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ABSTRACT. The paper studies an approximate multiresolution analysis for spaces gen-
erated by smooth functions which provide high order cubature formulas for integral 
operators of mathematical physics. Since these functions satisfy refinement equations 
with any prescribed accuracy methods of the wavelet theory can be applied. We obtain 
a decomposition of the finest scale space into almost orthogonal wavelet spaces. For one 
example we study some properties of the analytic prewavelets, describe the projection 
operators onto the wavelet spaces and consider some applications to the cubature of 
integral operators. 

1. INTRODUCTION 

In this paper we introduce the so called approximate wavelet decompositions of spaces 
of approximating functions which appeared to be very useful for constructing high order 
semi-analytic cubature formulas for important classes of pseudodifferential and other 
integral operators of mathematical physics. The application of wavelet based methods to 
the representation of integral and differential operators is one of the actual research topics 
in the numerical analysis of solution methods for the corresponding operator equations. 
Let us describe a usual setting. Starting from a finite sequence of nested closed subspaces 
(1.1) Vo c Vi c ... c Vn c L2(Rd) 
the space of approximating functions Vn, corresponding to the finest grid, is decomposed 
into the orthogonal sum 

n-1 

(1.2) Vn=VoffiWj, 
j=O 

where the wavelet space Wj is the orthogonal complement Wj = i'J+i 8 Vj. The chain 
(1.1) is called a multiresolution analysis of Vn if the spaces Vj have the properties 

(i) f (x) E Vo if and only if f (x - m) E Vo for any m E zd; 
(ii) f (x) E Vj if and only if f (2x) E VJ+1 for any j = 0, ... , n - 1; 

(iii) there exists a function cjJ such that { cp(· - m)}mezd is an L2-stable basis in Vo, i.e. 
there exist constants c2 > c1 > 0 such that 

(1.3) C1 ll{am}lle2 ::; II L amc/J(· - m)ll 2 ::; C2 ll{am}lle2, V {am} E £2(Zd). 
mEZd 

Then obviously the spaces Vj are spanned by the dilated shifts cjJ(2j · -m), m E zd, of the 
scaling function cp. The main goal of the multiresolution is to determine a new basis of the 
space Vn, which is used in numerical procedures. It is well known that there exist 2d - 1 
functions 'l/Jv E Wo, called prewavelets, such that the shifts { 'l/Jv(2j · -m), m E zn, v E V'} 
form an L 2-stable basis in the space Wj ([6], [12]). Here we index the prewavelets 'l/Jv 
by the set V' = V\{O} {O}withVdenotingthesetofverticesofthecube[0,1/2]d. Thus one 
obtains an L 2-stable basis of the space Vn consisting of 

{cp(· - m), m E zd} and {'l/Jv(2i · -m), m E zd, v E V',j = 0, ... , n - 1}. 
Similar to other transform methods elements of Vn and operators are now expanded into 
the new basis and the computations take place in this system of coordinates, where one 
hopes to achieve that the computation is faster than in the original system. Additionally, 
some features of wavelets, as the localization in both space and frequency domains and 
vanishing moment properties lead to a number of new and interesting properties of wavelet 
based numerical methods. The multiresolution structure of the wavelet expansion leads 
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to an effective organisation of transformations. expansion Furthermore, the vanishing 
moments of wavelets imply that within a prescribed accuracy pseudodifferential operators 
admit sparse matrix representations, which allows to design fast numerical algorithms for 
these operators. There exists a series of papers on the application of wavelet methods 
to the computation of integral operators and the solution of integral equations, where 
different types of scaling functions and wavelets are used (see [1], [2], [5] and [13] the 
references therein). Since the scaling function ~ has to satisfy the so called refinement 
equation 

(1.4) ~(x) = L am ~(2x - m) 
mezn 

as a rule these functions are piecewise polynomials satisfying some smoothness and van-
ishing moment conditions. Many interesting examples can be found in [6], [12], [4] and the 
above mentioned papers. However, one drawback of these functions is that it is practically 
impossible to derive analytic formulas for the action of important integral operators of 
mathematical physics on these functions, especially in the multidimensional case. Thus it 
is necessary to use cubatures for integral operators with singular kernel functions applied 
to piecewise polynomials. 
A different point of view to the cubature of integral operators of mathematical physics 

Ku(x) = j k(x,y)u(y)dy 
Rd 

was developed in [7], [8], [9] and [11], where the function u is approximated by linear 
combinations of the form 

( ) -n/2 ~ (x - hm) 
Uh X := 1J L__; Um 'fJ vlf5 · 

Zd 1Jh mE 

(1.5) 

Here the generating function 'fJ decays together with its Fourier transform :F 'fJ rapidly 
at infinity and has the property that the integral K 'fJ can be evaluated very effectively, 
either analytically or by simple one-dimensional quadrature. For example, the Newton 
potential of the function ry(x) = (5/2 - lxl 2) exp(-lxl2), x E R 3 , is given by 

2 -IYl2 lxl 
N ( ) ·= .!__ J (5/2 - IYI ) e d = _1_ (_!_ J -r2 d -lxl2) 

'fJ x . 4 I I y 3/2 I I e T + e . 7r x - y 27r x 
(1.6) 

~ 0 

Hence, if the density can be represented as the sum uh(x) one obtains analytic formulas 
for the Newton potential and its derivatives, for example. 
The crucial problem of this approach lies in the approximation properties of the spaces 
{ 7] (x ;;: ) , m E zd}, where the parameter 'D > 0 is fixed and h --+ 0. In [10] we 

proved that if the generating function 'fJ satisfies the moment conditions 

(1.7) j 7J(x) dx = 1 , j x"'7J(x) dx = 0, Va , 1 ~ JaJ < N, 
Rd Rd 

(here we use standard multiindex notations), then the quasi-interpolant 

(i.s) uh(x) := v-d/2 L u(hm) 7)(x _;;m) , 
mezd 1Jh 
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provides the following representation: For any u E CN(Rd) n W!(Rd) there holds 

(1.9) 

where 

(1.10) IRh(x)I ~ er,(V1Jh)NllV'NullL00 (Rd) + lu(x)I 0( :E IF11(V15v)I). 
vEZd\{O} 

Due to the second term the quasi-interpolant uh does not converge to u. However, the 
rapid decay of F 1] ensures that one can choose 'D such that this saturation error can be 
made arbitrarily small, for example less than the needed accuracy or the machine preci-
sion. Then uh behaves in numerical computations like a usual approximant of the order 
O(hN). This behaviour was studied in the framework of "approximate approximations" 
in [8],[9] and [10], where the approximation error was estimated in different norms and the 
construction of suitable generating functions for quasi-interpolation formulas and other 
simple approximants were described. 

Applied to the example (1.6) concerning the Newton potential this approach leads to the 
following result: 
If u E w:(R3 ), 1 < p < 3/2, then the cubature formula 

(l.11) h
2 

"" (x-hm) Nhu = /;n ~ u(hm)N11 V15 
y'D mEZ3 'Dh 

provides the estimate 

(1.12) 

with positive constants c1 , c2 and q = 3p/(3-2p) (for a proof see [11], where also cubature 
formulas of arbitrary order for different potentials are given). In view of exp(-7r2 ) = 
0.51723 .... 10-4 we see, that for sufficiently large 'D, say 'D 2:: 4, the formula (1.11) behaves 
in numerical computations like a fourth order cubature. Thus giving up to require the 
convergence of the approximants (1.5) as h-+ 0 does not imply any serious restrictions, 
as far as numerical computations are concerned and 17 and 'D are suitable chosen. But one 
obtains an essentially greater flexibility in the choice of basic functions resulting in simple 
multidimensional approximation formulas and cubatures of important classes of integral 
operators. 
It is clear that the basic functions we have in mind do not satisfy a refinement equation of 
the form (1.4). But it turns out' that for a wide class of interesting functions refinement 
equations are valid in some approximate sense. For example, for x E Rd we have 

l
e-lxl2/7) - 2d "" e-lml2/3V e-l2x-mj2/VI < (2 + c)de-37r2V/4 e-lxl2/7) 

(37r'D)d/2 ~ -
mEZd 

with E << 1, such that the Gaussian function efJv(x) := e-lxl
2
/V satisfies a refinement 

equation within any prescribed tolerance if 'D is chosen sufficiently large. This leads to 
the idea to perform an approximate multiresolution analysis and wavelet construction 
similar to the case, where one has an exact refinement equation. This is the goal of our 
paper. 
In section 2 we prove that there exists a large class of basic functions satisfying approx-
imate refinement equations and study some approximation properties of the Gaussian 

3 



radial function <fa'D. For this example we provide in section 3 an approximate multiresolu-
tion analysis. We show that any element of the L2-closure of the linear span 

(1.13) 

can be approximated by elements of the direct sum 

(1.14) Vn :=Vo+Wo+ ... +wn-1, 

with some small relative error of the form c = ( 4+€) d n e-3712 'D/4 , € << 1. Here the wavelet 
spaces W 1 are almost orthogonal such that the approximate decomposition (1.14) of V n 

can be performed using the orthogonal projections P0 onto V 0 and Q1 onto W 1. 

The univariate wavelet construction and some properties of the prewavelet are discussed 
in section 4. The univariate wavelet spaces W1 are spanned by rapidly decaying analytic 
prewavelets, plotted in fig. 1, which belong to °V;+i and are orthogonal to all elements of 
V;. 

0.8 

• 6 

.4 

-4 

-o. 

-0.8 

FIGURE 1. Graph of the normed wavelet 'lj;3(x). 

It is interesting that there exist simple analytic formulas for a perturbation of the wavelet 
with a relative error c2 • More precisely, the space W0 can be defined within the assumed 
tolerance c as the span of the integer translates of the function 

(1.15) W'D(x) = e-<2x-l)
2

/ 6'D cos for (2x - 1) 6 . 

Since the values of many integral operators applied to the wavelets can be given analyti-
cally one can use approximants from V n to derive the cubature of these operators. Her~ 
one assumes that the transformation to the basis in V n leads to some data compression, 
at least for sufficiently smooth integrands u. Additionally, the power moments of the 
prewavelets are very small and can be controlled by the parameter 1J. This implies a fast 
decay of the integrals K 'ljJ if the kernel k( x, y) satisfies 

1a;k(x, y)j :::; ea Ix - yj-(7 +!0:1) for some 'Y > 0. 
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The effect of the nearly vanishing moments can be seen by the example of the Hilbert 
transform of 'l/Jv 

00 

1-l'lf;v(x) := ~ j 'l/Jv(Y) dy 
7r y- x 

-oo 

shown in fig. 2. We see, that the essential supports of 'l/Jv and 1-l'l/Jv are very close, which 
leads to a high compression rate for the matrix representation of the Hilbert transform in 
the basis 

{</>v(· - k), k E Z} and {'lf;v(2i · -k), k E Z,j = 0, ... , n - 1}. 

0. B 

0. 6 

0 .4 

0. 2 

-4 

0. 

- • 6 

-0 .B 

FIGURE 2. Graph of the Hilbert transform of the normed wavelet 'lj;3(x). 

In section 5 we consider multivariate approximate wavelets and the multiresolution struc-
ture of the spaces spanned by the Gaussian radial function. We construct a wavelet basis 
with the property that important pseudodifferential operators admit semi-analytic rep-
resentations. Further we give explicit formulas for the orthogonal projection Po onto V 0 

and almost orthogonal projections Qi onto decomposition (1.14), Wj, which are proved 
in the final section 6, such that for any 'Pn E V n the estimate 

n-1 

(1.16) ll'Pn - Pocpn - L: Qjcpnll2 ~ Cc ll'Pnll2 
j=O 

holds with some constant not depending on 'Pn and V. 

2. APPROXIMATE REFINEMENT EQUATIONS 

Suppose that u(x), x = (xi, ... , xd) E Rd, is the restriction of an entire function u(z), 
z = (z1 , ... , zd) E Cd, such that for some fixed positive parameters h and V and any 
x E Rd the estimate 

(2.1) lu(x + i7rVhy) exp(-7r2VIYl2)1 ~ A(l + IYltd-d, y E Rd, 
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holds. Then for any m E zd there exists the number 

(2.2) Um:= j exp(-ir2'.D[y[2) u(hm + iir'.Dhy) dy. 
Rd 

In the following we denote by (x, y) the usual scalar product in Rd, lxl = (x, x) 1/ 2 , and 
the Fourier transform is defined as 

:Fcp(>.) = j cp(x) €>.(-x) dx with e>.(x) := e2"'(x,>.) . 
Rd 

Lemma 2.1. If the entire function u satisfies (2.1) and for givenx E Rd the semi-discrete 
convolution 

" ( Ix - hml
2

) " uh(x) := L,; Um exp - Vh2 = L,; um<P'D(x/h - m) 
mEZd mEZd 

converges absolutely then the equality 

uh(x) = L u(x + i7r'Dhv) exp(-7r2'Dlvl2
) ev(x/h) 

vEZd 

holds. 

Proof. By repeated application of Cauchy's Theorem one gets 

Um <Pv(x/h - m) = (ir'.Dh)-n <Pv(x/h - m) j u(hm + iy) <f>v(y/h) dy 
Rd 

= (ir'.Dh)-n<Pv(x/h) j u(iy) <Pv(Y /h)em ( - ~~ (y +ix)) dy 
Rd 

J 2i 
= (7r'Dh)-n u(x + iy) cf>'D(y/h) ey(Vh (x/h- m)) dy 

Rd 

= j u(x + iir'.Dhy) exp(-ir2'.D[y[2) ey(x/h) em(-y) dy. 
Rd 

Denoting by 

fx(Y) := u(x + i7r'Dhy) exp(-7r2Vlyl 2
) ey(x/h) 

we see that 

Um cf;'D(x/h - m) = :Ffx(m) . 
Now we have only to apply Poisson's summation formula (see [14], Th. VIL 2.4), 

L :Ffx(m) = L fx(v) = L u(x + i7rVhv) exp(-7r2Vlvl 2
) ev(x/h) , 

which is valid due to the absolute convergence of both series. 0 

Thus one obtains the relation 

(2.3) uh(x) - u(x) = L u(x + i7r'Dhv) exp(-7r2Vlvl2 ) ev(x/h) , 
vEZd\{O} 
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showing that if 'Dis suitable chosen then uh is for relative large ha very precise approx-
imant to analytic functions u of first order of growth. In that case u has a compactly 
supported Fourier transform and we obtain an equivalent formula for the coefficients 

Um= (7r1J)-d/2 j Fu(A) exp(7r21Jh2 IA/2) em(hA) dA. 
Rd 

Let us give some examples. First the case of a polynomial u. It can be easily seen that 

1
00 

• 1 (yfjjh)i ( m ) (hm + i1r'Dhy)3 exp(-7r2'Dy2
) dy = .J1f15 -

2
- Hi "15 , 

-oo 

with the Hermite polynomials 

In particular we obtain from Lemma 2.1 the estimate 

Hence, any polynomial p( x) can be approximated by linear combinations of the functions 
<Pv(x-m), m E zd, with an arbitrary relative error c > 0 if 'Dis chosen sufficiently large. 

Next we consider the example of the exponential function u(x) = e<x,a), a E Cd. Here 
Lemma 2.1 leads to 

uh(x) = (7r'D)-d/2 e-1Jh2a2/4 L e(hm,a) <Pv(x/h - m) 

= e<x,a) ( 1 + L e_"2'.Dlvl2 e,, (X + 1J~a)) . 
vEZd\{O} 

Thus, if a E Rd then for any h > 0 the series uh approximates the exponential function 
with the relative error 

vEZd\{o} 

If a = u +iv, u, v E Rd with v =/= 0, and h :::; 1f /2lvl then uh approximates e<x,a) with 
the relative error less or equal to 

vEZd\{O} 

If d = 1 then we get some special cases of the well-known transformation formula for 
Jacobi's elliptic theta functions 

(2.4) L e-k211"a+211"ikz = a-1/2 L e-7r(z-m)2 /a ' z E c ' Re a > 0 ' 
kEZ mEZ 
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in particular 

(2.5) 

e1r2'D/4 oo 2 

COS 21rX = L (-l)m e-C2x-m) f'D - R(x) 
2J';f5 m=-oo 

00 

where R(x) = e1r
2
'Df4 L cos (27r(2k + l)x) e-1r

2
'DC2k+i)

2
/ 4 = O(e-21r

2
'D). 

k=l 

Finally we apply Lemma 2.1 to cpv(x). If h < 1 then we obtain the equality 

(2.6) 

cpv(x) = (7rV(l - h2))-df2 L e-h2lml2/v(1-h2) cpv(x/h - m) 
mEZd 

-cpv(x) L ev;h((l - h2)x) e-1r2'D(1-h2)lvl2 . 

vEZd\{O} 

Therefore the Gaussian function satisfies the approximate refinement equation 

(2.7) 'Pv(x) .:_ (7rV(l - h2))-df2 L e-h2lml2/v(1-h2) cpv(x/h - m) ' 
mEZd 

with the accuracy cpv(x) L e-1r
2
'D(1-h

2
)lvl

2
. 

vEZd\{O} 

Approximate refinement equations of the from (2.7) are valid for a large class of basic 
functions 'T/ as shown by the following assertion. 

Lemma 2.2. Let 'T/ belong to the Schwartz space, 'T/ E S(Rd), with positive Fourier trans-
form :FTJ > 0 and such that for given h < 1 the function g E S (Rd), which is defined 
via its Fourier transform by :Fg(A) := :F'TJ(A)/:F'TJ(hA). Then for any e > 0 there exists 
V > 0 such that for all x E Rn 

(2.8) I (~) -v-d/2 "'"°"' (hm) (x- hm) I< e. 'T/ y'15 Lt g y'15 'T/ y'15 h 
mEZd 

Proof. Again we may apply the Poisson summation formula to 

v-d/2 Lg(~) ri(x ;t;;:) = L j g(hy)ri(;h - y) ev(ffiy) dy 
mEZd vEZd Rd 

= L j :Fg(>•) j ri(y)evvv-h>.(Jv) dyd>. 
vEZd Rd Rd 

= L evG) J ~(~~) :Fri(h>.+ ffiv) e;..(Jv) d>. 
vEZd Rd 

= 'T/( ~) + L ev (~) J ;(~~) :Fri(h>.+ vfvv) e;.. ( ~)d>.. 
V 1) vEZd\{O} Rd 'T/ V 1) 

Now it is easy to see that the function of y E Rd 

J :F17(A) d 
:F'TJ(hA) :F'TJ(hA + y) dA E S(R ) , 

Rd 
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hence the sum 

L I j :~~~) :F17(h>. + v'15v) eJ. ( ~) d>.I 
vEZd\{O} Rd '/'} V 1J 

can be made arbitrarily small by choosing 1J large enough. D 

We note a special case of basic functions giving high order semi-analytic quasi-inter-
polation formulas of the form (1.8). Using the generalized Laguerre polynomials L}a) we 
define the basic functions (see [8], [9]) 

'f/2M(x) := 7r-d/2 L~~i (lxl2) e-lxl2 , M = 1, 2, ... , 

having the Fourier transform 

M-1( 21 12)· 
'L ( ') -7!"21A12 ~ 7r A J 
.r'f}2M A = e L_...; "I 

j=O J. 

and thus satisfying the moment conditions (1.7) with N = 2M. Note that the basic 
function 'f}, considered in (1.6), corresponds to the case N = 4 and d = 3. For the 
functions 'f}2M one can estimate the error bound of Lemma 2.2 by 

c ::; L q( v'15v) e-7!"2v(1-h2)lvl2 
vEZd\{O} 

with some polynomial q of degree 2M. 

It is clear that the mask values g(hm/v'15) in (2.8) can be computed by simple one-
dimensional quadratures if 'fJ is a the radial function. Some of the above mentioned 
basic functions allow to derive analytic formulas for the function g. For example, for the 
function 'fJ considered in (1.6) one has 

e-lxl2 /(1-h2) 
g(x) = h2)7r1J(l - h2) 3 

1 - h2 eC1-h2)/h2 ( -2lxl/h £ ( 1 - hlxl - h2) 2lxl/h £ ( 1 + hlxl - h2)) e er c - e er c 
h4 27rlxlv'J53 hv'l - h2 hv'l - h2 ' 

where erfc denotes the complementary error function. 
We remark that the knowledge of g is very useful also for another interesting application of 
the approximate refinement equation, which allows to derive quasi-interpolation formulas 
for nonuniformly distributed mesh points. 

3. APPROXIMATE MULTIRESOLUTION 

In this section we provide for the example of the Gaussian function <Pv an approximate 
multiresolution analysis. We introduce the closed linear subspaces of L 2 (Rd) 

vj := { L am <Pv(2j. -m)' {am} E £2(Zd)} . 
mEZd 
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Since 

II L am 9'v(· - m) 11: = (7rV)d J e-2"
2
1'1>-l' I L am em(>-)1

2 
d>. 

me~ Rd me~ 

= (7rV)d I L e-2"'1'1>--kl'I L amem(>.)J2d>.' 
[O,l]d kEZd mezd 

the set { <Pv( ( · - m) }mezd is an L 2-stable basis in V 0. z.From the approximate refinement 
equation (2.6) for the Gaussian function it is clear that for any l < j the space Vz is 
almost included in Vi. In particular, if h = 1/2 then we have 

9'v(x) = 37r; d/2 L e-lml'/31' 9'v(2x - m) - 9'v(x) L e-3,,'Dlvl'/4 e3"i{x,v) ' 
( ) mezd veZd\{o} 

hence for any 'Pi E Vi the small perturbation 

(3.1) 'Pi (x) ( 1 + L e-37r21Jjvj2 /4 e37ri(x,v)) E VHl . 
vEZd\{O} 

Consequently, for any 'Pi E Vi we can find 'Pi+i E VH1 such that 

(3.2) 

with 

c = cIJ := L e-37r
2
1Jlvl

214 = (2 + E) d e-37r
2TJ/4 with€<< 1 . 

vezd\{O} 

Furthermore, if we introduce the closed subspace wi c vj+l of all functions which are 
orthogonal to Vi, then it can be easily seen that 

for 'Pi E Wi. Thus the situation is very similar to the case when exact refinement 
equations are valid, which was mentioned in the introduction. 
Let us fix some integer n > 0, which determines the grid for the approximating functions. 
In the following we show that any element of V n can be represented within some prescribed 
tolerance as an element of the multiresolution structure 

(3.3) 

To this end introduce the orthogonal projections Pi : L 2 (Rd) -t Vi, j = 0, ... , n, and 
Qi : L2 (Rd) -t Wi, j = 0, ... , n - 1, and denote Q_1 =Po. 

Theorem 3.1. Any 'Pn E V n can be approximatively represented as an element of the 
multiresolution structure (3.3) and there holds 
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Proof. Use the telescopic series 

and 

n 

'Pn = Pn'Pn = L(Pi - Pi-l)'Pn + Pocpn 
i=l 

n n-1 n-1 

= L(Pi - Pi-l)'Pn + Q-l'Pn = L Qi'Pn + L(Pj+l - Pi - Qi)'Pn 
i=l i=-1 i=O 

Lemma 3.1. For j = 0, ... , n - 1 we have 

Proof. Note that (3.2) implies the inequality 

(3.4) ll'Pi - Pi+l'Pill2 :S; c ll'Pill2 , V 'Pi E Vi · 
Since Pi+i(Vi) = Vi+l 8 Wi any 'Pi+l E Vi+1 can be written in the form 

'PH1 = Pi+i'Pi + Qi'Pi+l 
with some 'Pi E Vi. From (3.4) we derive therefore 

ll'Pi+i - (cpi + Qi'PH1)1l2 = llPi+i'Pi - 'Pill2 :S; cllcpill2 
and 

1lcp·ll2:::; - 1
- llP·+icp·ll2 = - 1

- llcp·+i - Q·cp·+ill2 :S; ll'Pi+ill2 . 3 1-c 3 3 1-c 3 3 3 1-c-
Now we use that the sum Pi+ Qi is the orthogonal projection onto Vi EB Wi. Hence for 
any u E L 2(Rd) we obtain the estimate 

ll(J - (Pi+ Qi))PH1ul12 = inf llPi+lu - vll2 :S; -1 e llul12, 
vEVj$Wj - c 

leading together with (3.4) to 

ll(Pi +Qi - Pi+i)ull2 :S; ll(J - Pi+i)(Pi + Qi)ull2 + llPi+i(I - Pi - Qi)ui12 

:S; inf ll(Pi + Qi)u - vll2 + ll(I - Pi - Qi)PH1ll21lull2:::; (c- + - 6
-) 1lull2 . 

vEV;+1 1- e 

4. APPROXIMATE UNIVARIATE WAVELETS 

Now we apply some well-known constructions from wavelet theory to the univariate case. 
Here cf;'D ( x) = e-x2 /'D, we denote the corresponding scaled and wavelet spaces by ij and 
Wi, respectively. Since the function 

L(-l)m-lµm-lcj;'D(2 · -m) 
mEZ 

with µ,,. = j <f>v(x) tPv(2x + m) dx 
R 

is orthogonal to all integer shifts of the scaling function cf;'D we obtain a first element of 
the wavelet space 

L (-l)m-le-(m-1)2/5'D cj;'D(2x - m) E Wo. 
mEZ 
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Using (2.5) we derive the formula 

L (-l)me-m
2

/
5'D c/Jv(2x - 1- m) 

mEZ 

= .JlO;'D e-s"''D/24 e-(2x-1)'/6'D( cos 5; (2x - 1) + Rv(x)) ' 

with 

Rv(x) = f cos 5; (2k + 1)(2x - 1) e-5"''D(k'+kl/6 = O(e-5"''Df3) . 

k=l 

So we introduce the univariate prewavelet 

'l/Jv(x) := .J 3 
e5"'v/24 "°' (-1re-m'/5v <Pv(2x - 1 - m) 107r'D L.J 

mEZ 
(4.1) 

and its perturbation, the approximate prewavelet 

- ( )2/ 57r ( 4.2) 'l/Jv(x) := e- 2x-l 6'D cos 6 (2x - 1) , 

di:ff ering by 

17/Jv(x) - ~v(x)I ~ (1 + E) e-(2x-1)2/6'D e-57r2'D/3' € << 1' 

such that for any cp == L am'l/Jv(x - m) the estimate 

(4.3) 

holds. Consequently, in numerical computations with the precision cv one can use both 
formulas of the prewavelet with the same rights. 

In order to define multivariate wavelet bases we formulate the following assertions which 
can be easily checked by using the Fourier transform of the prewavelet 

( 4.4) :F 'l/Jv ().) = ~ es"'v /24 e -7ri>. e-"'v>.' I 4 crsv (). ; 1 ) ' 

where a a denotes the positive and 1-periodic function 

aa(,.\) = _1_ '""'e-m2 /a e27rim.;\ == '""'e-cm2(.;\+i)2 . 
~ L.J L.J 

mEZ jEZ 

Lemma 4.1. 

1. The half-shifts of the prewavelet { 7/Jv(· - m/2)}mEZ are an L 2 -stable basis in the 
scaled space Vi. 

2. The integer shifts of the prewavelet 7/Jv and of the function 

(4.5) - 2 '""' 2; c/Jv(x) := ../3i15 L.J e-m 3'D <Pv(2x - m) E Vi 
31T'D mEZ 

form an L 2 -stable basis in Vi. 

12 



Besides the fast decay of 'l/Jv we are interested in the moments of the prewavelet. Since 
this function is orthogonal to the integer shifts of the Gaussian ef>v, which approximate 
polynomials very accurate as seen in section 2, one can expect that even higher moments 
are very small and decrease if 1J increases. Using the Fourier transform ( 4.4) we have 
computed the first eight moments of 'l/Jv, which are contained in the following table. 

moment 1J = 2 1J = 3 1J = 4 1J = 5 

0 5.103. 10-9 2.143 . 10-13 8.482 . 10-18 3.251 . 10-22 

1 -2.551 . 10-9 -1.071. 10-13 -4.241 . 10-18 -1.626. 10-22 

2 -3.059 . 10-7 -2.920 . 10-11 -2.065 . 10-15 -1.240. 10-19 

3 4.601·10-7 4.386 . 10-11 3.100. 10-15 1.862 . 10-19 

4 1.616. 10-6 3.685. 10-9 4.759. 10-13 4.533 . 10-17 

5 -4.116 . 10-6 -9.287. 10-9 -1.195 . 10-12 -1.134 . 10-16 

6 -7.304. 10-4 -4.263 . 10-7 -1.032. 10-10 -1.582 . 10-14 

7 2.701·10-3 1.525. 10-6 3.655 . 10-10 5.577. 10-14 

8 2.768. 10-2 4.460. 10-5 2.096. 10-8 5.255 . 10-12 

5. APPROXIMATE MULTIVARIATE WAVELET DECOMPOSITION 

Now we are in the position to discuss the approximate wavelet decomposition of V n in 
the multivariate case. First we introduce an £ 2-stable basis in the wavelet space W 0 . 

Consider the function 

(5.1) W:v(x) = ( lO~'D r12 
es .. 'c!lJ/24 L (-1)fmf e-fmf2

/5'.D e-f2x-mf2 /'.D , 
mEZd 

which represents the tensor product of the univariate functions 'l/Jv(xi-1/2), j = 1, ... , d, 
and its perturbation 

(5.2) 

lFrom ( 4.3) it is clear, that within the precision cv these two functions can be identified. 
By Lemma 4.1, the scaled space V 1 is spanned by the half-shifts {Wv(· - m/2)}mEZd and 
consequently the set 

{wv(·-v-m): mEZd, vEV'} 

is an £ 2-stable basis in W 0 • Here again V denotes the set of vertices of the cube [O, 1/2]d 
and V' = V\{O}. Thus we obtain the £ 2-stable basis 

{ d} { . d I • } ef>v ( · - m) : m E Z , W v (23 • -v - m) : m E Z , v E V , J = 0, ... , n - 1 

in Vn, which is by Theorem 3.1 almost the space Vn. 
The elements of this basis have the property that the application of important integral 
operators can be given analytically. Besides series representations obtained from (5.1) 
efficient expressions can be derived by using the perturbed basis function (5.2). For 
example, 

- 1 j e-IYl2 /3'D 3 57r 1 1 j e-IYl 2 /W 5µ 
NW:v(x) = 47f Ix - YI IT cos 3Yi dy = 8 2::; 47r Ix - YI ey ( 6) dy 

R3 J=l Iµ; l=l R3 
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Since the integral 

xER3 , 

where 

z = 2_ ~ (x· _ 57r'Di µ·)2 = lxl
2 

_ 257r
2
'D _ 57ri (x µ) . 

3V L..J 3 2 3 3V 4 3 ' 
j=l 

Thus we get the one-dimensional integral 
1 

N ifr ( ) 3V j ( lxl2t2 257r2'D(t2 - 1)) IT3 57r 2 d 
'i''D x = - exp - -- + cos -y·t t 

2 3V 4 3 3 
' 

0 j=l 

which can be expressed also by the error function of complex arguments. 
Now we consider the problem to find the approximate wavelet decomposition of a given 
element belonging to Vn and to prove estimate (1.16). Following Theorem 3.1 one has to 
determine the orthogonal projections onto V 0 and Wi. 
Since <Pv(x) =TI <Pv(xi) the orthogonal projections P0 onto V 0 can be given as the tensor 
product 
(5.3) Po=Ro®···®Ro 
of the univariate L2-projections R0 onto VQ. This mapping is described in the following 
lemma, which will be proved in the final section. 

Lemma 5 .1. The orthogonal projection R 0 onto Vo has the form 

(5.4) Rof =LU, ~v(· - k)h <Pv(· - k) , 
kEZ 

where the function ~'D E Vo is given by the formula 

with the coefficients 

~v(x) = L ak(V) <Pv(x - k) 
kEZ 

00 

ak(V) = (-l)kc(V)ek 2
/ 2v L(-1ye-(r+l/2)

2 /2'D 
r=lkl 
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and the constant 

c( 1J) = 2?r;1J2 (:~) -1 )i j e -"':V(2j+l )' /2r1 
jEZ 

Let us turn to the orthogonal projections Qi onto Wi. Since these spaces are derived 
by scaling from Wo it suffices to consider the operator Q0 . We will construct a mapping 
Qo onto Wo such that llQo - Qoll2 :::; Cev with some constant c depending only on the 
dimension d. To this end we consider the basis in W 0 obtained by the simple tensor 
product approach for the construction of multivariate prewavelets (see [12]). Denoting 

(5.5) wa(x) := ~v(x) , w1;2(x) := 'l/Jv(x) 
collection (see Lemma 4.1), we introduce the collection of functions 

q>v(x) = Wv1 (x1) · · · Wvd(xd) E Wo , v E V'. 
Since the function w0 is the right-hand side of the approximate refinement equation (2. 7) 
for ef;v it follows from Lemma 4.1 that the set { q>v(· - m)}mEZd,vEV' is an L2-stable basis 
in W 0. Moreover, if in the definition of q>v the function w0 is replaced by the Gaussian 
function ef;v ( x), then the corresponding principal shift invariant spaces 

Xv:= {q>v(· - m), m E zd} 

are orthogonal, Xv 1- Xv' for v # v'. Thus the orthogonal projection onto ffi Xv is 
vEV' 

(5.6) Qa := LRv1 ®···®Rvd 
vEV' 

with the univariate projections Ro : L2(R) -+Vo and R1;2 : L2(R) -+ W 0 . It is evident 
that 

(5.7) llQo - Qoll ::; ccv , 
where c depends on d only. To derive a mapping into W 0 we introduce the small pertur-
bation of the operator Q0 

(5.8) Qa := L .Rvl ® · · · @ .Rvd , 
vEV' 

where we define (see (5.4) and (5.5)) 

Rof =LU, ~v(· - k))2 wo(· - k), 
kEZ 

and the mapping R1; 2 is described in the following lemma, which will be proved in the 
next section. 

Lemma 5.2. The orthogonal projection R1; 2 onto W 0 can be approximatively represented 
in the form 

R1;2f =LU, ;/;v(· - k})2 'l/Jv(· - k) , 
kEZ 

where the function ;/;v is given as the sum 

;/;v(x) := L ak 'l/Jv(x - k) E Wo, 
mEZ 
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with the coefficients 
00 

ak = ek2 /31J (co L ( -1 )i e-3(H1/2)2 /TJ 

(5.9) i=lkl 
00 

+ (-l )k c1 L ( e-3(Hl/4)2 ;v _ e-3(H3/4)2 /TJ)) , 
i=lkl 

and the numbers c0 and c1 equal to 

eo = 37r;:v2 ( L ( -1 )j ( 6 j + 1) e _"2'.D(6j+1)2/12r1 , 
jEZ 

C1 = 37r;'.D2 ( L ( -1 )j ( 6 j + 1) e _"2'.D(6j+1)2/3r1 . 
jEZ 

There exists a constant c such that 
(5.10) 

z.From Lemma 5.2, the refinement equation (2. 7) and (5. 7) it is clear that we have 

(5.11) llQo - Qoll :s; cr::v , 
with some constant c depending only on d. Thus we obtain the following approximate 
wavelet decomposition of the space V n· 

Theorem 5.1. There exists a constant c depending on the space dimension d and on n 
such that for any 'Pn E V n the estimate 

n-1 

ll'Pn - L Qj'Pn'Pnll2 < CC:1) ll'Pnll2 
j=-1 

holds, where §-1 = P0 is defined in (5.3) and the mappings Qi onto Wi are obtained by 
scaling from Q0 given in (5.8). 

6. THE ORTHOGONAL PROJECTIONS Ro AND R1;2 

-The construction of the orthogonal projections onto Vo and W0 uses some well-known facts 
about principal shift invariant spaces (see [3]), which we recall briefly. Denote by S ( 'TJ) 
the L 2-closure of finite linear combinations of the shifts 'TJ(· - m), m E Z, of a generating 
function 'TJ and suppose that the shifts form an L 2-stable basis of S ( 'TJ). Note that for any 

<f;(x) = Lam 71(x - m) E S('TJ) 
mEZ 

we have 
:F<f;(>..) = r(>..) :F71(A) with r(>..) := Lam e_m(>..) E L2(0, 1) . 

mEZ 

Furthermore if :F <f; = r :F 71 E L2 (R) with a I-periodic function r, then 

ll</JllL2(R) = llr[J=°'TJ, :F77]112 llL2(0,l) , 
where the bracket product stands for the I-periodic function 

[f, g 1 := L 1 (. - k) g(. - k) . 
kEZ 
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For each f E L2(R) the Lrprojection P f E S(TJ) is given by 

:F(P !) = [:Ff, :FTJ]:;: . 
[:FTJ, :F17] 'fJ 

Hence the shifts of the function fJ E S ( 17) defined via 

(6.1) 'L"~ :Fr] 
.r'f}=---

[:F17, :FTJ] 
form the corresponding biorthogonal basis, i.e. (TJ(· - k), iJh = o0k, k E Z. 

Applied to Ro we have to determine the Fourier coefficients of the inverse function to 

[F</lv, Fcfov] = 7r'D L e_,,2'.D(A-m)• = ~ L e-k•/2'.D e2"ikx' 

mEZ kEZ 

which is closely connected with the theta function. 

Lemma 6.1. Let a> 0. Then 

( L e-·k· e2"ikx )-
1 = L ak e2"ikx , 

kEZ kEZ 

where 
00 

ak = (-l)k ceak2 L (-lY e-a(r+i/2)2 ' 
r=lkl 

and 
00 

c-1=2:(-1Y(2r+1) e-a(r+i/2)2 . 
r=O 

Setting a-1 = 21J we obtain immediately the assertion of Lemma 5.1. 

Note that the cardinal interpolant TJ* E S(TJ) which satisfies TJ*(k) =<Sok , k E Z, has the 
Fourier transform 

'L" * :Fr] 
.r1] := [:F17, l] . 

Hence Lemma 6.1 gives an explicit formula for the interpolant Qhf composed of the scaled 
shifts <f>v(x/h - k) with Qhf (hm) = f (hm) for all m E za, 

where 

and 

Qhf (x) = L f(hm) qv(x/h - m) , 
mEZd 

qv(x) = L Ak </>v(x - k) with Ak = ak1 • • • akd 
kEZd 

00 

ak = ( -1 )kc L (-1 r e-<r+l/2)2 iv e-lkl{2r+l)/'D , 
r=O 

00 

c-1=2:(-1Y(2r+1) e-(r+i/2)2/v. 
r=O 
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It was proved in [10] that this interpolant approximates with exponential rate up to a 
saturation error 

l/(x) - Qhf(x)I ::::; ( (2 + 4d) e-af2h + 4 d e-"':v) J l:FJ(>..)I exp(al>..I) d>.., 
Rd 

if the last integral is finite. 
Now we come to the proof of Lemma 5.2. We will construct an almost biorthogonal basis 
to { 7/J ( · - m )}mez in the space W0 = S ( 7/Jv). Following ( 6.1) one has to find the inverse 
function of 
(6.2) 

mEZ 

Using several times the transformation formula (2.4) it can be shown that this function 
is approximated with a relative error less than 3 e-5

11"
2
'D 12 by the function 

g( A) := 3:1) L ( e -3,,>:D(k+.\+ 1/6)2 + e -3,,2'.D(k-.\+ 1/6)') . 

kEZ 

Hence is suffices to determine the Fourier coefficients of the I-periodic function g-1 . Note 
that g(z) is analytic and quasi doubly-periodic with 

(6.3) g(z+ 1) = g(z), g(z+ 7r~) = -e3f:ve6"i"g(z), 

therefore in any rectangle [z, z + 1) x [z, z + i/7r1J) there are three zeros of g(z). It can 
be easily seen that in [-1/4,3/4) x [-1/4,-1/4+i/7r1J) the zeros are at z0 = (O,i/27r1J) 
and near the points (1/2, i/47r'D) and (1/2, 3i/47r'D). More precisely, we have 

g( 1 /2 + iy) = 
3~1) e3"':Dy' f ( cos 27r21Jy( 3k + 1) e-"':v(3k+I)' / 3 

k=O 

such that g(l/2 + iy) = 0 at the points 

(6.4) 1 i 1 3i . 2 
z1 = - + -- - ic and z2 = - + -- + Z€ with 0 < € < e-11" v. 

2 47r1J 2 47r'D 
To determine the Fourier coefficients we apply (6.3) and the Residue Theorem to the 
integral 

and obtain the recurrence relation 
(6.5) ak = -e(2k-3)/7> ak-3 + (ro + r1 + r2) 
where 

It is easy to see that 

(6.6) ro = co ekf:v e-3/4:v , c0 = 
3
7r;1J2 ( 2:)-1 )i (6j + 1) e-"':v(5i+1l' /12 )-

1 

jEZ 
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Further, the residues r 1 and r2 are 
r 1 = -( -1) k cl ek /2V e-3 /16'D e-Tre.(2k-3 /2) e-311"2ve2 , 

r 2 = ( -1 )k cl e3k/2V e-21 /16'D e7re(2k-3/2) e-311"2ve2 , 

with the constant 
2 ( ~ 7r 2 ( . )2/ )-1 c1 = 37r21J2 L;(3j + 1) sin 2 (1 - 47rVc)(3j + 1) e-11" v 31+1 3 

jEZ 
(6.7) 

It turns out, that (6.5) has a unique solution {ak} E £2 (Z) which is given by 
00 

ak = ek2 ;av (co L (-1 )i e-3(H1/2)2 ;v 

(6.8) i=lkl 
00 

+ (-l)k cl L (e37re/2 e-3(j+l/4-1l"'De)2/'D _ e-31l"e/2 e-3(H3/4+7r'De)2/v)) . 

i=lkl 

So we have derived the Fourier coefficients of g-1 , i.e. up to a relative error less than 
3 e-511"2V 12 the coefficients of the biorthogonal basis function to the wavelet basis 'l/Jv ( · - k). 
Furthermore, since 0 < € < e-411"2V/3 (see (6.4)) we may set in (6.7) and (6.8) the small 
number c = 0 and obtain together with (6.6) formula (5.9) of Lemma 5.2. In doing so 
we make an error for the Fourier coefficients, which is less than e-11"2

'D lakl· In view of the 
rapid decay of the wavelet the estimate (5.10) follows immediately, which completes the 
proof of Lemma 5.2. 
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