 the parameterµ can be determined from (3.4) by Newton's method. 

(iv) Calculate u from (3.3) (solution of a "regularized" direct problem). 
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( v) Determine 

{
ii on M 

u 1 = u on N\M. 

For Pi EM, instead of Uj, we can take Uj with lui - uil:::; c. 
(vi) Invert u 1 by Vainikko's method (2.9) or (2.10), i.e. determine a1 such that 

L[a1]u1 = d 
holds (solution of an inverse problem). 

(vii) Determine a1 E 2l from a1. 
(viii) If co < llL[a1]u1 - dll :::; llL[ao]ii - dll - c1, where co, c1 are given (small) positive 
numbers, go to (i) with a0 = a1 , ii= u 1 , if not: stop. 
Concerning the criterion (viii) some explanations are necessary. 
In the case of a1 E 2l, i.e. a1 = a1, we have 

llL[a1]u1 - dll = 0. 
This means that a1 is a solution of the identification problem, since u1 = u[a1] fits the 
measurements. If a1 is near to a1 (in some sense) then llL[a1]u1 - dll :::; co because of the 
continuity of the mapping a-+ u[a]. Then we will accept a1 as a solution. If a1 is not 
too far from a1 there is hope that at least 

llL[a1]u1 - dll :::; llL[ao]ii - di! - C1 
holds. In this case the pair (a1 , u1) can be considered as "better" than the pair (a0 , ii). 
If .at the same time 

co < llL[a1]u1 - di! 
holds, one will be able to look whether the pair (ai, u 1) can be improved any further. In 
the case where 

llL[a1]u1 - dll > llL[ao]ii - di! - c1 
the pair (ao, ii) will be considered as not improvable. 
Proof of Theorem 3.1 Put L := L[a0]. It is clear that (3.2) has a solution: Let { ukh be 
a minimizing sequence, i.e. 

llii - ukll -+ inf !Iii - ull =: 'Y. 
l!Lu-dll~8 

Then llukll < C, for a subsequence {ukr} ukr-+ ii as r-+ oo and llii-ukrll-+ llii-iill, 
llLukr - dll -+ llLii - dll as r -+ oo, l!Lii - di! :::; 8, llii - iii! = "'(, i.e. ii is a solution of 
(3.2). 
Additionally, if ii solves (3.2) then ii solves 

llu - nil = min !Iii - u!I. 
{u, llLu - dll=8} 

(3.5) 

Indeed, let ii solve (3.2) with llLii - dll = J < 8. Consider 
w := ryii + (1 - ry)u for some77, 0 < 'f/ < 1. 

Then 

llw - iill = rJllii - nll < llii - nll 
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as llii - ftll > 0. (In the case ii= ft the assumption 8 ::; l!Lft - di! would be violated.) 
On the other hand, by directly evaluating 

llLw - dll 2 = llLii- dll 2 + (1- 77)(c1 + (1- 77)c2)::; 82
, 

if 77 is sufficiently near to 1. This is a contradiction to the min-property of ii. 
Now, to solve (3.5), consider the Lagrange function 

£(u, a)= llft - ull 2 + a(llLu - dll 2 
- 82

). 

Necessary conditions for a minimum are 

8£ = 0 au ' 
We have 

8£ =0. aa 

( ~~, .Su) = f.To }(llu +Mu - U.11 2 
- llu - U.11 2 + a(llB(u +Mu) - dll2 

- llLu - dll2
)) 

= 2((u - ft, 8u) + a(LT(Lu - d), 8u)). 

Then, from the necessary conditions and LT= L, 

u - ft+ gL(Lu - d) = 0, 

8 = llLu-dll. 

(3.6) 

(3.7) 

From the equations (3.6), (3.7) the pair (u, g) is uniquely determined, if d, ft, 8 are given. 
Indeed, (3.6) implies 

u = (I+ gL2)-1(ft + gLd). 

Since L(I + gL2)-1 =(I+ gL2)-1L and (3.7) 

8 = 11(1 + gL2)-1 (Lft - d)ll. 

In addition, the function 

is strictly decreasing for 0 ::; s < oo and 

B(O) = l!Lft - dll 2
, B(s)--+ O (s--+ oo). 

This can be seen by differentiating 
d 

B'(s) = ds ((I+ sL2
)-

1 (Lft - d), (I+ sL2t 1 (Lft - d)) 

= -2((1 + sL2)-2L2 (Lft - d), (I+ sL2t 1(Lft - d)). 

From the symmetry of Land positive definiteness of (I+ sL2)-1 

(}'(s) < 0. 

Then the uniqueness of g follows from ( 3. 9). 

The assertion of the theorem then follows by substituting 
µ = {2-1 

into (3.8) and (3.9) and easy inferences. 
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4. NUMERICAL TESTS 

In the following numerical experiments, the effect of the data preparation will be demon-
strated. Let us consider a square domain 

n = {(x, y) E R2
: 0 < x < 1.1, 0 < y < 1.1} 

with impermeable upper and lower boundary, homogeneous Dirichlet conditions at the 
left boundary and inhomogeneous Neumann conditions at the right one. No sources and 
sinks are considered. The domain n is triangulated by 30 x 30 equidistant nodes. 
Data generation: Suppose that we are given ( cf. fig. 1) 
1. (from a geological a priori information) an a priori guess a 0 , i.e., more precisely, a lens 
C ::>A 'of diminished (constant) transmissivity a02 = 10-3 surrounded by an area n\C of 
(constant) transmissivity a01 = 10-5 ; 

2. measurements in an area B' ::>Bat about 753 of all nodes in B'. 
These measurement are simulated by the potential values resulting from an assumed 
reality, i. e. more precisely, the lenses A and B of transmissivity a02 surrounded by an 
area n\(A U B) of transmissivity a01 • 

Fig. 1 

Then, the data ii are composed from these simulated measurements and - on every node 
where no measurement is given - from potential values ii= (L[a0])-1d resulting from the 
a priori guess ao. 

Results: The figures 2 to 5 show the transmissivity gained by 
(1) direct inversion of the data ii (fig. 2), 
(2) inversion after data preparation, µ = 10-5 (fig. 3), 
(3) inversion after data preparation, µ = 5 · 10-6 (fig. 4), 
(4) inversion after data preparation,µ= 10-6 (fig.5). 
Discussion: Generally, in (1) - ( 4) the lens C is reproduced satisfactorily. This is ex-
pected since the data ii are disturbed only in the area B', i. e. disturbances in B' 
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do not essentially affect the area C. It confirms the above-mentioned local behavior of 
Vainikko's method. Moreover, fig. 2 shows that the lens B cannot be reconstructed 
by direct inversion of the data. Fortunately, this can be achieved by additional data 
preparation according to Section 3. The best reconstruction is obtained for µ = 10-6 

(fig. 5), where B has nearly its correct shape, but its mean value is between a01 and 
a02 , i. e. much less than its true value a02 . The latter fact is not surprising since 
the used (prepared) data are situated between ii and ft. The value 10-6 for µ seems 
to be optimal in this context but also µ = 5 · 10-6 (fig. 4) or µ = 5 · 10-7 would be 
possible. But, from numerical reasons, µ ::; 10-7 is not suitable; in that case the con-
dition number of the matrix (µI+ L[a0])2 has appeared as too bad for a calculation. 

Fig. 2 Fig. 3 

Fig. 4 Fig. 5 

The following figures 6 to 9 demonstrate how Vainikko's method works for simulated 
measurements. The a priori guess for the transmissivity is given as shown in figure 6. 
All parameters were chosen corresponding to a realistic situation. Figures 7 and 8 are 
obtained from the direct inversion by Vainikko's method using the computed solution of 
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the direct problem (i.e. the computed groundwater level) as measurements. In figure 8 
these simulated measurements were disturbed at each grid point by a small random value 
(1 cm uncertainty of the groundwater level). Figure 9 shows the used grid. 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 
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