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Abstract 

The propagation of pulses in optical communication systems in which attenu-
ation is compensated by phase-sensitive amplifiers is investigated. A central issue 
is whether optical fibers are capable of carrying several pieces of information at the 
same time. In this paper, multiple pulses are shown to exist for a fourth-order nonlin-
ear diffusion model due to Kutz and co-workers [10]. Moreover, criteria are derived 
for determining which of these pulses are stable. The pulses arise in a reversible 
orbit-flip, a homoclinic bifurcation investigated here for the first time. Numerical 
simulations are used to study multiple pulses far away from the actual bifurcation 
point. They confirm that properties of the multiple pulses including their stability 
are surprisingly well predicted by the analysis carried out near the bifurcation. 

1 Introduction 

In recent years pulse propagation in optical fibers has attracted much interest. For long-

distance communication systems, compensating for the attenuation of pulses inherent in 
the fiber is an important issue. One effective approach is to use Erbium-doped amplifiers, 

see [9] or [13]. As an alternative, Kutz and co-workers [10] have recently proposed the use 
of periodically spaced phase-sensitive amplifiers. Each such amplifier exhibits an associated 

reference phase. The part of the signal in phase with this reference phase is amplified, while 
the out-of-phase component is attenuated, see [10] for the details. It was shown in [10] that 

the dynamics of the in-phase component U of the pulse amplitude under the influence of 

phase-sensitive amplifiers is governed by the fourth-order equation 

-(1.1) au 
ac 

Here, ( E Ill measures the distance along the fiber on a length scale which is large compared 

to both distance of the amplifiers and dispersion length. The variable T E Ill is time in a 

frame moving with the group velocity of light in the optical fiber. Furthermore,"' is related 

to the reference phase associated with each amplifier. The parameter .6aa measures the 
amount of over-amplification, that is, the amount of energy remaining after compensating 
for the loss in the fiber. Finally, rz is the product of linear loss rate r in the fiber and the 
distance l of the amplifiers. It is useful to introduce new variables 

a= -/K,, _ 
1 

_ tanhfl 
rJ- rz . 
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Figure 1: The bifurcation diagram. Dotted lines correspond to unstable R(T), while solid 
lines correspond to stable R( T). 

Note that O' = O'(I'l) is a monotone increasing diffeomorphism of the interval (0, oo) onto 
(0, 1). Thus it is possible to use the parameter(]' instead of rz. For (]' = 0, equation (1.1) 
can be factored into the product of two second-order operators. It is straightforward to 
calculate that (1.1) then becomes 

( ) au ( a2 2 2 2)) ( a2 2 2) ( (au) 2 u2a2u) _ 1.2 B( + BT2 +2U -(2a -77 BT2 +2U -77 U +40' 3U BT + BT2 - 0. 

There is a one-parameter family of pulse solutions 

(1.3) R(T) = 77 sech 77T 

of equation (1.2) for O' = 0. Stability of these steady states is a critical issue as only stable 
pulses are expected to be physically realizable. Kath and Kutz [11] proved that, close to 
the turning point .6.a = 0, the upper branch 77 > 0 is stable while the lower branch 77 < 0 
is unstable. For 77 > v'2a a radiation instability occurs. In [2]. it has been shown that the 
upper branch is in fact stable for all .6.a E (0, a4 /4), see Figure 1. 

The issue addressed in this article is whether the fiber is capable of carrying multiple pulses. 
These solutions represent the propagation of several pieces of information along the fib er. 
Besides the existence of multiple pulses, it is important to determine their stability relative 
to equation (1.2). We shall consider this problem as a bifurcation problem for the steady-
state equation 

( ) ( a
2 2 ( 2 2)) ( a2 2 2) ( (au) 2 2a2u) 1.4 BT2 + 2U - 2a - 77 BT2 + 2U - 77 U + 40' 3U BT + U BT2 = 0 

2 



near the primary pulses R(T) for positive O' close to zero and 1771 E (0, v'2a). In the original 
parameters, this corresponds to either small distances of consecutive amplifiers or a small 
linear loss rate along the optical fiber. 

There are two important features of (1.4) we shall exploit. These are time-reversibility, 
that is, U(-T) is a solution whenever U(T) is, and the Z 2-symmetry U-+ -U. For generic 
reversible systems, multiple pulses are expected if the eigenvalues at the zero equilibrium 
are complex, see [8] or [3]. However, the eigenvalues of (1.4) at U = O are real 

(1.5) .\1,2 = ±.j2a2 - 77 2 .\3,4 = ±17 

for 1771 E (0, v'2a). Thus multiple pulses for (1.4) are expected to occur at codimension-one 
bifurcation points. Surprisingly, for O' = 0, the stable pulses on the upper branch are 
degenerate. Indeed, comparing (1.3) and (1.5), they converge with the larger exponential 
rate 77 to zero. It is well known that for non-reversible systems satisfying a non-degeneracy 
condition this so-called orbit-flip bifurcation leads to the existence of multiple pulses, see 
[21] and [15]. 

In this article, we investigate the orbit-flip bifurcation for arbitrary reversible systems and 
apply the resulting theory to equation (1.4). The method employed is due to Lin [12] and 
was further extended in [15]. First, under non-degeneracy assumptions, it is shown that 
many multiple pulses do bifurcate which follow the figure-of-eight formed by R(T) and 
-R(T). In fact, denote Rand -R by up and down, respectively, see Figure 4, then any 
symmetric or anti-symmetric sequence of ups and downs is realized by a multiple pulse 
following R and -R in the same order. Here, symmetric (anti-symmetric) refers to reading 
the sequence backwards (and swapping up and down). In particular, up-up- ... as well as 
up-down-up- ... pulses of any length exist. This general result is then applied to equation 
(1.4). It is shown that all non-degeneracy hypotheses are actually met by equation (1.4)! 
In particular, the multiple pulses described above occur for (1.4) for O' > 0, which is the 
physically relevant parameter regime. As in [2], we shall make use of the decomposition of 
the nonlinear operator into two second-order operators. This fact as well as formula (1.3) 
for the primary pulse affords an actual calculation of explicit solutions for the linearized 
equation along the primary pulses and the associated adjoint equations. 

Stability of multiple pulses amounts to proving stability of the primary pulse Rand com-
puting N critical eigenvalues near zero, see [1]. Note that stability of the primary pulse 
has been proved in [2]. Here, the critical eigenvalues are calculated applying the results in 
[19]. It turns out that only pulses of a certain form are stable. Indeed, for a multiple pulse 
to be stable it must have every up piece followed by a down, and every down followed by 
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an up. Thus, in particular, all up-up-... and down-down-... pulses are unstable, whereas 
up-down-up-down-... and down-up-down- ... pulses are stable. 

We shall mention that a reversible orbit-flip bifurcation was observed numerically by [4] 
in a fourth-order Hamiltonian system for gravity-capillary water waves. However, Hy-
pothesis (H5)(iii) cannot be satisfied for Hamiltonian systems on account of [17, Remark 
2]. Nonetheless, the basic strategy developed herein should be applicable to Hamiltonian 
orbit-flip bifurcations as well. This is work in progress and will appear elsewhere. 

The paper is organized as follows. In Section 2, the main results on reversible orbit-flip 
bifurcations and the associated eigenvalue problems are given for general systems. These 
results are proved in Section 3 and applied to equation (1.2) in Section 4. Finally, Section 
5 contains numerical simulations for equation (1.2). 

Acknowledgement. Each of the authors thanks Bill Kath for introducing them to this 
problem and for many helpful discussion since then. CJ was partially supported by the Air 
Force Office of Scientific Research under grant F49620-95-1-0085 and the National Science 
Foundation under grant DMS-94-03774. BS was partially supported by a Feodor-Lynen-
Fellowship of the Alexander von Humboldt Foundation. 

2 The reversible orbit-flip bifurcation 

Consider the ordinary differential equation 

(2.1) u= f(u,µ) ( u, µ) E R 2n x R, 

-where f is a smooth nonlinearity such that f(O, µ) = 0 for all µ E R. Throughout, we 
assume that zero is a hyperbolic equilibrium of (2.1) for allµ. We shall impose the following 
hypotheses on (2.1). 

Suppose that (2.1) admits a homoclinic solution h(t) forµ= 0 converging to zero. 

(Hl) The solution h(t) solves (2.1) forµ= 0 and satisfies 

(i) 

(ii) 

lim h(t) = 0 
t-+-±oo 

Th(o) Ws(O) n Th(o) Wu(O) = Rk(O). 

We are going to assume that (2.1) is time-reversible, that is 
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(H2) There exists a linear operator R: R2n-+ R2n with R2 =id and dim Fix R = n such 
that J(Ru, µ) = -Rf(u, µ) holds for all (u, µ) E R2n x R. We may assume that R 
is an isometry. Finally, assume that h(O) E Fix(R). 

We call a solution u(t) time-reversible or symmetric with respect to R if u(O) E Fix R. Any 
symmetric solution u satisfies 

(2.2) u(-t) = Ru(t) t ER. 

The next hypothesis is not needed for most of our results. However, if it is met, the 
results can be strengthens a lot. Moreover, based on the conclusions drawn from the main 
results under the assumption that (H3) is true, numerical simulations can be used to check 
whether Hypothesis (H3) is actually satisfied for equation (1.4). Thus, let us suppose that 
equation (2.1) is in addition conservative, that is admits a first integral. 

(H3) Let H: R 2n x R-+ R be a smooth function such that (\lH(u,µ),f(u,µ)) = 0 for 
all (u,µ) E R 2n x R with \7 =Vu. Moreover, assume that \lH(h(O),O) # 0. 

Hypothesis (H2) implies that the spectrum of Duf (0, µ) is symmetric with respect to 
the imaginary axis, see for instance [20]. We assume that the spectrum decomposes as 

follows. 

(H4) The spectrum of the equilibrium u = 0 is given by 

with Reo-5 <-at< -auu(µ), Reo-u > ar > auu(µ) for allµ. Moreover, ±au(µ) and 
±auu(µ) are simple eigenvalues. We denote the spectral projections onto the leading 
simple eigenvalues ±au(µ) by Qs and Qu. Moreover, the spectral projection onto o-5 

is denoted by Qr. 

Moreover, (H2) does imply that there exist a smooth one-parameter family hµ(t) of homo-
clinic solutions for µ close to zero satisfying (Hl) such that h0 (t) = h(t), see [20]. Owing 
to (Hl)(ii), there exists a unique, up to constant multiples, bounded solution 'lfa(t) of the 
adjoint variational equation 

w = -Duf(h(t), O)* w. 

In fact, 
(2.3) 

holds. The definition of an orbit-flip bifurcation occuring at parameter value µ = 0 now 
reads 
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(H5) Assume that h(t) E wss(o) and the limits 

(i) lim h(t) ecxuut - Vss 
t-+oo 

(ii) lim dd hµ(t)lµ=O ecxut - Vs t-+oo µ 
(iii) lim 'l/;(-t) ecxu.t 

t-+oo 
- Ws 

exist and are non-zero. Then the limit 

(iv) lim (7/;(-t), h(t)) e 2cxuut 
t-+oo 

exists, too, and we assume S =f. 0. 

It is a consequence of (H5) that Vs and Ws are left and right eigenvectors of Duf (0, 0) 
associated with the eigenvalue -au while Vss is an eigenvector of Duf (0, 0) corresponding 
to -auu, see [15, Lemma 1.7]. Hence, (H5) states that hµ(t) switches through the strong 
stable manifold with non-zero speed as µ passes through zero, see Figure 2. We define 

S~ ·-.-

using Hypothesis (H5). 

As we are interested in systems derived from nonlinear Schrodinger equations, we are going 
to assume the existence of an additional symmetry of (2.1). 

(H6) Assume that (2.1) is equivariant with respect to Z 2 = {id, -id} = {1, -1 }, that is 

f(-u, µ) = -f(u, µ) ( u, µ) E R 2n x R. 

Thus, the homoclinic solutions h(t) and -h(t) form a figure-of-eight in phase space, see 
Figure 3. Note that as -id and R commute the nonlinearity is time-reversible with respect 
to -R, too. We call a homoclinic solution q(t) symmetric if either q(O) E Fix(R) or 
q(O) E Fix(-R) holds after a suitable choice oft= 0. 

Remark Similar results to the ones given below hold for more general Zrsymmetries. 
In fact, it is only necessary that f is equivariant with respect to a linear involution K : 

R 2
n ---t R 2n commuting with R and satisfying Klspan{vs,Vss} = - id or else Klspan{vs,Vss} = id 

and h(O) f. Fix K. 

The solutions we shall describe are so-called N-pulses. These are homoclinic solutions 
staying in a small tubular neighborhood of the figure-of-eight configuration and intersecting 
an appropriate section :E N-times. Here, :E = :Eid U :E-id where :Ee is a section transverse 
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~(-t) 

hµ(t) forµ > 0 

hµ(t) forµ < 0 

Figure 2: The homoclinic solution passes through the strong stable manifold with non-zero 
speed. 

Fix(-R) 

(------------41---------- Fix(R) 
~-id 

R 

~-R 

Figure 3: The figure-of-eight configuration. 
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(1, -1) 

(1,1) (1,1,1) 

2-pulses 3-pulses 

Figure 4: N-pulses h'Y(t) for different sequences I· 

to the vector field placed at fJh(O) for {) E Z 2, see Figure 3. We may assume that both 
sections are invariant under R. The shape of an N-pulse depends on the order in which it 
intersects the sections :Ee for {) E Z 2, that is, the order in which it follows either h(t) or 
-h(t). 

Definition We call a sequence I = (Ii )i=I, ... ,N with Ii E Z 2 = {id, - id} admissible if 
either IN+I-i = Ii for all j or IN+I-i = -Ii for all j. 

Then we have the following theorem. 

Theorem 1 Suppose that {Hi), (H2), (H4), {H5) and {H6) are satisfied. Then, for any 

N > 1 there exists a 8 N > 0 such that the following holds. 

Choose any sequence bi )i=I, ... ,N of length N. If (H3) holds as well, it can be chosen 
arbitrarily, otherwise it must be admissible. 

Then, for anyµ with lµI < 8N and signµ= S, there exist an N-pulse h.r(t) such that h'Y(t) 
intersects the sections :Ee precisely in the order given by{) =Ii for j = 1, ... , N, see Figure 

4. The distances of consecutive humps are approximately given by 

for some constant Lo E ~. 

If {H3) holds, then the N -pulses described above are unique. They are symmetric if and 
only if the sequence is admissible. 

Otherwise, the N -pulses described above are symmetric. Pulses corresponding to sequences 

I = (id, ... , id) and I = (id, - id, id, - id, ... ) are unique. If there exists any other N-

pulse then the corresponding sequence is either not admissible or at least one distance of 

consecutive humps is given approximately by (l + /3) T for some f3 > 0. 
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Note that Theorem 1 is valid without Hypothesis (H6). Then the only sequences guaranteed 
are (id, ... , id) and, in particular, all N-pulses are unique. 

Next, stability of the N-pulses is addressed. By [1], this amounts to computing N crit-
ical eigenvalues of the PDE linearization at each particular N-pulse. Assuming that the 
steady-state equation becomes equation (2.1) after rewriting it as a first order system, the 
eigenvalue problem of the PDE linearization evaluated at an N-pulse h-y becomes 

where Bis an n x n-matrix arising when rewriting the PDE as a first order system. The 
issue is to calculate bounded solutions v, i.e. eigenfunctions, and the associated values of 
,\ near zero. Thus, more general, we shall describe all bounded solutions v E C1(1R, ((;2n) 

of the equation 
(2.4) 

for ,\ E Us(O) C C, where h-y denotes the N-pulse described in Theorem 1 for a given 
(admissible) sequence I of length N and existing for parameter value µ. Here, B is a 
bounded, continuous and matrix-valued function. Equation (2.4) is a generalized eigenvalue 
problem of the form 

Lv = .\Bv. 

Generalized eigenfunctions of (2.4) corresponding to an eigenvalue A are functions Vi sat-

isfying 

with v0 = 0. The algebraic multiplicity of eigenvalues can be defined in the usual way. We 
assume a non-degeneracy assumption with respect to A. 

(H7) Suppose that the Melnikov integral 

M := L: (1/;(t), B(t) h(t)) dt # 0 

1s non-zero. 

The next theorem describes the set of A E Us(O) C C for 8 > 0 small for which (2.4) 
possesses a bounded solution v. 

Theorem 2 Suppose that {H1), (H2), (H4), {H5) and {H6) are satisfied. Choose N > 1, 
a sequence I of length N andµ with lµI <{JN and signµ= S. 
If {H3) holds, the sequence I can be chosen arbitrarily, otherwise it must be admissible. 
Let h-y be the corresponding solution described in Theorem 1. 
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Then there exist precisely N solutions (Aj,Vj) E <C x C 1(1R,C2n) of (2.4) with IAI < 8 

counted with multiplicity. Moreover, we have 

and 

#{i I sign ReAi =sign MS} 
#{i I signReAi = -signMS} 
#{i I Ai= O} 

- # { i I Ii # li+l, 1 ~ i < N} 
- #{i I Ii= li+l, 1 ~ i < N} 
- 1 

'Aj I ~ ]{N lµlauu /(auu_au) 

asµ -r 0 for some constant KN. Here, S and M are defined in Hypotheses (H5) and (H7), 

respectively. 

If there is another N -pulse h-y of (2.1), there exist solutions (A, v) of (2.4) with Re A > 0 
as well as solutions with Re A < 0. 

Theorem 2 is valid without imposing Hypothesis (H6). Again, the only sequences guar-
anteed are (id, ... , id) and the real part of all solutions (A, v) is either positive or negative 
independent of N. Note that N-pulses are unique in this case. 

3 Proofs of Theorem 1 and 2 

We shall employ a Lyapunov-Schmidt reduction for proving the theorems. Existence is 
done using Lin's method, see [12] and [15, 16], while stability will follow from [19]. 

Throughout, we assume that (Hl), (H4), (H5) and (H6) are satisfied. Moreover, the vector 
field is assumed to be time-reversible, see Hypothesis (H2), and we consider also the case 
where it is in addition conservative, that is satisfies (H3). 

Convention. Throughout this section, we use the convention that the ranges of the indices 
i and j are i = 1, ... , N and j = 1, ... , N -1 as long as stated otherwise. Also, we denote 
several, possibly different positive constants by K > 0. Finally, [x] denotes the largest 
integer smaller than x for x E 1R. 

3.1 Existence 

3.1.1 Homoclinic Lyapunov-Schmidt reduction 

By Hypothesis (H2), there exist a unique family hµ(t) of homoclinic solutions for µ E 1R 
small, see [20]. They are symmetric as well. Then the adjoint equation 

w = Duf(hµ(t), µ)* w 
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possesses a unique bounded solution 'ljJ µ ( t). We are interested in solutions following the 
primary pulses h(t) and -h(t) in a given order; = ( /i)i=l, ... ,N with /i E Z 2. At this point, 
the sequence; is not assumed to be admissible. It will turn out that solutions with the 
above properties can be distinguished by the time-of-flight 2Tj needed for the j th loop in 
between the consecutive sections :E"Yi and :E"Y;+i. Thus, we seek solutions uf (t) such that 

iJ,7"" - f(u£,µ) fort E (-Ti-1,0) i 

·+ f(ut,µ) for t E (0, Ti) U· i 

(3.1) u'f(O) E :E"Yi 

ut(O) - u£(0) 
uj(Ti) - uj+i(-Ti), 

with lu'f (t)-;ih(t)l small. Here, as we look for homoclinic solutions, we set To= TN = oo, 
that is u:L(t) E wu(O) and ut(t) E W 8 (0). Lin's method reduces (3.1) to a system of N 
equations. In fact, it is concerned with the weaker problem 

(i) ·± f(u'f,µ) for t E (-Ti-i, 0) or t E (0, Ti) U· -i 

(ii) u'f(O) E :E"Yi (3.2) 
ui(O) - ut(O) span /i 'l/;µ(O) ( .. ") E iii 

(iv) uj(Ti) - uj+i(-Ti), 

that is, it allows for jumps of the solutions ut(t) and u£(t) at t = 0 in the one-dimensional 
subspace 

We have the following proposition. 

Figure 5: The definition of the functions ui(t) associated with a 2-pulse. 
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Proposition 1 ([12],[15]) There exists a 8 > 0 such that system (3.2} has a unique 

solution ( Uf) for any given sequence T = (Tj) with Tj > 1/8. Moreover, {3.1) has a 

solution if and only if 

Then the solution is given by ( Uf). 

Let us consider time-reversible systems next. Symmetry of pulses imposes constraints on 
the possible sequences I as well as on the return times T. Indeed, both sequences have to 
be admissible where admissibility of sequences of return times T = (Tj) is defined by 

Definition We call a sequence T = (Tj)j=l, ... ,N-l admissible if TN-j = Tj for all j. 
Any admissible sequence (Ti) is determined by its arbitrarily chosen entries Tj for j 

1, ... , [N/2]. 

Then we have the following corollary to Proposition 1. 

Lemma 3.1 Assume that {H2) holds. Then the unique solution ( ui) of {3.2) associated 

with sequences I and T is time-reversible with respect to either R or -R if and only if/ 

and T are both admissible. In that case, the jumps ~ satisfy 

for all i. 

Proof. The argument here is similar to the one given in [20] for 1-homoclinic solutions. 
It is clear that admissibility of/ and T is necessary for symmetry of ( ui)· Let us therefore 
suppose that I and T are admissible. By definition, there exists fJ E Z 2 such that /N+l-i = 
e,i for all i. Consider the family 

v;(t) 
vi(t) 

.- RB ut+i-i(-t) 

.- Re u;;+i-i(-t) 
t E (-TN+l-i, 0) = (-Ti-i, 0) 
t E (0, TN-i) = (0, Ti)· 

Note that we already used admissibility of T. We show next that the family ( vr) solves 
(3.2), too, whence by uniqueness we obtain u = v and u is symmetric with respect to Re. 
First, v solves the ordinary differential equation as 

vt -Reu;+i-i =-Re f(u;+i-i,µ) 

- J(RBu~+i-i,µ) = J(vr,µ) 

12 



by (H2) and (H6). Moreover, 

using 82 =id, RB= BR and admissibility of / as well as the definition of fJ. Next, we have 

v;(O) - vt(O) fJ R ( ut+i-i(O) - u;+1-i(O)) 

E span fJ RIN+i-i'l/Jµ(O) =span Ii R'l/;µ(O) =span Ii 'l/;µ(O) 

as R'l/;µ(O) = 'l/;µ(O). By the same token, (3.2)(iv) is satisfied. Indeed, 

vj(Tj) - vj+1 (-Tj) e Ru;+1-i(-Ti) - B Rut_i(Ti) 

e Ru;+l-j(-TN-j) - e Rut+1-j(TN-j) = 0. 

Therefore, we conclude Uf = Vf for all i by uniqueness. Finally, we obtain 

ei(T, µ) - (Ii 'l/;µ(O), u£(0) - ut(O)) = (Ii 'l/;µ(O), vi(O) - vt(O)) 

- (Ii 'l/;µ(O), BR (ut+i-i(O) - u;+i-i(O))) 

- (fJ R1i 'l/;µ(O), ut+i-i(O) - u;+i-i(O)) 

(IN+l-i 'l/;µ(0), ut+i-i(O) - u;+l-i(O)) 

- -eN+l-i(T, µ) 

using u = v, admissibility of I and R 'l/;µ(O) = 'l/;µ(O). 

Thus, as far as symmetric solutions are concerned, it suffices to solve the system 

i=l, ... ,[~], 

II 

for admissible sequences I and T. Indeed, Lemma 3.1 shows that the remaining jumps are 
zero as well. Note that the variables are µ and Tj for j = 1, ... , [ N /2]. 

Next, consider conservative systems. Then we have the following corollary to Proposition 

1. 

Lemma 3.2 Assume that {H3) holds. Suppose that, for given sequences I and T, we have 

k = 1, ... , N -1. 

Then ~N(T, µ) = 0 vanishes as well. 
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Proof. Again, the argument is similar to the one given in [20] for 1-homoclinic solutions. 
As To = oo and ek(T, µ) = 0 fork= 1, ... , N-I, the functions ut(t) with k = 1, ... , N -1 
and u;(t) do form a solution contained in the unstable manifold of zero. In particular, as 
H is a conserved quantity, we obtain 

(3.3) H(u;(o),µ)-H(ut(o),µ) = o. 

On the other hand, we have 

(3.4) 

by normalizing IV H(!Nhµ(O), µ)I = 1. Using Taylor expansion for the difference (3.3) 
together With (3.4), is it easy to See that eN = 0 must Vanish, too. II 

Therefore, for conservative systems, it suffices to solve the first N-1 bifurcation equations as 
then the last one vanishes automatically. Note that Lemma 3.2 is valid without additional 
time-reversibility. 

3.1.2 Deriving the bifurcation equations 

By rescaling time, we may assume that the leading eigenvalue au(µ) =au is independent 
ofµ. We cite the following theorem. 

Theorem 3 ([16]) Assume {H1), {H2) and {H6). Choose any sequences / = (Ji) and 

T =(Ti) with Ti> 1/8. Then the jumps e = (ei(T, µ)) are given by 

where the remainder term satisfies 

IR;(T, µ)I = o( e-<>"T;_, (lhµ(-T;-1)1 + lhµ(Ti-1)1)2 + e-<>"T; (lhµ(-1i)I + lhµ(T,)1)2+ 
( e-2<>"T;_, + e-2<>"T;) R) 

with 

I.kl < supk=l, ... ,N (e-<>"T• (IQ"hµ(-Tk)I + IQ•hµ(Tk)I)+ 

e-<> .. (µ)T• (lhµ(-Tk)I + lhµ(Tk)I) + e-<>"T• (lhµ(-Tk)l 2 + lhµ(Tk)l 2)). 
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The derivatives of the remainder terms with respect to Tk and µ can be estimated by 

I Dr,_, R;(T, µ)I 0 e-a"T;_, (lhµ(-T.-1) I + lhµ(T;-1)1)2 + e-Za"T;_, R) 
IDr,R;(T, µ)I 0 e-a"T; (lhµ(-T;)I + lhµ(T;)l)2 + e-2a"T; R) 
IDrkRi(T, µ)I 0 (e-2auTi-1 + e-2auTi) (e-auTk (IQuhµ(-Tk)I + IQshµ(Tk)I)+ 

e-auu(µ)Tk (jhµ(-Tk)I + jhµ(Tk)I) + e-auTk (lhµ(-Tk)l 2 + lhµ(Tk)l 2 )+ 
e-2a"T• R)) fork =fa i, i + 1 

IDµRi(T, µ)I < R 
uniformly in T and µ. 

We shall introduce new variables by defining 

(3.5) 

with 0 ~ aj ~ ]{ and 0 ~ r ~ ro. Let 

auu(µ) 
a(µ)= -1 > 0 au 

and a0 = a(O). 

Lemma 3.3 Assume that the hypotheses of Theorem 1 are satisfied. In the new variables 

( aj, r, µ) the jumps read 

6 (a, r, µ) µ a1 r - S a~+a(µ) rI+a(µ) + o(la1I ( rl+<>(µ) r 13 + r Iµ I (lµI + ri3))) 

ei( a, r, µ) µ ai-1 r - s ai~~(µ) rl+a(µ) - 8i (µair+ s a:+a(µ) r1+a(µ))+ 

o( (la;-11 + lad) (ri+"<"l r 13 + r lµI (lµI + r 13 ))) 

eN( a, r, µ) = µ aN-1 r - Sa~":_~(µ) rI+a(µ) + o(laN-1 I (ri+a(µ) r 13 + r lµI ( lµI + ri3))) 

for i = 2, ... , N -1 up to a non-zero constant factor. Here, 

(3 = ming,2(ot - cr),o} 

The constants 8i are defined by 

8i = /i-1 /i+i E {±1} 

for i = 2, ... , N -1. The remainder terms are C 1 in (a,µ) for ai > 0. The bifurcation 

equations can be extended to aj < 0 in a Lipschitz continuous way. 
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Proof. We have 

(3.6) µ e-aut Vs + e-aUU(µ)t Vss + Vr(t) + 
0 (lµI (lµI e-aut + e-2aut + e-auu(µ)t) + e-2auu(µ)t) 

due to Hypothesis (H5) and [15][Lemma 1.7] with vr(t) E RQr and 

Similarly, using [15] [Lemma 1.8], we obtain 

with Wr(-t) E R( Qr)* and 

Therefore, for 0 E Z2, the scalar product appearing in Theorem 3 is given by 

('l/;µ(-t), Ohµ(t)) 

µ ( w.(µ ), Ov.) e-2a•t + (w •• (µ ), Ovss) e-2a""(µ)t + 0 ( e-20<""(µ)t ( e-a•t + e-2(ar -a"")t) + 
JµJ e-2a"t (Jµ J e-a•t + e-2a"t + e-a""(µ)t)) 

_ µ (w., ()v.) e-2a"t + (w • ., Ov •• ) e-2a""(µ)t + 0 ( e-2a""(µ)t ( e-a•t + e-2(ar -a"")t) + 
JµJ (JµJ e-2<><"t + e-2a""(µ)t) + JµJ e-2a"t ( e-<><""(µ)t + e-2a"t)) 

0 (w., v.) (µ e-2a"t - s e-2a""(µ)t) + 0 ( e-2a""(µ)t ( e-a•t + e-2(ar -a••)t) + 
JµJ (JµJ e-2a"t + e-2a""(µ)t) + JµJ e-2a"t ( e-a""(µ)t + e-2a"t)). 

Note that sign S = sign (w55 , Vss)· The estimates are valid for derivatives with respect to 
t, too. Thus, using the new variables (a, r) we obtain 

('l/;µ(-Ti), Ohµ(Ti)) = 0 (ws, V5 ) (µair - S ai+a(µ) r1+a(µ)) + 
0 (Ja;Jl+"'(") rl+<><(µ) rf3 + JµJ Ja;J r (JµJ + rf3)) 

with 

f3 = min g, 2 (ar - auu),a }· 

The analogous formula holds for ('l/;µ(Ti), Ohµ(-Ti)). Moreover, using the formula for hµ(t) 
obtained above, we see that 

R = sup (lµI e-2auTk + e-2auu(µ)Tk) = O(lµI r + r1+a(µ)). 
k=l, ... ,N 

16 



Thus the remainder term reads 

IR;(T, µ)I = 0 (rt (1µ12 (la;-1 I + ia;I) + r"(t<) (la;-111+"(") + la;IH"(")) )+ 
( lai-1 I + la;!) r2 (!µI + r"("))). 

Substituting the above into the expressions for the jumps stated in the previous theorem, 
results in 

ei( a, r, µ) µ ai-1 r - S ai~:(µ) rl+a(µ) - 8i (µair - S aj+a(µ) rHa(µ))+ 

0 (lai-1 ll+a(µ) rI+a(µ) ,,.,e + lµl lai-1 I r (lµI + r.6)) + 
0 (laill+a(µ) rI+a(µ) ,,..e + lµl lail r (lµI + r,8)) + 
o(r~ (lµl2 (lai-11 +!ail)+ ra(µ) (lai-1ll+a(µ) + laill+a(µ)))+ 
(lai-11 + lail)r2 (lµI +ra(µ))) 

- µ ai-1 r - S aj~;(µ) rl+a(µ) - 8i (µair - S aj+a(µ) rl+a(µ))+ 

o((lai-11 +!ail) (rl+a(µ) ,,.f3 + r lµI (lµI + r,e))). 

As we are only interested in zeroes of the bifurcation equations, we have omitted the 
non-zero and constant factor 

in front of ei· Owing to the chain rule and the estimates in Theorem 3, the remainder 
term is differentiable in aj up to aj = 0. By [15, 16] the bifurcation equations can then be 
extended to negative values of aj in a Lipschitz-continuous way. II 

Owing to the ambiguity in the variables (aj, r), we have 

(3.8) 

for arbitrary constants c E JR. 

3.1.3 Solving the bifurcation equations 

According to Lemma 3.3, we have to solve the system 

(3.9) ei( a, r, µ) = µ ai-1 r - s ai~:(µ) ,I+a(µ) - 8i (µair - s ai+a(µ) rl+a(µ)) + 
o((lai-11 + lail) (rl+a(µ) r,e + r lµI (lµI + rf3))) 

for i = 1, ... , N with a 0 = aN+l = 0. This suggests the scaling 

(3.10) 
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Substituting (3.10) into (3.9) yields 

after factorizing the term S rl+cxo. Notice that 

for any /3 < a 0 • It suffices to solve (3.11 ). Indeed, we have 

Lemma 3.4 Any non-trivial solution (a, r, µ) of {3.9) is given by a corresponding solution 
of {3.11). 

Proof. Consider (3.9) 

µair - S ai+cx(µ) rl+cx(µ) + 0 (la1 I ( rl+cx(µ) rf3 + r Iµ I (Iµ I + rf3))) = 0 

for i = 1. Factorizing a1 r - which is allowed as we are interested in non-trivial solutions -
gives 

µ - Sa~(µ) rcx(µ) + 0 (rcx(µ) rf3 + lµI ( lµI + rf3)) = 0. 

This can be solved with respect to µ yielding 

Therefore, introducing a new variable b by 

(3.12) 

captures all solutions of (3.9) for some K 1 . By the ambiguity in the variables, we have 

(3.13) 

see (3.8). Uniqueness can therefore be enforced by requiring that 

N-1 
(3.14) lbl + L lajlcxo = 1, 

j=1 

which is equivalent to fix con the group orbits of solutions described by (3.13). Substituting 
(3.12) into (3.9) and factorizing rl+cxo shows that 
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must hold for any solution of (3.9) and (3.14). Otherwise, there would exist solutions with 
arbitrarily small lbl which implies that the corresponding values for aj are small as well 
contradicting (3.14). Thus solutions are confined to the region 

N-1 

lbl + L lajlao = 1, lbl > K2 > 0, 0 < r < ro. 
j=l 

Therefore, it is possible to use c in order to scale solutions to the form 

(aj,b,r) = (aj,l,r) 

by the above a priori bounds and the equivalence (3.13). II 

By the lemma, it suffices to solve (3.11) 

Then we have the following existence result. 

Lemma 3.5 Assume either (H3) or admissibility of the sequence I· Then there exists a 
solution of (3.11) following the figure-of-eight as prescribed by the sequence I· The distances 
of consecutive humps are given by 

ln lµl - ln IBI O(I Is) 
au - auu + µ 

for some 8 > 0. 

Proof. First suppose (H3) is not satisfied and / is admissible. By Lemma 3.1, it suffices 
to solve the first [ N /2] equations 

0 - al - ai+a(µ) + 0( la1 I rt3) 
0 ai-1 - ai~~(µ) - 8i ( ai - ai+a(µ)) + O((lai-1 I + lad) r 13 ) i = 2, ... , [~] 

in the variables aj for j = 1, ... , [N/2]. For r = 0, any sequence ai E {O, 1} yield zeroes of 
the bifurcation equations. For existence, we choose the sequence ai = 1 for all j at r = 0. 
Applying the implicit function theorem at the point r = 0 and aj = 1 for j = 1, ... , [N /2] 
with respect to the variables aj proves the lemma in the reversible case as a 0 > 0. 

The conservative case is proved similarly observing that we only need to solve the first 
N -l equations in the variables rand aj for j = 1, ... , N -l by Lemma 3.2. This is done 
as in the reversible case. 

19 



It follows from the above arguments that the solutions satisfy 

(3.15) aj = 1 + O(rf3). 

Due to (3.5) and (3.10), the return times Tj are therefore given by 

1 1 0 - ln Iµ I - ln Is I 0 
Tj = --2 - ln(aj r) = - 2 ln(l + O(lµI )) (ln lµl - ln ISI) = 2( ) + O(jµI ). 

~ ~~ ~-~ 

Here, 0 < 8 < /3 / a 0 . Observing that, by definition, the distances are twice the return 
times, proves the lemma. II 

It remains to prove uniqueness. 

Lemma 3.6 Assume (H3) holds. Then there exists no other N -pulses than the ones de-

rived in Lemma 3.5. 

If (H3} does not hold, any other N-pulse existing for parameter value µ = S rcxo either 

satisfies ak = 0( rf3) for some index k or else the associated sequence / is not admissible. 

In any case, there does exist an index k such that ak, ak+l and ak+l are close to one and 

/k /k+i = 1 as well as /k+i /k+2 = -1 (or vice versa) hold. 

The N-pulses with sequences (id, ... , id) or (id, - id, id, ... ) are unique. 

Proof. First suppose that (H3) is satisfied and consider n-pulses. Solving the first n -1 
equations of (3.11) using the Lipschitz inverse function theorem near any sequence a~ E 

{0,1} for j = l, ... ,n-1andr=0 results in a unique solution (aj(r),r) with aj(O) =a~. 

If aJ = 1 for all j, we obtain the same solution as in Lemma 3.5. Assume that a~ = 0 
and a~ = 1 for j -f. k. Then we claim that ak(r) = 0 for all r. Indeed, solving (3.11) 
for N = k - 1 and N = n - k with initial sequences given by a~ for j < k and j > k, 
respectively, yields the solutions described in Lemma 3.5. Setting a~ = 0 decouples the 
equations for j < k and j > k from each other. Thus, ak(r) = 0 and aAr) given by the k-
and (n - k)-pulses for j < k and j > k, respectively, solves (3.11). The case that aJ = 0 
for several indices is proved similarly. 

Next, assume that the vector field is only reversible. Notice that any solution (ah r) of 
(3.11) for r close to zero satisfies 

a~ E {O, l}. 

This proves the statement about the distances of consecutive humps of non-unique multiple 
pulses as pulses associated with admissible sequences and a~= 1 for all j are described in 
Lemma 3.5. 
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Consider the sequences (id, ... , id) and (id, - id, id, ... ). The statement about uniqueness 
of multiple pulses associated with these sequences follows as in the conservative case once 
it is observed that any subsequence of these two sequences is again admissible and leads 
therefore to solutions of (3.11). 

Finally, decode the initial values a~ and the sequence I into one sequence 

aq = { ±1 for a~ = 1 and /j = ±1 
J 0 for a~= 0. 

Then we claim that there exist an index k such that ak = ak+i = -ak+2 =J 0 (or vice versa) 
hold provided the N-pulse is not described by Lemma 3.5. Otherwise, all subsequences 
enclosed by a~ = 0 would be of the above form (id, ... id) or (id, - id, id, ... ) leading to a 
contradiction to the above uniqueness result. II 

This finishes the proof of Theorem 1. 

3.2 Stability 

Choose any sequence /i and assume that there exists an N-pulse with return times Tj for 
the parameter valueµ. Choose ( aj, r) according to (3.5) and (3.10). We define 

for j = 1, ... ,N-1. Let 

(3.16) A= ri+ao 

with 

di -di 
-di di +d2 

-d2 

d · - -S 8 · (auu a ~+ao - au a ·) J - J J J • 

Then the following lemma holds. 

Lemma 3. 7 Under the assumptions of Theorem 2, A is an eigenvalue of (2.4) with 1-XI 
small if and only if A solves 

(3.17) det(A- M .X + R(.X)) = 0, 
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and the respective multiplicities coincide. The remainder term is analytic in A and satisfies 

for some f3 > 0. 

Proof. We shall apply [19, Theorem 2] for proving the lemma. However, we need to use 
the more refined estimates provided in [19, Lemma A.l]. 

Using the a priori estimate (3.10) and equation (3.6), it follows that 

i+ao 
sup jhµ(t)I = O(r 2 ). 

t~minTj 

Thus, in the notation of [19], we obtain the estimates 

IGI + IDI + IP2(T)I 
IQoDI 
IP1 (T)I 

O(r i+2ao) 

O(rao+t) 
- O(r~) 

for the functions arising in [19, Lemma A.l]. Here, we have used [19, Lemma 3.1] and (3.6) 
for the first two equations, while the last estimate follows from [15, Lemma 1.1]. Still in 
the notation of [19], we therefore get 

Notice that the additional factor e-av.T in front of p1(T) is justified as the third estimate 
in [19, (A.7)] is not sharp. Thus we end up with the estimate 

for some f3 > 0 for the remainder term arising in [19, Lemma A.1]. By [16], we can replace 
the scalar products arising in [19, Lemma A.l] with 

and 

up to an error of the order O(rl+ao+,6). By [19, Lemma 5.3], the matrix A arising in [19, 
Theorem 2] is symmetric. Hence it suffices to compute the scalar product 

('lf;µ(-Tj), hµ(Tj)) - S (ws, Vs) bj (-au aj + auu aj+ao) rl+ao + O(rl+ao+,6) 

-S bj ( auu aj+ao - au aj) rl+ao + O(rl+ao+,6) 

using (3.6) and (3. 7). This proves the lemma. 
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It remains to solve (3.17). By [19, Lemmata 5.1 and 5.2] it is sufficient to compute the 
eigenvalues of the matrix Ao given by 

(3.18) Ao= 

with 

di -di 
-di di +d2 

-d2 

d· = -S 8· (auu a~+ao - au a·) J J J J • 

By [19, Lemma 5.4], the spectrum of Ao is given by 

counting multiplicity. 

#(cr(Ao) n IR-) - #{j I dj < O} 
#(cr(Ao) n JR+) - #{j I dj > O} 
#(er( Ao) n {O}) - #{j I dj = O} + 1 

Now, consider the N-pulses described in Theorem 1. From (3.15) we conclude that aj = 
1 + O(r.6) whence 

#(cr(Ao) n IR-) #{j Is Dj > O} 
- #{j Is Dj < O} #( cr(Ao) n JR+) 

#(cr(Ao) n {O}) - 1 

as auu > au. Therefore, by [19, Lemmata 5.1 and 5.2], the solutions \ of (3.17) have signs 
given by 

# { i I sign Re Ai < 0} - #{j I M S 8 i > 0} 
# { i I sign Re Ai > 0} - #{j I M S 8 i < 0} 
# { i I Ai = 0} 1, 

which coincides with the statement of Theorem 2. The scaling of the eigenvalues follows 
from 

Finally, suppose that there exists an N-pulse not described by Theorem 1. Then, by Lemma 
3.6, there exists at least one index k with ak, ak+l and ak+z close to one and /k /k+i = 1 as 
well /k+i /k+z = -1. Invoking [19, Lemmata 5.1 and 5.2] proves the last part of Theorem 
2. 
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4 Existence and stability of N-pulses in the PSA equa-

tion 

We consider the fourth-order partial differential equation 

) au ( a2 
2 ( 2 2 ) ( a2 

2 2) ( (au) 2 
2 a2 u) (4.1 8( + f)T2 +2U - 2a -TJ) f)T2 +2U -TJ u +40- 3U BT +u f)T2 = 0 

for ( 2:: 0, T E lR and U E JR. The parameter 7J is chosen in the interval 7J E (a, V2a ). 
Equation ( 4.1) is equivariant with respect to 

(4.2) 
R 

U(T) ~ -U(T) 
U(T) ~ U(-T) 

acting on L2 (JR). Moreover, it admits the steady-state solution 

U(T) = 7J sech 7JT 

for o- = 0, which is contained in Fix R. 

We shall rewrite ( 4.1) according to 

(4.3) 
au 
o( + ~(U, o-) = 0. 

It generates a semifiow on the space L2 (JR), see [2]. A steady-state U of (4.1) or (4.3) is 
stable provided the spectrum of the linearized operator 

(4.4) L(U) = Du~(U, o-) 

is contained in the open right half plane bounded away from the imaginary axis with the 
exception of a simple eigenvalue at zero which is inevitable due to translational invariance. 
Note that the physicists' notation is used here. 

We are interested in solutions looking like N concatenated copies of U and -U. The 
definition of admissible sequences for the actual symmetry group ( 4.2) reads 

Definition We call a sequence I = ( /j )j=l, ... ,N with /j E { ±1} admissible if either 
/N+i-j = /j for all j or /N+l-i = -/i for all j. 

Then we have the following theorem. 

Theorem 4 Fix 7J E (a, J2a). Then for any N > 1 there exists a O"N > 0 such that the 
following holds. Choose any admissible sequence (Ii )j=l, ... ,N of length N. Then for any O" 
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with 0 < O" < aN there exists a steady-state U.y(T) of (4.1) looking like the concatenation of 

/j U with j = 1, ... , N. The solutions described above are symmetric U'"Y(T) = U'"Y(-T). The 

linearization L(U'"Y) of (4.1) or (4.3) at U'"Y possesses a unique simple eigenvalue at zero on 
the imaginary axis and precisely 

#{ i I Ii = /i+i, 1 :; i < N} 

eigenvalues with negative real part. In particular) the steady-states U'"Y for sequences I with 

j = 1, ... ,N -1 

are stable. The distance of consecutive humps is approximately given by 

lnO" 
L := J2a2 _ TJ2 -TJ +Lo( a, TJ) 

for some constant Lo E lR. 

Moreover, any other N-pulse is either asymmetric {that is neither even nor odd) or at least 

one distance of consecutive humps is of the order (1 + /3) L for some j3 > 0. In any case, 

these additional N-pulses are unstable. Moreover, the pulses with sequences (id, ... , id) or 

(id, K, id, K, ... ) are unique. 

The remainder part of this section is devoted to the proof of Theorem 4. We shall use 
Theorem 1 and 2 to proof the above result. To this end, we introduce new variables. Then 
the solutions needed in Hypotheses (H5) and (H7) are computed using the fourth-order 
equation. Here, the special structure of ( 4.1) for O" = 0 is going to be used. Finally, in order 
to verify the assumptions, we rewrite the fourth-order equation as a first-order system. 

Note that it not known whether equation (4.1) admits a first integral. Numerical simula-
tions indicate that it does not. Indeed, once ( 4.1) has a first integral, N-pulses for any given 
sequence must bifurcate. However, efforts to compute these N-pulses numerically failed 
while we were successful in computing N-pulses associated with admissible sequences, see 
Section 5. Thus, we shall apply Theorem 1 and 2 without using Hypothesis (H3). Observe 
that, on account of [17, Remark 2], (4.1) cannot be Hamiltonian once Hypothesis (H5)(iii) 
is satisfied. 

4.1 The fourth-order equation 

In this section, we calculate the solutions of the linearization of ( 4.1) needed for the veri-
fication of the hypotheses of Theorem 1. We shall use the fourth-order equation for that 
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purpose. First, new variables are introduced as follows. 

(4.5) u 
J2a2 - 'T/2 

1 u 
J2a2 - 772 

t - J2a2 - 772 T 

Then ( 4.1) reads 

au (a2 
2 )(a2 2 2) ( (au) 2 2a2u) ( 4.6) ae + at2 + 2U - 1 at2 + 2U - f) u + 4o- 3U fit + u at2 = 0 

where, with an abuse of notation, we have omitted the tilde. Here, iJ ranges in{} E (1, oo) 
as 77 E (a, -/2a). 

The steady-state equation of ( 4.6) is given by 

(4.7) ( a2 ) ( a2 ) ( (au) 2 a2 u) at2 + 2u2 - i at2 + 2u2 - 1J2 u + 4o- 3U at + u2 at2 = o. 
Moreover, the primary pulse solving (4.7) for o- = 0 and 1J E (1, oo) reads 

(4.8) U( t) = iJ sech 1Jt. 
The linearization of ( 4. 7) at U for o- = 0 is 

(4.9) ( a
2 2 ) ( a2 2 2) at2 + 2U - 1 at2 + 6U - iJ V =: L_ L+ V = 0, 

with the adjoint equation given by 

( 4.10) ( a
2 2 2) ( a2 2 ) at2 + 6U - iJ at2 + 2U - 1 W = L+ L_ W = 0. 

Two linearly independent solutions of 

( a
2 2 2) L+ V = at2 + 6U - iJ V = 0 

are given by 

Vi ( t) U ( t) = -1J2 sech iJt tanh i&t 

Vz(t) - 2~3 ( cosh {)t + 3{)t sinh {)t sech2 {)t - 3 sech {)t), 
(4.11) 

while the functions 

( 4.12) 
W1 (t) et(l - 'l9 tanh iJt) 
W 2 (t) - e-t(l + 'l9 tanh i?t), 

solve 

L_ w = (::2 + 2U2 
- 1) w = 0. 

Note that W1 and W2 are unbounded and satisfy W1(t) = W2(-t). Thus, Vj(t) solve 
the variational equation ( 4.9), while Wi(t) solve the associated adjoint equation ( 4.10) for 
j = 1, 2. It will turn out to be convenient for the upcoming arguments to use the following 
definition. 
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Definition We say that x(t) ·a y(t) if lx(t) - y(t)I = o(e-at) uniformly fort--+ oo. 

Note that with this notation we have 

and therefore 

(4.13) 
Vi (t) 
V2(t) 

sech t9t .:....r; 2e-1Jt 1 - tanh t9t = 0( e-211t) 

- -2192 e-1Jltl sign t + 0( e-2i9ltl) 

_ _1_ ei9ltl + 0( e-1Jltl) 
4t93 

W1(t) =i 

W2(t) =i 

(1 - t9 sign t) et 

(1 + t9 sign t) e-t. 

First, we calculate the bounded solution of the adjoint equation ( 4.10), which can be found 
using variation of parameters 

It is clear that w(t) is bounded. Moreover, w(t) is odd due to 

W1(-t) 1-7 Vi(r) W2(r) dr = W2(t) 1-7 Vi(r) W2(r) dr = -W2(t) [
00 

Vi(-s) W2(-s) ds 

= W2(t) f 00 

Vi(s) W1(s) ds = -W2(t) /
00 

Vi(s) W1(s) ds 

and a similar computation for the other term. Owing to the identity 

see [2, (23),(24)], we obtain 

( 4.15) 1Ji'( t) = -2192 sech 19t tanh 19t - 193 (1 - 19 tanh 19t) e' l.00 

e-r sech3 19r dr 

+193 (1+19tanh19t) e-t [7 e-r sech3 19r dr. 

We shall investigate the asymptotics of '11(-t) for t-+ oo. 

yielding 
(4.16) 

1Ji'(-t) = 2192 sech 19ttanh 19t + 193 (1 - 19tanh19t) e' l.00 

e-r sech3 19r dr 

-193 (1+19tanh19t) e-t 1-7 C 7 sech3 19r dr 

=fi 4192 e-fit - 193 (1 + 19) e-t L: e-r sech3 19r dr 

=1 -193 (1 + 19) e-t L: e-r sech3 19r dr =: J1 e-t 
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for t-->- -oo. Note that 
( 4.17) 

is negative as the integrand is strictly positive. 

Next, we compute the unique bounded solution U'(t) of the inhomogeneous equation 

that is 

L_ L+ U' = G 

with 

(4.19) G := -4 (su(~~r + U2 ~:~) = -41?5 (4 - 5sech2 19t) sech3 19t. 

Solving ( 4.18) is equivalent to 
L_W - G 
L+U' - W. 

As the fundamental solutions of L+ and L_ are given in (4.11) and (4.12), respectively, we 
obtain 

( 4.20) W(t) - 2( 192
1
_ l) ( W1(t) {" G( r) W2( r) dr + W2(t) [,,, G( r) W1 ( r) dr) 

(4.21) U'(t) - Vi(t) l W(r) Vz(r) dr + Vz(t) ['
0 

W(r) Vi(r) dr. 

We shall determine the asymptotics of U'(t). Using the expansions ( 4.13), we obtain 

1 100 1 (4.22) W(t) = 2(?9 _ l) e-t _00 G(r) W1 (r) dr + O(e-3i9t) = 2(?9 _ l) J2 e-t + O(e-3i9t), 

for t -->- oo with J2 given by 

J2 = 1: G(r) W1(r) dr. 

We calculate J 2 by means of the Residue Theorem 

J2 1: G(t) Wi(t) dt 

-1: 419 5 
( 4 - 5 sech2 19t) sech3 19t e' (1 - 19tanh19t) dt 

- -1: 411-5 
( 4 - 5 sech2 t) sech3 t evt (11 - tanh t) dt 

for 11 = 1/?9. Owing to the identity fv ( evt sech t) = evt sech t (11 - tanh t), we get 

J2 = 411-5 1: :V ( (4 - 5 sec'n2 t) sech2 t) sech t evt dt 
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- 16v-5 L: (5 sech2 t - 2) sech3 t tanh t e"t dt 

- 16 -s r s Y 2 Y Y - 1 
I/ 

1 d 00 ( ( 2 )
2 

) ( 2 )
3 

2 v lo 1 + y2 - 1 + y2 (1 + y2)3 y y y 

-256v-5 roo (y4 - 8y2 + 1) y2 (y2 - 1) I/ d 
lo (1 + y2)6 Y Y 

-. -256v-5 f" g(y)dy. 

By [14, ch.14.2.2,p.404], the integral equals 

5 27ri """" J 2 = -256v-
1 2 . 6 resy g(y) - e 1rvi 

y:i:O 

provided v E (0, 1) and the branch yv = exp(vlogy+iv argy) with argy E (0,27r) is used. 
Note that v E (0,1) as 1/v = {} E (1,oo). The poles of g are ±i and its residues at these 
points are given by 

reS±i g = :! d~5 ( x6 g( x ± i)) lx=O· 
Computing the derivatives yields 

resig - 1 v (v2 - 1)2 iv i 384 

- 3~4 v (v2 - 1 )2 (-iY i 
_1 v(v2 - l)2iev7ri/2 
384 

- -3~4 v (v2 - 1)2 i e3v7ri/2. 

Hence we obtain 

( 4.23) 
1 ev,,..i/2 _ e3v7ri/2 47r(v2 _ l)2 

J2 = 256v-s 27r 384 v (v2 - 1 )2 1 2 . = 3 4 7rl/ . - e ,,.. v i v cos -
2 

In particular, 

(4.24) 

for v E (0,1) which corresponds to{} E (1,oo). With the asymptotics (4.22) 

1 
W( t) = 2( {} _ 1) J2 e-t + 0( e-3i9t) 

of W(t) at hand, we investigate U'(t) for t -7 oo. The first integral in (4.13) can be 

estimated by 

u;(t) := Vi(t) l W(-r) V2(-r) d-r 

-2{}2 €-'19t (1 + 0( e-i9t)) r ( 1 J e-'T + 0( e-'19-r)) (-1- e19
'T + 0( €-i9T)) d7 lo 2({}-1) 2 4{}3 

-2{}2 e--at (1 + O(e-19t)) r ( 1 - 1-J e<19 - 1)-r + 0(1)) dr lo 2( {} - 1) 4'!93 2 

1 t 
=1 4'19('!9-1)2 J2e-' 
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while the second one yields 

U~(t) := 1i2(t) {
0 

W(r) Vi(r) dr 

( _1_ eflt + 0( e-flt)) loo ( 1 J e-r + 0( e-19-r)) (- 2i92 e-flt + 0( e-219t)) dT 
4~?3 t 2( i9 - 1) 2 

- (- 1 J2 erJt + 0( e-19t)) loo (e-(l+fl)r + 0( e-219t)) dT 
4i9 ( i9 - 1) t 

1 t 
=1 4i9(i92-l)J2e-. 

Summarizing, we obtain 

( 4.25) 

4.2 Verifying the assumptions of Theorem 1 

Having calculated the solutions for the fourth-order equation, we shall interpret the results 
for the associated first-order system. Rewriting ( 4. 7) yields 

(4.26) u = 
U4 

= f(u, a), 

(1 - 2ui) u3 - 4a-( u~(-2u~ + 112u1 + ua) + 3u1u~) 
where u1 = U. Throughout, we use the convention that capital letters correspond to 

-Solutions of the fourth-order equation while small letters correspond to the associated first-
order system. The symmetries R and K, of ( 4.1) defined in ( 4.2) translate into 

( 4.27) 
-u 

R 

of equation ( 4.26). The linearization of ( 4.26) at 

Z 2-equi variance 
time-reversibility 

( 4.28) u(t) = (U(t), U(t), 0, 0) = ( i9 sech i?t, -i92 sech i?t tanh i?t, 0, 0) 

equals 
0 1 0 0 

( 4.29) 
i92 - 6u2 0 1 0 1 v= v, 

0 0 0 1 
0 0 1- 2u2 

1 0 
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as u3 = ii1 + 2ur - rJ2u1 = 0 and thus u4 = 0 as well. Moreover, the adjoint equation reads 

0 6u2 - i92 1 0 0 

( 4.30) 
-1 0 0 0 w= w. 
0 -1 0 2ui-1 
0 0 -1 0 

The relation between solutions of (4.9) and (4.29) as well as (4.10) and (4.30) is as follows 

( 4.31) 
v - (V, v, v + (6U2 - i9 2 )V, V4) 
w - (w1, W + (2U2 - l)W, -W, W) 

The stable eigenvalues and eigenvectors of the linearization of ( 4.26) at the equilibrium 
u = 0 are given by 

( 4.32) 

for all (}'. 

(1, -1, 1 - i92 , -1 + 'lP) 
(1, -i9' 0, 0) 

We shall verify Hypotheses (Hl) to (H6) except for (H3) of Section 2 for equation ( 4.26) 
with 
(4.33) h(t) := u(t) = (U(t), U(t), 0, 0) 

see ( 4.28). 

Assumption (Hl)(i) is obviously satisfied. It was proved in [2] that the pulse U is stable with 
respect to the underlying PDE. Therefore, (Hl )(ii) is satisfied. Otherwise, the eigenvalue 
,,\ = 0 of the PDE linearization would possess geometric multiplicity two contradicting 
stability. Note that (H2) and (H6) are satisfied with R and K as in ( 4.27). The same is 
true for Hypothesis (H4) due to (4.32). 

It remains to show (H5) and determine the bifurcation direction in order to conclude the 
existence part of Theorem 4. 

Consider Hypothesis (H5). Due to ( 4.28), we have 

( 4.34) 

proving that 
(4.35) 

u(t) (U(t), U(t), 0, 0) 

( 73 sech ?Jt, -732 sech i9t tanh i9t, 0, 0) 

- 273 e-1Jt (1, -73, 0, 0) + 0( e-21Jt) 

=73 2i9 e-{)t ess 

lim u(t) e{)t = 2i9 ess =: Vss =/= 0, 
t--1-00 
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whence (H5)(i) is satisfied. 

According to (4.31), the bounded solution 'lj;(t) of (4.30) is given by 

'I/; ( - :t (\if+ (2U2 
- l)W), \if+ (2U2 

- l)W, -~, W) 

( 
d3 . .. . ) 

={} dt3 '1i - '1i' '1i - '1i' - '1i' w 

as U ..:._{} 219 e-1Jt. Thus, owing to ( 4.16), we obtain 

(4.36) 7/J(-t) ..:._{} (-4'l93 (i92 -1) e-'!9t,4'l92 (i92 -1) e-'!9\-4193 e-'!9t - J1 e-t, 

4192 e-'!9t + J1 e-t) 

=fi 4'l92 e-1Jt ( i9 (1 - 'l92), 'l92 - 1, -19, 1) + J1 e-t (0, 0, -1, 1). 

Therefore, we have accomplished (H5)(iii) as 

(4.37) lim 'lf;(-t) et= J1(0,0, -1, 1) = Ws =/= 0 
t-+oo 

owing to J 1 < 0. 

The scalar product appearing in (H5)(iv) reads 

(7/J(-t), u(t)) ( 4-02 e-i!t ( d (1 - -02), -02 - 1, -d, 1) + J1 e-t (0, 0, -1, 1) + o( e-i!t), 

2-0 e-i!t (1, -d, 0, 0) + O( e-2i!t)) 

8-03 e-2i!t ( (d (1 - -02), -02 - 1, -d, 1 ), (1, -i?, 0, 0)) 
16iz94 (1 - iz92) e-2t9t 

fort--+ oo using (4.34) and (4.36), whence 

( 4.38) lim (7/J(-t), u(t)) e219t = -16194 (19 2 - 1) = S < 0. 
t-+oo 

Thus, Hypothesis (H5)(iv) is satisfied as well and it remains to verify (H5)(ii). 

Due to Hypothesis (Hl)(ii), there exist a smooth family hcr(t) of homoclinic solutions for 
( 4.26) with h0 = u. The derivative 

u'(t) := dd hcr(t)I 
O" cr=O 

is the unique bounded solution of the inhomogeneous variational equation 

V = Duf(u, 0) V + Dcrf(u, 0) 

with 
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see (4.26). Thus, u'(t) coincides with the solution U'(t) computed previously and being 
transformed according to ( 4.31 ). Therefore, using the expansion ( 4.25), we have 

( 4.39) u' (t) (u' fJ' u' - ?J 2u' !!_u, - ~02 u· ') 
=1 ' ' ' dt3 ·u 

1 -t ( 2 2 
2(?3-l)Z(?J+l) J2e 1,-1,1-73 ,-1+73 ). 

In particular, 
( 4.40) tJi.~ u'(t) et= - 2(!? _ l)~ (!? + l) J2 e9 = V 9 =I 0, 

whence (H5)(ii) is satisfied. 

Finally, we determine the sign of er for which the bifurcating N-pulses exist. According to 
Theorem 1, they do bifurcate for 

sign er - - sign ( S (ws, vs)) 

- sign ( S J1 ( - 2(1? _ l)
1
2 (!? + l) J 2) ( (0, 0, -1, 1), (1, -1, 1 - !?2

, -1 + ??2
))) 

sign ( S J1 J2 ( 73 2 - 1)) 

- 1, 

where we have substituted Ws and V 8 from ( 4.37) and ( 4.40), respectively, and used S < 0, 
J1 <0 and J2 > 0, see (4.38), (4.17) and (4.24), together with 73>1. 

Hence, the proof of the existence part of Theorem 4 is complete. 

4.3 Stability of the bifurcating pulses 

It remains to prove the statements about the stability of the bifurcating pulses. It was 
proved in [2] that the underlying primary pulse U is stable with respect to equation ( 4.1) 

au 
a( + <l>(U, er)= 0 

for er = 0 and all 73 > 1. In other words, the spectrum of the operator 

L(U) = Du<l>(U, 0), 

evaluated at the primary pulse is bounded to the right of the imaginary axis except for 
a simple eigenvalue at zero. Notice that the operator L( U) is sectorial for any U. Thus, 
the spectrum of L(UN) with UN being an N-pulse is bounded to right of the imaginary 
axis except for N eigenvalues close to zero. Indeed, this follows from the general theory 
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developed in [1]. Therefore, it suffices to calculate these N critical eigenvalues, that is 
solutions of 
( 4.41) 

for ,\ E C close to zero and V E L2 (R). Writing (4.41) as a first-order system - noticing 
that it is an ordinary differential equation - yields 

V = Duf( uN(t), 0) v +A B v, 

where v and V are related via ( 4.31) and the matrix B is 

B= 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 

Thus, it suffices to show Hypothesis (H7) and apply Theorem 2 in order to decide which 
of the bifurcating multiple pulses are stable and which not. 

The sign of the Melnikov integral M has been calculated in [2, eqns. (21)-(30)] for 7) > 1 
and is given by 

M = j_)1P(t), BU(t)) dt = /_: \Ji(t) U(t) dt <O. 

Thus, according to ( 4.38) and the above computation, sign MS = 1. As we have computed 
eigenvalues of the linearized operator L in ( 4.4), the stability part of Theorem 4 follows 
from Theorem 2. B 

5 Numerical Simulations 

In the last section, we proved the existence of N-pulses U'"Y for equation (1.1) for rz > 0 close 
to zero. Here, / is an arbitrary admissible sequence. In fact, the multiple-pulse solutions 
are bifurcating at rz = 0 from the primary pulse U(T) = T/ sech ryT, where T/ E ( .JK,, ~)is 
arbitrary. As rz is related to the distance of the amplifiers along the fiber, one is interested 
in the shape of the N-pulses for 0(1)-values of rz or a. In this section, we are investigating 
the steady-state equation 

(5.1) ~U"" + ((2 + u)U2 
- i) U" + 3(1 + u) U (U')2 + < -~a) U - K. U3 + U5 = 0 

by numerical techniques. Here, prime means derivative with respect to T. Throughout, 
we set K = 1 and regard (5.1) as a two-parameter problem in the parameters 

(5.2) (~a, a) E (0, 0.25) x (0, 1). 
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ofz 

maxU 

0 0.25 

Figure 6: A schematic picture in (.6.a,a,maxU) E IR3. The surface plotted correspond to 
loci at which the primary pulse exists. The curve of saddle-nodes is denoted by sn. Pulses 
on the upper part of the surface are stable, while those on the lower part are unstable. 
Along the curves ofu and ofz, orbit-flip bifurcations take place. Note that part of the curve 
ofz is located at the lower unstable piece of the surface. The degenerate point ( .6.a, a) = 0 
is denoted by P1 , while the point P2 is the intersection of sn and ofz. 

Note that the variables (.6.a, ~, I'l) and (a, 17, a) are related via 

a - fo 
tanh rz 

a - 1 - rz ' 
whence a= 1 and I'l E (0, oo ). 

The numerical results have been obtained using a reversible version of the driver HoM-
CoNT, see [6] and [5], for the software package AUT086 [7]. This driver allows for the 
continuation of homoclinic solutions as well as for the detection and accurate location 
of bifurcation points. In particular, it detects reversible orbit-flip bifurcations using an 
algorithm investigated in [18]. 

Saddle-node bifurcations of pulses are not computed using the procedure for the computa-
tion of limit points of boundary value problems installed within AUT086, but are instead 
located directly by using the adjoint variational equation. This seems to be much more 
efficient than the built-in procedure mentioned above. 

The N-pulses have been computed in the following way. First, starting data are provided 
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using the primary pulse and periodic orbits computed at the bifurcation point O" = 0. These 
pieces of solutions are concatenated in an obvious manner to create an approximation of an 
N-pulse. Using Newton's method followed by usual continuation within HoMCONT yields 
N-pulses. A detailed analysis of this algorithm will appear elsewhere. 

As mentioned above, we regard (5.1) as a two-parameter problem in (Lla, O"). Notice that 
the point P1 := ( Lla, O") = 0 is a bifurcation point of (at least) codimension two as we have 

dim ( Th(O) W'(O) n Th(O) wu(o)) = 2 

and au = auu, see ( 4.12) for 'T/ =a and ( 4.32). It corresponds to a degenerate saddle-node 
of the primary pulse at which an exchange of stability for the 1-pulse takes place, see [11] 
or [2]. 

As proved in the last section, a curve of generic orbit-flips emanates from the degenerate 
point (~a,O") = 0. It is given by O" = 0 and we denote it by ofu = {(Lla,O)} C lll2 - the 
upper orbit-flip curve. 

The saddle-node at (~a, O") = 0 can be continued numerically in the parameters ( Lla, a) E 

lll2 yielding a curve sn shown in Figure 7. It approaches the line Lla = 0.25 such that the 
(}" tends to infinity and crosses the line (}" = 1, that is rz = oo, at Lla = 0.088279. 

There is another orbit-flip curve ofz emanating from P1 . That one is computed numerically 
and depicted in Figure 8. It is located on the lower part of the surface at which the 
primary pulse exists and hits the saddle-node curve sn at the point P2 = (~a, O") = 
(0.047053, 0.654274). Beyond that point the pulses undergoing the flip lie on the upper 
sheet. The flip curve ofz crosses the line rz = oo at ~a = 0.095341. At (}" = 1.875000 the 
line ~a = 0.25 is reached. 

Figure 6 contains a schematic picture of the curves computed so far. 

As a reasonable value of rz is rz = 1 - which is the value used in [10] for their computations 
- we compute and continue the N-pulses bifurcating from the analytically known curve 
of u in the parameter rz up to rz = 1 for ~a = 0.1. Pictures of theses solutions are given 
in 11 and 12. In Figure 10, the stable double pulses are shown for various values of O". The 
computation shows that the double pulses last at the second orbit-flip curve ofz. 

Finally, stability of the double pulses is investigated by solving the partial differential 
equation (1.2) numerically for rz = 1. For that purpose, equation (1.2) has been discretized 
in space using central differences. The resulting ODE has been solved numerically using the 
code LIMEXS written by Nowak and Zugck (ZIB Berlin). Projection-boundary conditions 
are used requesting solutions to be contained in the stable and unstable eigenspaces of the 
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trivial solution. The time-interval is [-17.0, 17.0]. 

Conclusion. The numerical results suggest the following global picture. In the region 
(.6.a, o-) E (0, 0.25) x (0, 1), the pulses considered above can be distinguished by the number 
of humps. There is a surface of 1-pulses folded at the saddle-node curve sn with a stable 
upper and an unstable lower sheet. There are two curves of orbit-flips of u and ofz contained 
in the surface. The first one - ofu - consists of the upper sheet intersected with the a-

axis, the other one - ofz - emanates at (.6.a, o-) = 0 and lasts at the point ( .6.a, a) = 
(0.25, 1.875000). The curve ofz is contained in the unstable lower sheet until the point 
P2 = (.6.a, o-) = (0.047053, 0.654274) at which it switches onto the upper stable sheet. In 
other words, the 1-pulses on ofz are first unstable and change stability at the point P2 of 
intersection of sn and ofz. The N-pulses emanating at ofu lasts until the second flip ofz. 
However, they have to change stability for .6.a :::; 0.047053, presumable by a cascade of 
saddle-node or Hopf bifurcations. 
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a 100. ~------------~ a 3.5 ~--------------. 
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75. -
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0. I I I I 0.0 I 

0.00 0.05 0.10 0.15 0.20 0.25 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 
~a ~a 

maxU maxU 
1.10 -.----------------..., 1.10 -.--------------~ 

1.00 1.00 ofz 
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0.60 0.60 

0.50 0.50 

0.40 I I 0.40 -1---.....------,.-~--..,...-__,...---1 
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

~a a 

Figure 7: The curve sn of saddle-nodes of the primary pulse is shown in different projections 
and parameter regions. Here, the label ofz denotes the point of intersection with the curve 
ofz. 
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maxU maxU 
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0.950 0.950 
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0.850-i-------------.------""""" 0.850-1---,~-..---...,.._----....-~ 
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2.00 ~------------~ 
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0.00 0.05 0.10 0.15 0.20 0.25 0.30 

~a 

Figure 8: The lower curve ofz of primary pulses undergoing an orbit-flip bifurcation is 
shown in different projections. 
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0.70 
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0.60 

0.50 

0.40 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

.6.a 

Figure 9: Here both curves sn and ofz are depicted in the same diagrams for comparison. 
The upper right figure shows an enlarged portion of the upper left one around the point P2 
of intersection of the curves. Note that ofz is always to the right of sn. That both curves 
do intersect becomes clear from the lower left figure. 
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Figure 10: The stable double pulses continued in the parameter O" for .6.a:: = 0.1 fixed. 
Here from left to right and top to bottom, O" = 4 · 10-6 , 4 · 10-3 , 0.238, 1.02, 1.02999, where 
O" = 0, 1.03 correspond to the orbit-flip points ofu and ofz, respectively. 
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T T 

Figure 11: The stable N-pulses for N = 1, 2, 3, 4 bifurcating from the upper orbit-flip 
curve of u are shown for .6.a: = 0.1 and I'l = 1. The corresponding sequences/ are I = (id), 
(id,K), (id,K,id) and (id,K,id,K). 
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T T 

Figure 12: The 4-pulses for different sequences / with ~a = 0.1 and rz = 1, that is 
O' = 0.238. From left to right and top to bottom, the sequences are / = (id, K, id, K), 
(id, K.K, id), (id, id, K, K) and (id, id, id, id). The number of unstable eigenvalues increases 
from zero to three. 
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Figure 13: The unstable manifold of the 2-pulse with sequence (id, id) for I'l = 1. In the 
left plot, the humps move apart from each other; in the right one, the minimum between 
the two humps moves upward and eventually the solution converges to the stable 1-pulse. 
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Figure 14: The 2-pulse with sequence (id, A:) is stable for fl = 1. In the left picture, it 
is shown, how a solution with two widely separated humps converges towards the 2-pulse. 
The spatial evolution of the distance L( () of the two humps is shown in the right plot in 
a suitable scaling. 
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