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Large deviations of reaction fluxes

Robert I. A. Patterson, D. R. Michiel Renger

Abstract

We study a system of interacting particles that randomly react to form new particles. The reaction flux is the rescaled

number of reactions that take place in a time interval. We prove a dynamic large-deviation principle for the reaction

fluxes under general assumptions that include mass-action kinetics. This result immediately implies the dynamic large

deviations for the empirical concentration.

1 Introduction

Since Boltzmann’s microscopic interpretation of entropy it is clear that thermodynamics is inherently related to large

deviations. Onsager, in his papers [Ons31a, Ons31b] was able to extend this principle to the non-static regime - at least

for reversible systems and close to equilibrium. More recently, it was shown that reversible stochastic particle systems

induce a thermodynamically consistent gradient flow through their dynamical large deviations, see [ADPZ11, MPR14],

and in particular [MPPR15] for an application to chemical reactions. This characterises dynamic behavior even far from

equilibrium. However, a thermodynamically consistent representation of non-reversible particle systems remains one

of the main open problems of non-equilibrium thermodynamics.

The difficulty in understanding irreversible particle systems lies in the occurrence of non-trivial fluxes, which is why

flux large deviations are a commonly studied object, see [DDR04, BL10, BL12, Der07, BDSG+05, BDSG+06, BMN09]

for examples covering Brownian motionss, random walkers and exclusion processes. In this work we apply the flux

approach to reacting particles on a discrete state space.

Reacting particle system. We study a general network of reactions,

∑

y∈Y

α(r)
y y

k̄(r)−−→
∑

y∈Y

β(r)
y y, r ∈ R, (1.1)

where Y is finite set of species, and R is a finite set of reactions, and k̄(r) are the corresponding reaction rates.

A typical choice of reaction rates is k̄(r)(c) = const ×∏y∈Y c
αy
y ; this is called mass-action kinetics, but we will

consider a much more general class of rates.

For example, one could have the reactions

2H2 + O2
k̄(fw)

−−−→ 2H2O, and 2H2O
k̄(bw)

−−−→ 2H2 + O2.

In this case the set of species is Y = {H2,O2,H2O}, the set of reactions is R = {fw, bw}, and k̄(fw), k̄(bw) are

the reaction rates that depend on the concentration of the species in Y . Furthermore, the species needed for the

reactions can be grouped in the vectors α(fw), α(bw) = (2, 1, 0), (0, 0, 2), and similarly for the species resulting from

the reactions β(fw), β(bw) = (0, 0, 2), (2, 1, 0). These vectors are called complexes or stoichiometric coefficients, the

latter being Greek for “element counting”.

The reaction networks described above are commonly modelled by the following microscopic particle system, see

the survey [AK11] and the references therein. If at some given time t there are N(t) particles with types Yi(t),
i = 1, . . . N(t) in the system with fixed volume V , then the empirical measure (or concentration) is defined as

C(V )(t) := V −1
∑N(t)

i=1 1Yi(t). With jump rate k(r,V )(C(V )(t)), also called propensity, a reaction r occurs, causing

the concentration to jump to the new state C(V )(t) + 1
V γ

(r), where γ(r) = β(r) − α(r) ∈ R
Y is the effective
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R. I. A. Patterson, D. R. M. Renger 2

stoichiometric vector (sometimes called state change vector ) for reaction r and these are collected in a matrix Γ :=
[γ(1) . . . , γ(R)], which therefore maps rescaled reaction counts to changes in concentration. Since the propensities

k(r,V ) depend on the particles through the empirical concentration only, C(V )(t) is a Markov jump process in R
Y . The

volume V controls the order of the (changing) number of particles in the system.

A classic result [Kur70, Kur72] says that the empirical measure C(V )(t) converges as V → ∞ to the solution of

the reaction rate equation ċ(t) =
∑

r∈R k̄
(r)
(
c(t)
)
, where V −1k(V,r) → k̄(r) (in a way that we specify later).

Reaction Fluxes. More information is included in the integrated empirical reaction flux,

W (V,r)(t) = 1
V #
{

reactions r that occurred in time (0, t]
}
.

The pair
(
C(V )(t),W (V )(t)

)
is then a Markov process in R

Y
+ × R

R
+ with generator

(Q(V )f)(c, w) =
∑

r∈R

k(r,V )(c)
(
f(c+ 1

V γ
(r), w + 1

V 1r)− f(c, w)
)
. (1.2)

As in the Kurtz limit, this pair converges to the solution of the system of ODEs

{
ċ(t) = Γẇ(t) =

∑
r∈R ẇ

(r)(t)γ(r),

ẇ(t) = k̄
(
c(t)
)
.

The first equation is a continuity equation, which also holds almost surely for the microscopic pair (C(V ),W (V )), for

finite V .

Large deviations. The dynamic large-deviation principle for the concentrations C(V ) have been proven in [Fen94,

Léo95, DK95, SW95, SW05, DEW91, LL15, DRW16] under various assumptions. Large deviations for the pair

(C(V ),W (V )) of concentrations and fluxes is, as far as we are aware, a relatively untred area. Formal large-deviation

calculations for the reaction fluxes are found in [BMN09], a rigorous proof for the independent case was given in

[Ren17], and a semigroup-based rigorous proof for a more general class of reaction fluxes can be found in [Kra17],

still excluding mass-action kinetics. In our main result, we prove a dynamical large-deviation principle for the process

(C(V ),W (V )), under initial distribution (µ(V ), δ0), where we shall assume that µ(V ) satisfies a large-deviation principle

with some rate functional I0. The precise statement reads:

Theorem 1.1. Let µ(V ) satisfy a large-deviation principle with rate function I0, and let Assumptions 2.3 on µ(V )

and Assumption 2.2 on k, k̄ hold. Then the process (C(V )(t),W (V )(t))Tt=0 satisfies a large-deviation principle in

BV(0, T ;RY × R
R
+), equipped with the hybrid topology, with good rate functional I0

(
c(0)

)
+ J (c, w), where

J (c, w) :=

{∫ T
0 S
(
ẇ(t) | k̄(c(t)

)
dt, (c, w) ∈W 1,1

(
0, T ;RY × R

R
+

)
, and ċ = Γẇ,

∞, otherwise,
(1.3)

with relative entropy

S(j | ĵ) :=
{∑

r∈R s(j
(r) | ĵ(r)), if j ≪ ĵ,

+∞ otherwise, and

s(j(r) | ĵ(r)) :=
{
j(r) log

( j(r)
ĵ(r)

)
− j(r) + ĵ(r), j(r) > 0,

ĵ, j(r) = 0,

where j ≪ ĵ means that for all r ∈ R one has ĵ(r) = 0 =⇒ j(r) = 0.

The precise set of assumptions will be stated in Section 2.2. We choose to work in the hybrid topology on the space

of paths of bounded variation rather than the commonly used Skorohod topology since it is in some sense natural for

jump processes, and the compactness criteria are very simple; we will introduce and comment on this space, topology

and σ-algebra in more detail in Section 2.1.

As an immediate consequence of Theorem 1.1, we obtain the large deviations for the concentrations:
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Corollary 1.2. Let µ(V ) satisfy a large-deviation principle with rate function I0, and let Assumptions 2.3 on µ(V ) and

Assumption 2.2 on k, k̄ hold. Then the process C(V ) satisfies a large-deviation principle in BV(0, T ;RY), equipped

with the hybrid topology, with good rate functional I0
(
c(0)

)
+ I(c), where

I(c) := inf
w∈W 1,1(0,T ;RR

+ ):
ċ=Γẇ

J (c, w).

Naturally, this result is consistent with the above mentioned articles, but now under a more general set of assump-

tions on the reaction rates. In particular, our assumptions allow for mass-action kinetics, as in [DRW16].

Initial conditions. Throughout the paper we consider two different initial conditions. The main statement, The-

orem 1.1 holds if the initial condition is random and satisfies a large-deviation principle. We will assume continu-

ity of this initial large-deviation rate functional, which is essential to approximate the rate functional by sufficiently

regular paths. For some results we shall consider a deterministic initial condition C(V )(0) = c̃(V )(0) such that

c(V )(0) → c̃(0) ∈ R
Y for some limit initial condition. Those results can then be extended to random initial conditions

via a mixture argument [Big04]. For the integrated fluxes we set W (V,r)(0) = 0 almost surely; we shall therefore

always implicitly assume that any large-deviation rate blows up unless w(0) = 0.

Strategy and overview. Section 2 describes the setting of the paper: the topology used for the dynamic large

deviations, the precise assumptions on the propensities, reaction rates and initial condition. We then discuss existence

and convergence of the path measures, which serves as a prerequisite for the large-deviations. Section 3 is dedicated

to the analysis of the rate functional. Most importantly, it is shown that the rate functional has an alternative formulation

as a convex dual, and that the rate functional can be approximated by curves that are sufficiently regular to be able to

perform a change-of-measure. In a sense, these approximation lemmas are the core of the large-deviation proof. We

shall see that the fact that the rate functional has a relatively simple formulation makes these proofs rather direct (which

would be much more cumbersome when proving the large deviations of the concentrations only). Finally, Section 4

is devoted to the proof of the large-deviation principle, Theorem 1.1. It will be shown that one can always construct

sufficiently steep compact cones on which the path measures place all but exponentially vanishing probability. We then

show the lower bound of the measures with the random initial conditions via a double tilting argument, exploiting the

approximation lemmas. After this, the upper bound is proven under deterministic initial conditions, which implies the

large-deviations upper bound by a mixture argument.

2 Setting

In this section we specify the setting that we will be used in the paper. More specifically, we first introduce the hybrid

topology used in the large deviations, and the precise assumptions on the propensities, reaction rates and initial

condition that we will need. Finally, we construct the Markov process and its corresponding limit.

2.1 The hybrid topology

For any path (c, w) ∈ L1(0, T ;RY × R
R), the essential pointwise variation is

epvar(c, w) := inf
(c̃,w̃)=(c,w)

t−a.e.

sup
0=t1<...<tK=T

K∑

k=1

∣∣(c̃(tk+1), w̃(tk+1)
)
−
(
c̃(tk), w̃(tk)

)∣∣,

and the space of paths of bounded variation is defined as:

BV(0, T ;RY × R
R) :=

{
(c, w) ∈ L1(0, T ;RY × R

R) : epvar(c, w) <∞
}
.

Some key properties of paths of bounded variation include, see [AFP00]:
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(i.) Left and right limits are well-defined, and one can (and we will) always take a càdlàg version. Wherever we write

(c(0), w(0)), we implicitly mean the right limit (c(0+), w(0+)).

(ii.) Any path (c(t), w(t)) of bounded variation has a measure-valued derivative
(
ċ(dt), ẇ(dt)

)
, and further

‖(ċ, ẇ)‖TV = epvar(c, w).

(iii.) BV(0, T ;RY × R
R) equipped with the norm ‖·‖L1 + epvar(·) is a Banach space, and it is isometrically

isomorphic to the dual of a Banach space.

Because of the last point, the space can also be equipped with a weak-* topology, which amounts to vague con-

vergence of both the paths (c(n), w(n)) and its derivatives (ċ, ẇ), defined by pairing with test functions (φ, ψ) ∈
C0(0, T ;R

Y × R
Y). Naturally, weak-* compactness is simply characterised by norm-boundedness. Unfortunately,

the weak-* topology is not metric, and hence difficult to use for stochastic analysis. Nevertheless, norm-boundedness

is known to yield compactness in a slightly stronger topology [AFP00, Prop. 3.13], which we call the hybrid topology1,

defined through the convergence:

(c(n), w(n))
hybrid−−−→ (c, w) ⇐⇒ ‖(c(n), w(n))− (c, w)‖L1 → 0 and

〈
(φ, ψ), (ċ(n), ẇ(n))

〉
→
〈
(φ, ψ), (ċ, ẇ)

〉
∀(φ, ψ) ∈ C0(0, T ;R

Y × R
R).

It turns out that the hybrid topology, although not metric, is ‘perfectly normal’, which implies that the corresponding

Borel σ-algebra behaves nicely, and all probabilistic tools that we will need are valid, see [HPR16, Sec. 4].

2.2 The assumptions

We now state the set of assumptions under which we will prove our main result. A central role is played by the sets of

concentrations that are reachable via chemical reactions:

Definition 2.1 (Stoichiometric simplex). Let c0 ∈ R
Y
+

S (c) := {c̃ = c+ Γw : w ∈ R
R
+ , c̃ ≥ 0} (2.1)

Sǫ(c) =
⋃

c̃ : |c−c̃|≤ǫ

S (c̃) (2.2)

For vectors in R
Y or RR we write ≥ for the partial ordering obtained by coordinate-wise inequalities. The set of

assumptions on the propensities and reaction rates are the following:

Assumption 2.2 (Conditions on reaction rates).

(i) k(r,V )(c) = 0 whenever cy < −V −1γ(r)
y for at least one y ∈ Y ,

(ii) supc∈Sǫ(c(0))

∑
r∈R

∣∣ 1
V k

(V,r)(c)− k̄(r)(c)
∣∣→ 0 for all ǫ > 0 and c(0) ∈ R

Y
+,

(iii) k̄ ∈ C1(RY
+;R

R
+),

(iv) supc̃∈Sǫ(c)|k̄(c̃)| ∨ |∇ck̄(c)| <∞ for all c ∈ R
Y
+ and ǫ > 0,

(v) k̄(ĉ) ≥ k̄(c) for all ĉ ≥ c in R
Y
+,

(vi) there exists a strictly increasing bijection ψ : [0, 1] → [0, 1] such that

k̄(r)(δc) ≥ ψ(δ)k̄(r)(c) for all c ∈ R
Y
+, δ > 0 and r ∈ R.

1The hybrid topology is usually called the weak-* topology. We name it differently to distinguish it from the functional analytically defined weak-*

topology. The two topologies coincide on compact sets; in infinite dimensions the distinction becomes more subtle, see [HPR16].
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The first assumption is needed to make sure that the stochastic model does not allow for negative concentrations.

No assumptions related to boundedness or compactness of the stoichiometric simplices S (c(0)) are required; the

only assumption that is needed is (iv): that the reaction rates remain bounded on these simplices. Furthermore, the

superhomogeneity assumption (vi) holds for most practical purposes, in particular for models with mass-action kinetics.

We expect that the C1-regularity can be relaxed to a locally Lipschitz condition, and that the monotonicity is only

required in regions where the rates are small. Taken together (i) and (ii) imply that c ≥ 0 is necessary in order to have

k̄(r)(c) > 0.

The generality of the class of allowed reaction rates comes at the price of some regularity assumptions on the initial

condition:

Assumption 2.3 (Sufficiently regular initial LDP). The initial measure µ(V ) satisfies a large-deviation principle in R
Y
+

with rate function I0 such that

(i) I0 is convex,

(ii) I0 is continuous,

(iii) µ(V ) converges in distribution to δc̃(0) for some c̃(0) ∈ R
Y
+,

(iv) µ(V ) is exponentially tight (and hence I0 is good),

(v) I0 satisfies the conditions of Varadhan’s Integral Lemma[DZ87, Th. 4.3.1] for linear functions, i.e. for all z ∈ R
Y ,

(a).1 limM→∞ lim supV→∞
1
V log

∫
z·c(0)≥MeV z·c(0) µ(V )

(
c(0)

)
= −∞, or

(b).2 lim supV→∞
1
V log

∫
eV az·c(0) µ(V )

(
c(0)

)
<∞ for some a > 1.

(vi) ∂I0
(
c(0)

)
6= ∅ for all c(0) ∈ R

Y
+.

Although this list of assumptions is a bit technical, we point out that most assumptions mean that C(V )(0) satisfy

a ‘sufficiently nice’ large-deviation principle. For thermodynamic properties, one is mostly interested in the large de-

viations where the process starts from the invariant measure [Ren17, Sec. 4], which often satisfies a large-deviation

principle with all the needed assumptions. The continuity of I0 will be exploited (and are essential) in the approxi-

mation lemmas 3.6,3.7,3.8 and 3.9, and the last assumption is a technical requirement that is needed to prove the

large-deviation lower bound for the mixture.

2.3 Construction and convergence of the process

We denote by P
(V ) the path measure of the process

(
C(V )(t),W (V )(t)

)
with jump dynamics as captured in the

generator (1.2) and initial distribution µ(V ) × δ0. This is well-defined, as Assumptions 2.2(ii) and (iv) imply that the

jump rates are uniformly bounded on each stoichiometric simplex S (c), and hence (1.2) indeed generates a Markov

process on BV(0, T ;RY ×R
R) (see [HPR16, Sect. 4] for a discussion of the Borel σ-algebra of the hybrid topology,

and related properties).

For technical reasons we shall also consider the dynamics obtained by perturbing the jump rates using exponentials

of ζ ∈ Cc(0, T ;R
R), leading to the time dependent generator

(Q(V )

ζ,t Φ)(c, w) :=
∑

r∈R

k(V,r)(c)eζ(t)·γ
(r)[

Φ(c+ 1
V γ

(r), w + 1
V 1r)− Φ(c, w)

]
. (2.3)

Since the jump rates remain uniformly bounded under the perturbation, this generator also defines a path measure

P
(V )

ζ with initial condition µ(V ) × δ0.

In the interests of brevity we merely state the laws of large numbers for these measures, using the fact that the

equations {
ċ(t) = Γẇ(t),

ẇ(t) = k̄(r)
(
c(t)
)
eζ(t)·γ

(r)
,

(2.4)

are well posed in W 1,1(0, T ;RY × R
R) for non-negative initial data; this may be checked by a Picard–Lindelöf

argument. The basic ideas of the convergence proof go back to Kurtz [Kur70, Kur72].
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Proposition 2.4. Let ζ ∈ Cc(0, T ;R
R), Assumption 2.2 hold and suppose µ̃(V ) converges narrowly to δ(c̃(0),0). Then

the laws P̃
(V )

ζ of the Markov processes with initial conditions µ̃(V ) and dynamics given by (2.3) converge narrowly to

the delta measure concentrated on the (c, w) ∈W 1,1(0, T ;RY ×R
R) that is the unique solution to (2.4) with initial

data (c̃(0), 0).

Note that this result includes the cases of random initial conditions µ̃(V ) = µ(V ) as in Assumption 2.3, as well as

the case of deterministic initial conditions µ̃(V ) = δ(c̃(V )(0),0) where c̃(V )(0) → c̃(0). Note also that narrow conver-

gence of probability measures on a metric space (convergence in distribution of the associated random variables) to

a deterministic limit implies convergence in probability; this can readily be generalised to the hybrid topology on the

space of bounded variation paths.

3 Analysis of the rate functional

A detailed knowledge of the properties of the rate function allows for a more concise presentation of the LDP, so these

properties are developed here before we embark on the stochastic aspects of the proof. It will be practical to prove a

dual, variational formulation of the rate functional:

J̃ (c, w) =





sup
ζ∈C1

c (0,T ;RR)

G(c, w, ζ), if ċ = Γẇ,

∞, otherwise,
(3.1)

where

G(c, w, ζ) :=

∫ T

0

[
ζ(t) · ẇ(dt)−H

(
c(t), ζ(t)

)]
dt, (3.2)

H(c, ζ) :=
∑

r∈R

k̄(r)(c)
(
eζ

(r) − 1
)
. (3.3)

Remark 3.1. J̃ : BV(0, T ;RY × R
R
+) → [0,∞] is lower semincontinuous with respect to the hybrid topology on

BV(0, T ;RY × R
R
+) since for any ζ ∈ C0(0, T ;R

R) the function (c, w) 7→ G(c, w, ζ) is hybrid continuous.

Remark 3.2. One can also rewrite the rate functional as a convex dual without restricting to pairs that satisfy the

continuity equation:

J̃ (c, w) = sup
ξ∈C1

c (0,T ;RY )
ζ∈C1

c (0,T ;RR)

∫ T

0
ζ(t) · ẇ(dt) +

∫ T

0
ξ(t) · ċ(dt)−

∫ T

0
H(c(t), ζ(t)) dt.

A straight-forward calculation then shows that the rate functional reduces to (1.3) if the continuity equation is satisfied,

and ∞ otherwise. The variation over the dual variable to ċ corresponds in some sense to zero-probability fluctuations in

the continuity equation. Therefore it is more natural to omit that supremum, which also shortens notation considerably.

3.1 Characterisation of the domain

This section is devoted to the proof that both formulations of the rate functional coincide. For the relative entropy

formulation J of the rate functional, it is built into the definition (1.3) that (c, w) ∈ W 1,1(0, T ;RY × R
R
+) for finite

J (c, w). The following Lemma says that the concentrations remain non-negative.

Lemma 3.3. Let (c, w) ∈ BV(0, T ;RY × R
R
+) and c(0) ≥ 0. If J (c, w) <∞ then c ≥ 0.

DOI 10.20347/WIAS.PREPRINT.2491 Berlin 2018
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Proof. Assume on the contrary that one may find t1, y1 such that cy1(t1) < 0. By definition J (c, w) <∞ implies cy1
(has a representative that) is absolutely continuous so one may take 0 ≤ t2 < t1 such that 0 ≥ cy1(t2) > cy1(t1).

This implies the existence of r1 ∈ R such that γ(r)
y < 0 and

∫ t1
t2
ẇ(r1)(s)ds > 0 so (1.3) requires k̄(r1)(c(s)) > 0

almost everywhere in [t2, t1]. However from Assumption 2.2 parts (i) and (ii) one sees that k̄(r1)(c(s)) = 0 for all

s ∈ [t2, t1].

In order to compare J to the variational formulation J̃ we need to prove the same regularity result for J̃ :

Lemma 3.4. Let (c, w) ∈ BV(0, T ;RY
+×R

R
+). If J̃ (c, w) <∞ then (c, w) ∈W 1,1(0, T ;RY ×R

R
+) and c ≥ 0.

Proof. Let (c, w) ∈ BV(0, T ;RY
+ × R

R
+) and J̃ (c, w) <∞; the proof is carried out in three stages:

1 ẇ is a non-negative measure,

2 ẇ(dt) = ẇ(t) dt for some density ẇ ∈ L1(0, T ;RR
+),

3 ċ(t) = Γẇ(t),

4 c ≥ 0.

For the first point note that the existence of ẇ as a (signed) vector measure of finite total variation follows from [HPR16,

Thrm. 2.13]. Suppose now that there is some r ∈ R and a measurable set A ⊂ (0, T ) such that ẇ(r)(A) < 0.

Using the Hahn decomposition and the regularity of Borel measures on the metric space (0, T ) ([Bog07, Thrm. 7.1.7]

or [Kal02, Lem. 1.34]) one has the existence of a closed B ⊂ A with ẇ(r)(B) < 0. Define ζn ∈ C1
c (0, T ;R

R
−) by

ζ(r′)
n (t) =

{
0 r′ 6= r

−nϕ(t) r′ = r

for some ϕ ∈ C1
c (0, T ; [0, 1]) such that 1B ≤ ϕ ≤ 1A. On can now check that limnG(c, w, ζn) = +∞, which

contradicts J̃ <∞ so there cannot be any r for which ẇ(r) takes negative values.

For the absolute continuity suppose that there is an r ∈ R and a measurable setA ⊂ (0, T ) such that ẇ(r)(A) =
δ > 0, but |A| = 0, where we write |·| for Lebesgue measure. By the regularity result already mentioned in this proof

we have the existence of closed sets Fn and open sets Gn such that Fn ⊂ A ⊂ Gn with ẇ(r)(Gn \ Fn) <
1
n and

|Gn| ≤ 1
n . Define ζn ∈ C1

c (0, T ;R
R
+) by

ζ(r′)
n (t) =

{
0 r′ 6= r

− log |Gn|ϕn(t) r′ = r

for some ϕ ∈ C1
c (0, T ; [0, 1]) such that 1Fn ≤ ϕ ≤ 1Gn to get a contradiction as in the proof that ẇ ≥ 0.

The Radon-Nikodym theorem thus allows us with a little abuse of notation to write ẇ(r)(dt) = ẇ(r)(t)dt for ẇ(r) ∈
L1(0, T ;R).

The proof that c(t) ≥ 0 is the same as in Lemma 3.3, where now we have on the non-null set B ⊂ (0, T ),

J (c, w) ≥ sup
ζ(r)∈C1

c (B)

∫

B
ζ(r)(t) · ẇ(r)(t)− 0 = ∞.

Proposition 3.5. J = J̃ .

Proof. Let (c, w) ∈ BV(0, T ;RY
+×R

R
+) (possibly with J (c, w) = ∞). If (c, w) /∈W 1,1(0, T ;RY

+×R
R
+) then by

Lemma 3.4 both J̃ (c, w) = ∞ = J (c, w). Now assume that (c, w) ∈ W 1,1(0, T ;RY
+ × R

R
+). We can then write

G(c, w, ζ) =
∑

r∈R

∫ T
0 g

(r)
(
c(t), ẇ(r)(t), ζ(r)(t)

)
dt where

g(r)(c, j(r), ζ(r)) := ζ(r)j(r) − k̄(r)(c)
(
eζ

(r) − 1
)
.
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We now show that

J (c, w) = sup
ζ:(0,T )→RR

G(c, w, ζ) = sup
ζ∈L∞(0,T ;RR)

G(c, w, ζ)

= sup
ζ∈C1

b (0,T ;RR)

G(c, w, ζ) = sup
ζ∈C1

c (0,T ;RR)

G(c, w, ζ) = J̃ (c, w). (3.4)

The first equality in (3.4) can be calculated directly through the pointwise supremum. For the second equality, we

construct, for each t ∈ (0, T ) and r ∈ R, an explicit (pointwise) maximising sequence ζ(r)
n (t) for

supζ(r) g
(r)
(
c(t), ẇ(r)(t), ζ(r)(t)

)
as, see Figure 1,

ζ(r)
n (t) :=





log w(r)(t)

k̄(r)(c(t))
∧ n, k̄(r)(c(t)) > 0 and ẇ(r)(t) > 0,

−n, k̄(r)(c(t)) > 0 and ẇ(r)(t) = 0,

n, k̄(r)(c(t)) = 0 and ẇ(r)(t) > 0,

0, k̄(r)(c(t)) = 0 and ẇ(r)(t) = 0.

(a) k̄(r)(c) > 0, j(r) > 0 (b) k̄(r)(c) > 0, j(r) = 0 (c) k̄(r)(c) = 0, j(r) > 0 (d) k̄(r)(c) = 0, j(r) = 0

Figure 1: The function ζ (r) 7→ g(r)(c, j(r), ζ (r)).

Then each ζn ∈ L∞(0, T ;RR) and g(r)
(
c(t), ẇ(r)(t), ζ̂(r)(t)

)
is non-decreasing in n and non-negative. Moreover,

g(r)
(
c(t), ẇ(r)(t), ζ̂(r)(t)

)
converges pointwise in t ∈ (0, T ) and r ∈ R as n → ∞ to the pointwise supremum.

Hence by monotone convergence

lim
n→∞

∑

r∈R

∫ T

0
g(r)
(
c(t), ẇ(r)(t), ζ̂(r)

n (t)
)
=
∑

r∈R

∫ T

0
sup
ζ(r)

g(r)
(
c(t), ẇ(r)(t), ζ(r)(t)

)
dt.

This shows that the pointwise supremum on the left of (3.4) can be taken over L∞(0, T ;RR).
For the third equality in (3.4) it suffices to show that for any ζ ∈ L∞(0, T ;RR) the integrand can be approximated

by a sequence in C2
b (0, T ;R

R). For an arbitrary ζ ∈ L∞(0, T ;RR) consider the convolutions with smoothing ker-

nels θδ for δ > 0 that weakly converges to the Dirac measure at 0 as δ → 0. In the convolutions we extended

the function ζ to zero outside the integral (0, T ). Since ζ ∈ L1(R;RR) this sequence ζ ∗ θδ converges strongly

in L1(R;RR) to ζ as δ → 0, see [Eva02, App. C.4]. By a partial converse of the Dominated Convergence Theo-

rem [Bré83, Th. IV.9], after passing to a subsequence ζn(t)
(r) := (ζ ∗ θ(r)δn

)(t) converges pointwise t-almost ev-

erywhere. Then the exponential −k̄
(
c(t)
)(
eζ

(r)
n (t) − 1

)
integrand part of G(c, w, ζn) also converges pointwise for

almost every t. Moreover, we can bound

‖k̄‖∞ ≥ −k̄
(
c(t)
)(
eζ

(r)
n (t) − 1

)
≥ −‖k̄‖∞e

‖ζn‖L∞(0,T ;RR) ≥ −‖k̄‖∞e
‖ζ‖

L∞(0,T ;RR) ,

and hence by dominated convergence

−
∑

r∈R

∫ T

0
k̄
(
c(t)
)(
eζ

(r)
n (t) − 1

)
dt→ −

∑

r∈R

∫ T

0
k̄
(
c(t)
)(
eζ

(r)(t) − 1
)
dt.

Clearly the linear part
∑

r∈R

∫ T
0 ζ

(r)
n (t)ẇ(r)(t) dt of G(c, w, ζn) converges to

∑
r∈R

∫ T
0 ζ

(r)(t)ẇ(r)(t) dt, and so

G(c, w, ζn) → G(c, w, ζ). This proves the third equality in (3.4).
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For the fourth equality, take any ζ ∈ C1
b (0, T ;R

R), and approximate with ζηδ ∈ C1
c (0, T ;R

R) where

ηδ(t) :=





0, t ∈ (0, δ] ∪ [T − δ, T ),

1, t ∈ [2δ, T − 2δ],

smooth between 0 and 1, t ∈ [δ, 2δ] ∪ [T − 2δ, T − δ].

(3.5)

Then, as δ → 0,

G(c, w, ζηδ) =

∫ T

0
ẇ(t)ζ(t)ηδ(t) dt−

∑

r∈R

∫ T

0
k̄(r)
(
c(t)
)
(eζδ(t) − 1) dt→ G(c, w, ζηδ) → G(c, w, ζ),

where for the linear part we use that ζηδ → ζ weakly-* inL∞(0, T ;RR), and for the nonlinear part we use dominated

convergence.

3.2 Approximation by regular curves

A common challenge in proving a large-deviations lower bound for a Markov process is to approximate any curve of

finite rate by curves for which one can perform a change-of-measure. In the setting of our paper, this set of sufficiently

regular curves will be defined as:

A :=
{
(c, w) ∈ BV

(
0, T ;RY

+ × R
R
+

)
∩AC

(
0, T ;RY × R

R
)
:

ζ := log
ẇ

k̄(c)
∈ C1

c

(
0, T ;RR

)
, ċ = Γẇ, c, w, ẇ ≥ 0, w(0) = 0

}
. (3.6)

Observe that this set requires compactly supported perturbations, whereas the change-of-measure Theorem A.3 only

requires boundedness. However, the compact support will be needed to control the end point in the tilting arguments,

Lemmas 4.6 and 4.7.

This section is dedicated to the proof of the required approximation result using a sequence of four approximation

lemmas. We repeatedly exploit the lower semi-continuity of J to show that if limδց0(cδ, wδ) = (c, w) in the hybrid

topology, then lim infδց0 J (cδ, wδ) ≥ J (c, w).

Lemma 3.6 (Approximation I). Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2(iii),(iv),(v) and (vi). Given

(c, w) ∈ BV
(
0, T ;RY

+×R
R
+

)
such that J (c, w) <∞, there exists a sequence (cδ, wδ)δ ⊂ BV

(
0, T ;RY

+×R
R
+

)

such that:

(i) cδ(0) → c(0) and (cδ, wδ) ⇀
→ (c, w) as δ → 0,

(ii) I0(cδ(0)) + J (cδ, wδ) → I0(c(0)) + J (c, w) as δ → 0,

(iii) inft∈(0,T ),r∈R k̄
(r)(cδ(t)) > 0 for any δ > 0,

Proof. Without loss of generality we may assume that for each reaction r there exists a concentration ĉ(r) ∈ R
+
y for

which k̄(r)(ĉ(r)) > 0. Set ĉ =
∑

r∈R ĉ
(r), so that by the assumed monotonicity,

min
r∈R

k̄(r)(ĉ) > 0.

For δ > 0 define

cδ(t) := δĉ+ (1− δ)c(0) + Γwδ(t), and wδ(t) := (1− δ)w,

so that cδ(t) = δĉ+ (1− δ)c(t) ≥ 0.

The limits (i) are trivial. The lower bound (iii) follows by the monotonicity and superhomogeneity Assumptions 2.2(v)

and (vi):

inf
t∈(0,T ),r∈R

k̄(r)
(
cδ(t)

)
≥ min

r∈R
k̄(r)(δĉ) ≥ ψ(δ)min

r∈R
k̄(r)(ĉ) > 0. (3.7)
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For the limits (ii), the convergence of I0(cδ(0)) follows by Assumption 2.3. Since lim infδց0 J (cδ, wδ) ≥
J (c, w) it remains to check lim supδց0 J (cδ, wδ) ≤ J (c, w). Using the fact that k̄(r)(cδ(t)) ≥ ψ(1−δ)k̄(r)(c(t))
by the same argument as (3.7) above, we can rewrite and estimate:

s
(
ẇ(r)

δ (t) | k̄(r) (cδ(t))
)
= s
(
ẇ(r)

δ (t) | k̄(r) (c(t))
)
+ ẇ(r)

δ (t) log

(
k̄(r) (c(t))

k̄(r) (cδ(t))

)
− k̄(r) (c(t)) + k̄(r) (cδ(t))

(3.8)

≤ (1− δ)s
(
ẇ(r)(t) | k̄(r) (c(t))

)
+ δk̄(r) (c(t))

+ (1− δ)ẇ(r)(t) log
1− δ

ψ(1− δ)
+
∣∣k̄(r) (c(t))− k̄(r) (cδ(t))

∣∣ . (3.9)

Summing over r and integrating over t shows that, for δ sufficiently small,

J (cδ, wδ) ≤ (1− δ)J (c, w) + δT sup
c̃∈S2δ(c(0))

|k̄(c̃)|+ (1− δ) log
1− δ

ψ(1− δ)
‖ẇ‖L1 +

√
|R|Lip(k̄) ‖cδ − c‖L1 .

Using Assumption 2.2(iv) it follows that all but the first term on the right-hand side vanish as δ ց 0 and the result is

established.

For smoothing purposes we make use of convolutions with heat kernels θǫ : R → R+; t 7→ exp(−t2/2ǫ)/
√
2πǫ.

Lemma 3.7 (Approximation II). Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2(iii) and (iv). Given

(c, w) ∈ BV
(
0, T ;RY

+×R
R
+

)
such that J (c, w) <∞ and inft∈(0,T ),r∈R k̄

(r)(c(t)) > 0, there exists a sequence

(cδ, wδ)δ ⊂ C∞
b (0, T ;RY

+ × R
R
+) such that:

(i) cδ(0) → c(0) and (cδ, wδ) ⇀
→ (c, w) as δ → 0,

(ii) I0(cδ(0)) + J (cδ, wδ) → I0(c(0)) + J (c, w) as δ → 0,

(iii) inft∈(0,T ),r∈R k̄
(r)(cδ(t)) > 0 for any sufficiently small δ > 0.

Proof. Define

cδ(t) := c(0) + (w ∗ θδ)(0) + Γwδ(t) and wδ(t) := (w ∗ θδ)(t)− (w ∗ θδ)(0),

where in the convolutions we extend w constantly to w(0) and w(T ) outside the interval (0, T ). Observe that the

definition is sound in the sense that cδ(t) = (c∗θδ)(t) ≥ 0 andwδ, ẇδ ≥ 0. Since (c, w) ∈W 1,1(0, T ;RY ×R
R)

by Lemma 3.4, the desired convergence (i) of the sequence can be shown by adapting the results in [Eva02, App. C.4]

to mollifiers with non-compact support. Similarly to the proof of Proposition 3.5, we pass to a (relabelled) subsequence

such that in fact ẇδ(t) → ẇ(t) pointwise in almost every t ∈ (0, T ).
To show the lower bound (iii), observe that since c is continuous (on the compact interval [0, T ]) by Lemma 3.4,

cδ → c uniformly, see [Eva02, App. C.4]. Moreover, by the continuity of k̄, we know there exists a τ > 0 such that

for δ < δ̃ and any c̃ ∈ R
Y
+ with |c̃ − c| < τ there holds |k̄(c̃) − k̄(c)| < 1

2 inft∈(0,T ),r∈R k̄
(r)(c(t)). From the

uniform convergence of cδ we get the existence of a δ̃ > 0 such that for any δ < δ̃ and any t ∈ [0, T ], there holds

|c(t)− cδ(t)| < τ . Therefore, for any δ < δ̃ and so |k̄(cδ(t))− k̄(c(t))| < 1
2 inft∈(0,T ),r∈R k̄

(r)(c(t)), from which

we deduce the lower bound (iii):

k̄(cδ(t)) ≥ k̄(c(t))− 1
2 inf
t∈(0,T ),r∈R

k̄(r)(c(t̃)) ≥ 1
2 inf
t̃∈(0,T ),r∈R

k̄(r)(c(t̃)). (3.10)

The convergence I0
(
cδ(0)

)
= I0

(
c(0) + (w ∗ θδ)(0)

)
→ I0

(
c(0)

)
follows by Assumption 2.3. For the conver-

gence of J (cδ, wδ), we can bound the integrand, similarly as in (3.8),

0 ≤ s
(
ẇ(r)

δ (t) | k̄(r) (cδ(t))
)
≤ s
(
ẇ(r)

δ (t) | k̄(r) (c(t))
)
+ aẇ(r)

δ (t) +
∣∣k̄(r) (c(t))− k̄(r) (cδ(t))

∣∣ , (3.11)

where

log
(
k̄(r) (c(t))

k̄(r) (cδ(t))

) (3.10)

≤ log
(2 supt∈(0,T ) k̄(c(t))

inft∈(0,T ) k̄(c(t))

)
=: a ∈ [0,∞).
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By the assumed continuity of the reaction rates s
(
ẇ(r)

δ (t)|k(r)(cδ(t))
)
→ s

(
ẇ(r)(t)|k(r)(c(t))

)
pointwise in t ∈

(0, T ). If we can prove that, after summing over R and integrating over (0, T ), the right-hand side in (3.11) con-

verges to a finite integral, then J (cδ, wδ) → J (c, w) by a generalisation of the Dominated Convergence Theorem,

see [LL01, Th. 1.8 & following remark].

Naturally the last two terms converge:

∑

r∈R

∫ T

0

[
aẇ(r)

δ (t) +
∣∣k̄(r) (c(t))− k̄(r) (cδ(t))

∣∣ ] dt→ a‖ẇ‖L1 <∞.

The convergence of the entropic part can be proven analogue to [Ren17, Lem. 4.11]. By lower semicontinuity,

lim inf
δ→0

∑

r∈R

∫ T

0
s
(
ẇ(r)

δ (t)|k̄(r)(c(t))
)
dt ≥

∑

r∈R

∫ T

0
s
(
ẇ(r)(t)|k̄(r)(c(t))

)
dt.

On the other hand, by Jensen’s inequality,

∑

r∈R

∫ T

0
s
(
ẇ(r)

δ (t)|k̄(r)(c(t))
)
dt ≤

∑

r∈R

∫ T

0

(
s
(
ẇ(r)(·)|k̄(r)(c(t))

)
∗ θǫ
)
(t) dt

=
∑

r∈R

∫ T

0
(ẇ(r) log ẇ(r)

︸ ︷︷ ︸
∈L1

) ∗ θǫ(t)− (ẇ(r) ∗ θǫ)(t)
(
1 + log k̄(r)(c(t))

)
︸ ︷︷ ︸

∈L∞

+k̄(r)
(
c(t)
)

→
∑

r∈R

∫ T

0
s
(
ẇ(r)(t)|k̄(r)(c(t))

)
dt,

again by [Eva02, App. C.4]. Therefore the summed and integrated right-hand side of (3.11) indeed converges to a finite

integral, which concludes the proof of claim (ii).

Lemma 3.8 (Approximation III). Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2(iii),(iv), (v) and (vi).

Given (c, w) ∈ C∞
b

(
0, T ;RY

+ × R
R
+

)
such that J (c, w) < ∞ and inft∈(0,T ),r∈R k̄

(r)(c(t)) > 0, there exists a

sequence (cδ, wδ)δ ⊂ C∞
b

(
0, T ;RY

+ × R
R
+

)
such that:

(i) cδ(0) → c(0) and (cδ, wδ) ⇀
→ (c, w) as δ → 0,

(ii) I0(cδ(0)) + J (cδ, wδ) → I0(c(0)) + J (c, w) as δ → 0,

(iii) inft∈(0,T ),r∈R k̄
(r)(cδ(t)) > 0 for any δ > 0,

(iv) inft∈(0,T ),r∈R ẇ
(r)

δ (t) > 0 for any δ > 0,

(v) ζδ := log
ẇδ

k̄(cδ)
∈ C1

b (0, T ;R
R).

Proof. Let β(r), α(r) ∈ R
Y
+ be the positive and negative parts of γ(r), i.e. γ(r) = β(r) − α(r). For 0 < δ < 1 define

cδ(t) := (1− δ)c(0) + δT
∑

r∈R

α(r) + Γwδ(t) and wδ(t) := (1− δ)w(t) + δt,

so that cδ(t) = (1− δ)c(t) + δ
∑

r∈R

[
(T − t)α(r) + tβ(r)

]
≥ 0 and ẇδ(t) = (1− δ)ẇ(t) + δ ≥ δ > 0. Hence

the sequence is admissable, and property (iv) holds by construction. Again, the hybrid convergence (i) is trivial, and

the monotonicity and superhomogeneity, Assumptions 2.2(v), (vi) imply the same estimate as (3.7), which shows that

the bound (iii) is indeed retained.

The convergence I0
(
cδ(0)

)
→ I0

(
c(0)

)
follows from the continuity of I0 and (i). As in the previous lem-

mas it is sufficient to show lim supδց0 J (cδ, wδ) ≤ J (c, w) in order to establish (ii). We can again derive es-

timate (3.9), where the terms ẇ(r)

δ (t) log k̄(r)(c(t))/k̄(r)(cδ(t)) and k̄(r)(c(t)) − k̄(r)(cδ(t)) can be dealt with
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in exactly the same manner as in the proof of Lemma 3.6. It thus remains to show convergence of the integral∑
r∈R

∫ T
0 s
(
ẇ(r)

δ (t)|k̄(r)(c(t))
)
dt. By the convexity of s in its first argument, we get for 0 < δ < 1,

s
(
ẇ(r)

δ (t)|k̄(r)(c(t))
)
≤ (1− δ)s

(
ẇ(r)(t)|k̄(r)(c(t))

)
+ δs

(
1|k̄(r)(c(t))

)

≤ s
(
ẇ(r)(t)|k̄(r)(c(t))

)
− δ log k̄(r)(c(t)) + δk̄(r)(c(t)).

Since the last two terms are bounded from below and above it follows that lim supδց0 J (cδ, wδ) ≤ J (c, w).
Finally we can prove (v) for any δ > 0. Since the curve (cδ, wδ) is smooth we only need to prove boundedness of

the functions

ζ(r)

δ (t) = log
ẇ

(r)

δ (t)

k̄(cδ(t))
, and ζ̇(r)

δ (t) =
ẅ(r)

δ (t)

ẇ(r)

δ (t)
− ∇ck̄(cδ(t)) · ċδ(t)

k̄(cδ(t))
.

This follows from the boundedness away from zero of ẇδ and k̄(cδ), together Assumption 2.2(iv).

Lemma 3.9 (Approximation IV). Let k̄ satisfy Assumptions (iii),(iv). Given (c, w) ∈ C∞
b

(
0, T ;RY

+ × R
R
+

)
such that

J (c, w) < ∞ and ζ = log ẇ/k̄(c) ∈ C1
b (0, T ;R

R), there exists a sequence (cδ, wδ) ∈ C1
c

(
0, T ;RY

+ × R
R
+

)

such that:

(i) cδ(0) ≡ c(0) and (cδ, wδ) ⇀
→ (c, w) as δ → 0,

(ii) I0(cδ(0)) + J (cδ, wδ) → I0(c(0)) + J (c, w) as δ → 0.

Proof. Given (c, w) with ζ = log ẇ/k̄ ∈ C1
b (0, T ;R

R), we approximate ζδ := ζηδ where ηδ is the usual compactly

supported function (3.5). Clearly (c, w) satisfies the perturbed equation below, and we define, for each δ > 0 the path

(cδ, wδ) as the solution of the second perturbed equation:

{
ċ(t) = Γẇ(t),

ẇ(t) = k̄(r)
(
c(t)
)
eζ

(r)(t),

{
ċδ(t) = Γẇδ(t),

ẇδ(t) = k̄(r)
(
cδ(t)

)
eζ

(r)
δ (t),

both under the same initial conditions (c(0), 0).
Let us now introduce the matrix norm,

‖Γ‖ := max
r∈R

∣∣γ(r)
∣∣ .

To prove convergence (i) we first estimate for any 0 ≤ t ≤ T ,

|ẇδ(t)− ẇ(t)|

≤
∑

r∈R

∣∣∣k̄(r)
(
cδ(t)

)
eζ

(r)
δ (t) − k̄(r)

(
c(t)
)
eζ

(r)
δ (t)

∣∣∣+
∑

r∈R

∣∣∣k̄(r)
(
c(t)
)
eζ

(r)
δ (t) − k̄(r)

(
c(t)
)
eζ

(r)(t)
∣∣∣

≤ Lip(k̄)‖Γ‖e‖ζ‖L∞

∫ t

0
|ẇδ(t̂)− ẇ(t̂)| dt̂+

(
sup

ĉ∈S (c(0))

∑

r∈R

k̄(r)(ĉ)

)
max
r∈R

∣∣∣eζ
(r)
δ (t) − eζ

(r)(t)
∣∣∣ .

From (3.5) one sees that ζδ(t) = ζ(t) except on two intervals each with length no more than 2δ. Gronwall’s inequality

yields

|ẇδ(t)− ẇ(t)| ≤
(

sup
ĉ∈S (c(0))

∑

r∈R

k̄(r)(ĉ)

)∫ t

0
|eζδ(t̂) − eζ(t̂)| dt̂

︸ ︷︷ ︸
≤4δ exp(‖ζ‖L∞)

eLip(k̄)‖Γ‖e
‖ζ‖L∞ t

(3.12)

and so wδ → w in W 1,∞(0, T ;RR
+), and by boundedness of the operator Γ also cδ → c in W 1,∞(0, T ;RY

+).
For the convergence (i) we only need to prove convergence of the dynamic rate J : the initial conditions are

identical. Indeed, by dominated convergence together with (3.12) and ζδ ≤ ζ ,

J (cδ, wδ) = G(cδ, wδ, ζδ) → G(c, w, ζ) = J (cδ, wδ).
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Corollary 3.10. Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2(iii), (iv), (v) and (vi). Given (c, w) ∈
BV
(
0, T ;RY

+ × R
R
+

)
such that J (c, w) <∞, there exists a sequence (cδ, wδ)δ ⊂ A such that:

(i) cδ(0) → c(0) and (cδ, wδ) ⇀
→ (c, w) as δ → 0,

(ii) I0(cδ(0)) + J (cδ, wδ) → I0(c(0)) + J (c, w) as δ → 0.

4 Large deviations

We approach the proof of the main result, Theorem 1.1 with a fairly classical tilting approach with a twist. In Section 4.1

we prove exponential tightness, in Section 4.2 we prove the large deviations lower bound under initial distribution µ(V ),

exploiting the approximation arguments from Section 3.2. In Section 4.3 we first prove the weak upper bound (i.e. on

compact sets) for the conditional path measures, and then for the path measures under initial distribution µ(V ) again.

The exponential tightness then guarantees that the lower bound also holds on closed sets, and that the rate functional

is lower semicontinuous [DZ87, Lem. 1.2.18].

4.1 Exponential tightness

By a standard Chernoff argument, the balls

B
TV
m :=

{
(c, w) ∈ BV(0, T ;RY

+ × R
R
+) : ‖(c, w)‖L1 + ‖(ċ, ẇ)‖TV ≤ m

}
(4.1)

can be used for the exponential tightness. However, in order to control the initial condition in the large-deviations upper

bound we work with the cones (for some initial condition c̃(0)):

Cm,ǫ :=
{
(c, w) ∈ B

TV
m :

∣∣(c(t), w(t)
)
−
(
c̃(0), 0)

)∣∣ ≤ ǫ+ tm t–a.e.

}
,

Lemma 4.1. For any m, ǫ > 0 the cone Cm,ǫ is hybrid-compact.

Proof. The cone Cm,ǫ is contained in the total-variation ball BTV
m and is clearly L1-bounded, so it is relatively com-

pact as discussed in Section 2.1. We thus need to show that Cm,ǫ is hybrid closed. To that aim, take a hybrid-

convergent net (c(ω), w(ω))ω ⊂ Cm,ǫ with limit (c, w). By the weak-* lower semicontinuity of the TV-norm it follows

that ‖(ċ, ẇ)‖TV ≤ m. Moreover, the pointwise bound implies that,

∫

A

(∣∣(c(ω)(t), w(ω)(t))− (c̃(0), 0)
∣∣− ǫ−mt

)
dt ≤ 0 ∀ measurable A ⊂ (0, T ),

hence, after taking the limit in ω,

∫

A

(∣∣(c(t), w(t))− (c̃(0), 0)
∣∣− ǫ−mt

)
dt ≤ 0 ∀ measurable A ⊂ (0, T ),

which is equivalent to the pointwise bound |(c(t), w(t))− (c̃(0), 0)| ≤ ǫ+mt for the limit.

We first show exponential tightness for the conditional measures.

Lemma 4.2 (Uniform Exponential tightness of conditional measures). Let ζ ∈ Cc(0, T ;R
R) and assume k̄(r) is

bounded on stoichiometric simplices (Assumption 2.2(iv)). Fix any convergent sequence 1
V N

R
0 ∋ c̃(V )(0) → c̃(0) ∈

R
R
+ and let P̃

(V )

ζ be the law of the Markov process with generator Q(V )

ζ,t and initial distribution δc(V )(0). Then for any ǫ
and η > 0 there exists an m (not depending on the choice c̃(0)) such that

1

V
log P̃(V )

ζ

(
C

c

m,ǫ

)
≤ −η.
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Proof. For a δ > 0 to be determined later, define the set (see Figure 2):

Σδ,ǫ :=
{
(c, w) ∈ BV(0, T ;RY × R

R
+) :

∣∣(c(t), w(t))− (c̃(0), 0)
∣∣ ≤ σδ,ǫ(t) t− a.e.

}
,

σδ,ǫ(t) := ǫ+

⌊T/δ⌋∑

l=1

1
2ǫl1[lδ,(l+1)δ)(t).

Then Cǫ/(2δ),ǫ ⊃ Σδ,ǫ ∩ BTV
ǫ/(2δ) and so it suffices to prove that for any η > 0 we can find m, δ > 0 such that

1
2
ǫ

ǫ
1
2
ǫ

δ

Figure 2: the function σδ,ǫ(t) ≤ ǫ+ ǫ
2δ
t.

lim sup
V→∞

1
n log P̃(V )(Σc

δ,ǫ) ≤ −η and (4.2)

lim sup
V→∞

1
n log P̃(V )(BTV

m
c

) ≤ −η. (4.3)

Observe that by the convergence of the initial condition, for V sufficiently large and P̃
(V )-almost surely,

|(c(0), w(0))− (c̃(0), 0)| ≤ 1
2ǫ. (4.4)

To prove (4.3), observe that the Markov jump process
∑

r∈RW
(V,r)(t) is bounded by a Poisson process 1

V NV λ(t)

with λ := e‖Γ‖‖ζ‖∞ supS1/2ǫ(c̃(0))

∑
r∈R 1 + k̄(r) < ∞ due to Assumptions 2.2(ii) and (iv). A standard Chernoff

bound therefore yields

P̃
(V )(BTV

m
c

) = P̃
(V )
({∑

r∈RW
(V,r)(T ) > m

})

≤ Prob
(
NV λ(T ) > Vm

)
≤ eV λTV−nm = e−V η,

if we choose m := λTe+ η.

We now prove (4.2). Because of (4.4) we may assume that for any (c, w) ∈ Σc

δ,ǫ there exists an interval (lδ, (l +

1)δ) on which the process has jumped more than 1
2ǫ. Since the norm of each jump is bounded from below by 1

V (the

W -coordinate always jumps at least that length) we can estimate:

P̃
(V )(Σc

δ,ǫ) ≤ P̃
(V )

(⋃⌊T/δ⌋
l=1

{
1
V

∑
r∈R VW

(V,r)((l + 1)δ)− VW (V,r)(lδ) > ǫ
2

})

≤
⌊T/δ⌋∑

l=1

({
1
V

∑
r∈R VW

(V,r)((l + 1)δ)− VW (V,r)(lδ) > ǫ
2

})

≤ T

δ
Prob

(
NV λ(δ) >

V ǫ
2

)

≤ T

δ
e−V s(ǫ/2|λδ),

where the latter is found by first applying a Chernoff bound to Prob
(
aNV λ(δ) >

aV ǫ
2

)
for arbitrary a > 0 and then

minimising over a. With the choice

δ :=
ǫ

2λ
exp

(
− 2η

ǫ
− 1
)
,

we find s(ǫ/2|λδ) = η + ǫ
2e

−2η/ǫ−1 ≥ η which proves (4.2).

From [Big04, Prop. 6] we now immediately obtain exponential tightness under the initial distribution µ(V ):

DOI 10.20347/WIAS.PREPRINT.2491 Berlin 2018



Flux LDPs 15

Corollary 4.3 (Exponential tightness). Let ζ ∈ Cc(0, T ;R
R), assume k̄(r) is bounded on stoichiometric simplices

(Assumption 2.2(iv) and let µ(V ) be exponentially tight (Assumption 2.3(iv)). Then P
(V )

ζ (under initial distribution µ(V ))

is exponentially tight.

Remark 4.4. The results in this section apply in particular to the P
(V ) = P

(V )

0 .

4.2 Lower bound

Proposition 4.5. Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2. For any hybrid-open set O ⊂
BV
(
0, T ;RY × R

R
)
,

lim inf
V→∞

1

V
logP(V )(O) ≥ − inf

(c,w)∈O

I0(c(0)) + J (c, w).

Proof. Recall the definition of the set A in (3.6). Choose an arbitrary hybrid-open set O ⊂ BV(0, T ;RY × R
R).

From Lemma 4.6 proven below, it follows that

lim inf
V→∞

1

V
logP(V )(O) ≥ − inf

(c,w)∈O∩A

I0(c(0)) + J (c, w).

By Corollary 3.10 it then follows that

inf
(c,w)∈O

I0(c(0)) + J (c, w) = inf
(c,w)∈O∩A

I0(c(0)) + J (c, w).

For the lower bound it thus remains to prove the following:

Lemma 4.6. Let Assumption 2.2 on the rates and Assumption 2.3 on the initial distribution hold. Let O be a hybrid-

open subset of BV
(
0, T ;RY × R

R
)

and A be the set (3.6). Then for any (c, w) ∈ O ∩ A ,

lim inf
V→∞

1

V
logP(V )(O) ≥ −I0

(
c(0)

)
− J (c, w). (4.5)

Proof. Take a pair (c, w) ∈ O ∩ A , and let ζ := log ẇ/k̄(c) ∈ C1
c

(
0, T ;RR

)
and z ∈ ∂I0

(
c(0)

)
, which is

non-empty by Assumption 2.3. Without loss of generality we assume that I0(c(0)) + J (c, w) <∞.

We also define a perturbed initial distribution on R
Y by setting:

µ(V )
z

(
dc̃(0)

)
= eV z·c̃(0)−V Λ(V )(z)µ(V )

(
dc̃(0)

)
, with Λ(V )(z) := 1

V log

∫
eV z·c̃(0)µ(V )

(
dc̃(0)

)
.

By Assumption 2.3, we can apply Varadhan’s Lemma [DZ87, Th. 4.3.1], and so, combined with the assumption z ∈
∂I0
(
c(0)

)
,

lim
V→∞

Λ(V )(z) = sup
c̃(0)∈RY

+

z · c̃(0)− I0
(
c̃(0)

)
= z · c(0)− I0

(
c(0)

)
=: Λ(z), (4.6)

Since we assumed that I0
(
c(0)

)
is finite, it follows that (at least for sufficiently large V ), the value Λ(V )(z) is finite.

Naturally eV Λ(V )(z) is simply a normalisation factor so that the perturbed µ(V )
z is a probability measure. We can now

define the perturbed path measure

P
(V )

ζ,z (dw
′ dc′) :=

∫
P

(V )

ζ

(
dw′ dc′ | c′(0) = c̃(0)

)
µ(V )
z

(
dc̃(0)

)
.

The next step is to apply Theorem A.3 to see that

log
dP(V )

dP(V )

ζ,z

(
c′, w′

)
= −V G(V )(c′, w′, ζ)− V z · c′(0) + V Λ(V )(z). (4.7)
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When checking the applicability of the results from the appendix one may take K(c′,w′) = S (c′)×R
R
+ . To establish

Assumption A.3 one observes that supt∈(0,T ) |c′(t), w′(t)| is bounded by |c′(0)| plus a constant times the number

of jumps up to time T , and that under P(V ) the number of jumps is stochastically dominated by a Poisson random

variable with finite expectation due to Assumption 2.2 parts (ii)&(iv).

We now apply a standard tilting argument with respect to this measure. We first introduce the sets, for some

arbitrary small ǫ > 0 (recall that (c, w) is already fixed),

Gζ
ǫ = Gζ

ǫ [c, w] :=
{
(c′, w′) ∈ BV

(
0, T ;RY × R

R
)
:
∣∣G(c′, w′, ζ)−G(c, w, ζ)

∣∣ < ǫ
}
, and (4.8)

Bǫ = Bǫ[c(0)] :=
{
c′(0) ∈ R

Y
+ : |c′(0)− c(0)| < ǫ

}
, (4.9)

and let π0[c
′] := c′(0). Although Gζ

ǫ is not restricted to the positive cone, the probabilities are of course concentrated

on non-negative concentrations and fluxes. Using (4.7)

1

V
logP(V )

(
O
)
≥ inf

(c′,w′)∈

O∩Gζ
ǫ∩π

−1
0 [Bǫ]

[
− z · c′(0) + Λ(V )(z)−G(V )(c′, w′, ζ)

]
+

1

V
logP(V )

ζ,z

(
O ∩ Gζ

ǫ

)
, (4.10)

where

G(V )(c′, w′, ζ) :=

∫ T

0

[
ζ(t) · ẇ′(dt)−

∑

r∈R

1
V k

(V,r)
(
c′(t)

)(
eζ

(r)
(t)− 1

)]
dt, (4.11)

The first term is bounded by −z · c̃(0) ≥ −z · c(0)− ǫ by definition of Bǫ; for the second term we use (4.6) so that

∣∣Λ(V )(z)− Λ(z)
∣∣ < ǫ. (4.12)

for V sufficiently large. For the third term we estimate,

∣∣G(V )(c′, w′, ζ)−G(c, w, ζ)
∣∣ ≤

sup
(c′,w′)∈π−1

0 [Bǫ]

∣∣G(V )(c′, w′, ζ)−G(c′, w′, ζ)
∣∣+ sup

(c′,w′)∈Gζ
ǫ

∣∣G(c′, w′, ζ)−G(c, w, ζ)
∣∣

≤ T (e‖ζ‖L∞ + 1) sup
c′∈Sǫ(c(0))

∑

r∈R

| 1V k
(V,r)(c′)− k̄(r)(c′)|+ ǫ

≤ const ǫ, (4.13)

for sufficiently large V because of Assumption 2.2(ii). For the last term in (4.10) we use Proposition 2.4 together with

the Portemanteau Theorem:

lim inf
V→∞

P
(V )

ζ,z

(
O ∩ Gζ

ǫ ∩ π−1
0 [Bǫ]

)
≥ lim inf

V→∞
P

(V )

ζ,z

(
O ∩ Gζ

ǫ

)
− lim sup

V→∞
P

(V )

ζ,z

(
π−1
0 [Bǫ]

c
)

= lim inf
V→∞

P
(V )

ζ,z

(
O ∩ Gζ

ǫ

)
− lim sup

V→∞
µ(V )
z

(
B

c

ǫ

)
≥ 1,

which is valid since O ∩ Gζ
ǫ is hybrid-open by the continuity of (c, w) 7→ G(c, w, ζ) (recall ζ ∈ C1

c (0, T ;R
R), and

Bc

ǫ is closed in R
Y .

Putting all these estimates and convergence results together we find from (4.10) that

lim inf
V→∞

1

V
logP(V )

(
O
)
≥ −z · c(0) + Λ(V )(z)−G(c, w, ζ)− const ǫ = −I0

(
c(0)

)
− J (c, w)− const ǫ,

as ζ and z were chosen to make the final equality true, assuming convexity of I0. This proves the claim since ǫ was

arbitrary.
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4.3 Upper bound

For the upper bound we work first with a deterministic initial condition and then an argument of Biggins’ [Big04] to

deduce the upper bound for the ‘mixture’.

Lemma 4.7. Let k̄ satisfy Assumptions 2.2(iii),(ii),(iv), and fix any convergent sequence c̃(V )(0) → c̃(0) in R
Y
+. Let

P̃
(V ) be the law of the Markov process with deterministic initial condition c̃(V )(0) and the dynamics given by (1.2).

Then for any hybrid-compact set K ⊂ BV
(
0, T ;RY × R

R
)
,

lim sup
V→∞

1

V
log P̃(V )(K ) ≤ − inf

(c,w)∈K

c(0)=c̃(0)

J (c, w).

Proof. We use an adaptation of the usual covering technique as in the proof of the Gärtner-Ellis Theorem [DZ87,

Th. 4.5.3]. Fix a convergent sequence c̃(V )(0) → c̃(0) in R
Y
+, a hybrid-compact set K ⊂ BV

(
0, T ;RY × R

R
)
,

and arbitrary ǫ > 0.

To control the initial condition, we use the compact cones Cm,ǫ from the exponential tightness, Proposition 4.3. In

this proof we will take m > 0 such that lim supV→∞
1
V log P̃(V )

(
C c

m,ǫ) < −1/ǫ. Note that for V sufficiently large,

c̃(V )(0) ∈ Bǫ[c̃(0)] = π0Cm,ǫ.

By Proposition 3.5 we can find, for any (c, w) ∈ BV
(
0, T ;RY × R

R
)

and ǫ > 0, a ζ[c, w] ∈ C1
c (0, T ;R

R)

such that G(c, w, ζ[c, w]) ≥ J (c, w)− ǫ. Then the sets Gζ
ǫ [c, w] from (4.8) form an open covering

⋃

(c,w)∈K

Gζ[c,w]
ǫ (c, w) ⊃ K ∩ Cm,ǫ,

and hence there exists a finite subset (c(n), w(n))n=1,...,N ⊂ K such that
⋃

n=1,...,N Gζ[c(n),w(n)]
ǫ (c(n), w(n)) ⊃

K ∩ Cm,ǫ.

Let P̃
(V )

ζ be the law of the Markov process with deterministic initial condition c̃(V )(0) and the dynamics given by

the perturbed generator (2.3) For each n = 1, . . . , N we find for sufficiently large V (here we only intersect with the

initial balls in order to employ (4.13) in the end of this calculation),

1

V
log P̃(V )

(
Gζ[c(n),w(n)]
ǫ (c(n), w(n))

)
=

1

V
log P̃(V )

(
Gζ[c(n),w(n)]
ǫ (c(n), w(n)) ∩ π−1

0 Bǫ[c̃(0)]
)

≤ sup

(c,w)∈G
ζ[c(n),w(n)]
ǫ (c(n),w(n))∩π−1

0 Bǫ[c̃(0)]

1

V
log

dP̃(V )

dP̃(V )

ζ[c(n),w(n)]

(c, w)

+
1

V
log P̃(V )

ζ[c(n),w(n)]

(
Gζ[c(n),w(n)]
ǫ (c(n), w(n))

)
︸ ︷︷ ︸

≤0

Th. A.3

≤ sup

(c,w)∈G
ζ[c(n),w(n)]
ǫ (c(n),w(n))∩π−1

0 Bǫ[c̃(0)]

−G(V )(c, w, ζ[c(n), w(n)])

(4.13)

≤ sup

(c,w)∈G
ζ[c(n),w(n)]
ǫ (c(n),w(n))

−G(c, w, ζ[c(n), w(n)]) + const ǫ

(4.8)

≤ −G(c(n), w(n), ζ[c(n), w(n)]) + const ǫ.
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Because of the finiteness of the covering we can now use the Laplace Principle:

lim sup
V→∞

1

V
log P̃(V )(K ) ≤ lim sup

V→∞

1

V
log
(
P̃

(V )(K ∩ Cm,ǫ) + P̃
(V )(C c

m,ǫ)
)

≤ max
n=1,...,N

lim sup
V→∞

1

V
log P̃(V )(Gζ[c(n),w(n)]

ǫ ) ∨ −1

ǫ

≤ max
n=1,...,N

(
−G(c(n), w(n), ζ[c(n), w(n)]) + const ǫ

)
∨ −1

ǫ

≤ max
n=1,...,N

(
− J (c(n), w(n)) + const ǫ

)
∨ −1

ǫ

≤
(
− inf

(c,w)∈K ∩Cm,ǫ

J (c, w) + const ǫ
)
∨ −1

ǫ

≤
(
− inf

(c,w)∈K :
c(0)∈Bǫ[c̃(0)]

J (c, w) + const ǫ
)
∨ −1

ǫ
.

This proves the claim as ǫ was chosen arbitrarily.

We can now deduce the large-deviations upper bound for the mixture:

Corollary 4.8. Let µ(V ) satisfy Assumption 2.3 and k̄ satisfy Assumptions 2.2. For any hybrid-compact set K ⊂
BV
(
0, T ;RY × R

R
)
,

lim inf
V→∞

1

V
logP(V )(K ) ≥ − inf

(c,w)∈K

I0(c(0)) + J (c, w).

Proof. By Assumption 2.3 and Lemma 4.7 one can apply [Big04, Lemma 12] noting that the proof in [Big04] only uses

the upper bound proved in Lemma 4.7 not a full LDP.

A A change-of-measure result for linear test functionals on jump

processes

Changes of measure are central to the proof of the large deviations principle presented in this work. This appendix

arose out of the need to clarify under exactly what technical conditions [KL99, Appendix 1, Prop. 7.3] could be adapted

to the setting of the present work, in particular so that functions of the form x 7→ ζ ·x could be used since these are not

bounded functions (although they are bounded linear operators). This boundedness restriction is avoided in [PR02],

but functions used in the change of measure are no longer time dependent and the conditions are less explicit. Here

the aim is to include unbounded, time dependent functions in the change of measure formula, but to give relatively

explicit, sufficient conditions that can easily be checked using the model assumptions from the main part of the paper.

In this endeavour the results are restricted to pure jump processes.

Let X be a Banach space, T ∈ (0,∞] and
(
Ω,F , (Ft)t∈[0,T )

)
be a filtered probability space with canonical

random variable X : Ω → Ω, where

� Ω is a subset of the càdlàg functions [0, T ) → X , with the convention f(T ) := f(T−) if T <∞,

� F is the Borel σ-algebra generated by a separable topology on Ω and equal to the σ-algebra generated by the

time evaluation functions X 7→ X(t).

Note that T = ∞ is allowed for now. The application in this paper is to the case Ω = BV(0, T,RY × R
R) with the

hybrid topology, but this is not a necessary assumption.

We define the jump process through a given family of jump kernels (αt(x, ·)t∈[0,T ),x∈X where αt(x,A) is the

instantaneous jump rate at time t from x ∈ X into a measurable set A ⊂ X , together with a given initial distribution

µ. Let P be the law of this process, a probability measure on (Ω,F) and E the associated expectation operator.

We now define a class of test functions for which the associated propagators (a two-paramater semigroup of

linear operators) are well-defined. To construct this set we will assume that there exists a family of measurable (not

necessarily compact or bounded) subsets (Kx)x of X such that for all x ∈ X :
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� x ∈ Kx and
⋃

y∈Kx
Ky = Kx,

�
∫ T
0 supy∈Kx

αt(y,X )dt <∞,

� supt∈[0,T ) supy∈Kx
αt(y,X \Kx) = 0.

This expresses the idea that the process started from x can never explode nor leave Kx. Then the propagators

(Ps,tf)(x) := E [f(X(t))|X(s) = x] preserve the set

BK(X ) :=

{
f : X → R measurable, such that ∀x ∈ X sup

y∈Kx

|f(y)| <∞
}
,

and satisfy d
ds(Ps,tf)(x) = −(QsPs,tf)(x) with (time-dependent) generator

(Qtf)(x) :=

∫

X
[f(y)− f(x)]αt(x, dy).

We now make three additional assumptions under which the change-of-measure formula holds.

� there is a γ > 0 such that |y − x| ≤ γ for all x ∈ X , t ∈ (0, T ), and αt(x, ·)-a.e. y, (A.1)

� limn→∞ P (τn < t) = 0 for all t ∈ (0, T ), n ∈ N, where τn := inf {t : αt(X(t),X ) ≥ n}, (A.2)

� E
[
Zβ(t)

]
<∞ for all t ∈ (0, T ), β > 0, where (A.3)

Zβ(t) := exp (β |X(0)|) + exp (β |X(t)|)

+

∫ t

0
exp (β |X(s)|)β |X(s)| ds+

∫ t

0
exp (β |X(s)|)βαs(X(s),X ) ds.

The next result is a variation on [KL99, Appendix 1, Lem. 5.1]:

Proposition A.1. Let f : [0, T ) × X → R be bounded, absolutely continuous in t and measurable in x, with

measurable, uniformly bounded derivative ∂tf(t, x). Then under Assumptions (A.2) & (A.1),

Mf (t) := f (t,X(t))− f (0, X(0))−
∫ t

0

(
(∂s +Qs) f

)
(s,X(s)) ds

is a Martingale in the filtration (Ft)t≥0 generated by X(t).

Proof. In the case that f does not depend on time and supt,x αt(x,X ) < ∞ the result follows from [EK86, Ch. 4

Sect. 7]. The additional term ∂s is added for time-dependent test functions due to a chain rule. By approximating by

the process stopped at τn and using Assumptions (A.2)&(A.3) one can remove the boundedness assumption on α.

Lemma A.2. Under Assumptions (A.1), (A.2) & (A.3), the conclusion of Proposition A.1 is valid when f(t, x) = ζ(t)·x
and when f(t, x) = eζ(t)·x, in both cases for ζ ∈ C1

b ([0, T );X ∗) where X ∗ is the Banach dual of X .

Proof. The exponential case is proved here; the linear case is similar. Let θn ∈ C∞(R) be such that θn(y) = y for

y ≤ n, θn ≤ n+1 and 0 ≤ θ′n ≤ 1. Take an arbitrary ζ ∈ C1
b ([0,∞);X ∗) and set fn(t, x) = exp(θn(ζ(t) · x))

so that Proposition A.1 can be applied to Mfn(t).
It follows from the definitions that for all t and x,

lim
n
fn(t, x) = f(t, x) and lim

n
∂tfn(t, x) = ∂tf(t, x).

Because of Assumption (A.1) Qtf is well defined and one can prove by dominated convergence that for all t, x
limn(Qtfn)(t, x) = (Qtf)(t, x). Preparatory to further applications of dominated convergence we estimate

fn(t, x) ≤ exp (‖ζ‖∞ |x|) ,

|∂tfn(t, x)| ≤ exp (‖ζ‖∞ |x|)
∥∥∥ζ̇
∥∥∥
∞
|x| , and

|(Qtfn)(t, x)| ≤ exp (‖ζ‖∞ |x|) (exp (‖ζ‖∞ γ) + 1)αt(x,X ).
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With these estimates and Assumption (A.3) one checks limnM
fn(t) =Mf (t) almost surely. Again using Assump-

tion (A.3) one can find a β > 0 such that
∣∣Mfn(t)

∣∣ ≤ Zβ(t) almost surely. By the conditional expectation form of

the dominated convergence theorem, for s < t,

Mf (s) = lim
n
Mfn(s) = lim

n
E
[
Mfn(t)|Fs

]
= E

[
lim
n
Mfn(t)|Fs

]
= E

[
Mf (t)|Fs

]
.

Finally, for the exponential change of measure we will need a bounded time interval.

Theorem A.3. Let T < ∞, ζ ∈ C1
b (0, T ;R

R), and let Assumptions (A.1), (A.2) and (A.3) all hold. Suppose Pζ

is the law of some process with paths in Ω and having initial distribution µ. Under Pζ , X is a Markov process with

generator

(Qζ,tf)(x) =

∫

X
[f(y)− f(x)] eζ(t)·y−ζ(t)·xαt(x, dy)

if and only if

log
dPζ

dP
(X) = ζ(T ) ·X(T )− ζ(0) ·X(0)−

∫ T

0
e−ζ(t)·X(t)

(
∂t +Qt

)
eζ(t)·X(t)dt. (A.4)

Proof. We only need to show the direction “ ⇐= ”; the converse then follows immediately from the uniqueness of the

generator. To this end define P̂ζ by (A.4) and let the associated expectation operator be Êζ . We sketch a number of

steps, similar to [KL99, Appendix 1, Sect. 7] and [PR02], by which it is shown that under P̂ζ X is Markov with generator

Qζ,t.

1. Define for t ∈ (0, T ), the process

E(t) := exp

(
ζ(t) ·X(t)− ζ(0) ·X(0)−

∫ t

0
e−ζ(s)·X(s)

(
∂s +Qs

)
eζ(s)·X(s)ds

)

and recall E(T ) = limtրT E(t). By Lemma A.2 above, E(t) is a strictly positive, mean-one P-Martingale.

One then shows that
dP̂ζ

dP

∣∣∣∣
Ft

= E(t) and dP

dP̂ζ

∣∣∣∣
Ft

= 1
E(t) .

2. For any Y ∈ L1(Ω,F), using the definition of conditional expectation and the results from the previous point,

it follows that Êζ [Y |Ft] = E [Y E(T )/E(t)|Ft].

3. Next one can use the result from point 2 to show via conditional expectations under P and the P-Markov

property that for t ≥ s and any bounded and measurable f : X → R, we have Êζ [f(X(t))|Fs] =

Êζ [f(X(t))|σ(X(s))], and so X is P̂ζ -Markov.

4. Finally, the propagators (P ζ
s,tf)(x) := Êζ [f(X(t))|X(s) = x] satisfy d

ds(Ps,tf)(x) = −(Qζ,sPs,tf)(x).

This implies that under P̂ζ , X has the same finite dimensional distributions as the process with generator Qζ,t

and thus P̂ζ = Pζ .

References

[ADPZ11] S. Adams, N. Dirr, M. A. Peletier, and J. Zimmer. From a large-deviations principle to the Wasserstein

gradient flow: a new micro-macro passage. Communications in Mathematical Physics, 307(3):791–815,

2011.

[AFP00] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems.

Oxford university press, Oxford, UK, 2000.

DOI 10.20347/WIAS.PREPRINT.2491 Berlin 2018



Flux LDPs 21

[AK11] D.F. Anderson and T.G Kurtz. Design and Analysis of Biomolecular Circuits: Engineering Approaches

to Systems and Synthetic Biology, chapter Continuous time Markov chain models for chemical reaction

networks, pages 1–44. Springer, 2011.

[BDSG+05] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Current fluctuations in stochastic

lattice gases. Phys. Rev. Lett., 94(3):030601, Jan 2005.

[BDSG+06] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Non equilibrium current fluctuations

in stochastic lattice gases. Journal of Statistical Physics, 123(2):237–276, April 2006.

[Big04] J.D. Biggings. Large deviations for mixtures. Electronic Communications in Probability, 9:60–71, 2004.

[BL10] T. Bodineau and M. Lagouge. Current large deviations in a driven dissipative model. Journal of Statistical

Physics, 139(2):201–218, April 2010.

[BL12] T. Bodineau and M. Lagouge. Large deviations of the empirical currents for a boundary-driven reaction

diffusion model. Ann. Appl. Probab., 22(6):2282–2319, December 2012.
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