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Memory equations as reduced Markov processes

Artur Stephan, Holger Stephan

Abstract

A large class of linear memory differential equations in one dimension, where the evolution

depends on the whole history, can be equivalently described as a projection of a Markov process

living in a higher dimensional space. Starting with such a memory equation, we give an explicit

construction of the corresponding Markov process. From a physical point of view the Markov

process can be understood as the change of the type of some quasiparticles along one-way

loops. Typically, the arising Markov process does not have the detailed balance property. The

method leads to a more realisitc modeling of memory equations. Moreover, it carries over the

large number of investigation tools for Markov processes to memory equations, like the calculation

of the equilibrium state, the asymptotic behavior and so on. The method can be used for an

approximative solution of some degenerate memory equations like delay differential equations.

1 Introduction

Memory equations describe the time evolution of some quantity, considering the whole prehistory of

the evolution: The past influences the future.

Markov processes, or more generally time evolutions with the Markov property, describe the problem

under the assumption that the further evolution can be predicted, knowing only the current state: The

present influences the future.

At first glance, by means of memory equations, it is possible to investigate a wider class of problems,

since evolution equations with the Markov property can be regarded as degenerate memory problems,

where the dependence of the past is concentrated in one moment.

But from a philosophical point of view, it seems to be natural that a complete description of a prob-

lem has to be a Markov one for the following reason: The Markov property means that the solution

operator is a semigroup, i.e. it is invariant under a time shift. Due to Noether’s theorem, this invariant

corresponds to the conservation of some energy, the dual variable of time. Thus, the Markov property

is the typical property of a model, where some energy is conserved.

Conversely, if the evolution is governed by a non-Markovian equation, it is not complete, some energy

is lost. This requires finding more degrees of freedom unless the model is Markovian. In other words,

it is to be expected that a non-Markovian description can be regarded as some part or restriction of a

more-dimensional Markov process.

This theoretical thought can be confirmed in various practical situations:

� An arbitrary (nonlinear) dynamical system on a compact space Z can be equivalently formu-

lated as a linear deterministic Markov process on the space of Radon measures on Z (see, e.g.

[14]) via its Liouville equation.
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� A general linear evolution equation that is nonlocal in space and time, including jumps and

memory on some domain in Rn, can be understood as a limit of a diffusion process (a special

Markov process) on a complicated Riemannian manifold. (see [9])

� The projection of a general Brownian motion (a special Markov process in phase space) on the

coordinate space is a diffusion process if the initial velocity is Maxwellian (see [13]).

Hence, the idea that a memory equation can be regarded as part of a higher dimensional Markov

process, does not seem to be very surprising. Indeed, the main result in this paper is that we provide

the construction of an easily analyzable Markov process for a more or less arbitrary given memory

kernel.

Let us briefly revise the basic facts in modeling and analyzing Memory equations and Markov pro-

cesses.

1.1 Memory Equations

Memory equations (ME) are differential equations where the evolution depends not only on the current

state but also on the past. Memory equations are a special case of Functional Equations - an equation

of unknown functions and their derivatives with different argument values. The mathematical theory of

functional equations (or integro-differential equations) is treated in [10, 7].

From the viewpoint of modeling and analysis, Memory equations have attracted a lot of attention during

the last decades. For example, they arise in modeling flows trough fissured media, [8, 11].

We consider Memory equations of a convolution type. Such equations arise as effective limits of

homogenization problems, starting with the pioneering work of L. Tartar [16].

The object of interest is a linear memory equation of the form

u̇(t) =− au+K ∗ u = −au+
∫ t

0

K(t− s)u(s)ds, u(0) = u0, (1)

where u : [0,∞[→ R is a scalar state variable, u0 ∈ R≥0 and K : R≥0 → R≥0 a positive

real kernel. Please note, we focus on a scalar variable, but our considerations can be generalized

to systems as well as to non-autonomous linear PDEs (like diffusion equations with time-dependent

diffusion coefficients).

Let us briefly explain the ME (1). In contrast to u̇ = −au, where the decay is quite fast, in this equation

the decay is damped due to the influence of former states. The ME can be interpreted as a reduction

of the mass into unknown depots. Phenomenologically, this can be modeled by a = a(t), which yields

a non-autonomous equation. Another way to think about (1) is the following. Introducing the function

A defined by A′ = −K and A(0) = a, we get

u̇(t) = −A(0)u−
∫ t

0

A′(t− s)u(s)ds = − d

dt

∫ t

0

A(t− s)u(s)ds.

Integrating the above equation, we get

u(t) = u(0)−
∫ t

0

A(t− s)u(s)ds

that can be regarded as a continuous analogue of the time-discrete scheme

un = u0 − a1un−1 − a2un−2 − . . . . (2)
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Equivalently, using partial integration we get

u̇(t) = −A(t)u0 −
∫ t

0

A(t− s)u̇(s)ds.

This form is often considered(e.g. in [11]). Subsequently, we use the form (1).

For solving a ME, the memory described by K(t) or A(t) has to be known for any time t ≥ 0. This is

often postulated, i.e. K(t) is given by heuristic arguments.

A typical and simple example is Kα(t) = αe−αt for α > 0. Then Kα(t) ≥ 0 and
∫∞

0
Kα(t)dt = 1.

In this case, for α −→ +∞, the integral on the right-hand side of (1) tends to u(t) – the ME becomes

an ordinary differential equation.

In the same sense, a sequence of some other integrals of convolution type can tend to a delay differen-

tial equation (DDE), that meansK(t) =
∑

j αjδ(t−tj) for large enough t ≥ 0. So, the kernelK can

be interpreted as a measure on the time line that can be approximated by the “simplest” measures:

convex combinations of δ-measures. Note that DDEs with the above kernel of the form

u̇ = −au +
∑

j

αju(t− tj),

are solved by virtue of an initial condition φ ∈ C([−max{tj}, 0]). That means the solution space

is infinite dimensional. On the other hand regarding the modeling viewpoint, it is difficult to derive

an initial value φ ∈ C([0, T ]) for a DDE. Often the initial value φ is assumed to be constant or a

simple given function. See e.g. [12] for more details, where the analysis and applications especially

for modeling aftereffect phenomena are presented.

The ME needs the initial value only for one fixed value, say t = 0. On the other hand, if t ≥ max{tj},

the DDE become a ME. This means, that the beginning of the evolution is also modeled in the ME.

In this sense, MEs include many types of differential equations like ODEs and DDEs. We remark that

also from the modeling viewpoint it is more natural to treat kernels located at smeared time values

rather than precise time values.

Another important property is the asymptotic behavior. The ME is a non-autonomous differential equa-

tion. The equilibrium cannot be calculated setting u̇ = 0. Assuming
∫∞

0
K(t)dt = a, any constant

solution u(t) = u0 satisfies

lim
t→∞

(

−au(t) +
∫ t

0

K(s)u(t− s)ds

)

= 0.

Assuming
∫∞

0
K(t)dt 6= a, there is no non-trivial solution that makes the right-hand side zero, so

that it is no equilibrium of the ME.

1.2 Markov Processes

There is a huge amount of literature on Markov Processes (see, e.g. [2, 3, 4]). Here we introduce our

notation.

Let Z be a given state space, a compact topological space, C := C(Z) the Banach space of con-

tinuous functions on Z and P := P(Z) the set of probability measures, i.e. the subset of Radon

measures p on Z with p ≥ 0 and p(Z) = 1.
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A family T(t), t ≥ 0 of linear bounded operators in C is called a Markov semigroup if it is a semigroup,

i.e. if it satisfies

T(t1 + t2) = T(t1)T(t2), T(0) = I, t1, t2 ≥ 0 ,

it is positive T(t) ≥ 0 in the cone sense of C and 1, the constant function is a fix-point of T(t) for all

t ≥ 0, T(t)1 = 1. The semigroup property is often called Markov property and it is equivalent to the

assumption that the trajectory depends only on the present time point and not on the past.

A linear operator A on C is called Markov generator if it is the generator of a Markov semigroup, i.e. if

g(t) = T(t)g0, where T(t) is a Markov semigroup. Then g(t) = T(t)g0 is the solution of the equation

ġ(t) = Ag(t), g(0) = g0 (3)

for an initial value g0 from the domain of A. This equation is called backward Chapman-Kolmogorov

equation. A Markov process is the result of the action of the adjoint semigroup T∗(t) at a probability

measure p0, i.e. p(t) = T∗(t)p0. Any Markov process has at least one stationary probability measure

µ ∈ P . It satisfies T∗(t)µ = µ for all t ≥ 0. This is a consequence of the Markov-Kakutani Theorem.

The stationary probability measure µ is an element of the null-space of A∗.

In this paper we consider continuous-time Markov processes on discrete state spaces. The set Z =
{z0, ..., zN} is a finite set of N + 1 states. In this case, we have C = R

N+1 and P is the simplex

of probability vectors P := Prob({z0, . . . , zN}) := {p ∈ RN+1 : pi ≥ 0,
∑N+1

i=0 pi = 1} and a

subset of RN+1, too. A Markov semigroup is a real matrix family T(t) on RN+1 with positive entries

and row sum 1. Its adjoint is the transposed matrix family T∗(t).

A Markov process is p(t) = T∗(t)p0, where p0 is some given probability vector. It satisfies the set of

equations

ṗ(t) = A
∗p(t), p(0) = p0, (4)

where A∗ is the adjoint of the corresponding Markov generator. This equation is called forward Chapman-

Kolmogorov equation. In contrast to equation (3) describing the evolution of moment functions, equa-

tion (4) describes the evolution of probability vectors. This means that one component of the vector

p(t) can be understood as the probability of the corresponding state, regardless of the probability of

the other states.

It is well known that equation (4) has a unique solution p(t) ∈ P if and only if the off-diagonal elements

are nonnegative and the columns of A∗ sum up to 0. Thus, for A = (Aij) we have Aij ≥ 0 for i 6= j
and Aii = −∑n

i 6=j=1Aij .

For a generic Markov matrix the stationary probability µ is unique and all trajectories T∗(t)p0 for any

initial state p0 converge to µ. We only consider Markov processes with a unique stationary probability.

The eigenvalues of a Markov generator have always strongly negative real part, except one eigenvalue

0. The corresponding eigenvector is 1 for A and µ for A∗. If the eigenvalues λi of A∗ are all different,

every component of the solution to (4), i.e. every component of T∗(t)p0 is a linear combination of 1

and exponential decaying functions e−λit.

A Markov process in RN+1 allows for different physical interpretations. Apart from the canonical in-

terpretations as a probability vector, it can be understood as some concentration or amount of N + 1
different materials. We will follow this interpretation and will assume that this amount of materials is

represented by particles of different types. These particles can transform into each other, changing

their type, which can be understood as a linear reaction. The entries of the Markov matrix Aij de-

scribe the rates of transforming particles of type zj into particles of type zi. Therefore, if we are only
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interested in the amount of material of one type, it is enough to consider the corresponding component

of the vector p(t) only. The initial amount of material is p0. Since A is a Markov generator, positivity of

the concentration and the whole mass is conserved.

If a Markov generator A = (Aij) and its stationary state µ = (µi) satisfy Aijµj = Ajiµi for any

i, j ∈ {1, . . . , n}, it is said that the corresponding Markov process has the detailed balance property.

It is equivalent to the case that the matrix (Aij) is symmetric in the L2-Hilbert space over µ. Such

a matrix has to have real eigenvalues. We remark that the opposite is not true in general: A Markov

process without the detailed balance can have real eigenvalues, too. Moreover, there can be no Hilbert

space at all, where it is symmetric. From a physical point of view, the condition Aijµj = Ajiµi

means that any transition zi ⇔ zj is in a local equilibrium. Thus, the detailed balance case is easier

to analyze but it rarely appears in general. The systems that we consider do not have the detailed

balance property in principle.

1.3 What our paper deals with

In this paper we connect the two concepts of Markovian dynamics and non-Markovian dynamics,

which seem to be different at the first glance. Starting with a MP of a special form, we conclude a

ME for the first coordinate. As already mentioned, the ME is a scalar differential equation, but our

considerations can also be applied to PDEs. The resulting MP can be physically understood; the ME

is governed by a kernel which is a sum of exponential functions. Then another path is taken: Starting

with an ME with an exponential kernel, we find a MP where its first components yields again the ME.

The other components can be understood as hidden degrees of freedom that have to be included in

a complete description of the problem. This procedure is not unique and thus, it cannot be said that

the hidden degrees of freedom are real physical variables. On the other hand, the construction of the

MP out of the kernel is intuitive since the kernel is approximated by its moments. This method can be

used to approximate a general positive kernel taking the enlarging of the MP into account. The simple

case of two and three states is presented in chapter 2. In this case, all solutions and kernels can be

calculated easily. In chapter 3 we consider the general case. The main Theorems are stated here.

The method has many physical and mathematical advantages – both for the theory of MPs and MEs.

We want to highlight only two of them. Firstly, the modeling of a kernel for ME is usually done by

heuristic arguments. The method presented here can be used to model kernel in a more convenient

manner, since the MP has an underlying physical meaning. Moreover, the modeling of the beginning

of the process is also done, as we already mentioned. Secondly, the asymptotic behavior of a non-

autonomous differential equation can now be calculated easily from the Markovian dynamics.

The paper concludes with chapter 4. Here we remark the connection to delay differential equations,

where the kernel is highly degenerate. This is also reflected in the setting of MP: The underlying

Markov generator has a very special form. We observe that the solution of the ME converges to the

equilibrium of the MP and also the spectral functions of ME and MP converge.

Summarizing, we have the following connection of model levels:

MP ⊂ DDE ⊂ ME ⊂ MP’.

Here MP’ is a Markov process with a larger number of degrees of freedom.

It is well known that a linear delay equation with delay T in a state space X can be regarded as

an autonomous equation in a much larger space C([−T, 0],X ). There, the evolution of the delay

equation is described by a semigroup of linear operators. This approach is not the aim in this paper.
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Notion: In this paper, the Laplace transform is used frequently. Some properties are summarized in

the appendix. ME of convolution type have the important property that the Laplace transform maps

them into multiplication operators. The Laplace transform L(u) of a real valued function t 7→ u(t) is

defined by L(u)(λ) = û(λ) =
∫∞

0
e−λtu(t)dt. If there is no confusion, we omit the ’hat’ on û and

just write u or u(λ).

Some analytical tools concerning Lagrange polynomials and simplex integrals are moved to the ap-

pendix, too.

2 Some simple Markov processes and memory equations

Before starting the general theory, we firstly present the basic ideas focusing on simple low dimen-

sional examples – Markov processes with two and three states. Apart from the sake of simplicity nearly

all phenomena of the general theory are eminent.

2.1 Two states

We consider a Markov process on a state space of two abstract states {z0, z1}, generated by the

Markov generator

A =

(

−a a
b −b

)

, and its transpose A
∗ =

(

−a b
a −b

)

. (5)

The matrix A∗ describes the switching between the two states with

given rates a ≥ 0, b ≥ 0. We can think of an amount of matter, rep-

resented by particles, which can occur in two types. For some reason

we are interested only in particles of the first type.

z0 z1
b

a

The equation describing the evolution of the vector p = (u, v) reads ṗ = A∗p with p(0) = p0. We

assume that in the beginning the total mass is concentrated in the first variable, i.e. p0 = (u0, 0). In

other words, all particles have type z0.

The eigenvalues of A∗ are {0,−(a+ b)}. The stationary solution is µ =
(

b
a+b

u0,
a

a+b
u0
)

. It is unique

unless the non interesting case a = b = 0. Any Markov process with two states has the detailed

balance property.

For (u, v) the system reads as
{

u̇ = −au+ bv

v̇ = au− bv.
(6)

Using the Laplace transform and writing u(λ) = L(u(t))(λ) and v(λ) = L(v(t))(λ), we obtain a

system of equations for (u, v) in the form

{

(λ+ a)u− u0 = bv

(λ+ b)v = au.

This yields an equation for u in the form

(λ+ a)u− u0 =
ba

λ+ b
u⇒ λu− u0 = −au+ ba

λ+ b
u.
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Memory equations as reduced Markov processes 7

Using the inverse Laplace transform, we obtain a Memory Equation for u

u̇ = −au+ ab

∫ t

0

e−b(t−s)u(s)ds = −a d

dt

∫ t

0

e−b(t−s)u(s)ds. (7)

The kernel K(t) = be−bt describe a depen-

dence of the current state from previous time

moments. For b −→ ∞, K(t) tends to δ(t)
and the equation becomes u̇ = 0. Thus, the

right hand side of equation (7) consists of two

terms, the first one, −au describe an exponen-

tial decay, whereas the second one, the mem- 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Kernel be−bt for b = 1, . . . , 10

K(t)

t

ory term describe an opposite effect: Particles that disappear, occur after a while. The time that passes

between disappearing and reappearing, decreases with 1/b. In the end, not all matter disappears like

in a pure equation u̇ = −au but an equilibrium between disappearance and reappearance arises.

The same effect is caused by the Markov process, changing the type of the particles. The particle

changes the type from z0 to z1 with rate a, it seems to disappear, if we look only at type z0. After

a while it re-changes to type z1 (it occurs) with rate b. This give the exponential time behavior e−bt

(corresponding to the memory kernel K(t) = be−bt), characteristic for Markov processes.

The equation (7) – or equivalently the system (6) – can be solved explicitly. We obtain for the Laplace

transform

u(λ) =
λ+ b

λ(λ+ a + b)
u0 =

(

b

a + b

1

λ
+

a

a + b

1

λ+ a+ b

)

u0

and for the solution itself

u(t) =
b

a+ b
u0 +

a

a+ b
e−(a+b)tu0

The solution tends to an equilibrium state u∞ = b
a+b

u0, the first component of the stationary solution

µ.

It is not possible to calculate it from the memory equation (7), directly. Setting u̇ = 0, the equation

u̇ = −au+ ab

∫ t

0

e−b(t−s)u(s)ds = −a d

dt

∫ t

0

e−b(t−s)u(s)ds.

does not have any solution at all. Passing to the limit t −→ ∞ (rewriting at first
∫ t

0
e−b(t−s)u(s)ds =

∫ t

0
e−bsu(t− s)ds) we obtain

0 = −au∞ + ab

∫ ∞

0

e−bsu∞ds .

Any constant u∞ solves this equation.

This strange behavior of the solution of memory equations is typical and can be illustrated in a picture,
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showing the time behavior of both, the solution of

the Markov process and their first component – the

solution of the memory equation.

Investigating only the solution of the memory equa-

tion, it is not clear why the trajectory u(t) stops

in u∞. Whereas looking from above, the trajectory

(u(t), v(t)) has to stop at the stationary state µ,

the intersection of the subspace u + v = 1 with

the null space of A∗.

µ

u

v

u0u∞

2.2 Three states

A general memory kernel must not be concentrated in t = 0. It can describe a transfer of mass

from a very earlier time. It seems that this situation can be modeled by transitions between many

quasiparticles before it appears at its starting type again. To understand the action of such a transition

loop, we investigate in detail a special case of three states, namely

the transformation of a fixed particle (type z0) in two different quasi-

particles. One of them (type z1) can be transformed back into type

z0 immediately, whereas the other (type z2) can be transformed

back into type z0 only by two steps, changing at first to type z1.

This process is illustrated in the picture.
z1

z0

z2

a1
b1 a2
b2

2.2.1 From Markov to Memory

The simple Markov process on a state space of three abstract states {z0, z1, z2} is described by the

Markov generator

A =





−a1 − a2 a1 a2
b1 −b1 0
0 b2 −b2



 , A
∗ =





−a1 − a2 b1 0
a1 −b1 b2
a2 0 −b2



 (8)

with a1, a2, b1, b2 ≥ 0. The equation, generating the Markov process is

ṗ(t) = A
∗p(t), p(0) = p0. (9)

Note, this is a Markov generator depending on four rates. A general Markov generator on R3 depend

on six rates.

The stationary state µ is the solution to A∗µ = 0 and can be calculated easily as

µ =

(

1 +
a1 + a2
b1

+
a2
b2

)−1(

1,
a1 + a2
b1

,
a2
b2

)

u0 =
(b1b2, a1b2 + a2b2, a2b1)

b1b2 + a1b2 + a2b2 + a2b1
u0

The eigenvalues (they have always non-positive real part) of the matrix are λ0 = 0 and

λ1,2 = −1

2

(

a1 + a2 + b1 + b2 ±
√

(a1 + a2 + b1 + b2)2 − 4(a1b2 + a2b1 + a2b2 + b1b2)
)
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Depending on a1, a2, b1, b2 the eigenvalues can be real (e.g. λ1 = −5, λ2 = −11 for a1 = 2, a2 =
5, b1 = 8, b2 = 1) or complex (e.g. for λ1,2 = −9 ± 2i for a1 = 2, a2 = 5, b1 = 8, b2 = 3). (By the

way, these are suitable values for an explicite solution with rational terms, only.)

This Markov process has the detailed balance property, if b1b2a2 = 0 what is not interesting, since

the coupling chain is broken. Roughly speaking, the detailed balance property means that for any loop

in one direction there is a loop backwards with the same product of the rates. But this is not the case

in our model. Thus, the Markov process under consideration violate the detailed balance property,

generically.

The stationary state is unique if and only if the real parts of λ1,2 are strongly negative. Or, equivalently,

b1b2+a1b2+a2b2+a2b1 = 0. Since the ai, bi are non negative, this is a non interesting case that we

exclude. Then, the stationary state is the equilibrium state for any initial value. Note, that nevertheless

some of the ai, bi might be zero.

As in the case of two states, we are interested only in the state z0 of the system and ask for an

evolution equation of this state. To do this, we introduce the notion p = (u, v1, v2) and look for the

evolution of u with an initial state p0 = (u0, 0, 0). This is naturally, since the states z1 and z2 are

unknown, and there is no reason to assume something else than nothing in the beginning.

Equation (9) is now equivalent to the system







u̇(t) = −(a1 + a2)u(t) +b1v1(t)
v̇1(t) = a1u(t) −b1v1(t) +b2v2(t)
v̇2(t) = a2u(t) −b2v2(t)

Passing to the Laplace transform, we obtain with u = Lu, vi = Lvi the system







λu = −(a1 + a2)u +b1v1 +u0
λv1 = a1u −b1v1 +b2v2
λv2 = a2u −b2v2

or equivalently, introducing a = a1 + a2, we get











(λ+ a)u− u0 = b1v1

(λ+ b1)v1 = a1u+ b2v2

(λ+ b2)v2 = a2u.

Here, v1 and v2 can be eliminated as

v2 =
a2

λ+ b2
u , v1 =

a1
λ+ b1

u+
b2

λ+ b1
v2 =

a1
λ+ b1

u+
a2b2

(λ+ b1)(λ+ b2)
u

We conclude the following equation for u

λu− u0 =

(

−a + a1
b1

λ+ b1
+ a2

b1
λ+ b1

b2
λ+ b2

)

u. (10)

This is an equation for the first state, only. It can be solved explicitly with respect to u. But, at this

moment, this is not our aim. We are looking for an equation for u. We write

b1
λ+ b1

b2
λ+ b2

=
b1b2
b2 − b1

(

1

λ+ b1
− 1

λ+ b2

)

,
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and, after transforming inverse, we get an equation for the function u(t), namely

u̇ = −au + a1b1

∫ t

0

e−b1su(t− s)ds+ a2
b1b2
b2 − b1

∫ t

0

(e−b1s − e−b2s)u(t− s)ds (11)

= −au + (K ∗ u)(t),

where

K(t) = b1a1e
−b1t + a2

b1b2
b2 − b1

(

e−b1t − e−b2t
)

= (12)

=

(

b1a1 +
b1b2a2
b2 − b1

)

e−b1t − b1b2a2
b2 − b1

e−b2t (13)

So, we obtain a memory equation with the kernel K. This equation describe the evolution of the first

state of our physical system, depending on the whole past from 0 to time t. Obviously, this dependence

is a result of the projection, since nothing else had be done. Thus, u(t) is the solution of two equivalent

equations, a memory equation and a component of a Markov system.

The kernelK(t) = a1K1(t)+a2K2(t) is the sum

of two parts

K1(t) = b1e
−b1t

K2(t) =
b1b2
b2 − b1

(

e−b1t − e−b2t
)

each of them is obviously positive . If we denote

mi =
∫∞

0
tKi(t)dt the mean time of a kernel, we

have

m1 =
1

b1
, m2 =

1

b1
+

1

b2
0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

K1

2K2

b1 = 2, b2 = 3K(t)

t

The first kernel K1 describes a memory effect with small mean time and correspond to a small loop

z0
a1−→ z1

b1−→ z0 in the Markov process. The other kernel K1 describes a memory effect with longer

mean time and correspond to a longer loop z0
a2−→ z2

b2−→ z1
b1−→ z0.

The relative coefficients ai/a form a convex combination. The transitions z0
ai−→ zi split the whole

number of particles in parts according to the loops.

Let us summarize some properties of the kernel K(t).

� K(t) is the sum of exponential decaying functions, where the exponents are the entries of the

of diagonal elements of A.

� The arising memory equation is (11) with a =
∑N

i ai or, equivalently, k(λ = 0) = a

� K(t) ≥ 0 iff k(λ) ≥ 0, since ai, bi ≥ 0.
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Equation (10) can be solved explicitely:

u

(

λ+ a− a1b1
λ+ b1

− a2b1b2
(λ+ b1)(λ+ b2)

)

= u0

λu

(

λ2 + λ(a + b1 + b2) + a2b1 + a1b2 + a2b2 + b1b2
(λ+ b1)(λ+ b2)

)

= u0

u =
1

λ

(λ+ b1)(λ+ b2)

λ2 + λ(a+ b1 + b2) + a2b1 + a1b2 + a2b2 + b1b2
u0.

To get an explicite term for u(t) we have to factorize the denominator what leads – of course – to the

same time behavior as determined by the eigenvalues for the Markov process.

We compute the asymptotic behavior of the solution u(t), using the asymptotic properties of the

Laplace transform. We obtain for the equilibrium state

u∞ = lim
λ→0

λu =
b1b2

a2b1 + a1b2 + a2b2 + b1b2
u0.

For the other components we get in the same manner

v1(t = ∞) =
a1b2 + a2b2

a2b1 + a1b2 + a2b2 + b1b2
u0

v2(t = ∞) =
a2b1

a2b1 + a1b2 + a2b2 + b1b2
u0.

These are the parts of the initial mass that remain in the states z1 and z2.

2.2.2 From Memory to Markov

Now, we go the opposite direction and start with a kernel that is the sum of two exponential decaying

terms, i.e.

K(t) = c1e
−α1t + c2e

−α2t (14)

with some real coefficients c1, c2. We assume ci 6= 0, otherwise we are in the case of 2 states. For

definiteness, we assume α1 > α2 > 0. The αi has to be strongly positive, otherwise we have no

decreasing of the time dependence of the past.

This kernel has to be written in the form (12) with positive coefficients. We have

K(t) = c1e
−α1t + c2e

−α2t =

= (c1 + c2)e
−α1t + c2(α1 − α2)

e−α2t − e−α1t

α1 − α2

Thus, we have to demand c1 + c2 ≥ 0 and c2 ≥ 0. Both are consequences of the positivity of K(t),
setting t = 0 and t −→ ∞.

Now, the Markov process is easily constructed. We set

b1 = α1

b2 = α2

a2 =
c2(α1 − α2)

α1α2

a1 =
c1 + c2
α1

.
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The entries of the matrix b1, b2, a2 are strongly positive, a1 is non negative. This guarantees the

uniqueness of the stationary solution. Moreover, this violates the detailed balance property.

The existence of a positive equilibrium is fulfilled, we have the equation

u̇ = −au+
∫ t

0

K(t− s)u(s)ds, u(0) = u0

and the property of consistency k(0) = a.

Summarizing, we get the following result:

Proposition 2.1. The first component of the MP generated by A
∗ given by (8) is the solution to the

ME (11).

For a ME u̇ = −au+(K∗u)with a kernel (14) with parameters c1, c2, α1, α2 satisfyingα1 > α2 > 0,

c1 + c2 ≥ 0 and c2 ≥ 0, it can be constructed a three dimensional MP, where the first component

coincides with the solution to the ME.

3 General Memory Equations as Markov processes

In this chapter, we generalize the ideas from the last chapter to an arbitrary finite dimensional Markov

process. Firstly, we show that the first coordinate of a special Markov process, consisting of different

transformation loops, satisfies a suitable memory equation with a more or less general kernel. Then,

we go the opposite direction: We show that a ME with kernel of a special form yields the MP we started

with. The construction of the Markov process is explicitly.

3.1 From Markov to Memory

We consider a Markov process of N + 1 abstract states {z0, z1, . . . , zN} of the following form

A
∗ =





















−a b1 0 0 . . . 0
a1 −b1 b2 0 . . . 0
a2 0 −b2 b3 . . . 0
a3 0 0 −b3 . . . . . .
. . . . . . . . . . . . . . . . . .
aN−1 0 0 0 −bN−1 bN
aN 0 0 0 0 −bN





















, (15)

where aj ≥ 0 and bj > 0 for j = 1, . . . , N are non negative rates and we set a :=
∑N

j=1 aj . The

condition bj > 0 is reasonable, since otherwise the loop is broken somewhere.

z0

z1 z2 z3 zN−1 zN

. . . . . .

b1

b2 b3 bN

a1 a2 a3 aN−1 aN
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The process p(t) is generated by the equation ṗ = A∗p. We set p = (u, v1, . . . , vN) and understand

this quantity as the concentration of some particles. We assume that for t = 0 the total mass is

concentrated in the first coordinate, i.e p0 = (u0, 0, . . . , 0). The equation conserves positivity of p
and the whole mass u + v1 + ... + vN = u0. Thus, p is a vector on the positive simplex in R

N+1,

intersected by the hyperplane u+ v1 + ... + vN = u0. Of our interest is the first component, i.e. the

amount of matter of particles of type z0.

A∗ is the generator of a special type of Markov processes. It describe the change of types in the

following way: Particles of type z0 can changes their type to type zi with rates ai. The back-changing

of a particle of type zi to type z0 does not go in a direct way, but in i steps. Thus, we have an interaction

between the N + 1 types in N loops (see the picture).

Easy calculations show that the stationary solution µ satisfying A∗µ = 0 has the form

µ =
1

Z

(

1,
a1 + · · ·+ aN

b1
,
a2 + · · ·+ aN

b2
,
a3 + · · ·+ aN

b3
, . . . ,

aN
bN

)

u0,

where Z is the suitable normalization such that
∑N

j=0 µj = u0. Obviously,

Z = 1 +
N
∑

i=1

1

bi

N
∑

j=i

aj . (16)

For the zeroth coordinate we have

u(∞) =
1

Z

Since any bj > 0, this stationary solution is unique and is the equilibrium state for any initial condition.

Let us check, whether detail balance with respect to µ is satisfied. We have to check, that Aijµj =
Ajiµi. Since A1jµj = Aj1µ1 = 0 for j ≥ 2, we obtain that a2 = a3 = . . . aN = 0. Hence, the

evolution of the states z2, . . . , zN is not coupled to the evolution of z0 and z1. In this case, we get

N = 1, the two dimensional case, where every MP has the detailed-balance property. That means,

apart form this situation, the MP under consideration does not have the detailed-balance property.

The equation ṗ = A∗p is equivalent to the following system for p = (u, v1, . . . , vN)















































u̇ = −au + b1v1

v̇1 = a1u− b1u+ b2v2

v̇2 = a2u− b2v2 + b3v3

v̇3 = a3u− b3v3 + b4v4

. . . . . .

v̇N−1 = aN−1u− bN−1vN−1 + bNvN

v̇N = aNu− bNvN .
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Using the Laplace transform, we get the following equation for (u, v1, . . . , vN)















































(λ+ a)u− u0 = b1v1

(λ+ b1)v1 = a1u+ b2v2

(λ+ b2)v2 = a2u+ b3v3

(λ+ b3)v3 = a3u+ b4v4

. . . . . .

(λ+ bN−1)vN−1 = aN−1u+ bNvN

(λ+ b1)vN = aNu

This yields for u

(λ+ a)u− u0 =

(

a1b1
λ+ b1

+
a2b1b2

(λ+ b1)(λ+ b2)
+

a3b1b2b3
(λ+ b1)(λ+ b2)(λ+ b3)

+ . . .

+
aNb1b2 · · · bN

(λ+ b1)(λ+ b2) · · · (λ+ bN )

)

u. (17)

We define the kernel

k(λ) =

N
∑

j=1

ajkj(λ)

kj(λ) =

j
∏

i=1

bi
λ+ bi

and hence the equation for the Laplace transform reads

λu− u0 = −au+ k(λ)u. (18)

Now, we formulate the memory equation in terms of t ≥ 0 and some properties of the kernel. For this

purpose, we introduce some quantities, connected with Lagrange polynomials (see the appendix for

details) with different support points b1, ..., bn. Let

ψj
i =

j
∏

k=1,k 6=i

bk
bk − bi

,

assuming bi 6= bk for i 6= k.

From the theory of Lagrange polynomials it is well known that

kj(λ) =

j
∏

i=1

bi
λ+ bi

=

j
∑

i=1

bi
λ+ bi

ψj
i . (19)

Using this, we can transform ki(λ) back and obtain

K(t) =
N
∑

j=1

ajKj(t) (20)

Kj(t) =

j
∑

i=1

biψ
j
i e

−bit (21)
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(see the properties of the Laplace transform in the appendix).

The assumption bi 6= bj for i 6= j is not principial. If some or all bi coincide, all formulae of the following

can be obtained by some suitable limits. This is obviously done for the Laplace transform k(λ). For

K(t) we get more complicated terms, involving not only exponential but also polynomials with degree,

depending on the frequency of the bi. We do not bore the reader with this technical complexity, since

this is well known in the theory of Lagrange polynomials. Moreover, from a practical point of view, in a

generic Markov matrix all entries can be chosen differently.

Surely, a different situation is, if the modeling requires equal bi. This is the case for instance for DDE’s.

The case is considered in detail in chapter 4.

Now, we are ready for the following

Theorem 3.1. Let p = (u, v1, . . . , vN) be the solution of ṗ = A
∗p with p0 = (u0, 0, . . . , 0) where

A
∗ is given via (15). Then t 7→ u(t) solves the memory equation

u̇ = −au+
∫ t

0

K(t− s)u(s)ds, u(0) = u0, (22)

where K(t) =
∑N

j=1 ajKj(t) with Kj(t) =
∑j

i=1 biψ
j
i e

−bit and a =
∑

j aj = k(0). Moreover,

K(t) ≥ 0 and u∞ = 1/Z where Z is given by (16).

Proof. From the definition of k(λ) it is clear that u(λ) defined by the MP is the solution to (18). If the

inverse transformed function t 7→ u(t) is regular enough, it is solution to (22).

Rewriting (17) as

λu(λ) =
λ

λ+ a−∑N

j=1 ajkj(λ)
u0 (23)

Since the kj(λ) are analytical functions and bounded on the right plane, so is λu(λ). Hence from the

properties of the Laplace transform it follows that u(t) is continuous differentiable. Thus, it solves (22).

To calculate u∞ we use the representation (23) and investigate the behavior of kj(λ) for λ −→ ∞.

We have

kj(λ) = kj(0) + λk′j(0) + o(λ) =

= 1 + λ

(

b1b2 · · · bj
(λ+ b1)(λ+ b2) · · · (λ+ bj)

)′∣
∣

∣

∣

λ=0

+ o(λ) =

= 1− λ
b1b2 · · · bj ·

(

b1b2 · · · bj
∑j

i=1
1
bi
+ o(λ)

)

[

(λ+ b1)(λ+ b2) · · · (λ+ bj)
]2

∣

∣

∣

∣

∣

∣

λ=0

+ o(λ) =

= 1− λ

j
∑

i=1

1

bi
+ o(λ)

By definition a =
∑N

j=1 aj , and hence, it follows from (23)

u(∞) = lim
λ→∞

λu(λ) = lim
λ→∞

λ

λ+ a−
∑N

j=1 aj

[

1− λ
∑j

i=1
1
bi
+ o(λ)

] u0 =

=
1

1 +
∑N

j=1 aj
∑j

i=1
1
bi

u0 =
1

1 +
∑N

j=1
1
bj

∑N

i=j aj
u0 ,
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what is exactly the zeroth coordinate of µ, i.e. 1/Z .

The positivity of the Kj(t), t ≥ 0 follows from their representation with simplex integrals (see the

appendix). We have

Kj(t) =

j
∑

i=1

biψ
j
i e

−bit =

∫

Sj

(−1)j−1f (j−1)
(

〈α, s〉t
)

∣

∣

∣

∣

∣

sj=1−s1−s2−sj−1

dsj−1 · · · ds1

with f(x) = e−xt and 〈α, s〉 = α1s1+α2s2+. . .+αjsj . (−1)j−1f (j−1)
(

〈α, s〉t
)

= tj−1e−〈α,s〉t ≥
0 proves the positivity of Kj(t) and therefore we have K(t) ≥ 0, since the coefficients aj in (19) are

positive, too. This completes the proof of the theorem.

3.2 From Memory to Markov

We consider memory equations of the form

u̇(t) = −au+K ∗ u = −au+
∫ t

0

K(t− s)u(s)ds,

where a > 0 is a real parameter and K is a positive kernel. The aim is to embed the evolution of u
into a Markov process introducing new variables.

Our main assumptions are K(t) ≥ 0 and
∫∞

0
K(t)dt = a. Clearly, starting with some given K(t)

we want to end up with a kernel of the shape (20-21). Then going forward to a kernel like in (17), the

entries of the Markov generator matrix can be taken immediately.

The kernels (21) are positive although this are linear combinations of exponential with – maybe –

negative coefficients.

It may seem that any nonnegative kernel K(t) can be presented in such a form. But this is not the

case. We show this in a

Counterexample: Let

K(t) = 3e−t − 8e−2t + 6e−3t

and

f(t) = e4tK(t) = 3e3t − 8e2t + 6et

f(t) has a unique minimum f(0.215315...) = 0.8590718.... Thus K(t) ≥ 0.

Seeking for coefficients A,B,C,D,E, F,G (this is the representation (21)) with

K(t) = Ae−3t +Be−2t + Ce−t +D
e−t − e−2t

1
+ E

e−t − e−3t

2
+ F

e−2t − e−3t

1
+

+ G

(

e−t

1 · 2 +
e−2t

(−1) · 1 +
e−3t

1 · 2

)

the resulting system for the coefficients leads to

0 = 2 +D + E + F +B + C
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that does not have nonnegative solutions.

We think, there is no hope to find a corresponding MP for an arbitrary nonnegative kernel. Therefore

we go another way and try to derive a class of sensible kernels starting from physical considerations.

Furthermore, the following reasoning shows how the time interval of the memory effect is connected

with rates of the loops of the MP.

First of all we have to ask: How one can model a meaningful kernel for a ME. We can assume that the

dependence on the past is concentrated at some time point before the present, say t− t1, ... t− tN
where tj are ordered time values, i.e. 0 < t1 < t2 < · · · < tN , with some coefficients γ1, ..., γN
with γi ≥ 0 and

∑

γi = 1 that gives the relative proportion of each time point. The corresponding

memory kernel of such an ansatz is

K̃(t) =

N
∑

j=1

γjδ(t− tj)

(here δ means the “δ-function”, the “density” of the Dirac measure). The kernel K̃ occurs when starting

from a discrete time model, like equation (2). Clearly, this is a first guess. A real memory kernel seems

to be more smeared. Therefore, we can try to find kernels K̃j(t) with mean time at tj , i.e

∫ ∞

0

K̃j(t)dt = a,

∫ ∞

0

tK̃j(t)dt =

∫ ∞

0

tδ(t− tj)dt = tj,

We will show that such kernels K̃j(t) can be found and it is possible to find a suitable MP for them.

Note, that this does not determine the kernels K̃j uniquely, of course.

We show that our kernels of shape (20) are suitable for this.

Proposition 3.2. Let a sequence 0 < t1 < t2 < · · · < tN < ∞ be given. There are kernels

K(t) =
∑N

j=1 aiKi(t) such that K ≥ 0 and
∫∞

0
K(t)dt = a and

∫∞

0
tKi(t)dt = ti.

Proof. We define bj ∈ R via ti =
∑i

j=1
1
bj

. Since the ti are ordered, we get bj > 0. We define

K(t) =

N
∑

j=1

ajKj(t), where Kj(t) =

j
∑

i=1

biψ
j
i e

−bit.

We prove that K satisfies the desired properties. Using the Laplace transform, we get

L(Kj(t))(λ) =

j
∑

i=1

biψ
j
i

1

λ+ bi
=

j
∏

i=1

bi
λ+ bi

=: kj(λ).

This yields
∫∞

0
Kj(t)dt = kj(λ = 0) = 1. Moreover,

∫∞

0
tKj(t)dt = −k′j(λ = 0). We have

k′j(λ) =

j
∑

i=1

b1
λ+ b1

· b2
λ+ b2

· · · −bi
(λ+ bi)2

· · · bj−1

λ+ bj−1

· bj
λ + bj

This yields −k′j(λ = 0) =
∑j

i=1
1
bi
= tj , i.e.

∫∞

0
tKj(t)dt = tj .
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Theorem 3.3. Let K(t) be a memory kernel of the form

K(t) =
N
∑

j=1

αiKi(t), where Ki(t) =
i
∑

j=1

bjψje
−bjt.

and α =
∑

j αj . Let u be the solution to the equation u̇(t) = −αu+K ∗ u with u(0) = u0. Then,

there is a Markov process ṗ = A
∗p in RN+1 generated by a Markov matrix A and an initial condition

p(0) such that u(t) = p0(t).

Proof. Define the Markov generator matrix via a = α, ai = αi, bi = βi. The initial condition for the

Markov process is p0 = (u0, 0, . . . , 0). The claim follows.

For the asymptotic behavior of the ME, we immediately get the following statement.

Corollary 3.4. Let K(t) =
∑N

j=1 aiKi(t), where Ki(t) =
∑i

j=1 bjψje
−bjt and a =

∑

j aj . Let u
be the solution to the equation u̇(t) = −au+K ∗ u with u(0) = u0. Then u(t) → u∞ as t → ∞,

where u∞ = 1
Z
u0 and Z is given by (16).

3.3 Remarks

1 Kernels like kj(λ) =
∏j

i=1

(

bi
λ+bi

)mi

with suitable chosen mi ∈ N may approximates a δ-

kernel better. Especially it allows to take into account more moments then only the first one.

This requires to allow the bi to be equal. This is possible without any principial problems (see

the note above Theorem 3.1). A special case is treated in the next chapter, where one delay

is approximated arbitrary precise. To prove positivity of the corresponding functions Lemma 5.1

from the appendix can be used.

Kernels like in (17) are rational functions of degree N , having poles on the left plane. They

approximate meromorphic functions. This makes one able to consider more general kernels

then linear combinations of exponents – at least approximately.

2 There are other (similar) MP that lead to a ME and vice versa. For example the MP with the

generator

A
∗ =

















−a c1 c2 c3 . . . cN
a −c1 − b1 0 0 . . . 0
0 b1 −c2 − b2 0 . . . 0
0 0 b2 −c3 − b3 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 bN−1 −cN

















,

can also be used for embedding the presented exponential kernels. Such MP can be understood

in the same manner like at the picture on page 12 but with reversed arrows. Although this

approach is more difficulty from a technical point of view.

3 The presented results can be applied in various manner. We focus on ordinary differential equa-

tions to present the general idea. Linear Memory equations in infinite dimensional space like

diffusion equations with time depending diffusion coefficients are also possible.

Moreover, the well known tools for investigating MP, like inequalities for Lyapunov functions (see

[14]) can now be carried over to explore ME.
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4 Special Markov process leads to a Delay Differential equation

In this section we consider a special form of the MP. We define aj = 0 for j = 1, 2, . . . , N − 1 and

put aN = a and bj = b ∈ R. Using the observation from the last section we consider a general cyclic

MP with one single but long loop. The Markov process in R
N+1 is generated by the matrix

A
∗ =















−a b 0 · · · 0
0 −b b · · · 0
0 0 −b · · · 0
...

. . . b
a · · · 0 · · · −b















.

We assume the initial mass is concentrated in the first reservoir. Then, the equation reads

ṗ(t) = A
∗p(t), p(0) = p0,

where p = (u, v1, v2, . . . , vn)
T and p0 = (u0, 0, . . . , 0)

T .

The stationary solution is

µ =
1

Z

(

1

a
,
1

b
,
1

b
, ...,

1

b

)T

u0 ∈ R
N+1,

where Z = 1
a
+ N

b
= b+aN

ab
. Note, the system does not have the detailed balance property.

z0

z1 z2 z3 zN−1 zN

. . . . . .

b

b b b

a

We get

(λ+ a)û− u0 = a

(

b

λ+ b

)N

u.

It holds
(

b

λ+ b

)N

= L
(

bN

(N − 1)!
tN−1e−bt

)

(λ).

Hence, we get

u̇(t) = −au(t) + abN

(N − 1)!

∫ t

0

sN−1e−bsu(t− s)ds =

= −a
(

u(t)−
∫ t

0

KN (s)u(t− s)ds

)

,

where we introduced the kernel

KN(t) =
bN

(N − 1)!
tN−1e−bt. 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

Kernel KN(t) for:

b = N
T

T = 1
N = 2, . . . , 30

t
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A delay equation can be understood as a memory equation with a δ-kernel. To do this, we fix T > 0
and introduce δT (t) = δ(t− T ). We get

∫ ∞

0

δT (t)e
−λtdt =

∫ ∞

0

δ(t− T )e−λtdt = e−λT . (24)

Moreover, for t > T we have

u(t− T ) =

∫ ∞

0

u(s)δ(t− T − s)ds =

∫ ∞

0

u(s)δT (t− s)ds = (25)

=

∫ t

0

u(s)δT (t− s)ds = u(t) ∗ δT (t). (26)

Hence,

L(u(t− T ))(λ) = û(λ)e−λT . (27)

Putting b = N
T

, we approximate the Laplace transform of the kernel δT , i.e.

L(δT )(λ) = e−λT ≈
(

1 +
λT

N

)−N

=

(

N
T

N
T
+ λ

)N

= L(KN(t))(λ). (28)

Hence, we conclude

L(Kn(t))(λ)
n→∞−−−→ e−λT = L(δ(t− T ))(λ), (29)

and the limiting (DDE) reads as

u̇ =

{

−au(t), if 0 ≤ t ≤ T

−au(t) + au(t− T ), if t ≥ T,
(30)

or equivalently

u̇ = −au(t) + au(t− T ), for t ≥ T, and u|[0,T ](t) = e−atu0. (31)

Let us note that the initial condition u|[0,T ](t) = e−atu0 results from the modeling ansatz. No other

initial condition is possible. Here, the initial condition was calculated in contrast to the usual way, to

guess it.

Let us compute the limiting stationary solution for N → ∞ of the first coordinate of the MP. This

means the MP has long loops, but mass is transferred with a high rate. We have Z = Na+b
ab

. Putting

b = N
T

, we conclude for the zeroth coordinate of the stationary solution.

µ0 =
1

Za
=

b

Na + b
=

N
T

Na + N
T

=
1

1 + aT
.

The solution of the DDE

and the stationary solu-

tion µ0 of the MP can be

seen in the picture. The

solution of the DDE con-

verges nicely to µ0.

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

Solution for DDE (31) and equilibrium 1
1+aT

for u0 = 1 with parameters:

T = 1.8

a = 1.6

a = 3.1
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Finally, we remark some properties of the spectrum. The spectrum of the DDE is given by inserting

eλt for λ ∈ C into the equation (see e.g. [12]). This yields for given a, T ≥ 0 the equation

λ = −a+ ae−λT . (32)

This transcendental equation (in λ ∈ C) has in general an infinite discrete amount of solutions.

The eigenvalues of A∗ for fixed N ∈ N are given by the characteristic equation

φ(λ) = −abN−1 + (λ+ b)N−1(λ+ a) = 0,

that can be computed easily. Hence, setting b = N
T

we get φ(λ) = 0 if and only if

a

a+ λ
=

(

λ+ b

b

)N−1

=

(

1 +
λT

N

)N−1

.

For N → ∞, right hand side converges to eλT . So, in the limit λ ∈ C satisfies the equation

a

a + λ
= eλT ,

i.e. the same equation as (32). In this sense, one can say that not only the solution converges but also

the spectrum of the MP and of the ME converges to each other. Note, that the convergence of the

spectrum is very slow, as the convergence of the exponential function is.

5 Appendix

5.1 Laplace transform

Here, we summarize some facts of the Laplace transform. More details can be found in [15]. For a

given function u : [0,∞) ∈ t 7→ u(t) ∈ R that does not grow faster than an exponential function in

time, the Laplace transform is defined by

û(λ) = (Lu)(λ) =
∫ ∞

0

e−λtu(t)dt

We will use the following formulas that can be checked easily:

L(u̇)(λ) = λû(λ)− u0

L(K ∗ u) = (LK) · (Lu)

L(e−a·)(λ) =
1

λ+ a

L
(

1

(n− 1)!
tn−1e−at

)

(λ) =
1

(λ+ a)n

The Laplace transform has an interesting asymptotic behavior. The limit for large times u(t)
t→∞−→ u∞

can be calculated with the Laplace transform. It holds λû(λ)
λ→0−→ u∞. Thus, there is no need to know

the whole solution u(t) if one is interested only in the equilibrium case. This is important since, in

general for non-autonomous equations, the equilibrium case can not be calculated by setting u̇ = 0.
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Let us note that the uniform convergence on compact sets of t ∈ R+ carries over to uniform conver-

gence on compact sets of λ in the domain of analyticity.

To carry over positivity properties between the original and the transformation the following Lemma is

usefull:

Lemma 5.1. Let K(t) =
∑N

j=1 γje
−αjt with its Laplace transform k(λ) =

∑N

j=1 γj
1

λ+αj
. Then

K(t) ≥ 0 if and only if
∑N

j=1
γj

(λ+αj)m
≥ 0 for any m ∈ N.

Proof. Let K(t) ≥ 0. Since K(0) ≥ 0, we get
∑N

j=1 γj ≥ 0, i.e. the claim holds for m = 0. For

m ≥ 0, we get 0 ≤
∫∞

0
tmK(t)e−λtdt = (−1)mk(m)(λ) =

∑N

j=1
γj

(λ+αj )m+1 what proves the claim

in one direction.

For the other direction, we put λ = n
t

and m+ 1 = n. Then

0 ≤
N
∑

j=1

γj(
n
t
)n

(n
t
+ αj)n

=
N
∑

j=1

γj
(1 +

αjn

t
)n

=
N
∑

j=1

γj

(

1 +
αjt

n

)−n

→
N
∑

j=1

γje
−αjt, as n→ ∞,

which proves the claim of the Lemma.

5.2 Simplex integrals

In Theorem 3.1, we proved the positivity of the kernel K(t) using an integral over a simplex. This is

based on the following observation.

Let Sn−1 ⊂ Rn be the simplex, defined as

Sn−1 = {s ∈ R
n | si ≥ 0, s1 + ... + sn = 1}

We consider functions g : Rn −→ R and their integrals over Sn−1. We have

∫

Sn−1

g(s)dσ(s) =
1√
n

∫

Sn−1

g(s1, s2, ..., sn−1, 1−s1− . . .−sn−1)ds1 · · ·dsn−1 =

= (n−1)!

1
∫

0

ds1

1−s1
∫

0

ds2

1−s1−s2
∫

0

ds3 · · ·
1−sn−...−sn−2

∫

0

dsn−1 g(s1, s2, ..., sn)
∣

∣

∣

sn=1−s1−...−sn−1

,

where σ(ds) is the Lebesgue measure on Sn−1 and
√
n is the volume of Sn−1.

Let f : R −→ R be a smooth enough function, f (k) its k- derivative and x1, ..., xn given different

reals. Set g(s) = f(〈x, s〉), where 〈x, s〉 = x1s1 + x2s2 + . . .+ xnsn is the scalar product in Rn.

Now, using induction one can prove that

n
∑

i=1

f(xi)
n
∏

j 6=i

1

xi − xj
=

∫

Sn−1

f (n−1)(〈x, s〉)σ(ds) .

This formula gives a powerfull tool to switch between expessions connected with Lagrange polynomials

and expessions connected with simplex integrals. In Theorem 3.1, we used this formula with f(x) =
e−xt.
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5.3 Lagrange polynomials

Here we summarize basic facts from the theory of Lagrange polynomials. Let

Lj
i (x) =

j
∏

k=1,k 6=i

x− xk
xi − xk

,

assuming xi 6= xk for i 6= k. Obviously Lj
i (x) is a polynomial of degree j−1 and we have Lj

i (xk) =
δik with δik the Kronecker symbol. Hence, the polynomial

P (x) =

j
∑

i=1

piL
j
i (x)

of degree j − 1 satisfy P (xi) = pi.

Seeking for a polynomial P (x) = q0 + q1x+ ... + qj−1x
j−1 with the condition P (xi) = pi =

xi

z+xi

we get as the result coefficients qi with q0 =
∏j

i=1
xi

z+xi
among them. Hence, we have on the one

hand

P (0) = q0 =

j
∏

i=1

xi
z + xi

and on the other hand

P (0) =

j
∑

i=1

piL
j
i (0) =

j
∑

i=1

xi
z + xi

j
∏

k=1,k 6=i

(−xk)
xi − xk

=

j
∑

i=1

xi
z + xi

j
∏

k=1,k 6=i

xk
xk − xi

.

It follows

j
∏

i=1

xi
z + xi

=

j
∑

i=1

xi
z + xi

j
∏

k=1,k 6=i

xk
xk − xi

.

Note, in our explanation we used ψj
i = (−1)j−1Lj

i (0).
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