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Problem-based optimal scenario generation and reduction
in stochastic programming

Réne Henrion, Werner Römisch

Abstract

Scenarios are indispensable ingredients for the numerical solution of stochastic programs.
Earlier approaches to optimal scenario generation and reduction are based on stability arguments
involving distances of probability measures. In this paper we review those ideas and suggest
to make use of stability estimates based only on problem specific data. For linear two-stage
stochastic programs we show that the problem-based approach to optimal scenario generation
can be reformulated as best approximation problem for the expected recourse function which in
turn can be rewritten as a generalized semi-infinite program. We show that the latter is convex if
either right-hand sides or costs are random and can be transformed into a semi-infinite program
in a number of cases. We also consider problem-based optimal scenario reduction for two-stage
models and optimal scenario generation for chance constrained programs. Finally, we discuss
problem-based scenario generation for the classical newsvendor problem.

1 Introduction

Most numerical solution approaches in stochastic programming require the replacement of the un-
derlying multivariate probability distribution by a discrete probability measure with a finite number of
realizations or scenarios. The most used approach so far is Monte Carlo sampling (see, for exam-
ple, [47, Chapter 6]). Another more classical approach for two-stage models uses discrete probability
measures leading to lower and upper bounds for the expected recourse function. They are obtained by
means of moment problems (see [26, Section 4.7.2]). More recently optimal quantization techniques
(see [16, 35]) and (randomized) Quasi-Monte Carlo methods (see [3, 29, 34]) are employed for solving
two-stage stochastic programs. For a survey on scenario generation in stochastic programming see
[44].

Jitka Dupačová was one of the pioneers for scenario generation and reduction. We recall her earlier
paper [8] and the influential work [9, 10].

Here, we study a problem-based approach to scenario generation and reduction for stochastic pro-
gramming models without information constraints. A general form of such models is [26, 47, 49]

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X,
∫

Ξ

f1(x, ξ)P (dξ) ≤ 0

}
(1)

where X is a closed subset of Rm, Ξ a closed subset of Rs, P is a Borel probability measure on Ξ
abbreviated byP ∈ P(Ξ). The functions f0 and f1 from Rm×Ξ to the extended reals R = [−∞,∞]
are normal integrands (in the sense of [42, Chapter 14]). For example, typical integrands f0 in linear
two-stage stochastic programming models are of the form [55], [47, Chapt. 2]

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
and f1(x, ξ) ≡ 0 , (2)
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R. Henrion, W. Römisch 2

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine, D = {q ∈ Rm̄ : {z ∈
Rr : W>z − q ∈ Y ?} 6= ∅} denotes the convex polyhedral dual feasibility set, h(·, ξ) is affine for
fixed ξ and h(x, ·) is affine for fixed x, and Φ denotes the infimal function of the linear (second-stage)
optimization problem

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ∈ Y } (3)

with (r, m̄) matrix W , convex polyhedral cone Y ⊂ Rm̄ and Y ? denoting its polar cone. Other
examples of practical interest are infimal functions of linear-quadratic or second-order cone pro-
gramming problems. Typical integrands f1 appearing in chance constrained programming are of
the form f1(x, ξ) = p − 1lP(x)(ξ), where 1lP(x) is the characteristic function of the polyhedron
P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0} depending on x.

Let v(P ) and S(P ) denote the infimum and solution set of (1). The notation indicates that their depen-
dence on the underlying probability distribution is of particular interest. For general continuous mul-
tivariate probability distributions P such stochastic optimization models are not solvable in general.
Even the computation of the involved integrals requires multivariate numerical integration methods.
Many approaches for solving optimization models (1) numerically are based on discrete approxima-
tions of the probability measure P , i.e., on finding a discrete probability measure Pn in

Pn(Ξ) :=
{ n∑

i=1

wiδξi : ξi ∈ Ξ, i = 1, . . . , n, (w1, . . . , wn) ∈ Sn
}

for some n ∈ N, which approximates P in a suitable way. Here, Sn denotes the standard simplex
Sn = {w ∈ Rn

+ :
∑n

i=1wi = 1} and ξi, i = 1, . . . , n, the scenarios. Of course, the notion ’suitable’
should at least mean that the distance between the infima

|v(P )− v(Pn)| (4)

becomes reasonably small. This is a consequence of stability results for stochastic programming prob-
lems which explore the behavior of infima and solution sets if the probability distribution is perturbed.
To state a version of such results we introduce the following sets of functions and of probability distri-
butions (both defined on Ξ)

F = {fj(x, · ) : j = 0, 1, x ∈ X} , (5)

PF =

{
Q ∈ P(Ξ) : −∞ <

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ), sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) < +∞, j = 0, 1

}
and the following (semi-) distance on PF

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ξ

f(ξ)(P −Q)(dξ)

∣∣∣∣ (P,Q ∈ PF). (6)

The distance dF is based on minimal information of the underlying optimization model (1). It is non-
negative, symmetric and satisfies the triangle inequality. At first sight the set PF seems to have a
complicated structure. For typical applications, however, like for linear two-stage and chance con-
strained models, the set PF or appropriate subsets allow a simple characterization. For example as
subsets of P(Ξ) satisfying certain moment conditions.
The following result is a consequence of [43, Theorems 5 and 9].

Proposition 1 We consider (1) for P ∈ PF , assume that X is compact and
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Problem-based optimal scenario generation and reduction in stochastic programming 3

(i) the function x→
∫

Ξ
f0(x, ξ)P (dξ) is Lipschitz continuous on X ,

(ii) the set-valued mapping y ⇒
{
x ∈ X :

∫
Ξ
f1(x, ξ)P (dξ) ≤ y

}
has the Aubin property rela-

tive to X at ȳ = 0 for each x̄ ∈ S(P ) (see [42, Definition 9.36]).

Then there exist constants L > 0 and δ > 0 such that the estimates

|v(P )− v(Q)| ≤ LdF(P,Q) (7)

sup
x∈S(Q)

d(x, S(P )) ≤ ΨP (LdF(P,Q)) (8)

hold whenever Q ∈ PF and dF(P,Q) < δ. The real-valued function ΨP is given by ΨP (r) =
r + ψ−1

P (2r) for all r ∈ R+, where ψP is the growth function near the solution set S(P ) and ψP (τ)
is defined for τ ≥ 0 as

inf
x∈X

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X,
∫

Ξ

f1(x, ξ)P (dξ) ≤ 0

}
.

Note that in case f1 ≡ 0 the estimates hold for L = 1 and any δ > 0 and that ΨP is lower
semicontinuous and increasing on R+ with ΨP (0) = 0.

The estimates (7) and (8) in Proposition 1 suggest to choose discrete approximations from Pn(Ξ) for
solving (1) such that they solve the best approximation problem

min
Pn∈Pn(Ξ)

dF(P, Pn) (9)

in order to bound (4) as tight as possible. Determining the scenarios of some solution to (9) may be
called optimal scenario generation. This choice of discrete approximations was already suggested in
[43, Section 4.2], but characterized there as a challenging task which is not solvable in most cases in
reasonable time.

It is recommended in [37, 43] to eventually enlarge the function classF such that dF becomes a metric
distance and has further nice properties. Following this idea, however, leads to coarse estimates of
the original minimal information distance and, hence, may lead to unfavorable convergence rates of
the sequence (

min
Pn∈Pn(Ξ)

dF(P, Pn)

)
n∈N

(10)

and to nonconvex nondifferentiable minimization problems (9) for determining the optimal scenarios.
In linear two-stage stochastic programming the class F contains piecewise linear-quadratic functions
defined on Ξ if condition (A1) (see Section 2) is satisfied. If the linear two-stage model has even
random recourse, F may contain more general piecewise polynomial functions (see [45]). Hence, a
suitably enlarged class of functions may be chosen as the set

Fr =

{
f : Ξ 7→ R : f(ξ)− f(ξ̃) ≤ max

{
1, ‖ξ‖, ‖ξ̃‖

}r−1

‖ξ − ξ̃‖, ∀ξ, ξ̃ ∈ Ξ

}
(11)

of all locally Lipschitzian functions on Ξ with polynomially growing normalized local Lipschitz constants.
Here, ‖ · ‖ denotes any norm on Rs and r ≥ 1 characterizes the growth of the Lipschitz moduli. The
corresponding distance

ζr(P,Q) = dFr(P,Q) (12)
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R. Henrion, W. Römisch 4

is defined on the set Pr(Ξ) of all probability measures on Ξ having rth order central moments and is
called Fortet-Mourier metric of order r (see [36, Section 5.1]). The Fortet-Mourier metric has a dual
representation as a transshipment problem (see [36, Section 5.3]). If Ξ is compact, ζr admits even a
dual representation as transportation problem (see [38, Section 4.3]), namely, it holds

ζr(P,Q) = inf

{∫
Ξ×Ξ

cr(ξ, ξ̃)η(dξ, dξ̃) : η ◦ π−1
1 = P, η ◦ π−1

2 = Q

}
, (13)

where η is a probability measure on Ξ× Ξ, π1 and π2 are the projections from Ξ× Ξ to the first and
second component, respectively, cr is a metric on Rs and cr(ξ, ξ̃) is defined as

inf

{
n−1∑
i=1

max{1, ‖ξi‖, ‖ξi+1‖}r−1‖ξi − ξi+1‖ : n ∈ N, ξi ∈ Ξ, ξ1 = ξ, ξn = ξ̃

}

for all ξ, ξ̃ ∈ Ξ. The representation (13) implies, in particular, that the best approximation problem (9)
for F = Fr is equivalent to

min
(ξ1,...,ξn)∈Ξn

∫
Ξ

min
i=1,...,n

cr(ξ, ξ
i)P (dξ), (14)

where ξi, i = 1, . . . , n, are the scenarios of Pn ∈ Pn(Ξ). This follows similarly as in [16, Lemma
4.2]. For r = 1 the probabilities wi of ξi can be computed by wi = P (Ai), i = 1, . . . , n, where the
collection {Ai : i = 1, . . . , n} is a Voronoi partition of Ξ, i.e., Ai is Borel measurable and a subset of{

ξ ∈ Ξ : ‖ξ − ξi‖ = min
j=1,...,n

‖ξ − ξj‖
}

(i = 1, . . . , n).

Note that the objective function in (14) is continuous and inf-compact on Ξn. Hence, the minimization
problem (14) is solvable, but nonconvex for n ≥ 2 even for r = 1. Furthermore, due to a classical
result (see [6, Proposition 2.1]), the estimate

c n−
1
s ≤ ζ1(P, Pn) ≤ ζr(P, Pn)

holds for each Pn ∈ Pn(Ξ), sufficiently large n and some constant c > 0 if P has a density on
Ξ. Hence, the convergence rate (10) for F = Fr is worse than the Monte Carlo rate O(n−

1
2 ) if the

dimension s of Ξ is greater than two.

The approach to optimal scenario reduction for linear two-stage stochastic programs developed in [10]
is based on Monge-Kantorovich functionals and applies to the Fortet-Mourier metric ζr (see (12)) due
to the representation (13). Starting with a discrete probability measure P based on a large number N
of scenarios, it selects a smaller number n of scenarios out of the original set of scenarios together with
new probabilities such that the new discrete probability measure represents the best approximation to
P with respect to ζr. More precisely, let P have the scenarios ξi with probabilities pi, i = 1, . . . , N .
Using the dual representation (13) of ζr the best approximation problem

min
Q∈Pn(suppP )

ζr(P,Q)

can be rewritten as combinatorial program

min


N∑

i,j=1

pixijcr(ξ
i, ξj)

∣∣∣∣∣∣∣∣
N∑
i=1

xij = 1 , j = 1, . . . , N,
N∑
i=1

yi ≤ n ,

xij ≤ yi , xij ∈ {0, 1} , i, j = 1, . . . , N ,
yi ∈ {0, 1} , i = 1, . . . , N

 , (15)
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Problem-based optimal scenario generation and reduction in stochastic programming 5

where the variable yi decides whether scenario ξi remains and xij selects a scenario ξj that min-
imizes the distance cr( · , ξi). We note that (15) is known as n-median problem (see [4]) which is
NP-hard as shown in [27].
If J denotes a subset of {1, . . . , N} with cardinality |J | = n, the best approximation problem can
be decomposed into finding the optimal index set J of remaining scenarios and into determining the
optimal discrete probability measure given J . With PJ denoting any probability measure with support
consisting of the scenarios ξj , j ∈ J , the best approximation problem has a solution P ?

j such that

ζr(P, P
∗
J ) = min

PJ
ζr(P, PJ) =

∑
i 6∈J

pi min
j∈J

cr(ξ
i, ξj) (16)

with P ?
j given by P ?

j =
∑
j∈J

πjξ
j , where πj = pj +

∑
i∈Ij

pi (∀j ∈ J) (17)

and the index sets Ij , j ∈ J , are defined by Ij := {i ∈ {1, . . . , N} \ J : j = j(i)} with
j(i) ∈ arg min

j∈J
cr(ξ

i, ξj), ∀i 6∈ J . The formula (17) for the optimal weights is called redistribution

rule in [10, 19] where the results (16) and (17) are proved, too.
For a survey of theory and algorithms for n-median problems we refer the interested reader to [4].
Presently local search heuristics [1] and a novel approximation algorithm [30] seem to be the most
favorable algorithms with best approximation guarantees. Simple alternatives without approximation
guarantees are forward and backward greedy heuristics developed and tested in [18, Algorithms 2.2
and 2.4], [19]. The scenario reduction approach described above has been extended to discrepancy
distances in [21, 20]. The latter distances are of the form

α(P,Q) = sup
B∈B
|P (B)−Q(B)| (P,Q ∈ P(Ξ)), (18)

where B is a suitable class of Borel subsets of Ξ. Such distances are relevant for chance constrained
stochastic programs if B contains the relevant sets (for example, the polyhedraP(x)). We recall, how-
ever, that employing probability metrics like (12) and (18) means that decisions on reducing scenarios
are based on coarse estimates of the minimal information distances (6) and, thus, do essentially not
depend on the specific stochastic program. Possibly due to this observation several authors developed
specific heuristic approaches to scenario generation and reduction for specific applications (see, for
example, [13, 32]). These developments served in turn as a motivation for the work reported in the
present paper.

We will show in this paper that the optimal scenario generation problem (9) may have favorable so-
lution properties if the set F remains as small as possible, i.e., as chosen in (5). In Section 2 we
demonstrate this for linear two-stage stochastic programs. First we show that (9) can be formulated
as generalized semi-infinite program (Theorem 1) which is convex in some cases (Theorem 2), enjoys
stability (Theorem 3) and allows a transformation into a standard semi-infinite program in a number
of cases. In Section 3 we revisit the problem of optimal scenario reduction for two-stage models and
provide a new formulation based on the minimal information distance (6) as mixed-integer linear semi-
infinite program. The latter decomposes into solving binary and linear semi-infinite programs recur-
sively. Section 4 presents a mixed-integer linear semi-infinite program for optimal scenario generation
in chance constrained programming. Finally we illustrate the approach to scenario generation for the
classical newsvendor problem and finish with conclusions.
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2 Optimal scenario generation for two-stage models by general-
ized semi-infinite programming

We consider a linear two-stage stochastic program (1) with the integrand (2), a probability distribution
P on Rs and with Φ denoting the infimal value (3) of the second-stage program. Furthermore, we
impose the following conditions in addition to the general assumptions made in Section 1:
(A0) X is a bounded polyhedron and Ξ is convex polyhedral.
(A1) h(x, ξ) ∈ W (Y ) = {Wy : y ∈ Y } and q(ξ) ∈ D hold for all (x, ξ) ∈ X × Ξ,
(A2) P has a second order absolute moment.
Condition (A1) combines the usual conditions relatively complete recourse and dual feasibility and (A2)
implies that all integrals are finite. Both conditions are standard for two-stage stochastic programs. In
particular, (A0)–(A2) imply that the infima v(P ) and v(Pn) are attained and the estimate

|v(P )− v(Pn)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)P (dξ)−
∫

Ξ

f0(x, ξ)Pn(dξ)

∣∣∣∣
= sup

x∈X

∣∣∣∣∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
∫

Ξ

Φ(q(ξ), h(x, ξ))Pn(dξ)

∣∣∣∣
holds due to Proposition 1 for every Pn ∈ Pn(Ξ). Hence, the formulation of the optimal scenario
generation problem for (1), (2) based on the minimal information distance (6) consists in solving the
best uniform approximation problem

min
(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

sup
x∈X

∣∣∣∣∣
∫

Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
n∑
i=1

wiΦ(q(ξi), h(x, ξi))

∣∣∣∣∣ . (19)

It means that the convex expected recourse function FP : X → R

FP (x) :=

∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ) (20)

has to be approximated uniformly on X by the best convex combination of n convex polyhedral func-
tions appearing as integrand in FP .
Note that the minimal class F = {Φ(q(·), h(x, ·)) : x ∈ X} of functions from Ξ to R enjoys
specific properties. All functions are finite, continuous and piecewise linear-quadratic on Ξ. They are
linear-quadratic on each convex polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(x, ξ)) ∈ Kj} (j = 1, . . . , `),

where the convex polyhedral cones Kj , j = 1, . . . , `, represent a decomposition of the domain of
Φ, which is itself a convex polyhedral cone in Rm̄+r. The latter decomposition depends only on the
matrix W [54]. In particular, the functions Φ(q(·), h(x, ·)) are locally Lipschitz continuous where the
Lipschitz constants on the balls {ξ ∈ Ξ : ‖ξ‖ ≤ ρ} grow linearly with ρ and can be chosen uniform
with respect to x ∈ X (see [43, Proposition 22]).
It is well-known that best uniform approximation problems may be reformulated as semi-infinite pro-
gram (SIP), i.e., as optimization problem with finitely many variables, but infinitely many constraints.
We show next that (19) leads to a generalized semi-infinite program (GSIP), that is, to a SIP in which
the index set of the constraints is infinite and depends on the decision. Theory and numerical methods
for such models are studied in a number of publications. We mention here the monograph [50] and the
tutorial [17].
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Theorem 1 Assume (A0)–(A2). Then (19) is equivalent to the GSIP

min
t≥0

(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wi〈h(x, ξi), zi〉 ≤ t+ FP (x)

FP (x) ≤ t+
n∑
i=1

wi〈q(ξi), yi〉

∀(x, y, z) ∈M(ξ1, . . . , ξn)

 , (21)

where the set-valued mappingM from Ξn to Rm+(m̄+r)n is defined by

M(ξ) = {(x, y, z) ∈ X×Y n×Rrn : Wyi = h(x, ξi), W>zi−q(ξi) ∈ Y ∗, i = 1, . . . , n} (22)

for all ξ = (ξ1, . . . , ξn) ∈ Ξn and FP : X → R is given by (20). If the function h is affine, the
feasible set of (21) is closed.

Proof. By the standard way of rewriting best uniform approximation problems one obtains first by
introducing the auxiliary variable t that the semi-infinite program

min
t≥0

(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wiΦ(q(ξi), h(x, ξi)) ≤ t+ FP (x)

FP (x) ≤ t+
n∑
i=1

wiΦ(q(ξi), h(x, ξi))

∀x ∈ X

 (23)

is equivalent to (19). Next we exploit the duality relation

Φ(q, t) = inf{〈q, y〉 : Wy = t, y ∈ Y } = sup{〈t, z〉 : W>z − q ∈ Y ∗}

of the second-stage program for all pairs (q, t) ∈ D ×W (Y ). Then the primal and dual program are
both solvable. Due to (A1) the semi-infinite program (23) may be reformulated as

min
t≥0

(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wi sup{〈h(x, ξi), z〉 : W>z − q(ξi) ∈ Y ∗} ≤ t+ FP (x)

FP (x) ≤ t+
n∑
i=1

wi inf{〈q(ξi), y〉 : Wy = h(x, ξi), y ∈ Y }

∀x ∈ X

. (24)

Next we introduce 2n new variables yi ∈ Y with Wyi = h(x, ξi) and zi ∈ Rr with W>zi− q(ξi) ∈
Y ∗, i = 1, . . . , n, and consider the generalized linear semi-infinite program (21). Then any t ≥ 0 and
(ξ1, . . . , ξn) ∈ Ξn solving problem (24) satisfies the constraints of (21).On the other hand, if t ≥ 0
and (ξ1, . . . , ξn) ∈ Ξn attain the minimum in (21), the two inequalities

n∑
i=1

wi〈h(x, ξi), zi〉 ≤ t+ FP (x) and FP (x) ≤ t+
n∑
i=1

wi〈q(ξi), yi〉

are satisfied for all (x, y, z) ∈M(ξ1, . . . , ξn). Hence, the inequalities

n∑
i=1

wi sup{〈h(x, ξi), z〉 : W>z − q(ξi) ∈ Y ∗} ≤ t+ FP (x)

FP (x) ≤ t+
n∑
i=1

wi inf{〈q(ξi), y〉 : Wy = h(x, ξi), y ∈ Y }

DOI 10.20347/WIAS.PREPRINT.2485 Berlin 2018



R. Henrion, W. Römisch 8

are satisfied for all x ∈ X . Hence, programs (24) and (21) are equivalent.
To show that the feasible set of (21) is closed, we know from [50, Corollary 3.1.21] (see also [17,
Proposition 3.4]) that the lower semicontinuity ofM on Ξn is a sufficient condition. Since the graph
gphM ofM is of the form

gphM =
{

(ξ1, . . . , ξn, x, y, z) ∈ Ξn ×X × Y n × Rrn : Wyi = h(x, ξi),

W>zi − q(ξi) ∈ Y ∗, i = 1, . . . , n
}

and h is affine, gphM is convex polyhedral. Such set-valued mappings are even Hausdorff Lipschitz
continuous on its domain (see, for example, [42, Example 9.35]) and, hence, on Ξn due to (A1). This
completes the proof. �

In general the optimization model (21) is not convex, even when the the weights wi, i = 1, . . . , n,
are fixed. However, we prove now that the model is convex if the function h is affine and either only
right-hand sides or only costs are random.

Theorem 2 Assume (A0)–(A2), let the function h be affine, the weights wi, i = 1, . . . , n, be fixed
and let either h or q be random. Then the feasible set of the GSIP (21) is closed and convex.

Proof. Let q be nonrandom. Then the feasible set M of (21) is of the form

M =

(t, ξ1, . . . , ξn) ∈ R+ × Ξn

∣∣∣∣∣∣∣∣∣
n∑
i=1

wi〈h(x, ξi), zi〉 − t ≤ FP (x)

FP (x) ≤ t+
n∑
i=1

wi〈q, yi〉

∀(x, y, z) ∈M(ξ1, . . . , ξn)

 . (25)

Let α ∈ [0, 1] and ξj = (ξ1
j , . . . , ξ

n
j ) ∈ Ξn, tj ∈ R+, be such that (tj, ξj) ∈M , j = 1, 2. We have

to show that α(t1, ξ1) + (1− α)(t2, ξ2) belongs to M , too.
Let x ∈ X and zi ∈ {z ∈ Rr : W>z − q ∈ Y ?} for i = 1, . . . , n be chosen arbitrarily. Then we
have

n∑
i=1

wi〈h(x, αξi1 + (1− α)ξi2), zi〉 − αt1 − (1− α)t2

= α
( n∑
i=1

wi〈h(x, ξi1), zi〉 − t1
)

+ (1− α)
( n∑
i=1

wi〈h(x, ξi2), zi〉 − t2
)

≤ αFP (x) + (1− α)FP (x) = FP (x).

Now, let yij ∈ {y ∈ Y : Wy = h(x, ξij)} for j = 1, 2, i = 1, . . . , n, be chosen arbitrarily in
addition. We obtain αyi1 + (1− α)yi2 ∈ {y ∈ Y : Wy = h(x, αξi1 + (1− α)ξi2)} and, hence,

αt1 + (1− α)t2 +
n∑
i=1

wi〈q, αyi1 + (1− α)yi2〉

= α
(
t1 +

n∑
i=1

wi〈q, yi1〉
)

+ (1− α)
(
t2 +

n∑
i=1

wi〈q, yi2〉
)

≥ αFP (x) + (1− α)FP (x) = FP (x).

This means α(t1, ξ1) + (1−α)(t2, ξ2) ∈M and M is convex. If q is random, but h nonrandom, the
proof is similar. The closedness of M follows from Theorem 1. �
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Problem-based optimal scenario generation and reduction in stochastic programming 9

For fixed weights and given n ∈ N the GSIP (21) for determining the optimal scenarios ξi, i =
1, . . . , n, is of dimension n s + 1 and, thus, large scale in many cases. A difficulty of (21) is that the
setM(ξ1, . . . , ξn) is unbounded even in general.
We note that FP (x) can only be calculated approximately even if the probability measure P is com-
pletely known. Hence, it becomes important that the optimization model (21) behaves stable when the
function FP is perturbed. The following result shows that even Lipschitz stability of the optimal values
can be expected if the conditions of Theorem 2 are imposed.

Theorem 3 Assume (A0) –(A2) and that the infimum v(FP ) of (21) is positive. Let the function h be
affine, let either h or q be random and the weights wi, i = 1, . . . , n, be fixed. Then there exist κ > 0
and δ > 0 such that

|v(FP )− v(F )| ≤ κ sup
x∈X
|FP (x)− F (x)| , (26)

for each continuous function F on X such that supx∈X |FP (x) − F (x)| < δ. Here, v(F ) denotes
the optimal value of (21) with FP replaced by F .

Proof. As in the proof of Theorem 2 we assume without loss of generality that q is nonrandom. We
consider the set-valued mapping (t, ξ1, . . . , ξn) 7→ Λ(t, ξ1, . . . , ξn) from R+ × Ξn to the Banach
space C(X) of real-valued continuous functions on X with the standard norm ‖ · ‖∞, where

Λ(t, ξ1, . . . , ξn) =

f ∈ C(X)

∣∣∣∣∣∣∣∣∣
n∑
i=1

wi〈h(x, ξi), zi〉 − t− FP (x) ≤ f(x)

f(x) ≤ t+
n∑
i=1

wi〈q, yi〉 − Fp(x)

∀(x, y, z) ∈M(ξ1, . . . , ξn)

 .

First, we show that the graph of the set-valued mapping Λ denoted by gph Λ is convex. Let α ∈ [0, 1]
and fj ∈ C(X), ξj = (ξ1

j , . . . , ξ
n
j ) ∈ Ξn, tj ∈ R+, be such that (tj, ξj, fj) ∈ gph Λ, j = 1, 2.

Then we obtain as in the proof of Theorem 2

n∑
i=1

wi〈h(x, αξi1 + (1− α)ξi2), zi〉 − αt1 − (1− α)t2 − FP (x)

= α
( n∑
i=1

wi〈h(x, ξi1), zi〉 − t1 − FP (x)
)

+ (1− α)
( n∑
i=1

wi〈h(x, ξi2), zi〉 − t2 − FP (x)
)

≤ αf1(x) + (1− α)f2(x) and

αt1 + (1− α)t2 +
n∑
i=1

wi〈q, αyi1 + (1− α)yi2〉 − FP (x)

≥ αf1(x) + (1− α)f2(x),

where x ∈ X , zi ∈ {z ∈ Rr : W>z − q ∈ Y ?} and yij ∈ {y ∈ Y : Wy = h(x, ξij)} for j = 1, 2,
i = 1, . . . , n, are chosen arbitrary. This proves that gph Λ is convex. It is also closed as subset of
Rns+1 × C(X). Furthermore, we know that the null function 0 ∈ C(X) belongs to the range of Λ
and that Λ−1(0) is just the feasible set of (21). Thus, there exists (t̄, ξ̄1, . . . , ξ̄n) ∈ R+ × Ξn such
that 0 ∈ Λ(t̄, ξ̄1, . . . , ξ̄n). We know that t̄ ≥ v(FP ) > 0 by assumption. Next we choose δ such that
0 < δ < t̄ and conclude that the closed ball B(0, δ) in C(X) is contained in the range of Λ. The
Robinson-Ursescu theorem (see [41, Theorem 2]) on continuity properties of set-valued mappings
having closed convex graphs then implies that the inverse multifunction Λ−1 has the Aubin property at
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f = 0 for any point (t̄, ξ̄1, . . . , ξ̄n) ∈ Λ−1(0) with t̄ > 0. This means that there exist neighborhoods
U of 0 and W of (t̄, ξ̄1, . . . , ξ̄n), and a constant κ ∈ R+ such that

Λ−1(f) ∩W ⊆ Λ−1(f̃) + κ‖f − f̃‖∞B (27)

holds for all f, f̃ ∈ U , where B is the unit ball in Rns+1.
Next we choose f = F − FP with F ∈ C(X) and f̃ = 0.
Let ε > 0 and (t̃, ξ̃1, . . . , ξ̃n) ∈ Λ−1(f) ∩W such that v(f) ≤ t̃ ≤ v(f) + ε. Then there exists an
element (t̄, ξ̄1, . . . , ξ̄n) ∈ Λ−1(0) such that

‖(t̄, ξ̄1, . . . , ξ̄n)− (t̃, ξ̃1, . . . , ξ̃n)‖ ≤ κ‖f‖∞

holds for all f ∈ U due to the Aubin property (27) of Λ−1 at 0. We note that Λ−1(F − FP ) is the
constraint set of (21) with FP replaced by F , respectively, and obtain that the estimates

v(FP )− v(F ) ≤ t̄− v(F ) ≤ |t̄− t̃| − ε ≤ κ‖F − FP‖∞ − ε .

hold for all F ∈ C(X) with F − FP ∈ U . Since the latter estimate is valid for any ε > 0, we obtain
v(FP ) − v(F ) ≤ κ‖F − FP‖∞ if F − FP ∈ U . In the same way we can derive the estimate
v(F )− v(FP ) ≤ L‖F − FP‖∞ if F − FP ∈ U . It remains to select δ > 0 such that the open ball
around 0 with radius δ in C(X) is contained in V and to require ‖F − FP‖∞ < δ. Finally, we note
that starting with the Aubin property of Λ−1 at 0 ∈ C(X) the proof followed classical arguments of
quantitative stability in optimization (see [28, Theorem 1]). �

Notice that the infimum v(FP ) of (21) is always nonnegative and v(FP ) = 0 means that P has at
most n scenarios. Hence, the assumption v(FP ) > 0 is natural and satisfied, for example, for any n
if P is a continuous probability distribution.
Theorem 3 applies, for example, if FP is approximated by Monte Carlo or Quasi-Monte Carlo methods
with a large sample size N > n. Let

FP (x) ≈ 1

N

N∑
j=1

Φ(q(ξ̂j), h(x, ξ̂j))

be such an approximate representation of FP (x) based on a sample ξ̂j , j = 1, . . . , N . Inserting this
approximation into (21) and exploiting again the duality relation then leads to the following approximate
version of (21)

min
t≥0,(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn


t

∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wi〈h(x, ξi), zi〉 ≤ t+ 1
N

N∑
j=1

〈q(ξ̂j), ŷj〉

1
N

N∑
j=1

〈h(x, ξ̂j), ẑj〉 ≤ t+
n∑
i=1

wi〈q(ξi), yi〉

∀(x, ŷ, ẑ) ∈M(ξ̂1, . . . , ξ̂N)
∀(x, y, z) ∈M(ξ1, . . . , ξn)


, (28)

where the sample ξ̂j , j = 1, . . . , N is given. The latter problem may also be characterized as a
scenario clustering problem: Given a large scenario set ξ̂j , j = 1, . . . , N , we are looking for a
smaller scenario set ξi, i = 1, . . . , n, where each scenario ξj corresponds to a cluster ξ̂i, i ∈ Ij , of
the original scenarios.

The specific structure of (21) and (28) as generalized semi-infinite programs is promising and allows
for specific solution algorithms (see [17, 50, 51, 52]).
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In a number of cases it is even possible to reduce the GSIP (21) to a semi-infinite program by a
transformation inspired by the recent paper [48]. To describe the idea, we consider the situation that
only costs are random, the polyhedral cone Y is given by Y = Rm̄

+ and the transformation is defined
by

t : Ξ× U → Rr, t(ξ, u) = u+ (W+)>(q(ξ)− q̄) , (29)

where U = {u ∈ Rr : W>u ≤ q̄}, q̄ ∈ Rm̄ and the (m̄, r) matrix W+ denotes the Moore-Penrose
inverse of W .

Proposition 2 Assume (A0) and (A2), h(x) ∈ W (Rm̄
+ ) for all x ∈ X and that q̄ and q(ξ) belong to

the range of W> for all ξ ∈ Ξ. Then the generalized semi-infinite program (21) is equivalent to the
semi-infinite program

min
t≥0

(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wi〈h(x), ui + (W+)>(q(ξi)− q̄)〉 ≤ t+ FP (x)

FP (x) ≤ t+
n∑
i=1

wi〈q(ξi), yi〉

∀(x, y1, . . . , yn, u1, . . . , un) ∈ X × Y(x)n × Un

 , (30)

where Y(x) = {y ∈ Rm̄
+ : Wy = h(x)} for each x ∈ X . If the weights wi, i = 1, . . . , n, are fixed,

(30) is a linear semi-infinite program.

Proof. The mapping t given by (29) has the property

W>t(ξ, u) = W>u+W>(W>)+(q(ξ)− q̄) ≤ q̄ + (q(ξ)− q̄) = q(ξ)

for each pair (ξ, u) ∈ Ξ×U as q(ξ)−q̄ ∈ W>(Rr) andW>(W>)+ is just the orthogonal projection
onto W>(Rr). Hence, it holds

t(ξ,U) = {z ∈ Rr : W>z ≤ q(ξ)}.

The desired equivalence between (21) and (30) follows by setting zi = ui + (W+)>(q(ξi) − q̄),
i = 1, . . . , n, in (21). �

A similar result can be derived if only right-hand sides are random and the primal polyhedral constraint
set of the linear second-stage problem is given in the form {y ∈ Rm̄ : Wy ≤ h(x, ξ)}. Proposition
2 opens the possibility of using classical solution algorithms for semi-infinite programs, in particular,
discretization and exchange methods (see the monographs [23, 15] and the surveys [22, 40]). In the
Appendix we provide a short description of the discretization method due to [39].

Finally, we discuss the possible use of lower and upper bounds of FP (x) for scenario generation.
There is a well-developed theory for deriving lower und upper bounds of expectation functionals of
convex-concave integrands. While lower bounds are due to Jensen’s classical result (e.g., see [7,
Theorem 10.2.6]), upper bounds are known as Edmundson-Madansky bounds. They were further de-
veloped in the context of stochastic programming, for example, in [2, 5, 11, 12, 14, 25]. Many upper
bounds are derived via generalized moment problems appearing as duals of semi-infinite programs
[12, 25] (see also [26, Section 3.2.1]).
Let lP (x) and uP (x) denote lower and upper bounds of FP (x), respectively. Then the following opti-
mization problem (derived from (21)) computes upper bounds of the infima to (19) or (21), respectively:

min
t≥0,(ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wi〈h(x, ξi), zi〉 ≤ t+ lP (x),

uP (x) ≤ t+
n∑
i=1

wi〈q(ξi), yi〉,

∀(x, y, z) ∈M(ξ1, . . . , ξn)

 . (31)
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If lP (x) and uP (x) are exchanged, the optimization problem (31) provides lower bounds of the infima
to (21). These observations may be of interest for the numerical solution of (21) if it is nonconvex.

3 Optimal scenario reduction for two-stage models

Next we discuss the scenario reduction approach for two-stage models based on the minimal informa-
tion distance (5) and the best approximation problem (9).
As in Section 1 let ξi, i = 1, . . . , N , be a large set of scenarios with probabilities pi, i = 1, . . . , N ,
that define a discrete probability measure P . For prescribed n ∈ N, n < N , we intend to determine
an index set J ⊂ {1, . . . , N} of cardinality |J | = n and new weights π̄j , j ∈ J , such that the
probability measure

P ∗J =
∑
j∈J

π̄jδξj

solves the optimal scenario reduction problem

min

{
sup
x∈X

∣∣∣∣∣∑
j∈J

πjϕj(x)−
N∑
i=1

piϕi(x)

∣∣∣∣∣ : J ⊂ {1, . . . , N}, |J | = n, π ∈ Sn

}
, (32)

where the functionsϕi(x) = Φ(q(ξi), h(x, ξi)), i = 1, . . . , N , are convex polyhedral onX . Problem
(32) represents a mixed-integer semi-infinite program. Compared with (15), (32) is based on Proposi-
tion 1 and, hence, on a (much) smaller upper bound for the difference of the optimal values. In addition,
the solution of problem (32) depends on the data of the two-stage stochastic program.
Problem (32) decomposes into finding the optimal index set J of remaining scenarios and into deter-
mining the optimal weights πj , j ∈ J , given J . The outer combinatorial optimization problem

min {D(J, P ) : J ⊂ {1, . . . , N}, |J | = n} , (33)

determines the index set J and can be reformulated as binary optimization problem similar to (15).
Here, the objective function D(J, P ) denotes the infimum of the inner program

min
π∈Sn

sup
x∈X

∣∣∣∣∣∑
j∈J

πjϕj(x)−
N∑
i=1

piϕi(x)

∣∣∣∣∣ . (34)

Any evaluation of the objective in (33) requires the solution of the best approximation problem (34).
Hence, compared to the problem (16) in the introduction, the infimum of problem (34) cannot be
computed explicitly.
For linear two-stage stochastic programs satisfying (A0)–(A2) the optimization model (34) contains
finite functions and is equivalent to the reduced linear semi-infinite program

min
t≥0,π∈Sn


t

∣∣∣∣∣∣∣∣∣∣∣

∑
j∈J

πjϕj(x) ≤ t+
N∑
i=1

piϕi(x)

N∑
i=1

piϕi(x) ≤ t+
∑
j∈J

πjϕj(x)

∀x ∈ X


(35)
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or to

min
t≥0,π∈Sn


t

∣∣∣∣∣∣∣∣∣∣∣

∑
j∈J

πj〈h(x, ξj), zj〉 ≤ t+
N∑
i=1

pi〈q(ξi), yi〉
N∑
i=1

pi〈h(x, ξi), zi〉 ≤ t+
∑
j∈J

πj〈q(ξj), yj〉

∀(x, y, z) ∈M(ξ1, . . . , ξN)


, (36)

where the set M(ξ1, . . . , ξN) is defined as in (22) with n replaced by N . Hence, the linear semi-
infinite program (36) has a comparably low number n + 1 of variables, but a (very) high-dimensional
index set.
Problems (35) and (36) mean: For a given convex combination of many convex polyhedral functions
ϕi(·) on X one is looking for the best convex combination of a given subset of convex polyhedral
functions that approximates the former uniformly.

4 Scenario generation for chance constrained programs

We consider a chance constrained program

min{g(x) : x ∈ X, P (P(x)) ≥ p},

where P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0} is a polyhedron depending on x, g is a linear objective g, X
and Ξ are polyhedral, h a function as described in Section 1 and p ∈ (0, 1) a given probability level.
Then we have f0(x, ξ) = g(x) and f1(x, ξ) = p− 1lP(x)(ξ), and the best approximation problem (9)
is of the form

min
t≥0, Pn∈Pn(Ξ)

t
∣∣∣∣∣∣
P (P(x)) ≤ t+ Pn(P(x))
Pn(P(x)) ≤ t+ P (P(x))

∀x ∈ X

 (37)

and, thus,

Pn(P(x)) =
n∑
i=1

wi1lP(x)(ξ
i) =

n∑
i=1

wi1lRr−(h(x, ξi)) (x ∈ X).

It is well-known that chance constrained optimization models with discrete probability distributions are
nonconvex in general (see, for example, [26, Section 2.2.2]), but can be reformulated as mixed-integer
programs. We follow here the presentation in [26, Section 2.2.2] and choose a constant M > 0 such
that

h(x, ξi)−M e ≤ 0 ∀x ∈ X, (38)

holds for each i = 1, . . . , n, where e = (1, . . . , 1)> ∈ Rr. Such constant M always exists as X is
compact. This allows to introduce binary variables zi ∈ {0, 1} such that zi = 0 if h(x, ξi) ≤ 0 for all
x ∈ X and zi = 1 otherwise, i = 1, . . . , n.

Then it is possible to reformulate (37) as mixed-integer semi-infinite program

min
t≥0, (ξ1,...,ξn)∈Ξn

(w1,...,wn)∈Sn
(z1,...,zn)∈{0,1}n


t

∣∣∣∣∣∣∣∣∣∣∣

P (P(x)) ≤ t+
n∑
i=1

wi(1− zi)
n∑
i=1

wi(1− zi) ≤ t+ P (P(x))

h(x, ξi)− ziMe ≤ 0, i = 1, . . . , n
∀x ∈ X


. (39)
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If the weights wi, i = 1, . . . , n, are fixed, problem (39) is a mixed-integer linear semi-infinite optimiza-
tion model.
Since mixed-integer linear programs containing ’big-M’ type constraints are often difficult to solve, one
is interested in strengthening the formulation of (39) by incorporating valid inequalities. A possible way
consists in introducing precedence constraints based on partial orders� on the index set {1, . . . , n}.
Such a partial order � is called strongly consistent for (39) in [46] if for all x ∈ X

i � j ∧ h(x, ξj) ≤ 0⇒ h(x, ξi) ≤ 0 .

It follows as in [46] that the constraints

zi ≤ zj for all i, j ∈ {1, . . . , n} such that i � j

are valid inequalities if � is a strongly consistent order for (39).
If the function h is of the special form h(x, ξ) = ξ − T (ξ)x with a linear (s,m)-matrix function T (·),
a strongly consistent order is i � j ⇔ ξi − T (ξi)x ≤ ξj − T (ξj)x, for all x ∈ X , where ≤ is
the component-wise inequality between elements of Rs. For the special function h(x, ξ) = ξ − Tx
and fixed weights wi, i = 1, . . . , n, problem (39) is a mixed-integer linear semi-infinite program of the
form

min
t≥0, (ξ1,...,ξn)∈Ξn

(z1,...,zn)∈{0,1}n


t

∣∣∣∣∣∣∣∣∣∣∣∣∣

P (P(x)) ≤ t+
n∑
i=1

wi(1− zi)
n∑
i=1

wi(1− zi) ≤ t+ P (P(x))

ξi − Tx− ziMe ≤ 0, i = 1, . . . , n
zi ≤ zj if ξi ≤ ξj, i, j = 1, . . . , n

∀x ∈ X


. (40)

The papers [31, 53, 56] are sources for deriving further valid inequalities.

5 Newsvendor with random demand: An illustration

We consider the classical newsvendor problem to illustrate the approach to scenario generation de-
veloped in Section 2. We recall that a newsvendor must place a daily order for a number of copies
x of a newspaper. He has to pay c monetary units for each copy and sells a copy at r units, where
0 < c < r. The daily demand ξ is a real random variable with (discrete) probability distribution
P ∈ P(N), Ξ = R+, and the remaining copies y(ξ) = max{0, x − ξ} have to be removed.
The newsvendor wishes that the order x maximizes his expected profit or, equivalently, minimizes his
expected costs, i.e.,

E[f0(x, ξ)] =

∫
R
f0(x, ξ)dP (ξ) = (c− r)x+ r

∫
R

max{0, x− ξ}P (dξ) (x ∈ R).

The model may be reformulated as a linear two-stage stochastic program with the optimal value func-
tion Φ(t) = max{0,−t}. Starting from

Φ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0} = sup{〈t, z〉 : W>z ≤ q}

with W = (−1, 1), q = (0, r)>, Y = R+ and h(x, ξ) = ξ − x, we obtain D = {z ∈ R : W>z ≤
q} = [0, r] and for x ∈ X = R+

E[f0(x, ξ)] = (c− r)x+ r

∫ x

0

(x− ξ)dGP (ξ) = (c− r)x+ r

∫ x

0

GP (ξ)dξ . (41)
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The latter is obtained using integration by parts, whereGP denotes the distribution functionGP (x) =
P ({ξ ∈ R : ξ ≤ x}) =

∑
k≤x pk of P and pk is the probability of demand k ∈ N. The unique

solution is the r−c
r

-quantile of P .

The corresponding optimal scenario generation problem is of the form

min
t≥0,(ξ1,...,ξn)∈Rn

(w1,...,wn)∈Sn


t

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wi(ξ
i − x)zi ≤ t+ FP (x)

FP (x) ≤ t+ r
n∑
i=1

wiyi

∀(x, y, z) ∈ R+ × Rn
+ × Rn :

yi + x ≥ ξi, 0 ≤ zi ≤ r, i = 1, . . . , n


, (42)

where FP is the convex expected recourse function

FP (x) = r

∞∑
k=1

pk max{0, x− k} . (43)

We note that Theorems 2 and 3 apply to (42) if the weights wi are fixed.
By incorporating FP from (43), (42) is equivalent with the best approximation problem

min
(ξ1,...,ξn)∈Rn
(w1,...,wn)∈Sn

sup
x∈R+

∣∣∣∣∣
∞∑
k=1

pk max{0, x− k} −
n∑
i=1

wi max{0, x− ξi}

∣∣∣∣∣ . (44)

We assume that the support of P is bounded, i.e., that the series representation in (43) is not infinite.
Let N ∈ N be such that pk = 0 for all k > N . Then FP is piecewise linear convex on R+ with
possible kinks at any k ∈ N, k ≤ N . The slope of FP at k is r

∑k
i=1 pi and it holds FP (x) =

r(x− E[ξ]) for x ≥ N where E[ξ] is the mean value of ξ, i.e., E[ξ] =
∑N

k=1 pkk.

Using the transformation idea from Proposition 2 (see [48]) we are able to transfer the generalized
semi-infinite program (42) into a semi-infinite one. To this end we define the mapping

t : Ξ× U → R, t(ξ, u) = u+ ξ ,

where U = R+ = {u ∈ R+ : x + u ≥ 0} for each x ∈ R+. Then the transformation y = t(ξ, u)
leads to t(ξ,U) = {y ∈ R+ : x + y ≥ ξ} for all (x, ξ) ∈ R2

+ and the optimization model (42) is of
the form

min
t≥0,(ξ1,...,ξn)∈Rn

(w1,...,wn)∈Sn

t
∣∣∣∣∣∣∣∣∣

n∑
i=1

wi(ξ
i − x)zi ≤ t+ FP (x)

FP (x) ≤ t+ r
n∑
i=1

wi(yi + ξi)

∀(x, y, z) ∈ R+ × Rn
+ ×Dn

 , (45)

where u is replaced again by y. If the support of P is contained in [0,M ] for some M ∈ N, we can
also replace both R+ in (45) by [0,M ] and arrive at a compact index set of the semi-infinite program.
Hence, a solution of (45) by a discretization method (see Appendix) is possible.

6 Conclusions

The generation of scenarios is an important issue for solving applied stochastic programming models.
Presently Monte Carlo sampling methods are the preferred approach (see [24]), but besides Quasi-
Monte Carlo and sparse grid methods also best approximation methods are in use. The latter utilize
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metric distances of probability measures and suggest to determine discrete measures as best approx-
imations to the underlying probability distribution (see [33, 35]).
Existing scenario reduction methods [10, 18] are based on the same theoretical background. How-
ever, we pointed out in Section 1 that stability results indicate that such probability metrics only lead
to coarse estimates of distances of optimal values and solutions. Decisions on scenario generation
and reduction based on such estimates appear somewhat questionable and should at least be further
examined. This is supported by slow convergence rates in terms of such probability metrics. But a
stability result like Proposition 1 also suggests to make use of the minimal information distance dF
(see (6), (5)) as a basis for best approximation methods. This observation served as the guideline
for the present paper. It turned out that at least for linear two-stage models the best approximation
problem for scenario generation has favorable properties. It represents a best uniform approximation
problem for the expected recourse function by a convex combination of polyhedral functions generated
by scenarios. The latter can be rewritten as generalized semi-infinite optimization model and in many
cases transformed into a standard semi-infinite program. If either only right-hand sides or only costs
are random the optimization model is convex. In any case there exists a well-developed theory and
a number of solution algorithms for such models (see [17, 22, 40, 50, 51, 52]). Scenario reduction
problems for linear two-stage models can be decomposed into solving a combinatorial optimization
problem and a linear semi-infinite program, where the first determines the remaining scenarios and
the second their new probabilities.
The characterization of scenario generation with respect to the distance dF as best approximation
problem for the expected recourse function provides a link to bounding schemes for the expected
recourse (see [26, Section 3.2.1]). It reveals the close relationship of scenario generation, scenario
reduction and bounding.
The aim of the present paper consisted in showing that employing minimal information distances for
scenario generation and reduction leads to interesting optimization models. Their solution should re-
sult in improved decisions for scenario generation and reduction at least for two-stage models. In a
next step we are planning to confirm this by numerical experiments.

Appendix

We consider semi-infinite programs of the form

P [V ] min{g0(u) : u ∈ U, gj(u, v) ≤ 0, j = 1, . . . , p, ∀v ∈ V },

where U ⊂ Rm is closed, V ⊂ Rk is compact and the functions g0 : U → R, gj : U × V → R,
j = 1, . . . , p, are continuous. Let Vi, i ∈ N0, be an increasing sequence of finite subsets of V such
that limi→∞ supv∈V minvi∈Vi ‖v − vi‖ = 0.
Discretization algorithm:
Step 0: Set i = 0, D0 = V0.
Step 1: Find a solution ui of P [Di].
Step 2: Find a solution vi of maxv∈Vi+1

maxj=1,...,p gj(ui, v).
Step 3: If γi = maxj=1,...,p gj(ui, vi) > 0, then select a set Di+1 such that

Di ∪ {vi} ⊆ Di+1 ⊆ Vi+1.

Step 4: If γi ≤ 0 then stop.
Step 5: Set i = i+ 1 and go to Step 1.
If the feasible set F [V ] of P [V ] is nonempty and the level set {u ∈ F [V0] : g0(u) ≤ g0(u0)} is
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bounded for some u0 ∈ F [V ], the infima of P [Di] converge to the infimum of P [V ] and the sequence
(ui) has an accumulation point which solves P [V ]. For a proof of this result we refer to [39, Theorem
2.1] and for further information and discussion to [40].
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