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Sasa–Satsuma hierarchy of integrable evolution equations

Uwe Bandelow, Adrian Ankiewicz, Shalva Amiranashvili,
Sabrina Pickartz, Nail Akhmediev

Abstract

We present the infinite hierarchy of Sasa-Satsuma evolution equations. The corresponding Lax pairs are
given, thus proving its integrability. The lowest order member of this hierarchy is the nonlinear Schrödinger
equation, while the next one is the Sasa-Satsuma equation that includes third-order terms. Up to sixth-
order terms of the hierarchy are given in explicit form, while the provided recurrence relation allows one to
explicitly write all higher-order terms. The whole hierarchy can be combined into a single general equation.
Each term in this equation contains a real independent coefficient that provides the possibility of adapting
the equation to practical needs. A few examples of exact solutions of this general equation with an infinite
number of terms are also given explicitly.

1 Introduction

The nonlinear Schrödinger equation (NLSE) is one of the basic models of nonlinear wave propagation in optical
fibers [1], water waves [2, 3] and generally in nonlinear dispersive media [4, 5]. This equation and its variations
have been instrumental in describing phenomena of temporal and spatial soliton propagation [5], their inter-
actions [6], modulation instability [7], periodic and localized breathers [8, 11, 9, 10], supercontinuum radiation
[12], Fermi-Pasta-Ulam Recurrence [13], Bose-Einstein condensates [14] and rogue waves [15, 16, 17]. Be-
ing universal in covering such a diverse range of phenomena in physics, this equation is not a panacea for all
cases. While correctly describing the basic features of wave dynamics, the finer details may be left unexplained
when using the equation in its original form. In order to increase the accuracy of modelling, the NLSE has to
be extended to include additional terms [18] that are responsible for higher-order dispersion [19] and nonlinear
effects such as self-steepening and self-frequency shift [20]. These terms are important in the description of
higher-amplitude waves [21, 22] and shorter duration pulses [23].

However, dealing with modified equations, while gaining in accuracy, we lose in terms of simplicity and integra-
bility of the NLSE. The main problem with the NLSE extensions is the loss of integrability when the coefficients
of additional terms are arbitrary. Then, the initial value problem cannot be solved analytically and each case
requires numerical modelling. Fortunately, integrability is restored for special choices of the coefficients in the
higher-order terms. For extensions including third-order terms, the choice of the coefficients that admit integra-
bility are well-known. These cases include the Hirota [24] and Sasa-Satsuma (SSE) [26] equations. However,
the next step of such extensions is still not completely classified. For the branch of extensions that includes
the Hirota equation, higher-order evolution equations are known. These include the fourth-order Lakshmanan-
Porsezian-Daniel (LPD) equation [27] and a fifth-order equation [28]. Moreover, the whole infinite hierarchy of
extensions and their soliton and rogue wave solutions have been presented explicitly in [29, 30]. However, for the
branch of higher-order equations that include the SSE as a particular case, the fourth- and other higher-order
extensions are presently unknown. We fill this gap in current knowledge of higher-order integrable equations in
the present work.

Higher-order equations not only serve for improving the accuracy of the NLSE. They are independently important
for a description of other physical phenomena such as the dynamics of the Heisenberg spin chain [31]. Each
integrable evolution equation is not just a special isolated case or a mathematical curiosity. Solutions can be
analytically presented around the integrable cases in approximate forms, thus extending the range of their
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applicability [32]. Thus, adding new equations to the family of integrable equations should be considered as
adding significantly more power to our ability to do accurate mathematical modelling of physical phenomena.

To be specific, the major step forward made in the present work is presenting a new infinite hierarchy of evolution
equations in the form:

iψt + α2S2[ψ(x, t)] − iα3S3[ψ(x, t)] + α4S4[ψ(x, t)] − iα5S5[ψ(x, t)]
+ α6S6[ψ(x, t)] − iα7S7[ψ(x, t)] + α8S8[ψ(x, t)] − iα9S9[ψ(x, t)] + · · · = 0,

where Sj are the functionals of the order j for the envelope function ψ(x, t) and where the α′js are arbitrary
real coefficients. All functionals Sj are given below in explicit form and we stress that the coefficients α′js are
not small parameters. They are finite real numbers, thus making our approach far from being just another per-
turbation analysis. The allowance of variability of the coefficients αj makes the hierarchy of Eq.(1) an infinitely
variable integrable evolution equation for a variety of applications that describe soliton and rogue wave phe-
nomena. It includes, as particular cases, the NLSE, mKdV and SSE, thus linking the hierarchy (1) to these well
known evolution equations.

To be more specific, the lowest order functional S2[ψ(x, t)] in Eq.(1) is given by

S2[ψ(x, t)] = ψxx + 4|ψ|2ψ, (1)

while
S3[ψ(x, t)] = ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx. (2)

Thus, when all αj are zero except for the α2, the hierarchy (1) is simply the NLSE. When, further, α3 is nonzero
and α2 = 1/2 is, we have the SSE:

iψτ +
ψxx
2

+ 2|ψ|2ψ = iα3

[
ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx

]
. (3)

All further extensions from fourth-order and higher and the recurrent relations for obtaining them, are presented
in this work. In particular, we show that

S4[ψ(x, t)] = ψxxxx + 6ψxxψ
2 + 24|ψ|4ψ + 12|ψx|2ψ + 14|ψ|2ψxx + 8ψψ2

x, (4)

and

S5[ψ(x, t)] = ψxxxxx + 80|ψ|4ψx + 5ψ2ψxxx + 25ψ(|ψx|2)x (5)

+ 40|ψ|2ψ2ψx + 20|ψx|2ψx + 15|ψ|2ψxxx + 30ψψxψxx,

where ψ denotes the complex conjugate of ψ, and

S6[ψ(x, t)] = ψxxxxxx + 55ψ3(ψx)
2 + 45ψ2

xψxx + 32ψψxψxxx (6)

+ 43ψψxψxxx + 37ψψxψxxx + 175|ψ|2ψψ2
x + 53|ψxx|2ψ

+ 31ψψ2
xx + 20|ψ|2ψxxxx + 160|ψ|6ψ + 110ψψ3ψxx

+ 330|ψψx|2ψ + 170|ψ|4ψxx + 8ψ2ψxxxx + 95|ψx|2ψxx.

The expressions for S7[ψ(x, t)] and higher are too cumbersome to be given here, but our technique is straight-
forward, allowing one to write them explicitly for any order j. These expressions are different from those for the
NLSE hierarchy given in [30]. They comprise a different hierarchy of integrable equations. The reason is that the
Lax pairs for these equations involve 3 × 3 matrices rather than 2 × 2 for the Hirota branch. As a result, the
solutions of the SSE hierarchy are significantly more involved than those found in [30]. Such complexity starts
right from the lowest order equation of the hierarchy which is the SSE [26, 33, 34, 35, 36, 37, 38]. As a result of
this complexity, the solutions of the SSE are also highly nontrivial. Both soliton solutions [33, 34, 35] and rogue
wave solutions [39] have much more complicated structures than the corresponding solutions for the NLSE or
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Hirota equations. They involve more parameters in the solutions that allow us to describe more complicated
profiles. Due to this complexity, only first-order solutions have been derived so far. Also due to this complexity,
the SSE is an equation for which the higher-order hierarchy was unknown until now.

Physically, the difference between the two models seems to have its origin in the fact that phase and group ve-
locities of waves in the case of the SSE do not coincide [40], which significantly distorts the shape of the solitons
in comparison with the NLSE solutions. In particular, the SSE has single-soliton solutions that have no analogs
in the NLSE case. In addition to the common bell-shaped solitons, it has soliton solutions with two maxima [26]
and even with multiple maxima [35]. Moreover, the SSE has soliton solutions with complex oscillating patterns
in the (x, t)-plane [34]. Solutions become even more complicated when they contain a background in the form
of a plane wave [36]. Clearly, these complexities accumulate when dealing with the higher-order equations of
the SSE hierarchy.

2 Lax-pair formulation

Nonlinear evolution equations that arise from various branches of wave physics, are formally integrable if they
admit the zero-curvature representation

Ut − Vx + [U, V ] = 0. (7)

Given a properly chosen isospectral problem

φx = U(λ)φ (8)

with λ being the spectral parameter for which λt = 0, one can relate it to a hierarchy of nonlinear evolution
equations

Ut − V n
x + [U, V n] = 0. (9)

In this context, the choice of U serves as a seed, from which the hierarchy {V n} can be derived. For each
stage n of the hierarchy there is an independent Hamiltonian flow given by

Utn = V n
x − [U, V n]. (10)

Here, we are specifically interested in the hierarchy associated with the Sasa-Satsuma equation, where U and
V are 3× 3 matrices. Note that the hierarchy of Manakov equations

iut + uxx + 2(|u|2 + |v|2)u = 0,

ivt + vxx + 2(|u|2 + |v|2)v = 0,
(11)

that requires the 3 × 3 matrices [41] can also be considered in the same way [42]. This set of equations is
associated with the following 3× 3 matrix spectral problem

φx = Uφ, φ =

φ1φ2
φ3

 , U =

−λ u w
v λ 0
r 0 λ

 . (12)

This formulation is rather general and admits two special reductions. One of them is the coupled modified
Korteweg-de Vries hierarchy which corresponds to the choice of v = u and r = w. Another one is the Sasa-
Satsuma hierarchy with the choice of w = v and r = u. This latter case is addressed in the present work.

Thus, given the spectral problem (12), we seek a hierarchy V n which solves Eq.(10). In order to find it, we
expand the matrix elements of V n in a polynomial:

V n
ij =

n∑
k=0

vkijλ
n−k, with vkij = vkij(x, t) (13)
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and
V11 = −(V22 + V33). (14)

Inserting (13) into (9), we obtain, for n = 1 0 ut wt
vt 0 0
rt 0 0

− ∂x
v111 v112 v113
v121 v122 v123
v131 v132 v133

− λ∂x
v011 v012 v013
v021 v022 v023
v031 v032 v033

− 2λ2

 0 v012 v013
−v021 0 0
−v031 0 0


+ λ

 uv021 + v031w − vv012 − rv013 u(2v022 + v033) + v032w − 2v112 uv023 − 2v113 + (v022 + 2v033)w
2v121 − rv023 − v(2v022 + v033) vv012 − uv021 vv013 − v021w
2v131 − vv032 − r(v022 + 2v033) rv012 − uv031 rv013 − v031w


+

uv121 + wv131 − vv112 − rwv113 u(2v122 + v133) + wv132 uv123 + w(v122 + 2v133)
−v(2v122 + v133)− rv123 vv112 − uv121 vv113 − wv121
−vv132 − r(v122 + 2v133) rv112 − uv131 rv113 − wv131

 = 0.

Apparently, the functions v012 = v013 = v021 = v031 = 0 are zeros together with their derivatives. Then, the
above system reduces to 0 ut wt

vt 0 0
rt 0 0

− ∂x
v111 v112 v113
v121 v122 v123
v131 v132 v133

− λ∂x
v011 0 0

0 v022 v023
0 v032 v033


+ λ

 0 u(2v022 + v033) + v032w − 2v112 uv023 − 2v113 + (v022 + 2v033)w
2v121 − rv023 − v(2v022 + v033) 0 0
2v131 − vv032 − r(v022 + 2v033) 0 0


+

uv121 + wv131 − vv112 − rwv113 u(2v122 + v133) + wv132 uv123 + w(v122 + 2v133)
−v(2v122 + v133)− rv123 vv112 − uv121 vv113 − wv121
−vv132 − r(v122 + 2v133) rv112 − uv131 rv113 − wv131

 = 0

Moreover, the following elements v023 = c1, v032 = c2, v022 = c3, v033 = c4 and v011 = −(c1 + c4) are
constants. Then, we have, in particular 0 u(2c3 + c4) + c2w − 2v112 uc1 − 2v113 + (c3 + 2c4)w

2v121 − rc1 − v(2c3 + c4) 0 0
2v131 − vc2 − r(c3 + 2c4) 0 0

 = 0 (15)

and, as a consequence,

v112 =
1

2
(wc2 + u(2c3 + c4)) ,

v121 =
1

2
(rc1 + v(3c3 + c4)) ,

v113 =
1

2
(uc1 + w(c3 + 2c4)) ,

v131 =
1

2
(vc2 + r(c3 + 2c4)) .

In the next step, we solve the remaining equation 0 ut wt
vt 0 0
rt 0 0

− ∂x
v111 v112 v113
v121 v122 v123
v131 v132 v133


+

 −(v122 + v133) u(2v122 + v133) + wv132 uv123 + w(v122 + 2v133)
−v(2v122 + v133)− rv123 vv112 − uv121 vv113 − wv121
−vv132 − r(v122 + 2v133) rv112 − uv131 rv113 − wv131

 = 0
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for v123, v
1
32, v

1
22, v

1
33, which gives

v123 = ∂−1
(
vv113 − wv121

)
,

v132 = ∂−1
(
rv112 − uv131

)
,

v122 = ∂−1
(
vv112 − uv121

)
,

v133 = ∂−1
(
rv113 − wv131

)
.

(16)

For brevity, we have introduced the notation ∂ = ∂x and the corresponding integral operator ∂−1, such that
∂∂−1 = ∂−1∂ = 1. The 4 remaining equations are the desired integro-differential equations for u, v, r, w in
the lowest rank of the infinite Manakov hierarchy:

ut = c2wx + (2c3 + c4)ux + w∂−1
[
c2uv − r(c2w + (c3 − c4)u)

]
+ u∂−1(c1ru− c2vw), (17)

wt = c1ux + (c3 + 2c4)wx − u∂−1
[
c1uv − w(c1r + (c3 − c4)v)

]
+ w∂−1(c2vw − c1ru), (18)

vt = c1rx + (2c3 + c4)vx + r∂−1
[
c1uv − w(c1r + (c3 − c4)v)

]
+ v∂−1(c2vw − c1ru), (19)

rt = c2vx + (c3 + 2c4)rx − v∂−1
[
c2uv − r(c2w + (c3 − c4)u)

]
+ r∂−1(c1ru− c2vw). (20)

Based on this set of equations, we can find the coefficients vnij(x, t) and the desired integro-differential equa-
tions relative to u, v, r, w. This can be done step-by-step for the higher orders n > 1. This procedure would
be straightforward, but becomes increasingly involved as n increases. However, there are ways to simplify the
derivations. In order to illustrate the idea, let us start with the Manakov case.

3 Recursive relations for construction of the hierarchy

Our straightforward method can be cast in a more compact notation. Given the spectral problem (12), we seek
a hierarchy V n which solves Eq.(10). The problem (10) can be cast as a problem for two 4-vectors, G and H
relative to four independent functions u, v, w, r [42]:

H =


V12
V21
V13
V31

 =


H1

H2

H3

H4

 , G =


V23
V32
V22
V33

 =


G1

G2

G3

G4

 . (21)

We keep in mind that Tr[V ] = 0, i.e. V11 = −(V22 + V33). Let us also define 3 matrices

K1 =


0 −w −2u −u
r 0 2v v
−u 0 −w −2w
0 v r 2r

 , (22)

K2 =


0 w −v 0
−r 0 0 u
−v u 0 0
0 0 −r w

 , (23)

J = 2


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , with J−1 =
1

4
J. (24)

Then the set of equations for H and G is:

∂H +K1G = λJH, (25)

∂G+K2H = 0. (26)
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Together with ∂tU = λJH this set is equivalent to (10) [42]. As before, we expand the matrix elements of V n

in a polynomial (13) which allows us to present the 4-vectors, G and H , in the following form:

H =

n∑
k=0

hkλn−k, G =

n∑
k=0

gkλn−k, (27)

with the 4-vectors, hk = hk(x, t) and gk = gk(x, t)

hk =


hk1
hk2
hk3
hk4

 =


vk12(x, t)
vk21(x, t)
vk13(x, t)
vk31(x, t)

 , (28)

gk =


gk1
gk2
gk3
gk4

 =


vk23(x, t)
vk32(x, t)
vk22(x, t)
vk33(x, t)

 . (29)

For n = 1, we get from (25) and (26)

∂h1 +K1g
1 + λ

(
∂h0 +K1g

0 − Jh1
)
= λ2Jh0, (30)

λ
(
∂g0 +K2h

0
)
+
(
∂g1 +K2h

1
)
= 0 (31)

It follows, from the r.h.s. of (30), that h0 = 0, and hence ∂h0 = 0. With this condition, we get from (31) that
∂g0 = 0. Consequently, g0 = (c1, c2, c3, c4)

T = const. In turn, we get from (30) that h1 = J−1K1g
0, and,

again, from (31), g1 = −∂−1K2h
1. The remaining equation

∂t0(u, v, w, r)
T = ∂h1 +K1g

1 = ∂J−1K1g
0 −K1∂

−1K2J
−1K1g

0, (32)

is then the lowest order equation in the Manakov hierarchy. Writing each of the equations individually we arrive
to exactly the same set as (17)-(20).

All higher orders n > 1 can be obtained successively by the following procedure. First, from (25), ∝ λ: ∂hn +
K1g

n = Jhn+1, we advance h one step in n:

hn+1 = J−1 (∂hn +K1g
n) . (33)

Secondly, from (26): ∂gn+1 +K2h
n+1 = 0, we advance one step in g:

gn+1 = −∂−1(K2h
n+1). (34)

This determines the remaining coefficients of the next order (n + 1). Finally, with these coefficients, we obtain
from (25), ∝ λ0 the equations for the next order (n+ 1) of the Manakov hierarchy

∂tn(u, v, w, r)
T = ∂hn+1 +K1g

n+1. (35)

The validity of (35) can be checked using the compatibility condition (10).

Now, the r.h.s. of Eq. (35) can be used for obtaining the next order of h:

hn+2 = J−1
(
∂hn+1 +K1g

n+1
)
, (36)

which is the same as Eq.(33) for n→ n+1. The procedure can be repeated indefinitely. This recursive scheme
creates the infinite hierarchy of integrable equations for the general Manakov system.

With this general idea, we can reformulate the hierarchy in an even more compact form. Let us denote

Qn = ∂hn+1 +K1g
n+1, (37)
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such that Eq.(35) becomes
∂tn(u, v, w, r)

T = Qn. (38)

Expressions for the next order then become

hn+1 = J−1Qn, gn+1 = −∂−1(K2J
−1Qn), (39)

and, finally, the closed form of the recursive expression is

Qn+1 = ∂
(
J−1Qn

)
−K1∂

−1(K2J
−1Qn). (40)

This allows us to calculate directly the desired integro-differential equations Qn+1 for the next level of hierarchy
from the previous one. As it can be seen from Eq.(40), at each iteration, the first term in the r.h.s. increases the
order of derivatives by one, whereas the second term increases the order of nonlinearity by two. This general
rule allows us to predict the form of the higher-order terms for any n.

It would be instructive to write in detail the recursive equations for the second order. Namely, for the order n = 2
we have:

ut = −
1

4

(
w

∫ x

1
I11dz +

∫ x

1
I12dz + 2u

∫ x

1
I13dz +R1

)
,

wt = −
1

4

(
w

∫ x

1
I21dz + 2w

∫ x

1
I22dz + u

∫ x

1
I23dz +R2

)
,

vt =
1

4

(
v

∫ x

1
I31dz + 2v

∫ x

1
I32dz + r

∫ x

1
I33dz +R3

)
,

ut =
1

4

(
v

∫ x

1
I41dz + r

∫ x

1
I42dz + 2r

∫ x

1
I43dz +R4

)
,

where

I11 = r(2u(−2F1(z) + c7 − c8) + 2wF2(z)− c2wz − (2c3 + c4)uz)− u(2vF2(z) + c2vz + (c3 + 2c4)rz),

I12 = r(2uF3(z)− c1uz − (c3 + 2c4)wz)− w(2vF2(z) + c2vz + (c3 + 2c4)rz),

I13 = v(2wF2(z)− c2wz − (2c3 + c4)uz)− u(2rF3(z) + c1rz + (2c3 + c4)vz),

R1 = 4(2c11 + c12)u− c0urw + 4c10w + 2ux(F1(x)− 2c7 − c8) + c1ru
2 − 2wxF2(x)− c2rw2 + c2wxx + (2c3 + c4)uxx,

I21 = v(2wF2(z)− c2wz − (2c3 + c4)uz)− u(2rF3(z) + c1rz + (2c3 + c4)vz),

I22 = r(2uF3(z)− c1uz − (c3 + 2c4)wz)− w(2vF2(x) + c2vz + (c3 + 2c4)rz),

I23 = 4vwF1(z) + 2(uv − rw)F3(z)− c1(rzw + uzv)− (c3 + 2c4)vwz − (2c3 + c4)vzw + 2(c8 − c7)vw,

R2 = 4(c11 + 2c12)w + 4c9u+ c0uvw − 2wx (F1(x) + c7 + 2c8)− 2uxF3(x) + c1uxx − c1u2v + c2vw
2 + (c3 + 2c4)wxx,

I31 = r(2uF3(z)− c1uz − (c3 + 2c4)wz)− w(2vF2(z) + c2vz + (c3 + 2c4)rz),

I32 = v(2wF2(z)− c2wz − (2c3 + c4)uz)− u(2rF3(z) + c1rz + (2c3 + c4)vz),

I33 = 4vwF1(z) + 2(uv − rw)F3(z)− c1(rzw + uzv)− (c3 + 2c4)vwz − (2c3 + c4)vzw + 2(c10 − c7)vw,

R3 = 8c2v
2w + 4(2c11 + c12)v + 4c10r − c0vwr − 2vx (F1(x)− 2c7 − c10) + 2rxF3(x) + c1rxx − c1r2w + (2c3 + c4)vxx,

I41 = r(2u(−2F1(z) + c7 − c10) + 2wF2(z)− c2wz − (2c3 + c4)uz)− u(2vF2(z) + c2vz + (c3 + 2c4)rz),

I42 = v(2wF2(z)− c2wz − (2c3 + c4)uz)− u(2rF3(z) + c1rz + (2c3 + c4)vz),

I43 = r(2uF3(z)− c1uz − (c3 + 2c4)wz)− w(2vF2(z) + c2vz + (c3 + 2c4)rz),

R4 = −4c10v + c0ruv + 4(c11 + 2c12)r + 2rx (F1(x) + c7 + 2c10) + c1r
2u+ 2vxF2(x)− c2uv2 + c2vxx + (c3 + 2c4)rxx.

The above set of equations contains, among others, the original Manakov system (11). In order to show this, we
set c3 = c4 = i43 , and all other constants ci = 0. As a result, we obtain

−iut = −uxx + 2(uv + rw)u,

−ivt = vxx − 2(uv + rw)v,

−iwt = −wxx + 2(uv + rw)w,

−irt = rxx − 2(uv + rw)r.
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Identifying then v = u and r = w, and setting x→ ix, we obtain

iut + uxx + 2(|u|2 + |w|2)u = 0,

iwt + wxx + 2(|u|2 + |w|2)w = 0,

which coincides with the original Manakov system (11) after renaming w(x, t) to v(x, t).

The results for the next order n = 3 include two special cases:

1 The coupled modified Korteweg-de Vries equations

ut = −uxxx + 6u2ux + 3v2ux + 3uvvx, (41)

vt = −vxxx + 6v2vx + 3u2vx + 3uvux.

This is obtained by choosing v = u, r = w, and setting c3 = c4 =
8
3 , and all other constants ci = 0.

2 The Sasa-Satsuma equation is obtained by choosingw = v and r = u. Namely, if we set c3 = c4 =
8
3ε,

and all other constants ci = 0, we first obtain

∂tu = ε (−3u(3vux + uvx) + uxxx) ,

∂tv = ε (−3v(3uvx + vux) + vxxx) .

which can be rewritten as

∂tu = ε (−3u(uv)x − 6uvux + uxxx) ,

∂tv = ε (−3v(uv)x − 6uvvx + vxxx) .

If we replace now t → it and x → ix, set v = u and ψ = u we get the Sasa-Satsuma equation in the
complex modified KdV (cmKdV) form [25, 26]:

ψt + ε(ψxxx + 6|ψ|2ψx + 3ψ|ψ2|x) = 0. (42)

Setting ε = −α3 gives the standard form of Eq.(2), i.e. ψt − α3S3 = 0.

4 Sasa-Satsuma hierarchy

Now, we are in a position to obtain the whole Sasa-Satsuma hierarchy that starts with Eq.(42) by choosing
w = v and r = u and using the techniques described in Sec. 3.

Level 1. We set c3 = c4, and c1 = c2 = c5 = c6 = c7 = c8 = 0. For the Sasa-Satsuma equation, which
appears on level 3, we choose c4 =

8
3ε. On level 1, we obtain the uncoupled linear equations

∂tu = 4εux, ∂tv = 4εvx. (43)

Level 2. On level 2, we obtain the second order equations:

∂tu = c10v + 3c12u+ 8ε(uv)u− 2εuxx, (44)

∂tv = −c10u− 3c12v − 8ε(uv)v + 2εvxx (45)

in addition to

−∂tu = c10v + 3c12u+ 8ε(uv)u− 2εuxx, (46)

−∂tv = −c10u− 3c12v − 8ε(uv)v + 2εvxx. (47)
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The second pair can be understood as the complex conjugate of the first pair of equations, once we replace
t → it and x → ix and set v = u. Moreover, once we choose c10 = c12 = 0, these equations are reduced
to the NLSE (1), i.e. iψt + α2S2 = 0 with α2 = 2ε.

Level 3. On level 3, we obtain the SSE, that has been discussed already in the end of Sec. 3.

∂tu = ε [−3u(3vux + uvx) + uxxx] , (48)

∂tv = ε [−3v(3uvx + vux) + vxxx] . (49)

Level 4. On level 4, we obtain the set of 4th order equations

∂tu = c18v + 3c20u+ 6εuuxvx + 7εuxxuv + 4ε(ux)
2v + 3εu2vxx − 12ε(uv)2u− ε

2
uxxxx, (50)

∂tv = −c18u− 3c20v − 6εvuxvx − 7εuvvxx − 4εu(vx)
2 − 3εuxxv

2 + 12ε(uv)2v +
ε

2
vxxxx, (51)

−∂tu = c18v + 3c20u+ 6εuuxvx + 7εuxxuv + 4ε(ux)
2v + 3εu2vxx − 12ε(uv)2u− ε

2
uxxxx, (52)

−∂tv = −c18u− 3c20v − 6εvuxvx − 7εuvvxx − 4εu(vx)
2 − 3εuxxv

2 + 12ε(uv)2v +
ε

2
vxxxx. (53)

The second pair can be understood as the complex conjugate of the first pair of equations, once we replace
t→ it and x→ ix and set v = u.

For the higher-order equations in this hierarchy, we set c18 = c20 = 0. The resulting equation for the 4th level
of the hierarchy is then

∂tψ = −iε
[
6ψ|ψx|2 + 7|ψ|2ψxx + 4(ψx)

2ψ + 3ψ2ψxx + 12|ψ|4ψ +
1

2
ψxxxx

]
, (54)

where we replaced u by ψ. Taking ε = −2α4 , this provides Eq.(4), i.e. iψt + α4S4 = 0.

Level 5. On level 5, we obtain the set of 5th order equations:

∂tu =
1

4
ε
[
uxxxxx + 80(uv)2ux − 5u2vxxx − 25u(vxux)x + 40u3vvx

− 20u2xvx − 15uvuxxx − 30vuxuxx

]
,

∂tv =
1

4
ε
[
vxxxxx + 80(uv)2vx − 5v2uxxx − 25v(vxux)x + 40uv3ux

− 20uxv
2
x − 15uvvxxx − 30uvxvxx

]
.

Again, if we replace t→ it and x→ ix and set v = u, we obtain:

∂tu =
1

4
ε
(
80|u|4ux + 5u2vxxx + 25u|ux|2x + 40|u|2u2vx + 20|ux|2ux

+ 15|u|2uxxx + 30vuxuxx + uxxxxx

)
,

∂tv =
1

4
ε
(
80|u|4vx + 5v2uxxx + 25v|ux|2x + 40|u|2v2ux + 20|ux|2vx

+ 15|u|2vxxx + 30uvxvxx + vxxxxx

)
,

which finally reduces to the equation for the 5th level of the SSE hierarchy

∂tψ =
1

4
ε
(
ψxxxxx + 80|ψ|4ψx + 5ψ2ψxxx + 25ψ|ψx|2x (55)

+ 40|ψ|2ψ2ψx + 20|ψx|2ψx + 15|ψ|2ψxxx + 30ψψxψxx

)
,
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where we replaced u by ψ. Taking ε = 4α5 , this provides Eq.(5), i.e. ψt − α5S5 = 0.

Level 6. On level 6 we obtain the set of 6th order equations:

∂tu =
ε

8

(
− uxxxxxx + 8u2vxxxx + 20uvuxxxx + 37uvxuxxx + 32uuxvxxx + 43vuxuxxx

− 170(uv)2uxx + 53uuxxvxx + 45u2xvxx + 31vu2xx + 95uxvxuxx

− 110u3vvxx − 330u2vuxvx − 175uv2u2x − 55u3v2x + 160u4v3
)
,

∂tv = − ε
8

(
− vxxxxxx + 8v2uxxxx + 20uvvxxxx + 37vuxvxxx + 32vuxxxvx + 43uvxvxxx

− 170(uv)2vxx + 53vuxxvxx + 45v2xuxx + 31uv2xx + 95uxvxvxx

− 110uuxxv
3 − 330uuxvxv

2 − 175u2vv2x − 55u2xv
3 + 160u3v4

)
.

If we replace, as before, t→ it and x→ ix and set v = u, we obtain:

∂tu = −i ε
8

(
uxxxxxx + 8u2vxxxx + 20|u|2uxxxx + 37uvxuxxx + 32uuxvxxx + 43vuxuxxx

+ 170|u|4uxx + 53u|uxx|2 + 45u2xvxx + 31vu2xx + 95|ux|2uxx

+ 110|u|2u2vxx + 330|u|2u|ux|2 + 175|u|2vu2x + 55u3v2x + 160|u|6u
)
,

∂tv = i
ε

8

(
vxxxxxx + 8v2uxxxx + 20|u|2vxxxx + 37vuxvxxx + 32vvxuxxx + 43uvxvxxx

+ 170|u|4vxx + 53v|uxx|2 + 45v2xuxx + 31uv2xx + 95|ux|2vxx

+ 110|u|2v2uxx + 330|u|2v|ux|2 + 175|u|2uv2x + 55v3u2x + 160|u|6u
)
.

Apparently, the 2nd equation is the complex conjugate of the first one, such that we finally obtain the Equation
for the 6th level of the SSE hierarchy

∂tψ = −i ε
8

(
ψxxxxxx + 8ψ2ψxxxx + 20|ψ|2ψxxxx + 37ψψxψxxx + 32ψψxψxxx

+ 43ψψxψxxx + 170|ψ|4ψxx + 53ψ|ψxx|2 + 45ψ2
xψxx

+ 31ψψ2
xx + 95|ψx|2ψxx + 110|ψ|2ψ2ψxx + 330|ψ|2ψ|ψx|2

+ 175|ψ|2ψψ2
x + 55ψ3ψ

2
x + 160|ψ|6ψ

)
, (56)

where ψ = u. Taking ε = −8α6 , this provides Eq.(6), i.e. iψt + α6S6 = 0.

This process can be continued indefinitely, producing at each step the next functional of the SSE hierarchy.
We restrict ourselves to giving the explicit expressions for the first 6 orders, as further extensions become
increasingly cumbersome, although the whole procedure is straightforward.

5 Basic solutions

Finding solutions of the SSE is a complex task which has not been completely resolved, although the problem
has been addressed in many previous works [33, 34, 35, 36, 37, 38, 39]. This is related to both soliton and
rogue wave solutions. Naturally, solving the SSE hierarchy is a much more involved issue. This will require future
efforts of many researchers. However, the simplest solutions can be found with relative ease. Some examples
are presented below.
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5.1 Basic ’Sech’ solutions for hierarchy containing odd terms only

Since the coefficients α2n+1 are arbitrary, we can set the coefficient of the highest derivative to be unity in the
derivations, and we still have an arbitrary real scaling factor on x. We consider real functions to start with, and
thus deal basically with the mKdV hierarchy. So

ut −
∞∑
n=1

(α2n+1S2n+1) = 0.

Taking u to be real in Eq.(2) gives
ut − α3(u3x + 12u2 ux) = 0. (57)

The basic soliton solution of the SSE equation (57) is

u =
g√
2

sech
[
g(x+ α3g

2t)
]
. (58)

Here α3g
2 represents a velocity. The solution (58) is real, and in this case the SSE and its basic solution are the

same as the ’standard’ mKdV, ut − a3(uxxx + 6u2ux) = 0, apart from a scaling of
√
2 on x. We expect this

form to be valid for all odd-numbered functionals in the set. If u(x, t) is an mKdV solution, then overall scaling
shows that u′ = q u(q x, q3 t) is also a solution for real q, so we could just set g = 1 in the above, without loss
of generality. For a general odd order equation, we have:

u2n+1 =
g√
2

sech[g(x+ α2n+1g
2nt)], (59)

for n = 1, 2, 3, .... Thus the scaling, x → gx and α2n+1t → α2n+1g
2n+1t, with overall multiplication by g,

is similar to that for the NLSE hierarchy [30].

5.2 Polynomial and periodic solutions

The basic polynomial solution of ut − α3S3 = 0, with background set to -1, is

u3 =
4

1 + 8(x+ 12α3t)2
− 1. (60)

The periodic solution is:

u3 =
k2

2−
√
4− k2 cos[

√
2k(v3t+ x)]

− 1, (61)

where v3 = −2α3(k
2 − 6) and k < 2.

The 5th order equation will have solutions of the same form with different coefficients. We now consider

ut − α5S5 = 0

from Eq.(5) with u real. We get

S5 = uxxxxx + 20uxxxu
2 + 120uxu

4 + 80uuxuxx + 20u3x, (62)

which agrees with Eq.(55) when u is taken to be real. This is the same as the first higher order mKdV equa-
tion [43]. This applies for all odd order equations, and clarifies the fact that the SSE hierarchy is a form of
’complexificaton’ of the mKdV hierarchy.

The basic polynomial solution, with background set to -1, is

u5 =
4

1 + 8(x+ 120α5t)2
− 1, (63)
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while the periodic solution is:

u5 =
k2

2−
√
4− k2 cos[

√
2k(v5t+ x)]

− 1, (64)

where v5 = 4α5(k
4 − 10k2 + 30) and k < 2.

The 7th order functional is:

S7 = uxxxxxxx + 28u(uxxxxxu+ 2uxuxxxx) + 112[uuxuxxxx + (uuxx + u2x)uxxx]

+ 84uxx(2uuxxx + uxuxx) + 140ux(uxuxxx + 2u2xx)

+ 280u3(uuxxx + 40uxuxx) + 560uxu
2(2uuxx + 3u2x) + 1120u6ux. (65)

The equation of 7th order has solutions of the same form as above but with different coefficients. Instead of
presenting it, let us turn our attention to the general case.

5.3 Solutions of composite equations with many functionals

We can now include more than one functional at a time. Namely, for the equation

ut − α3S3 − α5S5 − α7S7 − · · · = 0,

we have the soliton solution
u2n+1 =

g√
2

sech [g(x+ st)] , (66)

with s =
∑∞

n=1 α2n+1g
2n, and the polynomial solution

upoly =
4

1 + 8(x+ vat)2
− 1, (67)

with va = 4(3α3 + 30α5 + 280α7 + 2520α9 + · · · ). For the infinite hierarchy,

va =

∞∑
n=1

2n

(n!)2
(2n+ 1)!α2n+1 .

The periodic solution in this case is :

uper =
k2

2−
√
4− k2 cos

[√
2k(vpert+ x)

] − 1, (68)

where

v per =− 2α3(k
2 − 6) + 4α5(k

4 − 10k2 + 30)− 8α7(k
6 − 14k4 + 70k2 − 140)

+ 16α9

(
k8 − 18k6 + 126k4 − 420k2 + 630

)
− · · ·

with k < 2. Again, these solutions apply to the equations up to infinite order, with just the velocity coefficients
changing. These coefficients can be written as a summation of the form

∞∑
n=1

(α2n+1 cn).

Thus, for the infinite hierarchy,

v per =

∞∑
n=1

2n

(n!)2
(2n+ 1)!α2n+1 2F1

(
1,−n; 3

2
;
k2

4

)
,

where 2F1(. . .) is the hypergeometric function.
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5.4 Rogue wave solutions

We have recently shown that the mKdV equation has rogue wave solutions with parameters similar to the rogue
wave solutions of the NLSE [44]. For each of these solutions, the central rogue wave has the same amplitude as
that of the corresponding rogue-wave of the NLSE, but it is located on top of a soliton. The central part generally
has a close resemblance to the shape of an NLSE rogue wave.

Solutions with similar features can be derived for the SSE. Namely,

urw
3 = 1 + 12

N3

D3
, (69)

where
N3 = 3− 16(x− 12α3t)

[
4(x− 12α3t)

3 + 3(x− 44α3t)
]

and

D3 = 512x6 + 192x4 + 216x2 + 9 + 2(24α3t)
2
(
960x4 − 240x2 + 139

)
− 192α3t(192x

4 − 16x2 + 51)x+ 3(48α3t)
5(2α3 t− x)

+ 4(24α3t)
4(120x2 − 13)− 32(24α3t)

3(40x2 − 9)x.

The central amplitude is obviously 5, matching the amplitude of the second order NLSE rogue wave. Here, we
restrict ourselves to this example, although it can be extended to higher-order solutions of this equation as well
as to those that cover the higher order equations of the SSE hierarchy.

6 Earlier Painlevé results

The Sasa-Satsuma hierarchy has been missed in previous studies for a relatively simple reason. Painlevé anal-
ysis for fourth order equations was given earlier in [31]. These equations take the form

iut +K2 + γ1L4 = 0,

where γ1 is a constant, K2 is the nonlinear Schrödinger functional and L4 is similar to K4 in [30]:

K4 = 2uxxu
2 + 6u|u|4 + 4|ux|2u+ 8|u|2uxx + 6uu2x + uxxxx, (70)

apart from the point that the fixed coefficients are replaced by 5 parameters. This would appear to include the
functional S4 in Eq.(4), but it does not, because the authors have imposed physical constraints (to study the
Heisenberg spin magnet) on the parameters, so that each of the 5 parameters is written in terms of a single
parameter, viz. γ2γ1 . The Painlevé singularity structure analysis carried out then shows that the only value giving

integrability is γ2
γ1

= −5
2 , corresponding to K4 above. Indeed, iut + α2K2 + α4K4 = 0 is usually called

the LPD equation, whether α2 is zero or not. Beyond the basic NLS itself, it forms the first even higher-order
equation in the NLS hierarchy. However, even allowing for a scaling factor a, there is no combination of {a, γ2γ1 }
which allows Eq.(4) to be represented in the form used in [31], and so it is not included in the set studied there.
As such, the existence of the integrable equation iut + α4 S4 = 0, with S4 from Eq.(4), is not contradicted by
singularity analysis.

7 Conclusions

In this, work, we have found the infinite Sasa-Satsuma hierarchy of integrable equations. This new hierarchy
significantly expands the family of integrable equations related to the NLSE. We have no doubt that this set is
not less important than the infinite NLSE hierarchy presented earlier. It was missing from previous works for
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the reasons explained in Section 6. Clearly, every single addition of a physically-relevant integrable equation to
the collection of known cases significantly enriches our ability to mathematically describe complicated evolution
problems. Our new hierarchy contains an infinite number of equations with free variable parameters. We stress
that the parameters do not need to be small, whereas they must be small for perturbation techniques. They
are finite, and their presence allows these equations can be adjusted to practical applications as closely as
possible.

Moreover, we have presented the lowest-order operators of this hierarchy in explicit form, allowing us to deal with
individual equations of the hierarchy using relatively simple common tools. Explicit forms simplify the handling
of these equations without the excessive complexities of other mathematical formulations.

Of course, solving these equations is another matter. Finding solutions of these equations is a difficult task.
As the original Sasa-Satsuma equation has much more involved solutions than the NLSE, the solutions of this
hierarchy can also be highly complicated. Nevertheless, some solutions of the whole infinite hierarchy can even
be written in explicit form. We provided a few simple examples demonstrating this. More complex solutions need
more effort to derive, but the task can be done due to the integrability of the hierarchy.

We have also shown that this hierarchy is closely related to the hierarchy of mKdV equations. This way, the
interconnections between various cases can be established. One clear advantage of having a new hierarchy is
the following. Having integrable cases as reference equations, we can construct approximations around them,
thus significantly increasing the set of cases that can be treated analytically. Even if some particular equation
does not describe a certain application accurately, it can be made close to it using approximations around
the integrable case. Thus, step-by-step, more practical problems of interest can be solved using the closest
integrable equation and its approximations.

To conclude, we believe that the hierarchy of equations that we have found here is not the last one. Even more
involved hierarchies based on NLSE may be constructed in future. This is just a question of time.
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