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Subdifferential characterization of probability functions
under Gaussian distribution

Abderrahim Hantoute, René Henrion, Pedro Pérez-Aros

Abstract

Probability functions figure prominently in optimization problems of engineering. They may be
nonsmooth even if all input data are smooth. This fact motivates the consideration of subdifferen-
tials for such typically just continuous functions. The aim of this paper is to provide subdifferential
formulae of such functions in the case of Gaussian distributions for possibly infinite-dimensional
decision variables and nonsmooth (locally Lipschitzian) input data. These formulae are based on
the spheric-radial decomposition of Gaussian random vectors on the one hand and on a cone of
directions of moderate growth on the other. By successively adding additional hypotheses, condi-
tions are satisfied under which the probability function is locally Lipschitzian or even differentiable.

1 Introduction

The aim of this paper is to investigate subdifferential properties of Gaussian probability functions in-
duced by nonnecessarily smooth initial data. This topic combines aspects of stochastic programming
with arguments from variational analysis, two areas which have been crucially influenced by the funda-
mental work of Prof. Roger J-B Wets (see, e.g., [17], [21] and many other references). The motivation
to study analytical properties of probability functions comes from their importance in the context of
engineering problems affected by random parameters. They are at the core of probabilistic program-
ming (i.e., optimization problems subject to probabilistic constraints) (e.g., [15], [18]) or of reliability
maximization (e.g., [7]).

A probability function assigns to a control or decision variable the probability that a certain random in-
equality system induced by this decision variable be satisfied (see (1) below). Since such functions are
typical constituents of optimization problems under uncertainty, it is natural to ask for their analytical
properties, first of all differentiability. Roughly speaking, this can be guaranteed under three assump-
tions: the differentiability of the input data, an appropriate constraint qualification for the given random
inequality system and the compactness of the set of realizations of the random vector for the fixed
decision vector (e.g., [11], [14], [19]). While the first two assumptions are quite natural, the last one
appears to be restrictive in problems involving random vectors with unbounded support. Failure of the
compactness condition, however, may result in general in nonsmoothness of the probability function
despite the fact that all input data are smooth and a standard constraint qualification is satisfied (see
[1, Prop. 2.2]). In order to keep the differentiability while doing without the compactness assumption,
one may restrict to special distributions such as Gaussian or Gaussian-like as in [1], [2]. The working
horse for deriving differentiability and gradient formulae in these cases is the so-called spheric-radial
decomposition of Gaussian random vectors [8, p. 29]. The resulting formulae for the gradient of the
probability function are represented - similar to the formulae for the probability values themselves -
as integrals over the unit sphere with respect to the uniform measure. The latter can be efficiently
approximated by QMC methods tailored to this specific measure (e.g., [3]). Such approach, by ex-
ploiting special properties of the distribution, promises more efficiency in the solution of probabilistic
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programs than general gradient formulae in terms of possibly complicated surface or volume integrals.
Successful applications of this methodology in the context of probabilistic programming in gas network
optimization is demonstrated in [9], [10].

The aim of this paper is to substantially extend the earlier results in [1], [2] in two directions: first,
decisions will be allowed to be infinite-dimensional and second, the random inequality may be just
locally Lipschitzian rather than smooth. As the resulting probability function can be expected to be
continuous only (rather than locally Lipschitzian or even smooth), appropriate tools (subdifferentials)
from variational analysis will be employed for an analytic characterization.

We consider a probability function ϕ : X → R defined by

ϕ(x) := P (g (x, ξ) ≤ 0) , (1)

where X is a Banach space, g : X × Rm → R is a function depending on the realizations of an m-
dimensional random vector ξ. Such probability functions are important in many optimization problems
dealing with reliability maximization or probabilistic constraints. The latter one refers to an inequality
ϕ(x) ≥ p constraining the set of feasible decisions in an optimization problem, in order to guarantee
that the underlying random inequality g (x, ξ) ≤ 0 is satisfied under decision x with probability at least
p ∈ (0, 1], referred to as a a probability level (or safety level). Since we allow in our paper the function
g to be locally Lipschitzian, there is no loss of generality in considering a single random inequality only
because in a finite system of such inequalities one could pass to the maximum of components.

Throughout the paper, we shall make the following basic assumptions on the data of (1):

1. X is a reflexive and separable Banach space.
2. Function g is locally Lipschitzian as a function of both arguments

(H) simultaneously, and convex as a function of the second argument.

3. The random vector ξ is Gaussian of type ξ ∼ N
(

0, R̃
)
, where R̃

is a correlation matrix.

A brief discussion of these assumptions is in order here: reflexivity of X is imposed in order to work
with the limiting (Mordukhovich) subdifferential as introduced in Definition 2 below (actually, one could
consider the more general case of Asplund spaces). The separability of X is needed in order to
make use of an interchange formula for the limiting subdifferential and integration sign (see Propo-
sition 3 below). For the same reason, g is required to be locally Lipschitzian. As already mentioned
above, considering just one inequality rather than a system is no more restriction then. In particular,
the single inequality g (x, z) ≤ 0 could represent a finite or (compactly indexed) infinite system of
smooth inequalities. Considering a Gaussian random vector ξ allows one to pass to a whole class of
Gaussian-like multivariate distributions (e.g., Student, Log-normal, truncated Gaussian, χ2 etc.) upon
shifting their nonlinear transformations to a Gaussian one into a modified function g̃ satisfying the same
assumptions as required for g here (e.g. [1, Section 4.3]). Moreover, assuming a centered Gaussian
distribution with unit variances isn’t a restriction either, because in the general case ξ ∼ N (µ,Σ),
we may pass to the standardized vector ξ̃ := D(ξ − µ), where D is the diagonal matrix with ele-

ments Dii := 1/
√

Σii. Then, as required above, ξ̃ ∼ N
(

0, R̃
)

, with R̃ being the correlation matrix

associated with Σ and so

ϕ(x) = P (g (x, ξ) ≤ 0) = P
(
g̃
(
x, ξ̃
)
≤ 0
)

; g̃ (x, z) := g
(
x,D−1z + µ

)
.

Clearly, g̃ is locally Lipschitzian and is convex in the second argument if g is so. Hence, there is no

loss of generality in assuming that ξ ∼ N
(

0, R̃
)

from the very beginning.
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Our first observation is that our basic assumptions above do not guarantee the continuity of ϕ even if
g is continuously differentiable. A simple two-dimensional example is given by g(r, s) := r · s (which
is convex in the second argument) and ξ ∼ N (0, 1). Then, ϕ(r) = 0.5 for r 6= 0 and ϕ(0) = 1.
Since we want to have the continuity as a minimum initial property of ϕ in our analysis, we will add the
additional assumption that g (x̄, 0) < 0 holds true at a point of interest x̄ (at which a subdifferential
of ϕ is computed). In other words, given the convexity of g in the second argument, zero is a Slater
point for the inequality g (x, z) ≤ 0, z ∈ Rm. As shown in [1, Proposition 3.11], the opposite case
would entail that ϕ(x̄) ≤ 0.5. Since one deals in typical applications like probabilistic programming or
reliability maximization with probabilities close to one, it follows that the assumption g (x̄, 0) < 0 can
be made without any practical loss of generality.

The paper is organized as follows: In Section 3 and 4, we provide all the auxiliary results (continuity
and partial subdifferential of the radial probability function) which are needed for the derivation of
the main subdifferential formula presented in Section 5. This main result which is valid for general
continuous probability functions will be specified then by adding additional hypotheses to the locally
Lipschitzian and differentiable case. An application to probability functions induced by a finite system
of smooth inequalities is given in Subsection 5.4.

2 Preliminaries

2.1 Spheric-radial decomposition of Gaussian random vectors

We recall the fact that any Gaussian random vector ξ ∼ N
(

0, R̃
)

has a so-called spheric-radial

decomposition, which means that the probability of ξ taking values in an arbitrary Borel subset M of
Rm can be represented as (e.g., [6, p. 105])

P (ξ ∈M) =

∫
v∈Sm−1

µη ({r ≥ 0 | rLv ∈M}) dµζ(v),

where Sm−1 :=
{
v ∈ Rm | ‖v‖2 = 1

}
denotes the unit sphere in Rm, µη is the one-dimensional

Chi-distribution with m degrees of freedom, and µζ refers to the uniform distribution on Sm−1. More-
over, the (non-singular) matrix L is supposed to be a factor in a decomposition R̃ = LLT of the
positive definite correlation matrix R̃ (e.g. Cholesky decomposition).

The spheric-radial decomposition allows us to rewrite the probability function (1) in the form

ϕ(x) =

∫
Sm−1

e(x, v)dµζ(v) ∀x ∈ X, (2)

where e : X × Sm−1 → R refers to the radial probability function defined by

e(x, v) := µη ({r ≥ 0 | g(x, rLv) ≤ 0}) . (3)

With any x ∈ X satisfying g(x, 0) < 0, we will associate the finite and infinite directions defined
respectively as

F (x) : = {v ∈ Sm−1 | ∃r ≥ 0 : g(x, rLv) = 0},
I(x) : = {v ∈ Sm−1 | ∀r ≥ 0 : g(x, rLv) < 0}.
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It is easily observed that F (x)∩I(x) = ∅ and that F (x)∪I(x) = Sm−1 by continuity of g. Moreover,
the number r ≥ 0 satisfying g(x, rLv) = 0 in the case of v ∈ F (x) is uniquely defined, due to the
convexity of g in the second argument. This leads us to define the following radius function for any x
with g(x, 0) < 0 and any v ∈ Sm−1:

ρ (x, v) :=

{
r such that g(x, rLv) = 0 if v ∈ F (x)
+∞ if v ∈ I(x).

(4)

This definition allows us to rewrite the radial probability function e from (3) in the form

e(x, v) = µη ([0, ρ (x, v)]) = Fη (ρ (x, v)) (5)

whenever g(x, 0) < 0. Here, Fη refers to the distribution function of the Chi-distribution with m
degrees of freedom, so that F ′η(t) = χ(t), where χ is the corresponding density:

χ (t) := Ktm−1e−t
2/2 ∀t ≥ 0, where K :=

21−m/2

Γ(m/2)
. (6)

The second equation in (5) follows from Fη(0) = 0. We formally put Fη(∞) := 1 which translates
the limiting property Fη(t)→t→+∞ 1 of cumulative distribution functions.

2.2 Notation and tools from variational analysis

Our notation will be standard. By X and X∗ we will denote a real reflexive and separable Banach
space and its dual, with corresponding norms ‖ ‖ and ‖ ‖∗, and with corresponding balls Br (x),
B∗r (x∗) of radius r around x ∈ X and x∗ ∈ X∗. We denote by 〈x, x∗〉, x ∈ X, x∗ ∈ X∗ the
corresponding duality product, and by ⇀ the weak convergence in both X and X∗. The polar of
some closed cone C ⊆ X is the closed convex cone

C∗ := {x∗ ∈ X∗ 〈x∗, h〉 ≤ 0 ∀h ∈ C} .

The notations clC , cl∗C , coC , and coC will refer to the (strong or norm) closure, the weak∗ closure,
the convex hull, and the closed convex hull of C ⊆ X (or C ⊆ X∗), respectively.

The indicator and the support functions of a set C ⊆ X (or C ⊆ X∗) are respectively defined as

iC(x) := 0 if x ∈ C and +∞ otherwise,

σC(x∗) := sup
x∈C
〈x, x∗〉.

Definition 1 Let C ⊆ X be a closed subset. Then the Fréchet, the Mordukhovich, and the Clarke
normal cones to C at x̄ ∈ C are respectively defined as

NF (x̄;C) :=

{
x∗ ∈ X∗ | lim sup

x→x̄,x∈C

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0

}
,

NM(x̄;C) :=
{
x∗ ∈ X∗ | ∃xn → x̄, xn ∈ C, ∃x∗n⇀x∗ : x∗n ∈ NF (xn, C)

}
,

NC(x̄;C) := coNM(x̄;C).
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We note that the definition of NC is not the original but a derived one. The normal cones induce
subdifferentials of functions f : X → R via their epigraphs

epi f := {(x, t) ∈ X × R | f(x) ≤ t} ,

which are closed whenever f is lower semicontinuous (lsc, for short).

Definition 2 Let f : X → R be a lsc function. Then the Fréchet, the Mordukhovich (limiting), and
the Clarke subdifferentials of f at x̄ ∈ X , are respectively defined as

∂F/M/Cf (x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ NF/M/C((x̄, f(x̄)) ; epi f)

}
.

The singular subdifferential of f at x̄ is defined as

∂∞f (x̄) =
{
x∗ ∈ X∗ | (x∗, 0) ∈ NM((x̄, f(x̄)) ; epi f)

}
.

We recall that the Fréchet subdifferential has the explicit representation

∂Ff (x̄) =

{
x∗ ∈ X∗ | lim inf

x→x̄

f(x)− f (x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0

}
. (7)

In the current setting of reflexive Banach spaces, the following representation holds true for Clarke’s
subdifferential [13, Theorem 3.57]:

∂Cf (x̄) = co
{
∂Mf (x̄) + ∂∞f (x̄)

}
. (8)

For locally Lipschitzian functions, the following classical definition of Clarke’s subdifferential applies:

∂Cf (x̄) = {x∗ ∈ X∗ | 〈x∗, h〉 ≤ f ◦ (x̄;h) , ∀h ∈ X} , (9)

where

f ◦ (x̄;h) := lim sup
x→x̄,t↓0

f (x+ th)− f(x)

t
(10)

denotes Clarke’s directional derivative of f at x̄ in the direction h.

In case that f happens to be convex, all the subdifferentials above coincide with the ordinary subdif-
ferential in the sense of convex analysis:

∂f (x̄) := {x∗ ∈ X∗ | f(x) ≥ f(x̄) + 〈x∗, x− x̄〉 , ∀x ∈ X} .

For a function f(x, y) of two variables, we will refer to its partial subdifferentials at a point (x̄, ȳ) as
the corresponding subdifferentials of the partial functions:

∂F/M/C
x f (x̄, ȳ) := ∂F/M/Cf (·, ȳ) (x̄) ; ∂F/M/C

y f (x̄, ȳ) := ∂F/M/Cf (x̄, ·) (ȳ) .
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3 Continuity properties

In this section, we investigate continuous properties of the radial probability and the radius functions,
defined respectively in (3) and (4), which are the basis for deriving in Section 5 subdifferential formulae
for probability function (1).

For all the following results, the basic assumption (H) formulated in the Introduction is tacitly required
to hold; namely, function g is locally Lipschitzian as a function of both arguments simultaneously, and
convex as a function of the second argument.

Lemma 1 Define U := {x ∈ X | g(x, 0) < 0}.

1 The radius function ρ is continuous at (x, v) for any x ∈ U and any v ∈ F (x).

2 For x ∈ U and v ∈ I(x) it holds that lim
k→∞

ρ (xk, vk) = ∞ for any sequence (xk, vk) →
(x, v) such that vk ∈ F (xk).

Proof. Observe first, that ρ is defined (possibly extended-valued) on U × Sm−1. To verify 1., consider
any sequence (xk, vk) →k (x, v) with vk ∈ Sm−1. We show first that the sequence ρ (xk, vk)
is bounded. Indeed, otherwise there would exist a subsequence with ρ (xkl , vkl) →l ∞. Clearly
g(xkl , 0) < 0 for l large enough, because of g(x, 0) < 0. Fix an arbitrary r ≥ 0. Then ρ (xkl , vkl) >
r. We claim that g(xkl , rLvkl) < 0 for these l’s. This is obvious in case that vkl ∈ I(xkl). If vkl ∈
F (xkl), then the relations

g(xkl , 0) < 0, g(xkl , ρ (xkl , vkl)Lvkl) = 0, ρ (xkl , vkl) > r,

and
g(xkl , rLvkl) ≥ 0,

would contradict the convexity of g in the second argument. Hence, for l sufficiently large,

g(xkl , rLvkl) < 0,

and passing to the limit yields that g(x, rLv) ≤ 0, which holds true for all r ≥ 0 because the
latter was chosen arbitrary. But then, g(x, rLv) < 0 for all r ≥ 0, because otherwise once more a
contradiction with convexity of g in the second argument would arise from g(x, 0) < 0. This, however,
amounts to v ∈ I(x) contradicting our assumption v ∈ F (x). Summarizing, we have shown that
ρ (xk, vk) is bounded and, in particular, vk ∈ F (xk) for all k. Let ρ (xkl , vkl) →l r0 be an arbitrary
convergent subsequence. Then, we may pass to the limit in the relation g (xkl , ρ (xkl , vkl)Lvkl) = 0
in order to derive that g (x, r0Lv) = 0, which in turn implies that r0 = ρ (x, v). Hence, all convergent
subsequences of ρ (xk, vk) have the same limit ρ (x, v). This implies that ρ (xk, vk)→k ρ (x, v) and
altogether that ρ is continuous at (x, v).

As for 2., observe that if ρ (xk, vk) would not tend to infinity, then there would exist a converging
subsequence ρ (xkl , vkl) →l r1 for some r1 ≥ 0. Since ρ (xkl , vkl) < ∞ and g(xkl , 0) < 0 for l
large enough, we infer that vkl ∈ F (xkl) and, hence, g(xkl , ρ (xkl , vkl)Lvkl) = 0 for all these l’s.
Now, passing to the limit yields that g(x, r1Lv) = 0, whence v ∈ F (x), a contradiction.

Lemma 2 If g (x, 0) < 0 and v ∈ F (x), then there exist neighborhoods U and V of x and v,
respectively, such that v′ ∈ F (x′) for all x′ ∈ U and v′ ∈ V ∩ Sm−1.
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Proof. If the statement wasn’t true, then there existed a sequence (xk, vk)→ (x, v) with g (xk, 0) <
0, vk ∈ Sm−1 and vk ∈ I (xk). Hence, ρ (xk, vk) =∞ and so ρ (x, v) =∞ by 1. in Lemma 1. This
yields the contradiction v ∈ I(x).

Lemma 3 Let x ∈ X and r ≥ 0 be such that g(x, 0) < 0 and g(x, rLv) = 0. Then

〈z∗, Lv〉 ≥ −g(x, 0)

r
> 0 ∀z∗ ∈ ∂zg (x, rLv) .

Proof. By convexity of g in the second variable and by definition of the convex subdifferential, one has
that

−r
2
〈z∗, Lv〉 =

〈
z∗,

r

2
Lv − rLv

〉
≤ g

(
x,
r

2
Lv
)
− g (x, rLv)

= g
(
x,
r

2
Lv
)
≤ 1

2
g (x, 0) +

1

2
g (x, rLv) =

1

2
g (x, 0) .

Since our assumptions imply that r > 0, the assertion follows.

We get in the following proposition the desired continuity of the radial probability function e defined in
(3).

Proposition 1 The radial probability function is continuous at any (x, v) ∈ X×Sm−1 with g(x, 0) <
0.

Proof. Fix a point (x, v) ∈ X × Sm−1 with g(x, 0) < 0. Consider any sequence (xk, vk) → (x, v)
with vk ∈ Sm−1 and assume first that v ∈ F (x). Then, ρ (xk, vk) →k ρ (x, v) by 1. in Lemma 1,
and vk ∈ F (xk) for k large, by Lemma 2. Hence, by (5) it follows that

e (xk, vk) = Fη (ρ(xk, vk))→k Fη(ρ (x, v)) = e (x, v) ,

where the convergence follows from the continuity of the Chi-distribution function Fη.

If in contrast v ∈ I(x), then, by (3), e (x, v) = µη (R+) = 1. We’ll be done if we can show that
e (xk, vk)→k 1. If this did not hold true, then there would exist a subsequence and some ε > 0 such
that

|e (xkl , vkl)− 1| > ε ∀ l. (11)

Since vkl ∈ I (xkl) would imply as above that e (xkl , vkl) = µη (R+) = 1, a contradiction, we
conclude that vkl ∈ F (xkl) for all l. Now, 2. in Lemma 1 guarantees that ρ (xkl , vkl) →l ∞. Then,
by (5), we arrive at the convergence

e (xkl , vkl) = Fη (ρ(xkl , vkl))→l 1,

where we exploited the property lim
t→∞

Fη (t) = 1, following from Fη being a cumulative distribution

function. This is a contradiction with (11), and the desired conclusion follows. Consequently, we
obtain the continuity of the probability function ϕ, defined in (1).

Theorem 1 The probability function is continuous at any point x ∈ X with g(x, 0) < 0.

Proof. For any sequence xn → x one has by Proposition 1 that

e (xn, v)→n e (x, v) ≤ 1 ∀v ∈ Sm−1,

where the inequality follows from e being a probability. Since the constant function 1 is integrable on
Sm−1, the assertion follows from Lebesgue’s dominated convergence theorem.

DOI 10.20347/WIAS.PREPRINT.2478 Berlin 2018
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4 Subdifferential of the radial probability function

In this section, we provide characterizations of the Fréchet subdifferential of the radial probability
function e (·, v), defined in (3), for arbitrarily fixed directions v ∈ Sm−1. As before, we also consider in
this section our standard assumption (H).

We need first to estimate the set ∂Fx ρ(x, v):

Proposition 2 Let x ∈ X with g(x, 0) < 0 and v ∈ F (x) be arbitrary. Then, for every y∗ ∈
∂Fx ρ(x, v) and every w ∈ X , there exist x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and z∗ ∈ ∂zg (x, ρ(x, v)Lv)
such that 〈z∗, Lv〉 > 0 and

〈y∗, w〉 ≤ −1

〈z∗, Lv〉
〈x∗, w〉 .

Proof. Fix y∗ ∈ ∂Fx ρ(x, v) and w ∈ X ; hence, ρ(x, v) < ∞ (because by assumption v ∈ F (x)).
Let M > 0 be a Lipschitz constant of g at (x, ρ(x, v)Lv). Then, there exists a neighborhood U
of x such that the function g(·, ρ(x, v)Lv) is locally Lipschitzian with Lipschitz constant M at each
x′ ∈ U , and such that the functions g(x′, ·), x′ ∈ U , are locally Lipschitzian with the same Lipschitz
constant M at ρ(x, v)Lv. As a consequence of [4, Proposition 2.1.2], for all x′ ∈ U one has that

‖x∗‖ , ‖z∗‖ ≤M ∀x∗ ∈ ∂Cx g(x′, ρ(x, v)Lv), ∀z∗ ∈ ∂zg(x′, ρ(x, v)Lv). (12)

Consider an arbitrary sequence tn ↓ 0 so that, by Lemma 2, we may assume v ∈ F (x + tnw)
for all n. By convexity and continuity of the function g with respect to the second variable, the set
∂g (x+ tnw, ·) (ρ(x, v)Lv) is nonempty for all n, and so we may select a sequence

z∗n ∈ ∂zg (x+ tnw, ·) (ρ(x, v)Lv); (13)

hence, taking into account, from the definition of function ρ, that g(x + tnw, ρ(x + tnw, v)Lv) = 0
and g(x, ρ(x, v)Lv) = 0,

(ρ(x+ tnw, v)− ρ(x, v)) 〈z∗n, Lv〉 = 〈z∗n, ρ(x+ tnw, v)Lv − ρ(x, v)Lv〉
≤ g(x+ tnw, ρ(x+ tnw, v)Lv)

− g(x+ tnw, ρ(x, v)Lv)

= −g(x+ tnw, ρ(x, v)Lv)

= g(x, ρ(x, v)Lv)− g(x+ tnw, ρ(x, v)Lv). (14)

Next, Lebourg’s mean value Theorem for Clarke’s subdifferential [4, Theorem 2.3.7] yields some τn ∈
[0, 1] and

x∗n ∈ ∂Cx g(x+ τntnw, ρ(x, v)Lv) (15)

such that

g(x, ρ(x, v)Lv)− g(x+ tnw, ρ(x, v)Lv) ≤ −tn 〈x∗n, w〉 , (16)

and, consequently, from (14),

(ρ(x+ tnw, v)− ρ(x, v)) 〈z∗n, Lv〉 ≤ −tn 〈x∗n, w〉 . (17)
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Since X is reflexive and ‖z∗n‖ , ‖x∗n‖ ≤ M , by (12), there exists a subsequence
(
x∗nk , z

∗
nk

)
and

some (x∗, z∗) ∈ X × Rm such that x∗nk ⇀ x∗ and z∗nk → z∗. The weak∗-closedness of the graph
of Clarke’s subdifferential [4, Proposition 2.1.5] along with (15) and (13) implies that

x∗ ∈ ∂Cx g(x, ρ(x, v)Lv), z∗ ∈ ∂zg (x, ρ(x, v)Lv) . (18)

Now, Lemma 3 implies that

〈z∗, Lv〉 ≥ −g(x, 0)

ρ(x, v)
> 0,

and, so, by passing to the (inferior) limit in (17), we arrive at

〈z∗, Lv〉 lim inf
n→∞

t−1
n (ρ(x+ tnw, v)− ρ(x, v)) ≤ −〈x∗, w〉 . (19)

Therefore, since y∗ ∈ ∂Fx ρ(x, v),

〈y∗, w〉 ≤ lim inf
n→∞

t−1
n (ρ(x+ tnw, v)− ρ(x, v)) ≤ −1

〈z∗, Lv〉
〈x∗, w〉 ,

as we wanted to prove.

Next, we give the desired estimate of the set ∂Fx e(x, v). Recall that χ is the density of the one-
dimensional Chi-distribution with m degrees of freedom (see (6)).

Theorem 2 Let x ∈ X with g(x, 0) < 0 and v ∈ F (x) be arbitrary. Then, for every y∗ ∈ ∂Fx e(x, v)
and every w ∈ X , there exist x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈y∗, w〉 ≤ −χ (ρ(x, v))

〈z∗, Lv〉
〈x∗, w〉 .

Consequently, if Mx,v denotes a Lipschitz constant of g(·, ρ(x, v)Lv) at x, then

‖y∗‖ ≤ ρ(x, v) · χ (ρ(x, v))

|g(x, 0)|
Mx,v ∀y∗ ∈ ∂Fx e(x, v).

Proof. By (5), for all y close to x we may write e (y, v) = Fη (ρ(y, v)), with ρ(y, v) < ∞, as a
consequence of Lemma 2. Since Fη is continuously differentiable and nondecreasing (as a distribution
function),F ′η (t) ≥ 0 for all t ∈ R and, from the calculus of Fréchet subdifferentials (e.g., [12, Corollary
1.14.1 and Proposition 1.11]), we obtain that

∂Fx e(x, v) = ∂F
(
F ′η (ρ(x, v)) ρ(·, v)

)
(x)

= F ′η(ρ(x, v))∂Fρ(·, v)(x) = χ (ρ(x, v)) ∂Fx ρ(x, v).

Combination with Proposition 2 yields the first assertion.

To prove the second assertion, from the first part of the proposition we choose elements x∗ ∈
∂Cx g(x, ρ(x, v)Lv) and z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈y∗, w〉 ≤
∣∣∣∣−χ (ρ(x, v))

〈z∗, Lv〉

∣∣∣∣ ‖x∗‖ ‖w‖ ,
and so, since 〈z∗, Lv〉 ≥ −g(x,0)

ρ(x,v)
> 0 by Lemma 3,

〈y∗, w〉 ≤ ρ(x, v) · χ (ρ(x, v))

|g(x, 0)|
Mx,v ‖w‖ ,

yielding the desired conclusion.

We shall also need the following result.
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Corollary 1 (i) For every x0 ∈ X with g(x0, 0) < 0 and every v0 ∈ F (x0) there exist neighbor-
hoods Ũ of x0 and Ṽ of v0 as well as some α > 0 such that

∂Fx e(x, v) ⊆ B∗α (0) ∀ (x, v) ∈ Ũ ×
(
Ṽ ∩ Sm−1

)
. (20)

(ii) For all x ∈ X with g(x, 0) < 0 and for all v ∈ I(x) one has that ∂Fx e(x, v) ⊆ {0}.

Proof. (i) Let M > 0 and define open neighborhoods Ũ of x0 and Ṽ of v0 such that M is a Lipschitz

constant of g on Ũ × Ṽ and, for all (x, v) ∈ Ũ ×
(
Ṽ ∩ Sm−1

)
(recall Lemma 2),

g(x, 0) < 0, ρ(x, v) <∞.

Hence, by Theorem 2,
∂Fx e(x, v) ⊆ B∗α(x,v) (0) ,

where

α(x, v) :=
ρ(x, v) · χ (ρ(x, v))

|g(x, 0)|
Mx,v.

Taking into account the continuity of ρ (see Lemma 1), we may suppose for all (x, v) ∈ Ũ ×(
Ṽ ∩ Sm−1

)
that M is a Lipschitz constant for g(·, ρ(x, v)Lv) at the point x (∈ Ũ). Thus, we

can replace Mx,v by M in the definition of α above. Moreover, since g is continuous (also by Lemma

1), as well as the Chi-density χ, we deduce that α is continuous on Ũ ×
(
Ṽ ∩ Sm−1

)
. Then, after

shrinking Ũ × Ṽ if necessary, we may assume that for some α > 0

α(x, v) ≤ α ∀ (x, v) ∈ Ũ ×
(
Ṽ ∩ Sm−1

)
.

This proves (20).

(ii) As already observed in the proof of Proposition 1, v ∈ I(x) implies that e(x, v) = 1. Consequently,
the function e(·, v) (as the value of a probability) reaches a global maximum at x. Let x∗ ∈ ∂Fx e(x, v)
and u ∈ X\{0} be arbitrary. Then,

−
〈
x∗,

u

‖u‖

〉
= lim inf

n→∞
−〈x

∗, n−1u〉
‖n−1u‖

≥ lim inf
n→∞

e(x+ n−1u, v)− e(x, v)− 〈x∗, n−1u〉
‖n−1u‖

≥ lim inf
h→0

e(x+ h, v)− e(x, v)− 〈x∗, h〉
‖h‖

≥ 0.

Hence 〈x∗, u〉 ≤ 0 for all u ∈ X , and so x∗ = 0 as desired.

Definition 3 For x ∈ X and l > 0, we call

Cl(x) := {h ∈ X | g◦(·, z)(y;h) ≤ l ‖z‖−m e
‖z‖2

2‖L‖2 ‖h‖ ∀y ∈ B1/l (x) , ‖z‖ ≥ l}

the l-cone of nice directions at x ∈ X . Here, we make use of Clarke’s directional derivative (10) of
the partial function g(·, z). We denote the polar cone to Cl(x) as C∗l (x).
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Note that, by positive homogeneity of Clarke’s directional derivative, {Cl}l∈N defines a nondecreasing
sequence of closed cones.

We give in the following theorem another estimate for ∂Fx e(x, v), which will be useful in the sequel.

Theorem 3 Fix x0 ∈ X such that g(x0, 0) < 0. Then, for every l > 0, there exists some neighbor-
hood U of x0 and some R > 0 such that

∂Fx e(x, v) ⊆ B∗R (0)− C∗l (x0) ∀x ∈ U, v ∈ Sm−1.

Proof. Let l > 0 be arbitrarily fixed. It will be sufficient to show that for every v0 ∈ Sm−1 there are
neighborhoods Ū of x0 and V̄ of v0 and some R > 0 such that

∂Fx e(x, v) ⊆ B∗R (0)− C∗l (x0) ∀ (x, v) ∈ Ū × (V̄ ∩ Sm−1). (21)

If this holds true, then the global inclusion in the statement of this theorem will follow from the local
ones above by a standard compactness argument with respect to Sm−1.

In order to prove (21), fix an arbitrary v0 ∈ Sm−1. Assume first that v0 ∈ I(x0). Then, define open
neighborhoods U∗ of x0 and V ∗ of v0 such that U∗ ⊆ B1/l (x0) (with l > 0 as fixed above) and, for
all x ∈ U∗ and v ∈ V ∗ ∩ F (x),

g(x, 0) ≤ 1

2
g(x0, 0) < 0, ρ(x, v)‖Lv‖ ≥ l.

Note, that the last inequality is possible by virtue of 2. in Lemma 1 and by L being nonsingular and
Sm−1 being compact (therefore ‖Lv‖ ≥ δ for all v ∈ Sm−1 and some δ > 0). From Corollary 1(ii)
we derive that

∂Fx e(x, v) ⊆ {0} ∀x ∈ U∗, v ∈ I(x). (22)

Now, consider an arbitrary (x, v) ∈ U∗ × V ∗ such that v ∈ F (x). Let also y∗ ∈ ∂Fx e(x, v) and
h ∈ −Cl(x0) be arbitrarily given. Then, by Theorem 2, there exist x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and
z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈y∗, h〉 ≤ χ (ρ(x, v))

〈z∗, Lv〉
〈x∗,−h〉 ≤ χ (ρ(x, v))

〈z∗, Lv〉
g◦(·, ρ(x, v)Lv)(x;−h), (23)

where the last inequality relies on (9) and on the fact that both the density function χ and 〈z∗, Lv〉 are
positive (see Lemma 3). Since−h ∈ Cl(x0), our conditions on the neighborhoods U∗ and V ∗ stated
above guarantee that

g◦(·, ρ(x, v)Lv)(x;−h) ≤ l ‖ρ(x, v)Lv‖−m e
‖ρ(x,v)Lv‖2

2‖L‖2 ‖h‖

≤ l ‖ρ(x, v)Lv‖−m e
ρ(x,v)2

2 ‖h‖ .

This allows us to continue (23) as

〈y∗, h〉 ≤ χ (ρ(x, v)) ρ(x, v)l

|g(x, 0)|
‖ρ(x, v)Lv‖−m e

ρ(x,v)2

2 ‖h‖

=
lK

|g(x, 0)|
‖Lv‖−m ‖h‖ ,
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where we used Lemma 3 and the definition of the Chi-density with m degrees of freedom (see (6)).
Owing to g(x, 0) ≤ 1

2
g(x0, 0) < 0, we may continue as

〈y∗, h〉 ≤ 2lKK∗

|g(x0, 0)|
‖h‖ , (24)

where (recall that L is nonsingular)

K∗ := max
v∈Sm−1

‖Lv‖−m ∈ R+.

Consequently, we have shown that for some K̃ > 0, which is independent of x and v,

〈y∗, h〉 ≤ K̃ ‖h‖ ∀y∗ ∈ ∂Fx e(x, v), h ∈ −Cl(x0).

Using indicator and support functions, respectively, this relation is rewritten as, for all h ∈ X ,

〈y∗, h〉 ≤ K̃ ‖h‖+ i−coCl(x0)(h)

= σB∗
K̃

(0)(h) + σ−C∗l (x0)(h)

= σ(B∗
K̃

(0)−C∗l (x0))(h).

Consequently, we get
σ∂Fx e(x,v)(h) ≤ σ(B∗

K̃
(0)−C∗l (x0))(h) ∀h ∈ X,

which entails the inclusion
∂Fx e(x, v) ⊆ B∗

K̃
(0)− C∗l (x0).

Since (x, v) ∈ U∗ × V ∗ with v ∈ F (x) were chosen arbitrarily, we may combine this with (22) to
derive that

∂Fx e(x, v) ⊆ B∗
K̃

(0)− C∗l (x0) ∀ (x, v) ∈ U∗ ×
(
V ∗ ∩ Sm−1

)
.

Now, we suppose that v0 ∈ F (x0). Then Corollary 1(i) guarantees the existence of neighborhoods Ũ
of x0 and Ṽ of v0 as well as some α > 0 such that relation (20) holds true. Consequently, we end up
with the claimed relation (21) upon putting

Ū := Ũ ∩ U∗, V̄ := Ṽ ∩ V ∗, R := max{α, K̃}.

Corollary 2 Fix x0 ∈ X such that g(x0, 0) < 0, and assume one of the following alternative condi-
tions:

{z ∈ Rm | g (x0, z) ≤ 0} is a bounded set, (25)

or
∃ l > 0 such that Cl(x0) = X. (26)

Then the partial radial probability functions e(·, v), v ∈ Sm−1, are uniformly locally Lipschitzian around
x0 with some common Lipschitz constant independent of v.

Proof. In the case of (25), one has that I(x0) = ∅, whence F (x0) = Sm−1. Then, by Corollary 1(i),
for every v0 ∈ Sm−1 there exist neighborhoods Ũv0 of x0 and Ṽv0 of v0 as well as some αv0 > 0
such that

∂Fx e(x, v) ⊆ B∗αv0 (0) ∀ (x, v) ∈ Ũv0 ×
(
Ṽv0 ∩ Sm−1

)
.
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Then, by the evident compactness argument with respect to the sphere Sm−1 already alluded to in the
beginning of the proof of Theorem 3, we derive the existence of a neighborhood Ũ of x0 and of some
α > 0 such that

∂Fx e(x, v) ⊆ B∗α (0) ∀ (x, v) ∈ Ũ × Sm−1.

In the case of (26), the same relation (with α := R) is a direct consequence of Theorem 3 upon taking
into account that Cl(x0) = X entails that −C∗l (x0) = {0}. Now, the claimed statement on uniform
Lipschitz continuity follows from [13, Theorem 3.5.2].

5 Subdifferential of the Gaussian probability function ϕ

In this section, we provide the required formulae for the Fréchet, the Mordukhovich, and the Clarke
subdifferentials of the Gaussian probability function ϕ, defined in (1). These results are next illustrated
in Example 1, and in Subsection 5.3 to discuss the Lipschitz continuity and differentiability of ϕ. Finally,
we study in this section, Subsection 5.4, the special and interesting setting of probability functions
given by means of finite systems of smooth inequalities. In this case, formulae of the subdifferentials
of ϕ are expressed in terms of the initial data in (1), i.e., in terms of the function g. All this is done
under our standard assumption (H).

5.1 Main Result

We start by recalling the following result on the interchange of Mordukhovich subdifferentials and the
integration sign when dealing with the integral functions of the form

If (x) :=

∫
ω∈Ω

f(ω, x)dµ.

Here, (Ω,A, ν) a σ-finite complete measure space, and f : Ω×X → [0,+∞] is a normal integrand;
that is,

(i) f isA⊗ B(X)-measurable,

(ii) f(ω, ·) is lsc for all ω ∈ Ω.

We assume that If (x0) < +∞ for some x0 ∈ X . Then we have the following result in which the
integral

∫
ω∈Ω

∂Mf(ω, x0)dν is to be understood in the Aumann’s sense; that is, the set of Bochner

integrals over all measurable selections of the multivalued mapping ∂Mf(·, x0) (see, e.g., [20]).

Proposition 3 ([5]) Assume that for some δ > 0 and K ∈ L1(Ω,R) we have for all x ∈ Bδ(x0)

∂Fx f(ω, x) ⊆ K(ω)B∗1(0) + C, a.e. ω ∈ Ω, (27)

where C ⊆ X∗ is a closed convex cone with polar cone having a nonempty interior. Then

(i) ∂MIf (x0) ⊆ cl∗
{ ∫
ω∈Ω

∂Mf(ω, x0)dν (ω) + C

}
.
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(ii) Provided that X is finite-dimensional,

∂MIf (x0) ⊆
∫
ω∈Ω

∂Mf(ω, x0)dν (ω) + C.

(iii) ∂∞If (x0) ⊆ C.

(vi) ∂CIf (x0) ⊆ co

{ ∫
ω∈Ω

∂Mf(ω, x0)dν (ω) + C

}
.

Now, we are in a position to prove the main result of our paper.

Theorem 4 Let x0 ∈ X be such that g(x0, 0) < 0. Assume that the cone Cl(x0) has a non-empty
interior for some l > 0. Then,

(i) ∂Mϕ(x0) ⊆ cl∗

{ ∫
v∈Sm−1

∂Mx e(x0, v)dµζ(v)− C∗l (x0)

}
(ii) Provided that X is finite-dimensional,

∂Mϕ(x0) ⊆
∫

v∈Sm−1

∂Mx e(x0, v)dµζ(v)− C∗l (x0).

(iii) ∂∞ϕ(x0) ⊆ −C∗l (x0).

(vi) ∂Cϕ(x0) ⊆ co

{ ∫
v∈Sm−1

∂Mx e(x0, v)dµζ(v)− C∗l (x0)

}
.

Proof. We apply Proposition 3 by putting

f (ω, x) := e (x, ω) , C := −C∗l (x0),

and using the measurable space (Sm−1,A, µζ), with A being the σ-Algebra of measurable sets
with respect to µζ . It is known that µζ is σ-finite and complete. The measurability property of f and
the lower semicontinuity of f(ω, ·) are consequences of the continuity of e (see Proposition 1). The
cone C∗ = coCl(x0) has a non-empty interior, by the current assumption. Condition (27) is a con-
sequence of Theorem 3 upon defining K(ω) := R for all ω ∈ Ω = Sm−1, and observing that
K ∈ L1(Sm−1,R), due to Sm−1 having finite (µζ -) measure. Now, the claimed result follows from
Proposition 3 by taking into account that If = ϕ thanks to (2).

Our main result motivates some investigation about the impact of the parameter l > 0 in the definition
of the cones C∗l (x0), x0 ∈ X . From Definition 3, it follows immediately that (Cl(x0))l≥0 forms a
non-decreasing family of closed cones, and hence

Ck(x0) ⊆ Ck+1(x0); C∗k(x0) k C∗k+1(x0) ∀k ∈ N. (28)

Moreover, Ck(x0) having a non-empty interior as required in Theorem 4, implies that Ck+1(x0) does
so too. This means that the upper estimates in the results of Theorem 4 become increasingly precise
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for k →∞. This immediately raises the question if we may pass to the limit in this result. Let us then
introduce the limiting cone of nice directions

C∞(x0) :=
⋃
k∈N

Ck(x0) =

{h ∈ X | ∃k ∈ N : g◦(·, z)(y;h) ≤ k ‖z‖−m e
‖z‖2

2‖L‖2 ‖h‖ ,∀y ∈ B 1
k

(x) , ‖z‖ ≥ k}.

The reader can simply notice (through Baire’s Theorem) the non-emptiness of the interior of C∞(x0)
is equivalent to the non-emptiness of the interior of Cl(x0) for some l > 0. As far as the singular
subdifferential is concerned, we may immediately pass to the limit:

Proposition 4 Fix x0 ∈ X with g(x0, 0) < 0, and assume that Cl(x0) has a non-empty interior for
some l > 0. Then ∂∞ϕ(x0) ⊆ −C∗∞(x0).

Proof. By Theorem 4(iii) we have that ∂∞ϕ(x0) ⊆ −C∗l (x0). Since along with Cl(x0) the larger
cones Ck(x0) for k ∈ N, k ≥ l, have non-empty interiors too, it follows that

∂∞ϕ(x0) ⊆
⋂

k∈N,k≥l

−C∗k(x0) = −

(⋃
k∈N

Ck(x0)

)∗
= −C∗∞(x0),

where the first equality relies on (28).

In order to formulate a corresponding result for the Mordukhovich and Clarke subdifferentials, we need
an additional boundedness assumption:

Proposition 5 Fix x0 ∈ X with g(x0, 0) < 0, and assume that Cl(x0) has a non-empty interior
for some l > 0. Moreover, suppose that ∂Mx e(x0, v) is integrably bounded; i.e., there exists some
functionR : Sm−1 → R+ with

∫
Sm−1

R(v)dµζ(v) <∞ such that

∂Mx e(x0, v) ⊆ B∗R(v)(0) µζ − a.e. v ∈ Sm−1.

Then

∂Mϕ(x0) ⊆ ∂Cϕ(x0) ⊆ cl


∫

v∈Sm−1

∂Mx e(x0, v)dµζ(v)

− C∗∞(x0).

Proof. For the purpose of abbreviation, put

I :=

∫
v∈Sm−1

∂Mx e(x0, v)dµζ(v).

From our assumption on ∂Mx e(x0, v), being integrably bounded, it follows that I is bounded too.
Consequently, cl∗I is w∗-compact. With Cl(x0) having a non-empty interior, for all k ∈ N with k ≥ l,
from Theorem 4(i) it follows that

∂Mϕ(x0) ⊆ cl∗ {I − C∗k(x0)} = cl∗I − C∗k(x0) ∀k ≥ l.
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Due to (28), we may continue as

∂Mϕ(x0) ⊆
⋂
k∈N

{cl∗I − C∗k(x0)} , (29)

which in turn, using again the w∗-compactness of cl∗I , gives us

∂Mϕ(x0) ⊆ cl∗I −
⋂
k∈N

C∗k(x0) = cl∗I −

(⋃
k∈N

Ck(x0)

)∗
= cl∗I − C∗∞(x0).

Now, by [13, Theorem 3.57], by Proposition 4, and by convexity of C∗∞(x0), we arrive at

∂Cϕ(x0) = co
{
∂Mϕ(x0) + ∂∞ϕ(x0)

}
⊆ co {cl∗I − C∗∞(x0)− C∗∞(x0)}
= co {cl∗I − C∗∞(x0)} .

Now, as a consequence of [16, Theorem 3.1], the strong closure cl I is convex (the measure µζ being
nonatomic), so that cl∗I = cl I is convex, and the last inclusion above reads

∂Cϕ(x0) ⊆ clI − C∗∞(x0).

This finishes the proof of our proposition.

5.2 An illustrating example

In the following, we provide an example which, on the one hand, serves as an illustration of our main
result Theorem 4 and, on the other hand, shows that even for a continuously differentiable inequality
g (x, ξ) ≤ 0, satisfying a basic constraint qualification, the associated probability function ϕ may fail
to be differentiable, actually even to be locally Lipschitzian (though it is continuous due to the constraint
qualification).

Example 1 Define the function g : R× R2 → R by

g (x, z1, z2) := α(x)eh(z1) + z2 − 1,

where

α(x) :=

{
x2 x ≥ 0
0 x < 0,

h (t) := −1− 4 log (1− Φ(t)) ; Φ(t) :=
1√
2π

t∫
−∞

e−τ
2/2dτ,

i.e., Φ is the distribution function of the one-dimensional standard normal distribution. Moreover, let ξ
have a bivariate standard normal distribution, i.e.,

ξ = (ξ1, ξ2) ∼ N
(

(0, 0) ,

(
1 0
0 1

))
.

The following properties are shown in the Appendix:
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1 g is continuously differentiable.

2 g is convex in (z1, z2).

3 g (0, 0, 0) < 0.

4 C1(0) = (−∞, 0].

5
∫

v∈S1
∂Mx e(0, v)dµζ(v) ⊆ (−∞, 0].

6 ϕ fails to be locally Lipschitzian in 0.

Observe that, by 1. and 2., g satisfies our basic data assumptions, (H), and that 3. forces the prob-
ability function ϕ to be continuous. On the other hand, by 6., ϕ is not locally Lipschitzian -much less
differentiable - in 0 despite the continuous differentiability of g and the satisfaction of Slater’s condition.
Now, Theorem 4(ii), along with 4. and 5. provides that

∂Mϕ(0) ⊆ (−∞, 0]− [0,∞) = (−∞, 0] , ∂∞ϕ(0) ⊆ (−∞, 0] .

On the other hand, analytical verification along with the formula for ϕ provided in the Appendix (or
alternatively visual inspection of the graph of ϕ) yields that ∂Mϕ(0) = {0} and ∂∞ϕ(0) = (−∞, 0],
so that the upper estimate for the singular subdifferential is strict, while the one for the basic subd-
ifferential is not (nevertheless this upper estimate is nontrivial due to being smaller than the whole
space).

5.3 Lipschitz continuity and differentiability of ϕ

The following result on Lipschitz continuity of the probability function ϕ is an immediate consequence
of Clarke’s Theorem on interchanging subdifferentiation and integration [4, Theorem 2.7.2] and of
Corollary 2:

Theorem 5 Fix x ∈ X such that g(x, 0) < 0. Under one of the alternative conditions (25) or (26),
the probability function ϕ is locally Lipschitz near x and the following estimate holds true:

∂Cϕ(x) ⊆
∫

v∈Sm−1

∂Cx e(x, v)dµζ(v). (30)

The next result provides conditions for differentiability of the probability function ϕ; recall that #A
denotes the cardinal of a set A.

Proposition 6 In addition to the assumptions of Theorem 5, assume that

#∂Cx e(x, v) = 1 µζ -a.e. v ∈ Sm−1. (31)

Then ϕ is strictly differentiable at x and

∇ϕ(x) =

∫
v∈Sm−1

∇xe(x, v)dµζ(v).

Consequently, if X is finite-dimensional and (31) holds true in some neighborhood of x, then ϕ is
even continuously differentiable at x.
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Proof. Assumption (31) entails that the integral in (30) reduces to a singleton. On the other hand, the
subdifferential on the left-hand side of (30) is nonempty, since ϕ is locally Lipschitz near x (see [4,
Proposition 2.1.2]). Hence, the inclusion (30) yields the single-valuedness of ∂Cϕ(x) as well as the
equality

∂Cϕ(x) =

∫
v∈Sm−1

∂Cx e(x, v)dµζ(v).

Now, since a locally Lipschitzian function reducing to a singleton at some point is strictly differential
at this point with gradient equal to the (single-valued) subdifferential (see [4, Proposition 2.2.4]), it
follows that ϕ is strictly differentiable at x0 and ∂Cϕ(x0) = {∇ϕ(x0)}. Likewise, the local Lipschitz
continuity of e(·, v) around x0 for all v ∈ Sm−1 (see Corollary 2) yields along with (31) that

∂Cx e(x0, v) = {∇xe(x0, v)} µζ − a.e. v ∈ Sm−1.

Altogether, we have shown the first assertion of our Proposition. The second assertion on continuous
differentiability follows from [4, Corollary to Prop. 2.2.4].

5.4 Application to a finite system of smooth inequalities

In order to benefit from Theorem 4, one has to be able to express the integrand ∂Mx e(x0, v) in terms
of the initial data in (1), i.e., in terms of the function g. We will illustrate this for the case of a probability
function defined over a finite system of continuously differentiable inequalities which are convex in their
second argument:

ϕ(x) := P (gi (x, ξ) ≤ 0, i = 1, . . . , p) , x ∈ X. (32)

Clearly, this can be recast in the form of (1) upon defining

g := max
i=1,...,p

gi, (33)

where g is locally Lipschitz as required and convex in the second argument because the gi’s are
supposed to be so. Since g (x, 0) < 0 implies that gi (x, 0) < 0 for all i = 1, . . . , p, we may
associate with each component a function ρi satisfying the relation gi (x, ρi (x, v)Lv) = 0, as we
did in (4). The relation between ρ associated via (4) with g in (33) is, clearly,

ρ (x, v) = min
i=1,...,p

ρi (x, v) ∀x : g (x, 0) < 0, ∀v ∈ F (x). (34)

Note, however, that unlike ρ, the functions ρi are continuously differentiable because the gi’s are so.
This is a consequence of the Implicit Function Theorem (see [1, Lemma 3.2]), which moreover yields
the gradient formulae, for all x with g (x, 0) < 0 and all v ∈ F (x),

∇xρi (x, v) = − 1

〈∇zgi (x, ρ (x, v)Lv) , Lv〉
∇xgi (x, ρ (x, v)Lv) , i = 1, . . . , p.

In the following proposition, we provide an explicit upper estimate of the subdifferential set ∂Mx e(x0, v)
in terms of the initial data, which can be used in the formula of Theorem 4 to get an upper estimate for
the subdifferential of the probability function (32):
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Proposition 7 Fix x ∈ X such that gi (x, 0) < 0 for i = 1, . . . , p. Then, for every l > 0, there
exists some R > 0 such that the radial probability function associated with g in (33) via (3) satisfies

∂Mx e(x, v) ⊆


−

⋃
i∈T (v)

{
χ(ρ(x,v))

〈∇zgi(x,ρ(x,v)Lv),Lv〉∇xgi (x, ρ (x, v)Lv)
}

v ∈ F (x)

B∗R (0)− C∗l (x) v ∈ I (x) .

Here, T (v) := {i ∈ {1, . . . , p} | ρi (x, v) = ρ (x, v)}.

Proof. Fix an arbitrary v ∈ Sm−1. Given the continuity of e, we exploit the following representation [13,
Theorem 2.34] of the Mordukhovich subdifferential in terms of the Fréchet subdifferential, which holds
true in Asplund spaces (hence, in particular for reflexive Banach spaces)

x∗ ∈ ∂Mx e(x, v)⇐⇒ ∃xn →n x and ∃x∗n ⇀n x
∗ : x∗n ∈ ∂Fx e(xn, v).

Then, the inclusion ∂Mx e(x, v) ⊆ B∗R (0) − C∗l (x) follows from Theorem 3, since B∗R (0) is weak*-
compact and C∗l (x) is weak*-closed, entailing that B∗R (0) − C∗l (x) is weak*-closed. This yields the
desired estimate of ∂Mx e(x, v) when v ∈ I (x).

Suppose now in addition that v ∈ F (x), and, according to Lemma 2, let U be a neighborhood of x
such that, for all y ∈ U ,

g (y, 0) < 0, v ∈ F (y).

From the proof of Theorem 2 we have seen that

∂Fx e(y, v) = χ (ρ(y, v)) ∂Fx ρ(y, v), ∀y ∈ U,

which, by continuity of χ and by 1. in Lemma 1, immediately entails that

∂Mx e(x, v) = χ (ρ(x, v)) ∂Mx ρ(x, v).

From (34) and the calculus rule for minimum functions [13, Proposition 1.113] we conclude that

∂Mx ρ(x, v) ⊆
⋃

i∈T (v)

∇xρi(x, v).

with T (v) being defined as in the statement of the Proposition. Now, the assertion follows from (35).

We provide next a concrete characterization for the local Lipschitz continuity/differentiability of the
probability function ϕ, defined in (32), along with an explicit subdifferential/gradient formula:

Theorem 6 Fix x0 ∈ X with g (x0, 0) < 0, and assume that for some l > 0 it holds, for i = 1, . . . , p,

‖∇xgi(x, z)‖ ≤ l ‖z‖−m e
‖z‖2

2‖L‖2 ∀x ∈ B1/l (x0) , ‖z‖ ≥ l. (35)

Then the probability function (32) is locally Lipschitz near x0 and there exists a nonnegative number
R ≤ sup{‖x∗‖ | x∗ ∈ ∂Mx e(x0, v) and v ∈ I(x0)} such that

∂Cϕ(x0) ⊆ −
∫

v∈F (x0)

co

 ⋃
i∈T (v)

χ (ρ (x0, v))∇xgi (x0, ρ (x0, v)Lv)

〈∇zgi (x0, ρ (x0, v)Lv) , Lv〉

 dµζ(v)

+µζ(I(x0))B∗R (0) .
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Proof. As a maximum of finitely many smooth functions, g is Clarke-regular, so that Clarke’s directional
derivative of g coincides with its usual directional derivative. Hence, by Danskin’s Theorem and by (35),
we get the following estimate, for all h ∈ X , x ∈ B1/l (x0) and ‖z‖ ≥ l,

g◦(·, z)(x;h) = 〈∇xg(x, z), h〉
= max {〈∇xgi(x, z), h〉 : gi(x, z) = g(x, z)}

≤ max
i=1,...,p

〈∇xgi(x, z), h〉 ≤ l ‖z‖−m e
‖z‖2

2‖L‖2 ‖h‖ .

Hence, Cl(x0) = X and, so, Theorem 5 guarantees that ϕ in (32) is locally Lipschitz near x0 and
that

∂Cϕ(x0) ⊆
∫

v∈F (x0)

∂Cx e(x0, v)dµζ(v) +

∫
v∈I(x0)

∂Cx e(x0, v)dµζ(v). (36)

Since e (·, v) is locally Lipschitzian for all v ∈ Sm−1, it follows from [13, Theorem 3.57] and from
Proposition 7 that

∂Cx e(x0, v) = co
{
∂Mx e(x0, v)

}
= −co

 ⋃
i∈T (v)

χ (ρ (x0, v))∇xgi (x0, ρ (x0, v)Lv)

〈∇zgi (x0, ρ (x0, v)Lv) , Lv〉

 .

Hence, the first term on the right-hand side of (36) coincides with the integral term in the asserted
formula above. As for the second term, observe that ∂Cx e(x0, v) ⊆ B∗R (0) for some R > 0 by
Theorem 3, which yields the second term in the upper estimate of this theorem.

From Theorem 6 and Proposition 6, we immediately derive the following:

Corollary 3 If in the setting of Theorem 6 one has that µζ(I(x0)) = 0 (in particular, under assump-
tion (25)), or the constant R in Theorem 6 is zero, then

∂Cϕ(x0) ⊆ −
∫

v∈Sm−1

co

 ⋃
i∈T (v)

χ (ρ (x0, v))∇xgi (x0, ρ (x0, v)Lv)

〈∇zgi (x0, ρ (x0, v)Lv) , Lv〉

 dµζ(v).

If, in addition, for µζ -a.e. v ∈ Sm−1 we have that #T (v) = 1 (say: T (v) = {i∗(v)}), then the
probability function (32) is strictly differentiable with gradient

∇ϕ(x0) = −
∫

v∈Sm−1

χ (ρ (x0, v))∇xgi∗(v) (x0, ρ (x0, v)Lv)〈
∇zgi∗(v) (x0, ρ (x0, v)Lv) , Lv

〉 dµζ(v).

Remark 1 It is worth mentioning that under the strengthened (compared with (35)) growth condition

∃l > 0 : ‖∇xgi(x, z)‖ ≤ le‖z‖ ∀x ∈ B1/l (x0) , ‖z‖ ≥ l, i = 1, . . . , p

the constant R in Theorem 6 and Corollary above is zero, as it can be seen in (24) (see also [2,
Theorem 3.6 and Theorem 4.1]).
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6 Conclusions and future work

In this paper, we have analyzed (sub-) differentiability properties of Gaussian probability functions
which are potentially nonsmooth, possibly continuous only. Upon successively adding appropriate
conditions related with the directions of non-pathological growth of the given random inequality, it
was possible to derive subgradient and gradient formulae for Lipschitzian and differentiable probability
functions, respectively. The results were applied to a finite system of differentiable random inequalities.

The obtained results pose immediately new questions. In particular, one may be interested in less
restrictive general assumptions (H). For instance, convexity of g in the second argument (the random
variable) appears to be very restrictive for engineering applications (though it is typically fulfilled in
probelms of operations research). The technical benefit of convexity is the simple representation of
the radial probability function e in (5). In the absence of convexity, several degeneracies have to be
expected in this representation, for instance, the need to deal with a countable union of intervals
which drastically complicates the derivation of gradient formulae not only from the conceptual but
also from the notational point of view. This is subject of ongoing work. Another issue concerns the
consideration of alternative distributions in contrast with Gaussian ones. Indeed, our methodology
applies exactly the same way to the whole class of elliptical distributions which allows for a spheric
radial-decomposition in the spirit of Section 2.1 but with the Chi-distribution replaced with appropriate
alternative one-dimensional distributions. Then, Definition 3 would have to be adapted appropriately
to the densities of these new distributions.

7 Appendix

We verify in this Appendix properties 1.-6. in Example 1.

The continuous differentiability of g stated in 1. is obvious from the corresponding property of α and
h. For h, this relies on the smoothness of the distribution function of the one-dimensional standard
normal distribution Φ and on the fact that the argument 1 − Φ(t) of the logarithm is always strictly
positive.

By nonnegativity of α it is sufficient to check that eh(t) is convex in order to verify 2. To do so, it
is sufficient to show that h itself is convex, which by definition would follow from the concavity of
log (1− Φ(t)). This, however, is a consequence of log Φ being concave, which in turn implies that
log (1− Φ) is concave (see [15, Theorem 4.2.4]).

Statement 3. follows immediately from the definition of the functions.

As for 4., observe first that, by continuous differentiability of g,

g◦(·, z)(x;−1) = ∇xg (x, z1, z2) · (−1) = −α′(x)eh(z1) ≤ 0 ∀x, z1, z2 ∈ R,

whence−1 ∈ C1(0) by Definition 3. On the other hand, putting x := 1 and z := (1, 0), we have that
x ∈ B1 (0), ‖z‖ = 1 and

g◦(·, z)(x; 1) = ∇xg (1, 1, 0) · 1 = α′(1)eh(1) = 2eh(1) ≈ 1161,

whereas, due to m = 2 in this example,

‖z‖−m e
‖z‖2

2‖L‖2 =
√
e ≈ 1.65.
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Therefore, by Definition 3, 1 /∈ C1(0). Since C1(0) is a closed cone, this together with −1 ∈ C1(0)
yields C1(0) = (−∞, 0].

For proving 5., it is sufficient to show that

∂Mx e(0, v) ⊆ (−∞, 0] ∀v ∈ S1. (37)

In order to calculate ∂Mx e(0, v) for an arbitrarily fixed v ∈ S1, we have to compute first the partial
Fréchet subdifferentials ∂Fx e(x, v) for x in a neighborhood U of 0. Define U such that g(x, 0, 0) < 0
for all x ∈ U (as a consequence of the already shown relation g(0, 0, 0) < 0). If x < 0, then, by
definition of e and g,

e(x, v) = µη ({r ≥ 0 | g (x, rLv) ≤ 0}) = µη ({r ≥ 0 | rLv2 ≤ 1}) .

Hence, for x < 0, e(x, v) does not depend on its first argument locally around x. Therefore, ∂Fx e(x, v) =
{0} for all x < 0. Now, consider some x ∈ U with x ≥ 0 and x∗ ∈ ∂Fx e(x, v). If v ∈ I(x), then
∂Fx e(x, v) ⊆ {0} (see Corollary 1(ii)). If, in contrast, v ∈ F (x), then, by Theorem 2 (puttingw := ±1
there and observing that, by continuous differentiability of g, the partial Clarke subdifferentials reduce
to partial gradients),

x∗ =
−χ (ρ(x, v))∇xg (x, ρ(x, v)Lv)

〈∇zg (x, ρ(x, v)Lv) , Lv〉
=
−2xeh(ρ(x,v)v1)χ (ρ(x, v))

〈∇zg (x, ρ(x, v)Lv) , Lv〉
≤ 0.

Here, the inequality relies on x ≥ 0, on χ being positive as a density and on

〈∇zg (x, ρ(x, v)Lv) , Lv〉 ≥ −g(x, 0, 0)

ρ(x, v)
> 0

by Lemma 3. Altogether, we have shown that ∂Fx e(x, v) ⊆ (−∞, 0] for all x ∈ U . This entails that
also ∂Mx e(x, 0) ⊆ (−∞, 0]. Since v ∈ S1 has been fixed arbitrarily, the desired relation (37) follows.

In order to show 6. we provide first a formula for the probability function ϕ. If t ≤ 0, then, by definition
of g,

ϕ(t) = P (g (t, ξ1, ξ2) ≤ 0) = P (ξ2 ≤ 1) = Φ(1)

because ξ2 ∼ N (0, 1) by the distribution assumption on ξ in Example 1. If t > 0, then, again by the
assumed distribution of ξ,

ϕ(t) = P
(
ξ2 ≤ 1− t2eh(ξ1)

)
=

1

2π

∞∫
−∞

 1−t2eh(z1)∫
−∞

e−(z21+z22)/2dz2

 dz1

=
1√
2π

∞∫
−∞

e−z
2
1/2 · 1√

2π

 1−t2eh(z1)∫
−∞

e−z
2
2/2dz2

 dz1

=
1√
2π

∞∫
−∞

e−s
2/2 · Φ

(
1− t2eh(s)

)
ds.

Now, we are going to show that ϕ fails to be locally Lipschitz around 0. Observe first that, since Φ is
increasing as a distribution function, h is increasing too by its definition. Then, for any s, t satisfying
s ≥ Φ−1

(
1−
√
t
)

(recall that Φ is strictly increasing and so its inverse exists) it holds that

h(s) ≥ h
(

Φ−1
(

1−
√
t
))

= −1− log t2.
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Therefore, t2eh(s) ≥ e−1. Thus, we have shown that

Φ (1)− Φ
(
1− t2eh(s)

)
≥ Φ (1)− Φ

(
1− e−1

)
=: ε ∀s, t : s ≥ Φ−1

(
1−
√
t
)
.

With Φ being strictly increasing, we have that ε > 0. Now, for any t > 0, we calculate

ϕ(0)− ϕ(t) = Φ(1)− 1√
2π

∞∫
−∞

e−s
2/2 · Φ

(
1− t2eh(s)

)
ds

=
1√
2π

∞∫
−∞

e−s
2/2 ·

(
Φ(1)− Φ

(
1− t2eh(s)

))
ds

≥ ε
1√
2π

∞∫
Φ−1(1−

√
t)

e−s
2/2ds = ε

1− 1√
2π

Φ−1(1−
√
t)∫

−∞

e−s
2/2ds


= ε

(
1− Φ

(
Φ−1

(
1−
√
t
)))

= ε
√
t.

Since ε > 0, ϕ fails to be locally Lipschitz around 0, which finally shows 6.
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[18] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming, MPS-SIAM
series on optimization Vol. 9, 2009.

[19] S. Uryas’ev, Derivatives of probability functions and integrals over sets given by inequalities, J.
Comput. Appl. Math., 56 (1994), 197–223.

[20] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in
Mathematics, Vol. 580. Springer-Verlag, Berlin-New York (1977).

[21] R. J.-B. Wets, Stochastic Programming, in G. Nemhauser, A. Rinnooy Kan and M. Todd (eds.):
Handbook for Operations Research and Management Sciences, Vol. 1, pp. 573–629, Elsevier, 1989.

DOI 10.20347/WIAS.PREPRINT.2478 Berlin 2018


