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Measure-valued solutions to the Ericksen–Leslie model equipped with the
Oseen–Frank energy

Robert Lasarzik

Abstract

In this article, we prove the existence of measure-valued solutions to the Ericksen–Leslie system equipped with the
Oseen–Frank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation,
we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing
regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.

1 Introduction

Nonlinear partial differential equations require generalized solution concepts. In this context, the concept of Young measure-
valued solutions was first introduced by Tartar [38]. Later on, the concept of generalized Young measures was used by
DiPerna and Majda [10] to define generalized solutions to the Euler equations. These generalized Young measures capture
oscillation and concentration effects for sequences bounded in L1. Another step in the analysis of such sequences and
their limits under nonlinear functions has been achieved by Alibert and Bouchitté [2] who observed that concentrations can
only occur almost everywhere. In the article at hand, we further generalize these concepts to prove global existence of
measure-valued solutions to the Ericksen–Leslie system describing nematic liquid crystal flow.

Nematic liquid crystals are anisotropic fluids. They consist of rod-like molecules that build or are dispersed in a fluid and are
directionally ordered. This ordering and its direction heavily influences the properties of the material such as light scattering
or flow behavior. This gives rise to many applications, among which liquid crystal displays are only the most prominent one.
The Ericksen–Leslie model is a generally accepted model to describe nematic liquid crystals. The direction of the aligned
molecules is modeled by a unit-vector field and the fluid flow by a velocity field. Since this model has been proposed in
the 60s by Ericksen [15] and Leslie [28], it has been extensively studied. Nevertheless, the global mathematical existence
theory is restricted to simple quadratic free energies.

In this article, we propose a remedy by introducing a new concept of solutions, the so-called measure-valued solutions. This
is a rather weak notion of solutions, but in [27], we show that the presented solutions enjoy the weak-strong uniqueness
property. They coincide with the local strong solution as long as the latter exists. Thus, the concept of measure-valued
solutions is a natural generalization of the classical strong solutions.

The first mathematical analysis of a simplified Ericksen–Leslie model is due to Lin and Liu [30]. They show global existence
of weak solutions and local existence of strong solutions. Additionally, they manage to generalize these results to a more
realistic model [32]. They also show partial regularity of weak solutions to the considered system [31]. Following this work,
there have been many articles considering slightly more complicated models, for example [4], [7], or [18]. Nevertheless
to the best of the author’s knowledge, the only generalization with respect to the free energy potential is performed by
Emmrich and the author in [14] (see also [13]).

There are also results on the local existence of solutions to the full Ericksen–Leslie model, see [23], [39] or [22]. Especially,
local strong solutions are known to exist to different simplifications of the system considered in this article. The full (ther-
modynamically consistent) Ericksen–Leslie system equipped with the Dirichlet energy is considered in [22], whereas the
simplified Ericksen–Leslie system with the full Oseen–Frank energy is studied in [23] as well as in [24]. Since finite time
singularities in nematic liquid crystals have been observed experimentally [1] and analytically [25], it seems appropriate to
investigate a weakened solution concept such as measure-valued solutions.

We also want to mention the article by Brenier, De Lellis and Székelyhidi [6] showing the weak-strong uniqueness of
measure-valued solutions to the Euler equation, because the techniques introduced there can be transferred to the setting
presented here to show additional properties of the limiting measures, as well as the weak-strong uniqueness in [27].
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R. Lasarzik 2

1.1 Outline of the paper

In this paper, we study the Ericksen–Leslie model in three dimensions equipped with the Oseen–Frank free energy. This
energy is not convex and the existence theory is non-standard and involves generalized gradient Young measures. Already
Leslie suggests to equip the model with the Oseen–Frank energy. It can be seen as the physically most relevant free energy
function.

The paper is organized as follows: In Section 1.2, we collect some notation. Section 2 contains the model, the definition
of generalized solutions, and the main results. In Section 3, we introduce the concept of generalized gradient Young
measures and prove the associated main theorem. While Section 4 is devoted to the proof of existence of weak solutions
to the regularized system, Section 5 shows the convergence of these weak solutions to measure-valued solutions for
vanishing regularization. In the last section (Section 6), we show additional properties of the measure-valued solutions
such as additional strong convergences of the norm of the director as well as an energy inequality. The energy inequality
is a necessary tool to obtain the weak-strong uniqueness of solutions.

1.2 Notation

Vectors of R3 are denoted by bold small Latin letters. Matrices of R3×3 are denoted by bold capital Latin letters. We also
use tensors of higher order, which are denoted by bold capital Greek letters. Moreover, numbers are denoted be small Latin
or Greek letters, and capital Latin letters are reserved for potentials. The euclidean scalar product in R3 is denoted by a
dot, aaa ·bbb :=aaaTbbb=∑

3
i=1 aaaibbbi for aaa,bbb∈R3 and the Frobenius product in R3×3 by a colon AAA : BBB := tr(AAATBBB) =∑

3
i, j=1 AAAi jBBBi j

for AAA,BBB ∈ R3×3. Additionally, the scalar product in the space of tensors of order three is denoted by three dots,

ϒϒϒ ··· ΓΓΓ :=

[
3

∑
j,k,l=1

ϒϒϒ jklΓΓΓ jkl

]
, ϒϒϒ ∈ R3×3×3,ΓΓΓ ∈ R3×3×3 .

The associated norms are all denoted by | · |, as well as the norms of tensors of higher order,

|ΛΛΛ|2 :=
3

∑
i, j,k,l=1

ΛΛΛ
2
i jkl for ΛΛΛ ∈ R34

and |ΘΘΘ|2 :=
3

∑
i, j,k,l,m,n=1

ΘΘΘ
2
i jklmn for ΘΘΘ ∈ R36

respectively. Similar, we define the products of tensors of different order. The product of a tensor of third order with a matrix
is defined by

ΓΓΓ : AAA :=

[
3

∑
j,k=1

ΓΓΓi jkAAA jk

]3

i=1

,ΓΓΓ ·AAA :=

[
3

∑
k=1

ΓΓΓi jkAAAkl

]3

i, j,l=1

,ΓΓΓ ∈ R3×3×3,AAA ∈ R3×3

and the product of a tensor of third order with a vector by

ΓΓΓ ·aaa :=

[
3

∑
k=1

ΓΓΓi jkaaak

]3

i, j=1

,ΓΓΓ ∈ R3×3×3, aaa ∈ R3 .

The product of a tensor of fourth order with a matrix and a vector is defined by

ΛΛΛ : AAA :=

[
3

∑
k,l=1

ΛΛΛi jklAAAkl

]3

i, j=1

,ΛΛΛ : aaa :=

[
3

∑
l=1

ΛΛΛi jklaaal

]3

i, j,k=1

,ΛΛΛ ∈ R34
,AAA ∈ R3×3 aaa ∈ R3 .

The product of tensors of fourth and third order is given by

ΛΛΛ : ΓΓΓ :=

[
3

∑
k,l=1

ΛΛΛi jklΓΓΓklm

]3

i, j,m=1

,ΛΛΛ ···ΓΓΓ :=

[
3

∑
j,k,l=1

ΛΛΛi jklΓΓΓ jkl

]3

i=1

,ΛΛΛ ∈ R34
,ΓΓΓ ∈ R3×3×3 .

The product of a tensor of fourth order and a matrix or a tensor of third order is defined via

AAA : ΘΘΘ :=

[
3

∑
i, j=1

AAAi jΘΘΘi jklmn

]3

k,l,m,n=1

,ΘΘΘ ···ΓΓΓ :=

[
3

∑
l,m,n=1

ΘΘΘi jklmnΓΓΓlmn

]3

i, j,k=1

,ΘΘΘ ∈ R36
,AAA ∈ R3×3,ΓΓΓ ∈ R3×3×3 .
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Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 3

The product of a vector and a tensor of fourth order is defined differently. The definition is adjusted to the cases of this
work:

aaa ·ΘΘΘ :=

[
3

∑
k=1

aaakΘΘΘi jklmn

]3

i, j,l,m,n=1

,ΘΘΘ ∈ R36
,aaa ∈ R3 .

The standard matrix and matrix-vector multiplication is written without an extra sign for brevity,

AAABBB =

[
3

∑
j=1

AAAi jBBB jk

]3

i,k=1

, AAAaaa =

[
3

∑
j=1

AAAi jaaa j

]3

i=1

, AAA ∈ R3×3,BBB ∈ R3×3, aaa ∈ R3 .

The outer vector product is given by aaa⊗bbb := aaabbbT = [aaaibbb j]
3
i, j=1 for two vectors aaa,bbb ∈ R3 and by AAA⊗aaa := AAAaaaT =

[AAAi jaaak]
3
i, j,k=1 for a matrix AAA ∈ R3×3 and a vector aaa ∈ R3. The symmetric and skew-symmetric parts of a matrix are given

by AAAsym := 1
2 (AAA+AAAT ) and AAAskw := 1

2 (AAA−AAAT ), respectively (AAA ∈ R3×3). For the product of two matrices AAA,BBB ∈ R3×3,
we observe

AAA : BBB =AAA : BBBsym , if AAAT =AAA and AAA : BBB =AAA : BBBskw , if AAAT =−AAA .

Furthermore, it holds AAATBBB : CCC = BBB : AAACCC for AAA,BBB,CCC ∈ R3×3 and aaa⊗bbb : AAA = aaa ·AAAbbb for aaa,bbb ∈ R3, AAA ∈ R3×3 and hence
aaa⊗aaa : AAA = aaa ·AAAaaa = aaa ·AAAsymaaa.

We use the Nabla symbol ∇ for real-valued functions f : R3 → R, vector-valued functions fff : R3 → R3 as well as
matrix-valued functions AAA : R3→ R3×3 denoting

∇ f :=
[

∂ f
∂xxxi

]3

i=1
, ∇ fff :=

[
∂ fff i

∂xxx j

]3

i, j=1
, ∇AAA :=

[
∂AAAi j

∂xxxk

]3

i, j,k=1
.

The divergence of a vector-valued and a matrix-valued function is defined by

∇· fff :=
3

∑
i=1

∂ fff i

∂xxxi
= tr(∇ fff ) , ∇·AAA :=

[
3

∑
j=1

∂AAAi j

∂xxx j

]3

i=1

.

Throughout this paper, let Ω ⊂ R3 be a bounded domain of class C 3,1. We rely on the usual notation for spaces of
continuous functions, Lebesgue and Sobolev spaces. Spaces of vector-valued functions are emphasized by bold letters,
for example LLLp(Ω) := Lp(Ω;R3), WWW k,p(Ω) := W k,p(Ω;R3). The standard inner product in L2(Ω;R3) is just denoted
by (· , ·), in L2(Ω;R3×3) by (·; ·), and in L2(Ω;R3×3×3) by (· ··, ·).

The space of smooth solenoidal functions with compact support is denoted by C ∞
c,σ (Ω;R3). By LLLp

σ (Ω), HHH1
0,σ (Ω), and

WWW 1,p
0,σ (Ω), we denote the closure of C ∞

c,σ (Ω;R3) with respect to the norm of LLLp(Ω), HHH1(Ω), and WWW 1,p(Ω), respectively.
We denote the Dirichlet-trace by γγγ0.

The dual space of a Banach space V is always denoted by V ∗ and equipped with the standard norm; the duality pairing
is denoted by 〈·, ·〉. The duality pairing between LLLp(Ω) and LLLq(Ω) (with 1/p+ 1/q = 1), however, is denoted by (·, ·),
(·; ·), or (· ··, ·). The dual of HHH1

0 is denoted by HHH−1.

The unit ball in d dimensions is denoted by Bd := {xxx ∈ Rd ; |xxx| ≤ 1} and the sphere in d dimensions by Sd−1 := {xxx ∈
Rd ; |ddd|= 1}. We also use the sphere with radius 1/2, Sd−1

1/2
.

For Q ⊂ Rd , the Radon measures are denoted by M (Q), the positive Radon measures by M+(Q), and probability
measures by P(Q). We recall that the Radon measures equipped with the total variation are a Banach space and for
compact sets Q, it can be characterized by M (Q) = (C (Q))∗ (see [11, Theorem 4.10.1]). C b(Q) are all bounded
continuous functions on the set Q. The integration of a function f ∈ C (Q) with respect to a measure µ ∈M (Q) is
denoted by

∫
Q f (hhh)µ(dhhh) . In case of the Lebesgue measure we just write

∫
Q f (hhh)dhhh .

The cross product of two vectors is denoted by ×. We introduce the notation [·]XXX , which is defined via

[·]XXX : Rd→Rd×d , [hhh]XXX :=

 0 −hhh3 hhh2
hhh3 0 −hhh1
−hhh2 hhh1 0

 . (1.1)
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The mapping [·]XXX has some nice properties, for instance

[aaa]XXXbbb = aaa×bbb , [aaa]TXXX [bbb]XXX = (aaa ·bbb)I−bbb⊗aaa

for all aaa, bbb ∈ R3, where I denotes the identity matrix in R3×3, or

[aaa]XXX : ∇bbb = [aaa]XXX : (∇bbb)skw = aaa ·∇×bbb , ∇·[aaa]XXX =−∇×aaa ,
1
2
[∇×aaa]XXX = (∇aaa)skw

for all aaa,bbb ∈ C 1(Ω).

Additionally, we define [·]−XXX : R3×3→R3, which is the left inverse of [·]XXX and given by

[AAA]−XXX :=

AAA3,2
AAA1,3
AAA2,1

 for all AAA ∈ R3×3 .

It holds [[aaa]XXX ]−XXX = aaa and hence 2[(∇aaa)skw]−XXX = ∇×aaa for all aaa ∈ C 1(Ω;R3).

We also use the Levi–Civita tensor ϒϒϒ. Let S3 be the symmetric group of all permutations of (1,2,3). The sign of a given
permutation σ ∈S3 is denoted by sgnσ . The Tensor ϒϒϒ is defined via

ϒϒϒi jk :=

{
sgnσ , (i, j,k) = σ(1,2,3) with σ ∈S3,

0, else .

This tensor allows it two write the cross product as

(aaa×bbb)i = (ϒϒϒ : (aaa⊗bbb))i =ϒϒϒi jkaaa jbbbk for all aaa,bbb ∈ Rd

and the curl via

(∇×ddd)i =ϒϒϒi jk∂ jdddk for all ddd ∈ C 1(Ω) .

For a given Banach space V , Bochner–Lebesgue spaces are denoted by Lp(0,T ;V ). Moreover, W 1,p(0,T ;V ) denotes
the Banach space of abstract functions in Lp(0,T ;V ) whose weak time derivative exists and is again in Lp(0,T ;V ) (see
also Diestel and Uhl [9, Section II.2] or Roubíček [37, Section 1.5] for more details). We often omit the time interval (0,T )
and the domain Ω and just write, e.g., Lp(WWW k,p) for brevity.

Finally, by c > 0, we denote a generic positive constant.

2 Model and main results

2.1 Governing equations

We consider the Ericksen–Leslie model as introduced in [14] with the constant γ set to one. Additionally, the evolution
equation of the director is restricted onto the unit sphere by taking the whole equation in the cross product with the director
itself (compare [39]). The governing equations read as

∂tvvv+(vvv ·∇)vvv+∇p+∇·TTT E −∇·TTT L = ggg, (2.1a)

ddd×
(
∂tddd +(vvv ·∇)ddd− (∇vvv)skwddd +λ (∇vvv)symddd +qqq

)
= 0, (2.1b)

∇·vvv = 0, (2.1c)

|ddd|= 1. (2.1d)

We recall that vvv : Ω× [0,T ]→R3 denotes the velocity of the fluid, ddd : Ω× [0,T ]→R3 represents the orientation of
the rod-like molecules, and p : Ω× [0,T ]→R denotes the pressure. The Helmholtz free energy potential F , which is
described rigorously in the next section, is assumed to depend on the director and its gradient, F = F(ddd,∇ddd). The free
energy functional F is defined by

F : HHH5/4→R, F (ddd) =
∫

Ω

F(ddd,∇ddd)dxxx ,
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Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 5

and qqq is its variational derivative (see Furihata and Matsuo [20, Section 2.1]),

qqq =
δF

δddd
(ddd) =

∂F
∂ddd

(ddd,∇ddd)−∇· ∂F
∂∇ddd

(ddd,∇ddd) . (2.1e)

The Ericksen stress tensor TTT E is given by

TTT E = ∇dddT ∂F
∂∇ddd

(ddd,∇ddd) , (2.1f)

and the Leslie stress tensor by

TTT L = µ1(ddd · (∇vvv)symddd)ddd⊗ddd +µ4(∇vvv)sym +(µ5 +µ6)
(
ddd⊗ (∇vvv)symddd

)
sym

+(µ2 +µ3)(ddd⊗eee)sym +λ
(
ddd⊗ (∇vvv)symddd

)
skw +(ddd⊗eee)skw ,

(2.1g)

where

eee := ∂tddd +(vvv ·∇)ddd− (∇vvv)skwddd . (2.1h)

To ensure the dissipative character of the system, we assume that

µ1 > 0, µ4 > 0, (µ5 +µ6)−λ (µ2 +µ3)> 0 ,

4
(
(µ5 +µ6)−λ (µ2 +µ3)

)
>
(
(µ2 +µ3)−λ

)2
.

(2.1i)

The case µ1 = 0 simplifies the system and can thus be handled similar, but somehow simpler. If Parodi’s relation

λ = µ2 +µ3 (2.1j)

is assumed to hold, the second line of (2.1i) is trivially fulfilled. It can be derived from the Onsager reciprocal relation. This
relation is only needed in this article to show that a certain energy inequality holds for the measure-valued solution. It is
not needed for the existence of measure-valued solutions. Nevertheless, the announced weak-strong uniqueness result
only holds for solutions fulfilling the energy inequality.

Finally, we impose boundary and initial conditions as follows:

vvv(xxx,0) = vvv0(xxx) for xxx ∈Ω, vvv(xxx, t) = 000 for (t,xxx) ∈ [0,T ]×∂Ω,

ddd(xxx,0) = ddd0(xxx) for xxx ∈Ω, ddd(xxx, t) = ddd1(xxx) for (t,xxx) ∈ [0,T ]×∂Ω. (2.1k)

We shall later assume that ddd1 = ddd0 on ∂Ω, which is a compatibility condition providing regularity.

2.2 The general Oseen–Frank energy

The aim of this article is to provide a global solution concept for the Ericksen–Leslie model equipped with the Oseen–Frank
energy, where the emphasis lies on the latter part. The Oseen–Frank energy was already considered by Leslie [28] and
can be seen as the energy with the most physical relevance. Nevertheless, there is to the best of the author’s knowledge
no global mathematical solution concept available for this energy.

The Oseen–Frank free energy potential is given by (see Leslie [28])

F(ddd,∇ddd) :=
K1

2
(∇·ddd)2 +

K2

2
(ddd ·∇×ddd)2 +

K3

2
|ddd×∇×ddd|2 ,

where K1,K2,K3 > 0. This energy can be reformulated using the norm one restriction to

2F(ddd,∇ddd) := k1(∇·ddd)2 + k2|∇×ddd|2 + k3|ddd|2(∇·ddd)2 + k4(ddd ·∇×ddd)2 + k5|ddd×∇×ddd|2 , (2.2)

where k1 = k3 = K1/2, k2 = min{K2,K3}/2, k4 = K2− k2, and k5 = K3− k2 are again positive constants. We remark
that |ddd|2|∇×ddd|2 = (ddd ·∇×ddd)2 + |ddd×∇×ddd|2.

In Section 6, we use another reformulation. Setting k := min{K1/2,K2/2,K3/2}, k3 = K1− k, k4 = K2− k, as well
as k5 = K3− k, we get the formulation (2.2) with k1 = k2 = k. With some vector analysis one gets |∇ddd|2 = (∇·ddd)2 +
|∇×ddd|2 + tr(∇ddd2)− (∇·ddd)2, where the last two terms can be written in divergence form

tr(∇ddd2)− (∇·ddd)2 = ∇·(∇dddddd− (∇·ddd)ddd)

DOI 10.20347/WIAS.PREPRINT.2476 Berlin 2018
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and hence this term is prescribed by the boundary values. This motivates to consider the Dirichlet energy

FD(∇ddd) =
K
2
|∇ddd|2 ,

which is also called one-constant approximation. Most of the previous work concerning global solution concepts to the
Ericksen–Leslie model consider this one constant approximation.

We introduce short notations for the derivatives of the free energy (2.2) with respect to ∇ddd and ddd. The free energy (2.2)
can be seen as a function F : Rd×Rd×d where we replace ddd in definition (2.2) by hhh ∈ Rd and ∇ddd by SSS ∈ Rd×d . Some
vector calculus gives

2F(hhh,SSS) = k1 tr(SSS)2 + k2|(SSS)skw|2 + k3|hhh|2 tr(SSS)2 + k4([hhh]XXX : (SSS)skw)
2

+4k5|(SSS)skwhhh|2

(see Section 1.2 for the definition of the matrix [·]XXX ).

We abbreviate the derivative of F with respect to hhh by Fhhh and the derivative with respect to SSS by FSSS where

FSSS : Rd×Rd×d→Rd×d and Fhhh : Rd×Rd×d→Rd ,

these derivatives are given by

FSSS(hhh,SSS) = k1 tr(SSS)I + k2(SSS)skw + k3 tr(SSS)|hhh|2I + k4[hhh]XXX ([hhh]XXX : (SSS)skw)

+4k5((SSS)skwhhh⊗hhh)skw

Fhhh(hhh,SSS) = k3 tr(SSS)2hhh+2k4([hhh]XXX : (SSS)skw)[(SSS)skw]−XXX + k5(SSS)T
skw(SSS)skwhhh ,

(2.3)

(see Section 1.2 for the definition of [·]−XXX ).

To abbreviate, we define the tensor of order four ΛΛΛ ∈ Rd4
, and the tensor of order six ΘΘΘ ∈ Rd6

via

ΛΛΛi jkl := k1δδδ i jδδδ kl + k2(δδδ ikδδδ jl−δδδ ilδδδ jk) , (2.4)

and

ΘΘΘi jklmn := k3δδδ i jδδδ lmδδδ kn + k5
(
δδδ ilδδδ mnδδδ jk−δδδ miδδδ lnδδδ jk−δδδ l jδδδ mnδδδ ik +δδδ jmδδδ lnδδδ ik

)
+ k4

(
δδδ knδδδ jmδδδ il +δδδ kmδδδ jlδδδ in +δδδ klδδδ jnδδδ im−δδδ knδδδ jlδδδ im−δδδ kmδδδ jnδδδ il−δδδ klδδδ jmδδδ in

)
,

respectively. Therewith, the free energy can be written as

2F(ddd,∇ddd) = ∇ddd : ΛΛΛ : ∇ddd +∇ddd⊗ddd ···ΘΘΘ ···∇ddd⊗ddd . (2.5)

The tensor ΛΛΛ is strongly elliptic, i.e. there is an η > 0 such that aaa⊗bbb : ΛΛΛ : aaa⊗bbb≥ η |aaa|2|bbb|2 for all aaa,bbb ∈ R3. Indeed, it
holds

aaa⊗bbb : ΛΛΛ : aaa⊗bbb = k1(aaa ·bbb)2 + k2(|aaa|2|bbb|2− (aaa ·bbb)2)≥min{k1,k2}|aaa|2|bbb|2 . (2.6)

2.3 Regularized system

Before, we show the existence of measure-valued solutions, we consider a regularized system and show the existence of
weak solutions to this system. A regularizing and a penalizing term are added to the free energy potential and the system
is adapted accordingly. The regularized free energy potential is given by

Fδ (ddd,∇ddd,∇2ddd) :=
δ

2
|∆ddd|2 +F(ddd,∇ddd)+

1
4ε(δ )

(|ddd|2−1)2 , (2.7)

where δ > 0 and F is given by (2.2). We define ε(δ ) = δ . This is just a linear connection of the regularization parameter δ

and the penalization parameter ε . Later on, we are going to choose another connection to be able to prove better estimates
(see Section 6). Like beforehand, if ddd, ∇ddd, and ∇2ddd are replaced by hhh, SSS, and ΓΓΓ, respectively, the regularized free energy
potential can be written as

Fδ (hhh,SSS,ΓΓΓ) =
δ

2
|ΓΓΓ : I|2 +F(hhh,SSS)+

1
4ε

(|hhh|2−1)2 .
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Thus, the free energy is given by F δ (ddd) :=
∫

Ω
Fδ (ddd,∇ddd,∇2ddd)dxxx and the variational derivative of this free energy by

qqqδ =
δF δ

δddd
=

∂Fδ

∂hhh
−∇· ∂Fδ

∂SSS
+∇

2 :
∂Fδ

∂ΓΓΓ
= qqq+δ ∆

2 ddd +
1
ε
(|ddd|2−1)ddd . (2.8)

Additionally, we have to adapt the Ericksen stress TTT E for the regularized system,

TTT E
δ

:= TTT E +δ ∆ddd ·∇2ddd−δ∇dddT
∇∆ddd . (2.9)

Remark 1. This adaptation is necessary in order to show the energy equality (4.8) for the discretized system, which is
essential for all a priori estimates.

First, we recall the important relation between the Ericksen stress and the gradient of the director multiplied with the
variational derivative (see [14])

(TTT E ;∇www)− (∇dddTqqq,www) = 0 for all www ∈HHH1
0,σ .

A similar identity holds for the regularized system. Let again be www ∈HHH1
0,σ , then we have

(TTT E
δ

;∇www)− (∇dddTqqqδ ,www) = (TTT E ;∇www)− (∇dddTqqq,www)

+δ (∆ddd ·∇2ddd;∇www)−δ (∇dddT
∇∆ddd;∇www)

−δ (∇dddT
∆

2 ddd,www)− 1
ε

(
∇dddTddd(|ddd|2−1),www

)
= δ (∆ddd ·∇2ddd;∇www)−δ (∇dddT

∇∆ddd;∇www)

+δ (∇dddT
∇∆ddd;∇www)+δ (∇(∇ddd)T : ∇∆ddd,www)

− 1
2ε

(∇|ddd|2(|ddd|2−1),www)

= δ (∆ddd∇
2ddd;∇www)−δ (∆ddd ·∇2ddd;∇www)

−δ (∇∆ddd ·∆ddd,www)− 1
4ε

(∇(|ddd|2−1)2,www)

=−
∫

Ω

(www ·∇)

(
δ

2
|∆ddd|2 + 1

4ε
(|ddd|2−1)2

)
dxxx = 0 .

(2.10)

We remark, that we have to equip the regularized system with another boundary condition, since the regularizing term is
of higher order. We regularize with the square of the operator ∆ and thus get the additional boundary condition ∆ddd = 0 on
∂Ω.

Definition 2.1 (Weak solution to the regularized system). A pair (vvvδ ,dddδ ) is said to be a solution to the regularized
Ericksen–Leslie system if

vvvδ ∈ L∞(0,T ;LLL2
σ )∩L2(0,T ;HHH1

0,σ )∩W 1,2(0,T ;(HHH2∩HHH1
0,σ )

∗),

dddδ ∈ L∞(0,T ;HHH2)∩L2(0,T ;HHH4)∩W 1,2(0,T ;LLL3/2),
(2.11)

and if

−
∫ T

0
(vvvδ (t),ϕϕϕ

′(t))d t +
∫ T

0
((vvvδ (t) ·∇)vvvδ (t),ϕϕϕ(t))d t−

∫ T

0

(
∇dddδ (t)

TTTT E
δ
(t);∇ϕϕϕ(t)

)
d t

+
∫ T

0
(TTT L

δ
(t) : ∇ϕϕϕ(t))d t =

∫ T

0
〈ggg(t),ϕϕϕ(t)〉d t,

(2.12a)

−
∫ T

0
(dddδ (t),ψψψ

′(t))d t +
∫ T

0
((vvvδ (t) ·∇)dddδ (t),ψψψ(t))d t−

∫ T

0
((∇vvvδ (t))skwdddδ (t),ψψψ(t))d t

+λ

∫ T

0

(
(∇vvvδ (t))symdddδ (t),ψψψ(t)

)
d t +

∫ T

0
(qqqδ (t),ψψψ(t))d t = 0

(2.12b)

for all solenoidal ϕϕϕ ∈ C ∞
c (Ω× (0,T );R3)) and ψψψ ∈ C ∞

c (Ω× (0,T );R3)). Additionally, the initial conditions shall be
fulfilled, i.e. (vvvδ (0),dddδ (0)) ⇀ (vvv0,ddd0) in LLL2

σ ×HHH2 and the boundary values shall be fulfilled in the sense of the trace
operator.

Theorem 2.1 (Existence of solutions to the regularized system). Let Ω be a bounded domain of class C 3,1. For given
initial data vvv0 ∈ LLL2

σ and ddd0 ∈HHH2 with |ddd0| = 1 for a.e. xxx ∈ Ω, boundary data ddd1 ∈HHH7/2(∂Ω) fulfilling the compatibility
condition γγγ0(ddd0) = ddd1, and right-hand side ggg ∈ L2(0,T ;(HHH1

0,σ )
∗), there exists a global-in-time solution to the Ericksen–

Leslie system (2.1) equipped with the regularized free energy (2.7) in the sense of Definition 2.1. The solution additionally
fulfills the intrinsic boundary condition γγγ0(∆dddδ ) = 0.
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2.4 Measure-valued solutions

Definition 1 (Measure-valued solutions). The tupel ((vvv,ddd),(νo,m,ν∞),(µ,νµ)) consisting of the pair (vvv,ddd) of veloc-
ity field vvv and director field ddd, the generalized gradient Young measure (µ,νµ), and the defect measure (µ,νµ) (see
Section 3) is said to be a measure-valued solution to (2.1) if

vvv ∈ L∞(0,T ;LLL2
σ )∩L2(0,T ;HHH1

0,σ )∩W 1,2(0,T ;(WWW 1,3
0,σ (Ω))∗),

ddd ∈ L∞(0,T ;HHH1)∩W 1,2(0,T ;LLL3/2),

{νo
(xxx,t)} ⊂P(Rd×d) a.e. in Ω× [0,T ] ,

{mt} ⊂M+(Ω) a.e. in [0,T ] ,

{ν∞

(xxx,t)} ⊂P(Bd×Sd2−1) mt -a.e. in Ω and a.e. in [0,T ] ,

{µt} ⊂M+(Ω) a.e. in [0,T ] ,

{νµ

(xxx,t)} ⊂P(Sd3−1) µt -a.e. in Ω and a.e. in [0,T ]

(2.13)

and if ∫ T

0
(∂tvvv(t),ϕϕϕ(t))d t +

∫ T

0
((vvv(t) ·∇)vvv(t),ϕϕϕ(t))d t−

∫ T

0
〈〈νt ,SSST FSSS(hhh,SSS) : ∇ϕϕϕ(t)〉〉d t

−2
∫ T

0
〈〈µt ,ΓΓΓ ··· (ΓΓΓ ·∇ϕϕϕ(t))〉〉+

∫ T

0
(TTT L(t) : ∇ϕϕϕ(t))d t =

∫ T

0
〈ggg(t),ϕϕϕ(t)〉d t

as well as ∫ T

0
(ddd(t)× (∂tddd(t)+(vvv(t) ·∇)ddd(t)− (∇vvv(t))skwddd(t)) ,ψψψ(t))d t

+λ

∫ T

0

(
ddd(t)× (∇vvv(t))symddd(t),ψψψ(t)

)
d t +

∫ T

0
([ddd(t)]XXX FSSS(ddd(t),∇ddd(t));∇ψψψ(t))d t

+
∫ T

0
〈〈νt ,

(
ϒϒϒ :
(
SSS(FSSS(hhh,SSS))T )) ·ψψψ(t)〉〉d t +

∫ T

0
〈〈νt ,(hhh×Fhhh(hhh,SSS)) ·ψψψ(t)〉〉d t = 0

(2.14a)

hold for all ϕϕϕ ∈ C ∞
c (Ω× (0,T );R3)) with ∇·ϕϕϕ = 0 and ψψψ ∈ C ∞

c (Ω× (0,T );R3)), respectively. Additionally, the norm
restriction of the director holds, i. e. |ddd(xxx, t)|= 1 for a.e. (xxx, t) ∈ Ω× (0,T ), the oscillation measure of the identity is the
gradient of the director ∫

R3×3
SSSν

o
(xxx,t)(dSSS) = ∇ddd(xxx, t) ,

for a. e. (xxx, t) ∈Ω× (0,T ) and the initial conditions (vvv0,ddd0) ∈ LLL2
σ ×HHH2 with ddd0 ∈HHH7/2(∂Ω) shall be fulfilled in the weak

sense. The dual pairings are defined as

〈〈µt , f 〉〉 :=
∫

Ω

∫
Sd3−1

3

∑
i, j=1

f (ΓΓΓ)νµ

(xxx,t)(dΓΓΓ)µt(dxxx)

for f ∈ C (S33−1;R) and

〈〈νt , f 〉〉 :=
∫

Ω

∫
Rd×d

f (xxx,ddd(xxx, t),SSS)νo
(xxx,t)(dSSS)dxxx

+
∫

Ω

∫
Sd2−1×Bd

f̃ (xxx,h̃hh,S̃SS)ν∞

(xxx,t)(dS̃SS,dh̃hh)mt(dxxx)

for f ∈R (see (3.3) below).

We refer to the section 1.2 for the definition of the tensor ϒϒϒ and to (3.2) for the definition of the transformed function f̃ .

Remark 2. We often abuse the notation by writing 〈〈νt , f (hhh,SSS)〉〉. Thereby, we mean the generalized Young measure
applied to the continuous function (hhh,SSS) 7→ f (hhh,SSS).
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Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 9

Theorem 2.2 (Existence of measure-valued solutions). Let Ω be a bounded domain of class C 3,1. For given initial data
vvv0 ∈ LLL2

σ and ddd0 ∈ HHH2 with |ddd0| = 1 for a.e. xxx ∈ Ω, boundary data ddd1 ∈ HHH7/2(∂Ω) fulfilling the compatibility condition
γγγ0(ddd0) = ddd1, and right-hand side ggg ∈ L2(0,T ;(HHH1

0,σ )
∗), there exists a measure-valued solution to the Ericksen–Leslie

system (2.1) with the Oseen–Frank free energy (2.2) in the sense of Definition 1.

Remark 3. This is a global but very weak solution concept. Nonlinear occurring gradients of the director, i. e. the Ericksen-
stress and parts of the variational derivative, are represented by the associated generalized gradient Young measure.
Additionally, a defect measure appears due to the regularization in the Ericksen-stress. In an upcoming article, we are
going to show that this measure-valued solutions fulfill the weak-strong uniqueness property. As long as a local strong
solution exists to this model, it coincides with the measure-valued solution. Local strong solutions are known to exist for
similar models, see for instance [23], [39], or [22].

Remark 4. When we choose ε = δ
7/3, it can be shown that the support of the defect angle measure ν∞ is Sd2−1×Sd−1

1/2

instead of Sd2−1×Bd (see Proposition 6.1).

Remark 5. We postulate that the defect measure µ vanishes almost everywhere in Ω× [0,T ]. In the future, we additionally
want to investigate whether the oscillation measure νo coincides with the point measure δ∇ddd . However, such analysis relies
on local energy methods (see for instance [29]) which are very different to the global techniques used in this paper.

3 Generalized gradient Young measures

This section introduces the concept of generalized gradient Young measures and the sense of convergence that is used
to prove Theorem 2.2.

3.1 Definitions and main theorem for generalized gradient Young measures

Consider a sequence of functions {dddδ} ⊂ L∞(0,T ;HHH2) with ‖∇dddδ |dddδ |‖L∞(0,T ;LLL2) ≤ c. We want to study the limit of
sequences of the form

f (·,dddδ (·),∇dddδ (·)) : Q→R (3.1)

for continuous functions f with appropriate growth conditions.

We abbreviate Q := Ω× (0,T ) and for a given function f ∈ C (Q×Rd×Rd×d), we define its transform f̃ ∈ C (Q×
Bd×Bd×d) by

f̃ (yyy,h̃hh,S̃SS) := f

yyy,
h̃hh√

1−|h̃hh|2
,

S̃SS√
1−|S̃SS|2

(1−|h̃hh|2)(1−|S̃SS|2) . (3.2)

The set of functions for which we are going to identify the limit of (3.1) are the functions f ∈ C (Q×Rd×Rd×d) whose
transform (see (3.2)) admits a continuous extension onto the closure of the domain. We thus define the following set of
functions

R :=
{

f ∈ C (Q×Rd×Rd×d)|∃g̃ ∈ C (Q×Bd×Bd×d) ; f̃ = g̃ on Q×Bd×Bd×d

}
. (3.3)

The initial idea for the representation of limits of sequences like (3.1) for functions f ∈R is due to DiPerna and Majda [10]
and relies heavily on the fact that R is isometrically isomorphic to C (Q×Bd ×Bd×d) when R is equipped with an
appropriate norm. Thus, it is possible to represent the limit of (3.1) by a measure ν̃ ∈M (Q×Bd ×Bd×d) = C (Q×
Bd×Bd×d)

∗.

A generalized gradient Young measure on Ω× [0,T ] with values in Rd×Rd×d is a triple (νo
y ,mt ,ν

∞
y ) consisting of

� a parametrized family of probability measures {νo
y }y∈Q ∈P(Rd×d) for a.e. y ∈ Q,

� a positive measure mt ∈M+(Ω) for a.e. t ∈ (0,T ) and

� a parametrized family of probability measures {ν∞
y }y∈Q ∈P(Bd×Sd2−1) for mt -a.e. xxx ∈Ω and a.e. t ∈ (0,T ).
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As in [26, page 552], we call νo oscillation measure, mt concentration measure and ν∞ concentration angle measure.

A defect measure on Ω× (0,T ) with values in Rd×d×d is a pair (µt ,ν
µ) consisting of

� a positive measure µt ∈M+(Ω) for a.e. t ∈ (0,T ) and

� a parametrized family of probability measures {νµ
y }y∈Q ∈P(Sd3−1) for µt -a.e. xxx ∈Ω and a.e. t ∈ (0,T ).

We are now able to state the important theorem for generalized gradient Young measures.

Theorem 3.1. Let {dddδ}δ∈(0,1) be a family of functions bounded in L∞(0,T ;HHH1) with

sup
δ∈(0,1)

‖∇dddδ |dddδ |‖L∞(LLL2) < ∞

and {dddδ} is relatively compact in L2(0,T LLL2). Then there exists a subsequence {δn} and a generalized gradient Young
measure such that for all f ∈R, we have∫

Q
f (yyy,dddδn(yyy),∇dddδn(yyy))dyyy→〈〈 f ,νt〉〉

for δn→0, where the dual paring 〈〈·, ·〉〉 is defined for a function f ∈R by

〈〈 f ,νt〉〉 :=
∫

Ω

〈 f (xxx,ddd(xxx, t), ·),νo
(xxx,t)〉dxxx+

∫
Ω

〈 f̃ (xxx, ·, ·),ν∞

(xxx,t)〉mt(dxxx)

=
∫

Ω

∫
Rd×d

f (xxx,ddd(xxx, t),SSS)νo
(xxx,t)(dSSS)dxxx+

∫
Ω

∫
Sd2−1×Bd

f̃ (xxx,h̃hh,S̃SS)ν∞

(xxx,t)(dS̃SS,dh̃hh)mt(dxxx) .

Additionally, νo is a classical gradient Young measure, i.e.

〈νo
yyy , I〉=

∫
Rd×d

SSSνyyy(dSSS) = ∇ddd(yyy) (3.4)

for a. e. yyy ∈ Q. The function f̃ is the recession function similar to (3.2) defined by

f̃ (yyy,h̃hh,S̃SS) := lim
ȳyy→yyy

lim
S̄SS→S̃SS,|S̄SS|<1
h̄hh→h̃hh,|h̄hh|<1

f

ȳyy,
h̃hh√

1−|h̃hh|2
,

S̃SS√
1−|S̃SS|2

(1−|h̃hh|2)(1−|S̃SS|2) ,

with (yyy, h̃, S̃) ∈ Q×Bd×Bd×d .

The proof of Theorem (3.1) is split in two propositions, Proposition 3.1 and Propositions 3.2.

Proposition 3.1. Let {dddδ} be a sequence with

sup
δ∈(0,1)

(
‖∇dddδ‖LLL2(Q)+‖∇dddδ |dddδ |‖LLL2(Q)

)
< ∞

and {dddδ} is relatively compact in L2(0,T ;LLL2). Additionally, we assume that f ∈ R. Then there exists a measure m ∈
M (Q), two families of measures {νo

yyy }yyy∈Q and {ν∞
yyy }yyy∈Q such that νo

yyy ∈P(Rd×d) and ν∞
yyy ∈P(Bd×Sd2−1) and

f (yyy,dddδ ,∇dddδ )
∗
⇀
∫
Rd×d

f (ddd(yyy),SSS)νo
yyy (dSSS)+

∫
Sd2−1×Bd

f̃ (h̃, S̃)ν∞
yyy (d h̃,d S̃)m in M (Ω) . (3.5)

The measure νo fulfils (3.4) almost everywhere.

Remark 6. The transformation (3.2) does not change functions with quadratic growth in SSS times hhh. Indeed, let g :
Sd−1×Sd2−1→R be continuous and f : Rd×Rd×d→R be defined via f (hhh,SSS) := g(hhh/|hhh|,SSS/|SSS|)|hhh|2|SSS|2. Then we
get

f̃ (h̃hh,S̃SS) = f

(
h̃√

1−|h̃|2
,

S̃SS√
1−|S̃|2

)
(1−|h̃hh|2)(1−|S̃SS|2)

= g
(

h̃hh
|h̃hh|

,
S̃SS
|S̃SS|

)
|h̃hh|2

1−| ˜hhh|2
|S̃SS|2

1−|S̃SS|2
(1−|h̃hh|2)(1−|S̃SS|2)

= g
(

h̃hh
|h̃hh|

,
S̃SS
|S̃SS|

)
|h̃hh|2|S̃SS|2 = f

(
h̃hh,S̃SS
)
.
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Most of the appearing terms in Definition 1 have the above growth behaviour. This implies that the transformation of
hhh×Fhhh(hhh,SSS) remains the function itself. Only the linear terms in FSSS are changed by multiplying them with 1−|h̃hh|2, such
that for example

S̃SST FSSS(h̃hh,S̃SS) = S̃SST FSSS(h̃hh,S̃SS)− k1|h̃hh|2 tr(S̃SS)S̃SST − k2|h̃hh|2S̃SST
(S̃SS)skw .

Proof of Proposition 3.1. We define the family of measures {Lδ}δ ⊂M (Q×Bd×Bd×d) via

〈Lδ ,g〉 :=
∫

Q
g

(
yyy,

dddδ (yyy)√
1+ |dddδ (yyy)|2

,
∇dddδ (yyy)√

1+ |∇dddδ (yyy)|2

)
(1+ |dddδ |2)(1+ |∇dddδ |2)µ(dyyy) , (3.6)

where g ∈ C b(Q× Bd × Bd×d). Due to our a priori estimates for the approximate solutions, we see that for all g ∈
C b(Q×Bd×Bd×d) with ‖g‖C (Q×Bd×Bd×d)

≤ 1, we have

sup
δ∈(0,1)

〈Lδ ,g〉< ∞ .

Via standard arguments, we first extract a sequence {δk} such that δk→0 and then a weakly∗ converging subsequence
{δn} ⊂ {δk} with

Lδn
∗
⇀ L in M (Q×Bd×Bd×d) .

In the following, the subsequences are not relabled any more. The canonical projection of L onto Q will be called m̃,
i.e. m̃(E) := L(E × Bd × Bd×d) for all Borel sets E ⊂ Q. The classical desintegration argument for measures (see
Evans [16, Theorem 10.] or Fonseca [19, Proposition 3.2.]) provides the existence of a probability measure ν̃yyy ∈P(Bd×
Bd×d , m̃) such that

〈L,g〉=
∫

Q

∫
Bd×Bd×d

g(yyy,hhh,SSS)ν̃yyy(dhhh,dS)m̃(dyyy) . (3.7)

Since m̃ is a measure on Q, we now consider its Radon–Nikodým–Lebesgue-decomposition (see Evans and Gariepy [17,
section 1.6.2] or Halmos [21, Section 32, Theorem C]) with respect to the Lebesgue measure. There exists a function
p ∈ L1(Q) and a measure ms ∈M (Q) such that

m̃(dyyy) = p(yyy)dyyy+ms(dyyy) .

The measure ms and the Lebesgue measure are then mutually singular. Remark that d without specifying the measure
always means integration with respect to the Lebesgue measure.

Applying the desintegration theorem a second time (see Evans and Gariepy [17, section 1.6.2]), we get

ν̃yyy = ν
ddd
yyy,S̃⊗ ν̄yyy .

Here, νddd
yyy,S̃ and ν̄yyy are both probability measures with respect to ν̄yyy and m̃, respectively.

Now taking f̃ as the constant function 1, f̃ ≡ 1, one gets the convergence

(1+ |dddδ |2)(1+ |∇dddδ |2)
∗
⇀ m̃

weakly∗ in M (Q). This implies p(yyy)≥ 1 almost everywhere in Q and m̃ ∈M+(Q).

Recall that the relative compactness of dddδ in LLL2(Q) implies the strong convergence of a (not relabled) subsequence dddδ

to ddd in LLL2(Q) and consequently the point-wise convergence of dddδ (yyy) to ddd(yyy) a.e. in Q as well as the existence of a
dominating function in LLL2(Q).

Consider the function f (hhh,SSS) = 1+ |hhh|2 the associated transformed function (see (3.2)) is given by f̃ (yyy,h̃hh,S̃SS) = (1−|S̃SS|2).
Inserting this function into (3.7) yields

1+ |ddd(yyy)|2 =
∫

Bd×d

∫
Bd

(1−|S̃SS|2)ν̃yyy(d h̃,d S̃)(p(yyy)+ms) .
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The function (1− |S̃SS|2) only vanishes on the set where the norm of S̃ is equal to one, i.e. on the set Bd ×Sd2−1. The
measure ms was mutually singular, which now shows that∫

Bd×d

(1−|S̃SS|2)ν̄yyy(dS̃SS)p(yyy) = 1+ |ddd(yyy)|2 a.e. with respect to the Lebesgue measure,∫
Bd×d

(1−|S̃SS|2)ν̄yyy(dS̃SS) = 0 a.e. with respect to ms .

This now allows us to assign p as

p(yyy) :=
(∫

Bd×d

(1−|S̃SS|2)ν̄yyy(dS̃SS)
)−1

(1+ |ddd(yyy)|2) (3.8)

and to deduce that ν̃yyy is supported on Bd×Sd2−1 ms a.e. on Q.

For φ ∈C b(Q×Rd) we consider the test function f (yyy,hhh,SSS) := φ(yyy,hhh)(1+ |hhh|2). On the one hand, due to the point-wise
strong convergence of dddδ to ddd in Q (see (5.6k)) and the dominating function in LLL2(Q) we get that

lim
δ→0

∫
Q

f (yyy,dddδ (yyy),∇dddδ (yyy))dyyy = lim
δ→0

∫
Q

φ(yyy,dddδ )(1+ |dddδ (yyy)|2)dyyy =
∫

Q
φ(yyy,ddd)(1+ |ddd(yyy)|2)dyyy .

On the other hand, the convergence result (3.7) implies

lim
δ→0

f (yyy,dddδ (yyy),∇dddδ (yyy))⇀
∗
∫

Bd×d

∫
Bd

φ

(
h̃√

1−|h̃|2

)
ν

ddd
yyy,S̃(d h̃)(1−|S̃|2)ν̄yyy(d S̃)m̃ .

Using (3.8), the definition of the measure m̃, and since νddd
yyy,S̃ is a probability measure, we get

0 =
∫

Ω

∫
Bd×d

∫
Bd

(
φ(yyy,ddd(yyy))−φ

(
yyy,

h̃√
1−|h̃|2

))
ν

ddd
yyy,S̃(d h̃)(1−|S̃|2)ν̄yyy(d S̃)m̃(dyyy) .

We see that the function vanishes for all values of (h̃, S̃) with |S̃| < 1. This means that the measure νddd
yyy,S̃ is concentrated

on ddd(yyy)/
√

1+ |ddd(yyy)|2 for ν̄yyy a. e. SSS ∈ Bd×d and m̃ a.e. yyy ∈ Q.

With the additional properties of ν̃yyy we now define the projections of this measure onto the interior and the boundary of
Bd×d . For a continuous bounded function ϕ ∈ C 0(Rd×d) we define the measure νo

yyy ∈P(Rd×d) via

∫
Rd×d

ϕ(SSS)νo
yyy (dSSS) :=

1
1+ |ddd(yyy)|2

∫
Bd×d

ϕ

(
S̃√

1−|S̃|2
)

)
(1−|S̃|)2

ν̄yyy(d S̃)p(yyy) .

With the considerations above, we see that the following identity holds for all functions ϕ ∈ C 0(Rd×Rd×d):∫
Rd×d

ϕ(ddd(yyy),SSS)νo
yyy (dSSS)

=
1

1+ |ddd(yyy)|2
∫

Bd×d

ϕ

(
ddd(yyy),

S̃√
1−|S̃|2

)

)
(1−|S̃|)2

ν̄yyy(d S̃)p(yyy)

=
∫

Bd×d

∫
Bd

ϕ

(
h̃√

1−|h̃|2
,

S̃√
1−|S̃|2

)
(1−|h̃|2)(1−|S̃|2)νddd

yyy,S̃(d h̃)ν̄yyy(d S̃)p(yyy)

=
∫

Bd×d

∫
Bd

ϕ̃(h̃, S̃)ν̃yyy(d h̃,d S̃)p(yyy) .

Additionally, we basically take the remaining part of the measure m̃, which is supported on Bd ×Sd2−1, and define the
measure m via

m := (p(yyy)+ms)ν̃yyy(Bd×Sd2−1) .
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Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 13

The probability measure ν∞
yyy on Bd×Sd2−1 is defined for every continuous bounded function ϕ ∈ C b(Bd×Sd2−1) via∫

Bd

∫
Sd2−1

ϕ(h̃, S̃)ν∞
yyy (d h̃,d S̃) :=

1

ν̃yyy(Bd×Sd2−1)

∫
Bd

∫
Sd2−1

ϕ(h̃, S̃)ν̃yyy(d h̃,d S̃) .

This different definitions taken together imply∫
Rd×d

f (yyy,ddd(yyy),SSS)νo
yyy (dSSS)p(yyy)µ +

∫
Bd

∫
Sd2−1

f̃ (yyy, h̃, S̃)ν∞
yyy (d h̃,d S̃)m

=
∫

Bd×d

∫
Bd

f̃ (yyy, h̃, S̃)ν̃yyy(d h̃d S̃)m̃

for all f ∈R. Inserting the new defined measures into the convergence result (3.7) gives the asserted result (3.5). The
weak convergence of ∇dddδ and (3.5) imply the asserted equation (3.4).

Remark 7. The biting limit of a sequence as given in Proposition 3.1 is given by the classical Young measure generated
by this sequence. For functions f ∈R, we can deduce

f (yyy,dddδ ,∇dddδ )
b
⇀
∫
Rd×d

f (yyy,ddd(yyy),SSS)νyyy(dSSS) . (3.9)

It also holds that for f ∈R, the sequence f (·,dddδ ,∇dddδ ) is weakly convergent in LLL1(Q) if and only if∫
Bd

∫
Sd2−1

f̃ (yyy, h̃, S̃)ν∞
yyy (d h̃d S̃)m = 0 .

Moreover, |∇dddδ |2|dddδ |2 is weakly convergent in L1(Q) if and only if the measure m vanishes.

The proof of this result is obtained by adapting all the steps in the proof of Theorem 9 in [2] to the case of Proposition 3.1.

3.2 Additional properties of generalized gradient Young measures

The previous proposition (Proposition 3.1) only uses the L2(0,T ;LLL2) boundedness of the sequence {dddδ}. The following
proposition is an adaptation of the considerations in [6, section 3] to our case and indicates the additional properties of the
generalized Young measure due to the L∞(0,T ;LLL2) bound which holds for the considered sequence.

Proposition 3.2. Let dddδ : Ω× [0,T ]→Rd be a family of functions fulfilling the assumptions of Theorem 2.2 and let this
sequence generate a generalized Young measure (νo,m,ν∞). Then

esssupt

(∫
Ω

〈|ddd(xxx, t)|2| · |2,νo
xxx,t〉dxxx

)
< ∞ , esssupt

(∫
Ω

〈| · |2,νo
xxx,t〉dxxx

)
< ∞ , (3.10)

and the concentration measure m admits a desintegration of the form

m(dxxx,d t) = mt(dxxx)⊗d t , (3.11)

where t 7→ mt is a bounded measurable map from [0,T ] into M+(Ω).

Proof. The application of Proposition 3.1 with f (hhh,SSS) := (1+ |hhh|2)(1+ |SSS|2) and the recession function f̃ ≡ 1 yields

0≤ (1+ |dddδ |2)(1+ |∇dddδ |2)
∗
⇀ 〈νo,(1+ |ddd|2)(1+ |SSS|2)〉+ 〈ν∞,1〉m

in M (Ω× [0,T ]).

The canonical projection of the measure m onto [0,T ] is defined by m̄(E) := m(Ω×E) for every Borel subset E ⊂ [0,T ].
By the standard desintegration theorem of measures (see Evans and Gariepy [17, section 1.6.2]), there exists a probability
measure m̃t such that m(dxxx,d t) = m̃t(dx)⊗ m̄(d t).

For ϕ ∈ C c([0,T ]) with ϕ(t)≥ 0 for all t ∈ [0,T ] we get∫ T

0

∫
Ω

ϕ(t)(1+ |dddδ (xxx, t)|2)(1+ |∇dddδ (xxx, t)|2)dxxxd t

−→
∫ T

0

∫
Ω

ϕ(t)〈νo
(xxx,t),(1+ |ddd(xxx, t)|

2)(1+ | · |2)〉dxxxd t +
∫ T

0
ϕ(t)m̄(d t) . (3.12)
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Remark that ν∞

(xxx,t) and m̃t are probability measures and thus

∫
Ω

〈1,ν∞

(xxx,t)〉m̃t(dxxx) = 1 .

Due to the a priori estimates holding for dddδ (see (5.5)), we get∣∣∣∣∫ T

0

∫
Ω

ϕ(t)〈νo
(xxx,t),(1+ |ddd(xxx, t)|

2)(1+ | · |2)〉dxxxd t
∣∣∣∣

≤ sup
δ∈(0,1)

∣∣∣∣∫ T

0
ϕ(t)

(
‖|dddδ (t)|∇dddδ (t)‖2

LLL2 +‖∇dddδ (t)‖2
LLL2 +‖dddδ (t)‖2

LLL2 +1
)

d t
∣∣∣∣

≤ sup
δ∈(0,1)

(
‖|dddδ (t)|∇dddδ (t)‖2

L∞(LLL2)+‖∇dddδ (t)‖2
L∞(LLL2)+‖dddδ (t)‖2

L∞(LLL2)+1
)
‖ϕ‖L1(0,T )

(3.13)

and hence the assertion of (3.10).

The convergence (3.12) together with the estimate (3.13) additionally implies∣∣∣∣∫ T

0
ϕ(t)m̄(d t)d t

∣∣∣∣≤ sup
δ∈(0,1)

esssupt∈[0,T ]

(
‖|dddδ (t)|∇dddδ (t)‖2

LLL2 +‖∇dddδ (t)‖2
LLL2 +‖dddδ (t)‖2

LLL2 +1
)
‖ϕ‖L1(0,T ) .

This shows that m̄ is absolutely continuous with respect to the Lebesgue measure on (0,T ). By the Radon-Nikodým
theorem (see Evans and Gariepy [17, section 1.6.2]), there exists a function g ∈ L1(0,T ) with

∫ T

0
ϕ(t)m̄(d t) =

∫ T

0
ϕ(t)g(t)d t for all ϕ ∈ C ([0,T ]) .

Setting mt = g(t)m̃t , we find the desintegration property (3.11).

3.3 Defect measure

A similar statement as in Theorem 3.1 is valid for families of functions which are bounded in the sense of the following
theorem.

Theorem 3.2. Let {dddδ} be a family of functions fulfilling

sup
δ∈(0,1)

(
δ‖∆dddδ‖2

L∞(LLL2)+‖dddδ‖2
L∞(HHH1)

)
< ∞ . (3.14)

Then there exists a subsequence {dddδk
}, a defect measure µt ∈M+(Ω) for a.e. t ∈ (0,T ) and a family of probability

measure {νµ} ⊂P(Sd3−1) for µt a.e. xxx ∈Ω such that

∫ T

0

∫
Ω

f

(
xxx, t,

∇2dddδk
(xxx, t)

|∇2dddδk
(xxx, t)|

)
δk|∇2dddδk

(xxx, t)|2 dxxxd t −→
∫ T

0

∫
Ω

∫
Sd3−1

f (xxx, t,ΓΓΓ)ν
µ

(xxx,t)(dΓΓΓ)µt(dxxx)d t

holds for all f ∈ C (Ω× [0,T ]×Sd3−1) and for δk→0.

Additionally, esssupt∈(0,T )〈〈µt ,1〉〉< ∞ and

lim
k→∞

∫ T

0

∫
Ω

φ(t)ϕ(xxx)δk|∇2dddδk
(xxx, t)|2 dxxxd t =

∫ T

0

∫
Ω

φ(t)ϕ(xxx)µt(dxxx)d t

= lim
k→∞

∫ T

0

∫
Ω

φ(t)ϕ(xxx)δk|∆dddδk
(xxx, t)|2 dxxxd t

for all ϕ ∈ C ∞
c (Ω) and φ ∈ C ([0,T ]).
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Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 15

Proof. The Radon measures M (Ω× [0,T ]× Sd3−1) are identified with the dual space of the continuous functions

C (Ω× [0,T ]×Sd3−1) (see Edwards [11, Theorem 4.10.1]). The family of measures {Lδ} ⊂M (Ω× [0,T ]×Sd3−1) is
given by

〈Lδ ,g〉 :=
∫ T

0

∫
Ω

g
(

xxx, t,
∇2dddδ (xxx, t)
|∇2dddδ (xxx, t)|

)
δ |∇2dddδ (xxx, t)|2 dxxxd t

for all g ∈ C (Ω× [0,T ]×Sd3−1). The boundedness (3.14) yields

‖∇2dddδ (t)‖LLL2 ≤ c‖∆dddδ (t)‖LLL2 + c‖dddδ (t)‖HHH1 ≤ c ,

such that the Banach–Alaoglu–Bourbaki theorem provides the existence of a weakly∗ converging subsequence {Lδk
} ⊂

{L1/n} with n ∈ N, i. e.

Lδk

∗
⇀ L in M (Ω× [0,T ]×Sd3−1)

for δk→0. The classical desintegration argument (see Evans [16, Theorem 10.] or Ambrosio, Fusco and Pallara [3, The-

orem 2.28]) shows the existence of a probability measure νµ ∈P(Sd3−1) and a measure µ̄ ∈M (Ω× [0,T ]) such
that

〈L,g〉=
∫ T

0

∫
Ω

∫
Sd3−1

f (t,xxx,ΓΓΓ)ν
µ

(xxx,t)(dΓΓΓ)µ̄(dxxx,d t) .

Hence, for the test function f ≡ 1 we get

δ |∇2dddδk
(xxx, t)|2 ∗⇀ µ̄ in M (Ω× [0,T ])

and thus µ̄ ∈M+(Ω× [0,T ]). Like in Proposition 3.2, the desintegration argument is again applied to µ̄ such that
µ̄ = µ1⊗µ2, where µ1 ∈P(Ω) and µ2 ∈M+([0,T ]). Additionally, for the function f ≡ 1 it holds∫ T

0
φ(t)µ2(d t)≤ sup

δ∈(0,1)
esssupt∈(0,T ) δ‖∇2dddδ‖2

LLL2‖φ‖L1(0,T ) ≤ c‖φ‖L1(0,T ) (3.15)

for all φ ∈ C ∞
c (0,T ) with φ(t)≥ 0. As a consequence µ2 is absolutely continuous with respect to the Lebesgue measure

(see Brenier, De Lellis & Székelyhidi [6] or Elstrodt [12, Kapitel VIII, Satz 2.5]). Thus, the Radon–Nikodým derivative of µ2

with respect to the Lebesgue measure exists (see Halmos [21, Section 32, Theorem A]). There is a function g ∈ L1(0,T )
such that µ2(d t) = g(t)d t. The first assertion of Theorem 3.2 is reached by setting µt = g(t)µ1

t . The estimate for µt is
a direct consequence of inequality (3.15).

Using a partial integration, we see

δ
(
|∆dddδ |2,ϕ

)
= −δ (∇dddδ : ∇∆dddδ ,ϕ)−δ (∇dddδ ;∆dddδ ⊗∇ϕ)

= δ
(
|∇2dddδ |2,ϕ

)
+δ

(
∇dddδ : ∇

2dddδ ,∇ϕ
)
−δ (∇dddδ ;∆dddδ ⊗∇ϕ)

(3.16)

for all ϕ ∈ C ∞
c (Ω).

The terms on the right-hand side of (3.16) can be estimated by

δ
(
∇dddδ : ∇

2dddδ ,∇ϕ
)
−δ (∇dddδ ;∆dddδ ⊗∇ϕ)≤ cδ‖∇dddδ‖LLL2‖∇2dddδ‖LLL2‖∇ϕ‖LLL∞

≤ c
√

δ

(
‖∇dddδ‖LLL2(δ‖∆dddδ‖2

LLL2 +‖dddδ‖2
HHH1)

1/2‖∇ϕ‖LLL∞

)
.

Hence, this terms vanishes for δ→0.

4 Existence of weak solutions to the regularised system

4.1 Galerkin basis and solvability of the approximate problem

In this section, we argue in the same way as in [14] and therefore, we refer to this previous work. The approximation scheme
is similar to the one in [14]. To approximate the Navier–Stokes-like equation we use again the eigenfunctions of the Stokes
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operator (wwwi)i∈N with the associated sequence of Galerkin spaces Wn := span{www1,www2,www3, . . .} and sequence of LLL2-
orthogonal projections Pn : LLL2

σ→Wn. Remark that Ω is of class C 3,1 such that the family of projections Pn is continuous
as a mapping of HHH2∩HHH1

0,σ to itself (see [34]).

For the regularized director equation, we choose eigenfunctions of the differential operator corresponding to the boundary
value problem

−∆zzz = hhh in Ω ,

zzz = 0 on ∂Ω .
(4.1)

Since ΛΛΛ is strongly elliptic (2.6) and symmetric, i.e. ΛΛΛi jkl =ΛΛΛkli j, the above problem is a symmetric strongly elliptic system
that possesses a unique weak solution zzz ∈HHH1

0 for any hhh ∈HHH−1 (see e.g. Chipot [8, Theorem 13.3]). Its solution operator
is thus a compact operator in LLL2. Hence there exists an orthogonal basis of eigenfunctions (zzzn). Moreover, the problem is
HHH2-regular (see e.g. Morrey [36, Theorem 6.5.6] and recall that Ω is of class C 3,1), i.e. for any hhh ∈ LLL2 the solution zzz is in
HHH2∩HHH1

0 and there exists a constant c > 0 such that

‖zzz‖HHH2 ≤ η ‖∆zzz‖LLL2 (4.2)

for any zzz ∈HHH2 ∩HHH1
0. With a standard bootstrap argument we get, that for every hhh ∈HHH2, the solution zzz of (4.1) is in HHH4

and for another constant c > 0, we have

‖zzz‖HHH4 ≤ c(‖∆
2 zzz‖LLL2 +‖zzz‖HHH2) . (4.3)

Again, the eigenfunctions form an orthogonal basis in LLL2. Let Zn := span{zzz1, . . . ,zzzn} (n ∈N) and assume ‖zzzi‖LLL2 = 1 for
i = 1,2, . . . . Then

Rn : LLL2 −→ Zn , Rn fff :=
n

∑
i=1

( fff ,zzzi)zzzi

is the LLL2-orthogonal projection onto Zn.

We define the inverse of the trace operator in an appropriate way for our system. This is done by using the solution operator
to the associated stationary problem.

Theorem 4.1 (Extension operator). There exists a linear continuous operator E : HHH7/2(∂Ω)→HHH4(Ω), where Ω is of
class C 3,1. This operator is the right-inverse of the trace operator, i.e. for all ggg ∈HHH7/2(∂Ω), it holds Eggg = ggg on ∂Ω in the
sense of the trace operator. Additionally, it holds ∆Eggg = 0 in Ω and there exists a constant c > 0 such that

‖Eggg‖HHH4(Ω) ≤ c‖ggg‖HHH7/2(∂Ω)
for ggg ∈HHH7/2(∂Ω) . (4.4)

Proof. Let Ω be of class C 3,1. The extension operator is defined via the solution operator of the problem

−∆ddd = 0 in Ω , ddd = ggg on ∂Ω . (4.5)

This problem is uniquely solvable for a tensor enjoying the strong ellipticity (see McLean [35, Theorem 4.10]). The as-
sociated solution operator is linear and continuous and the regularity of this problem asserts (vgl. McLean [35, Theorem
4.21])

E : HHHs−1/2(∂Ω)→HHHs(Ω) for all s with 0≤ s≤ 4 .

We remark that ΛΛΛ as defined in (2.4) is strongly elliptic (see (2.6)).

The approximate system is similar to the one in [14]. Let n ∈ N be fixed. As usual, we consider the ansatz

vvvn,δ (t) =
n

∑
i=1

vi
n(t)wwwi, dddn,δ (t) = Eddd1 +

n

∑
i=1

di
n(t)zzzi (4.6)

with (vi
n,d

i
n) ∈A C ([0,T ]) for all i = 1, . . . ,n.

DOI 10.20347/WIAS.PREPRINT.2476 Berlin 2018



Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy 17

Our approximation reads as

(∂tvvvn,δ ,www)+((vvvn,δ ·∇)vvvn,δ ,www)− (∇dddT
n,δqqqn,δ ,www)+

(
TTT L

n,δ : ∇www
)
= 〈ggg,www〉 ,

vvvn,δ (0) = Pnvvv0 ,
(4.7a)

(∂tdddn,δ +(vvvn,δ ·∇)dddn,δ − (∇vvvn,δ )skwdddn,δ ,zzz)+λ ((∇vvvn,δ )symdddn,δ ,zzz)+(qqqn,δ ,zzz) = 0 ,
dddn,δ (0) = Rnddd0

(4.7b)

for all www ∈Wn and zzz ∈ Zn, where qqqn,δ is given by the projection of the variational derivative of the free energy

qqqn,δ := Rn

(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )+

1
ε
(|dddn,δ |2−1)dddn,δ

)
+δ ∆

2 dddn,δ , (4.7c)

and

TTT L
n,δ := µ1(dddn,δ · (∇vvvn,δ )symdddn,δ )(dddn,δ ⊗dddn,δ )+µ4(∇vvvn,δ )sym− (µ2 +µ3)

(
dddn,δ ⊗qqqn,δ

)
sym

−
(
dddn,δ ⊗qqqn,δ

)
skw +((µ5 +µ6)−λ (µ2 +µ3))

(
dddn,δ ⊗ (∇vvvn,δ )symdddn,δ

)
sym

(4.7d)

is the discrete Leslie stress, where we replaced eeen,δ by −λ (∇vvvn,δ )symdddn,δ −qqqn,δ in comparison to formulation (2.1g).
This allows to write this system as an ordinary differential equation in finite dimensions. The solvability of this discrete
system is rather standard and we refer to [14] for more details.

4.2 A priori estimates

To get a priori estimates, we use the important dissipative character of the system. The proof of the energy inequality
is given in [14, Proposition 4.1]. The subsequent corollary works in the same way for our present case. We thus get the
following energy equality for the discrete system:

1
2
‖vvvn,δ (t)‖2

LLL2 +F δ (dddn,δ (t))+
∫ t

0

(
µ1
∥∥dddn,δ · (∇vvvn,δ )symdddn,δ

∥∥2
L2 +µ4‖(∇vvvn,δ )sym‖2

LLL2

)
ds

+
∫ t

0

(
(µ5 +µ6−λ (µ2 +µ3))‖(∇vvvn,δ )symdddn,δ‖2

LLL2 +‖qqqn,δ‖2
LLL2

)
ds

=
1
2
‖Pnvvv0‖2

LLL2 +F δ (Rnddd0)+
∫ t

0

(
〈ggg,vvvn,δ 〉+((µ2 +µ3)−λ )(qqqn,δ ,(∇vvvn,δ )symdddn,δ )

)
ds .

(4.8)

Proposition 4.1 (A priori estimates I). The solutions (vvvn,δ ,dddn,δ ) to the approximate system (4.7) admit the following a
priori estimate. There exists α,β > 0 and a constant c > 0 independent of n such that

1
2
‖vvvn,δ‖2

L∞(LLL2)+ sup
t∈[0,T ]

Fδ (dddn,δ (t))+µ1
∥∥dddn,δ · (∇vvvn,δ )symdddn,δ

∥∥2
L2(L2)

+
µ4

2
‖(∇vvvn,δ )sym‖2

L2(LLL2)+α‖(∇vvvn,δ )symdddn,δ‖2
L2(LLL2)+β‖qqqn,δ‖2

L2(LLL2)

≤ 1
2
‖vvv0‖2

LLL2 +F δ (ddd0)+ c
(
‖Rnddd0‖3

HHH2 +‖ddd0‖3
HHH2 +1

)
‖Rnddd0−ddd0‖HHH2 + c‖ggg‖2

L2((HHH1
0,σ )

*)
≤ c .

(4.9)

Proof. This proposition can be shown as in Corollary [14, Corollary 4.2], we only need another estimate for the free energy
evaluated at the projection of the initial values, i.e. F δ (Rnddd0). Due to the higher regularity of the initial value ddd0, we can
estimate

δ‖∆Rnddd0‖2
LLL2 −δ‖∆ddd0‖2

LLL2 = δ (∆Rnddd0,∆Rnddd0−∆ddd0)+δ (∆ddd0,∆Rnddd0−∆ddd0)

≤ δ (‖∆Rnddd0‖LLL2 +‖∆ddd0‖LLL2)‖∆Rnddd0−∆ddd0‖LLL2 .

Similarly, we get for the Oseen–Frank free energy

(∇Rnddd0;ΛΛΛ : ∇Rnddd0)− (∇ddd0;ΛΛΛ : ∇ddd0)≤ c(‖Rn∇ddd0‖LLL2 +‖∇ddd0‖LLL2)‖∇Rnddd0−∇ddd0‖LLL2

as well as with Youngs inequality

(∇Rnddd0⊗Rnddd0 ··, ΘΘΘ ···∇Rnddd0⊗Rnddd0)− (∇ddd0⊗ddd0 ··, ΘΘΘ ···∇ddd0⊗ddd0)≤ c
(
‖Rnddd0‖3

WWW 1,4 +‖ddd0‖3
WWW 1,4

)
‖Rnddd0−ddd0‖WWW 1,4 .
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For the penalization term, we get

1
4ε

∥∥|Rnddd0|2−1
∥∥2

LLL2 −
1

4ε

∥∥|ddd0|2−1
∥∥2

LLL2 ≤ c
(
‖Rnddd0‖3

LLL4 +‖ddd0‖3
LLL4 +1

)
‖Rnddd0−ddd0‖LLL4 .

Together, we can estimate with the standard Sobolev embeddings and Young’s inequality

F δ (Rnddd0)≤F δ (ddd0)+ c
(
‖Rnddd0‖3

HHH2 +‖ddd0‖3
HHH2 +1

)
‖Rnddd0−ddd0‖HHH2 .

Since Rn is the orthogonal projection on HHH2 the right-hand side of the above inequality is bounded independently of n.

Initially, the a priori estimate (4.9) only holds for the maximal time interval on which the solutions to the approximate
problem (4.7) exist. With a standard continuation argument as in [14], this existence interval can be shown to be [0,T ].

Proposition 4.2. Let the assumptions of Theorem 2.1 be fulfilled. Then there exists a constant c > 0 independent of n,
but dependent on δ such that

‖vvvn‖2
L∞(LLL2)+‖∆dddn‖2

L∞(LLL2)+‖∇dddn‖2
L∞(LLL2)+

∥∥dddn · (∇vvvn,δ )symdddn
∥∥2

L2(L2)
+‖vvv‖2

L2(HHH1
0)

+‖(∇vvvn,δ )symdddn‖2
L2(LLL2)+‖∆

2 dddn‖2
L2(LLL2) ≤ c

(4.10)

holds for all solutions (vvvn,dddn) of (4.7).

Proof. With the a priori estimate (4.9) and Proposition 5.1 we get

‖∆dddn,δ‖2
L∞(LLL2)+‖dddn,δ‖2

L∞(HHH1) ≤ c . (4.11)

The definition of the variational derivative (2.8) of the free energy and Young’s inequality provide

‖qqqn,δ‖2
LLL2 ≥

1
2
‖Rn ∆

2 dddn,δ‖2
LLL2 −

∥∥Rn
(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )

)∥∥2
LLL2 .

Since ∆Eddd1 = 0, we get ∆2 dddn,δ ∈ Zn and thus Rn ∆2 dddn,δ = ∆2 dddn,δ . Additionally, Rn is an orthogonal projection and,
using the partial derivatives of the Oseen–Frank energy (2.3), we can estimate the norm of the variational derivative∥∥Rn

(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )

)∥∥2
LLL2

≤
∥∥Fhhh(dddn,δ ,∇dddn,δ )

∥∥2
LLL2 +

∥∥∇·FSSS(dddn,δ ,∇dddn,δ )
∥∥2

LLL2

≤ c
(
‖dddn,δ‖4

WWW 1,4‖dddn,δ‖2
LLL∞ +‖dddn,δ‖2

HHH2

)
+ c
(
‖dddn,δ‖2

HHH2‖dddn,δ‖4
LLL∞ +‖dddn,δ‖4

WWW 1,4‖dddn,δ‖2
LLL∞

)
.

Gagliardo–Nirenberg’s inequality (see [40, Section 21.19]) yields∥∥Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )
∥∥2

LLL2 ≤ c
(
‖dddn,δ‖3

HHH2‖dddn,δ‖HHH1‖dddn,δ‖
3/2

HHH2‖dddn,δ‖
1/2

LLL2 +‖dddn,δ‖2
HHH2

)
+ c
(
‖dddn,δ‖2

HHH2‖dddn,δ‖3
HHH2‖dddn,δ‖LLL2

)
≤ c(‖dddn,δ‖6

HHH2 +1) .

Due to the coercivity (5.1) and the estimate (4.9), we can bound the right-hand side of the above inequality, which implies
the assertion.

Remark 8. It should be emphasized that the last a priori estimate depends on δ . This estimate does not hold for δ→0.

We are now going to estimate the time derivatives of the approximate solutions in appropriate norms.

Proposition 4.3. Under the assumptions of Theorem 2.1 there is a constant C > 0, depending on the initial values vvv0, ddd0
and right-hand side ggg, such that for all n ∈ N and δ ∈ (0,1)

‖∂tvvvn,δ‖L2((HHH2∩HHH1
0,σ )

∗)+‖∂tdddn,δ‖L2(HHH-1) ≤C . (4.12)
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Proof. The bound on {∂tvvvn,δ} follows from the same argumentation as in [14, Proposition 4.2].

Recall that Rn is the LLL2-orthogonal projection onto Zn and a continuous mapping between HHH1
0 and itself. With the Sobolev

embedding HHH1
0 ↪→ LLL3 we thus find with (4.7b) for all t ∈ [0,T ]

‖∂tdddn,δ‖HHH-1 = sup
‖ψψψ‖HHH1

0
≤1
|(∂tdddn,δ ,ψψψ)|= sup

‖ψψψ‖HHH1
0
≤1
|(∂tdddn,δ ,Rnψψψ)|

≤ sup
‖ψψψ‖HHH1

0
≤1

∥∥−(vvvn,δ ·∇)dddn,δ +
(
(∇vvvn,δ )skw−λ (∇vvvn,δ )sym

)
dddn,δ −qqqn,δ

∥∥
LLL3/2 ‖Rnψψψ‖LLL3

≤c
(∥∥(vvvn,δ ·∇)dddn,δ

∥∥
LLL3/2 +

∥∥(∇vvvn,δ )skwdddn,δ
∥∥

LLL3/2 + |λ |
∥∥(∇vvvn,δ )symdddn,δ

∥∥
LLL2 +

∥∥qqqn,δ
∥∥

LLL2

)
.

(4.13)

In view of (4.9), we see that ∥∥(∇vvvn,δ )symdddn,δ
∥∥

L2(LLL2)
and

∥∥qqqn,δ
∥∥

L2(LLL2)

are bounded. It remains to consider the first two terms on the right-hand side of (4.13). With Hölder’s inequality, we find∥∥(vvvn,δ ·∇)dddn,δ
∥∥

L2(LLL3/2)
+
∥∥(∇vvvn,δ )skwdddn,δ

∥∥
L2(LLL3/2)

≤
∥∥vvvn,δ

∥∥
L2(LLL6)

∥∥∇dddn,δ
∥∥

L∞(LLL2)
+
∥∥vvvn,δ

∥∥
L2(HHH1

0)

∥∥dddn,δ
∥∥

L∞(LLL6)
.

Note that all terms on the right-hand side are bounded in view of (4.9).

This proves the assertion.

4.3 Convergence of the approximate solutions

The a priori estimates in the previous sections are crucial to deduce the convergence of a subsequence of solutions to the
approximate system (4.7).

Proposition 4.4. There is a (not relabeled) subsequences {(vvvn,δ ,dddn,δ )} of the sequence of solutions to the approximate
systems (4.7) such that

vvvn,δ
∗
⇀ vvvδ in L∞(0,T ;LLL2

σ ) , (4.14a)

vvvn,δ ⇀ vvvδ in L2(0,T ;HHH1
0,σ ) , (4.14b)

qqqn,δ ⇀ qqqδ in L2(0,T ;LLL2) , (4.14c)

(∇vvvn,δ )symdddn,δ ⇀ (∇vvvδ )symdddδ in L2(0,T ;LLL2) , (4.14d)

dddn,δ · (∇vvvn,δ )symdddn,δ ⇀ dddδ · (∇vvvδ )symdddδ in L2(0,T ;L2) . (4.14e)

∂tvvvn,δ ⇀ ∂tvvvδ in L2(0,T ;(HHH2∩HHH1
0,σ )

∗) , (4.14f)

∂tdddn,δ ⇀ ∂tdddδ in L2(0,T ;HHH-1) , (4.14g)

dddn,δ
∗
⇀ dddδ in L∞(0,T ;HHH2) , (4.14h)

dddn,δ ⇀ dddδ in L2(0,T ;HHH4) , (4.14i)

vvvn,δ→vvvδ in Lp(0,T ;LLL2
σ ) for any p ∈ [1,∞) , (4.14j)

dddn,δ→dddδ in Lq(0,T ;HHH2) for any q ∈ [1,∞) . (4.14k)

Proof. The existence of a weakly and weakly∗ converging subsequence follows from standard arguments from the a priori
estimates (4.9) and (4.10) as well as (4.12). The strong convergence follows from the Lions–Aubin compactness lemma
(see Lions [33, Théorème 1.5.2]). Indeed, with respect to vvvn,δ , we observe that HHH1

0,σ is compactly embedded in LLL2
σ , which

implies strong convergence in L2(0,T ;LLL2
σ ) and together with the boundedness in L∞(0,T ;LLL2

σ ) also in Lp(0,T ;LLL2
σ ) for

any p∈ [1,∞). With respect to dddn,δ , we observe that HHH4 is compactly embedded in HHH2, which implies strong convergence
in L2(0,T ;HHH2) and together with the boundedness in L∞(0,T ;HHH2) also in Lq(0,T ;HHH2) for any q ∈ [1,∞). This strong
convergence allows to identify the limits in (4.14d) and (4.14e).

Corollary 4.1. Under the assumptions of Theorem 2.1, the limits vvvδ and dddδ from Corollary 4.4 satisfy

vvvδ (0) = vvv0 and dddδ (0) = ddd0 .

TheProof can be found in [14, Corollary 4.5].

With the following proposition, we identify the limit q̄qqδ in (4.14c).
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Proposition 4.5. Under the assumptions of Theorem 2.1, the limit q̄qqδ in (4.14c) is given by q̄qqδ = qqqδ , where qqqδ is given
by (2.8).

Proof. We already established the weak convergence (4.14c), we thus only need to identify the limit q̄qqδ .

Recalling that Rn is the LLL2-orthogonal projection onto Zn and γγγ0(∆dddn,δ ) = 0, we find∫ T

0
〈qqqn,δ (t)−qqqδ (t),ψψψ(t)〉d t

=
∫ T

0

〈
δ (∆2 dddn,δ (t)−∆

2 dddδ (t)),ψψψ(t)
〉

d t

+
1
ε

∫ T

0

((
Rn
(
(|dddn,δ (t)|2−1)dddn,δ (t)

)
− (|dddδ (t)|2−1)dddδ (t)

)
,ψψψ(t)

)
d t

+
∫ T

0

〈
Fhhh(dddn,δ (t),∇dddn,δ (t))−∇·FSSS(dddn,δ (t),∇dddn,δ (t)),Rnψψψ(t)

〉
d t

−
∫ T

0
〈Fhhh(dddδ (t),∇dddδ (t))−∇·FSSS(dddδ (t),∇dddδ (t)),ψψψ(t)〉d t

=
∫ T

0

〈
Fhhh(dddn,δ (t),∇dddn,δ (t))+

1
ε
(|dddn,δ |2−1)dddn,δ ,Rnψψψ(t)−ψψψ(t)

〉
d t

+
∫ T

0

〈
FSSS(dddn,δ (t),∇dddn,δ (t));∇(Rnψψψ(t)−ψψψ(t))

〉
d t

+δ

∫ T

0

〈
∆dddn,δ (t)−∆dddδ (t),∆ψψψ(t)

〉
d t

+
∫ T

0

(
Fhhh(dddn,δ (t),∇dddn,δ (t))−Fhhh(dddδ (t),∇dddδ (t)),ψψψ(t)

)
d t

+
∫ T

0

〈
FSSS(dddn,δ (t),∇dddn,δ (t))−FSSS(dddδ (t),∇dddδ (t)),∇ψψψ(t)

〉
d t

+
1
ε

∫ T

0

(
(|dddn,δ (t)|2−1)dddn,δ (t)− (|dddδ (t)|2−1)dddδ (t),ψψψ(t)

)
d t

= I1,n + I2,n + I3,n + I4,n + I5,n + I6,n

for all ψψψ ∈ L2(0,T ;HHH2∩HHH1
0). First, we remark that in regard of definition (2.3), we have

|Fhhh(hhh,SSS)| ≤ c(|SSS|2 + |hhh|2)|hhh| ≤ c(|SSS|3 + |hhh|3) ,
|FSSS(hhh,SSS)| ≤ c|SSS|(|hhh|2 +1)≤ c(|SSS|3 + |hhh|3 +1) ,

|(|hhh|2−1)hhh| ≤ c(|hhh|3 +1)

(4.15)

for all hhh ∈ Rd , SSS ∈ Rd×d . Due to standard Sobolev embeddings we know HHH2 ↪→WWW 1,6 ↪→ LLL∞. The a priori bound (4.10)
especially the L∞(0,T ;HHH2) bound on dddn,δ , together with the estimates (4.15) shows, that Fhhh(dddn,δ ,∇dddn,δ ), FSSS(dddn,∇dddn)

and the penalization term are bounded in L∞(0,T ;LLL2) independently of n. Moreover, Rn is the HHH1
0-orthogonal projection

onto Zn if we equip HHH1
0 with the inner product (· ;ΛΛΛ : ·). Since the norm induced by this inner product is equivalent to the

standard norm, we find that for all ψψψ ∈ L2(0,T ;HHH1
0)

lim
n→∞
‖Rnψψψ−ψψψ‖L2(HHH1

0)
= 0 .

This shows that I1,n and I2,n converge to 0 as n→ ∞. Due to the strong convergence in L∞(0,T ;HHH2) (see (4.14k)), the
term I3,n converges to zero.

Let us now consider the terms I4,n, I5,n, and I6,n. Due to the strong convergence (4.14k) and standard Sobolev embed-
dings, we observe that (passing to a subsequence if necessary)

dddn,δ (xxx, t)→ dddδ (xxx, t) , ∇dddn,δ (xxx, t)→ ∇dddδ (xxx, t)

for almost all (xxx, t) ∈ Ω× (0,T ). Moreover, |dddn,δ (xxx, t)| and |∇dddn(xxx, t)| are majorized by a function in L6(0,T ;L6).
The growth conditions (4.15) then show that Fhhh(dddn,δ (t),∇dddn,δ (t)), FSSS(dddn,δ (t),∇dddn,δ (t)) and 1/ε(|dddn,δ |2− 1)dddn,δ are
majorized by a function in L2(0,T ;LLL2). With the continuity of Fhhh and FSSS as well as Lebesgue’s theorem on dominated
convergence, we find that I4,n, I5,n and I6,n converge to 0 as n→ ∞.
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We are now ready to prove that the approximate solution {(vvvn,δ ,dddn,δ )} converges to a weak solution of the regularized
system (2.1).

Proof of Theorem 2.1. It only remains to prove that the limit (vvvδ ,dddδ ) from Corollary 4.4 satisfies the original problem in
the sense of Definition 2.1. This is shown by passing to the limit in the approximate problem (4.7).

Let us start with the approximation (4.7b) of the director equation. First, we observe convergence of the term incorpo-
rating the time derivative because of (4.14g). The three semilinear terms converge due to the strong convergence of the
director (4.14k) and the weak as well as the strong convergence of the velocity field (4.14b) and (4.14j). Thus, we have∫ T

0
((vvvn,δ (t) ·∇)dddn,δ (t)− (∇vvvn,δ (t))skwdddn,δ (t)+λ (∇vvvn,δ (t))symdddn,δ (t),ψψψ(t))d t

→
∫ T

0
((vvvδ (t) ·∇)dddδ (t)− (∇vvvδ (t))skwdddδ (t)+λ (∇vvvδ (t))symdddδ (t),ψψψ(t))d t

for all ψψψ ∈ C ∞
c (Ω× (0,T );R3)). The variational derivative of the free energy converges due to Proposition 4.5.

All this shows that the limit (vvv,ddd) of the approximate solutions satisfy the original equations (2.12b). Moreover, Corollary 4.1
shows that the initial conditions are also fulfilled. Remark that in view of the a-priori estimate (4.9), the equation

∂tdddδ +(vvvδ ·∇)vvvδ − (∇vvvδ )skwdddδ = eeeδ =−λ (∇vvvδ )symdddδ −qqqδ (4.16)

holds in L2(0,T ;LLL2). Not all terms on the left-hand side of (4.16) are known to be bounded in L2(0,T ;LLL2), but their sum,
i.e. the term eeeδ , is.

In the following, we focus on the limiting procedure in the approximation (4.7a) of the Navier–Stokes-like equation. In view
of (4.14f), we already know that the term incorporating the time derivative converges. Moreover, we find with (4.14j) the
convergence of the convection term such that for all solenoidal ϕϕϕ ∈ C ∞

c (Ω× (0,T );R3))∫ T

0
((vvvn,δ (t) ·∇)vvvn,δ (t),ϕϕϕ(t))d t→

∫ T

0
((vvvδ (t) ·∇)vvvδ (t),ϕϕϕ(t))d t .

With Proposition 4.5, the convergences (4.14c), (4.14k) and calculation (2.10), we find that∫ T

0

(
∇dddT

n,δ (t)qqqn,δ (t),ϕϕϕ(t)
)

d t→
∫ T

0

(
∇dddT

δ
(t)qqqδ (t),ϕϕϕ(t)

)
d t =

∫ T

0

(
TTT E

δ
;∇ϕϕϕ(t)

)
d t .

It is essential that calculation (2.10) is applied in the limit, since it does not hold for the approximate analogues. With
respect to the term incorporating the Leslie tensor, we only focus on the first term that is the least regular one. With (4.14b)
and (4.14k), we find that∫ T

0

(
(dddn,δ (t) · (∇vvvn,δ (t))symdddn,δ (t))dddn,δ (t)⊗dddn,δ (t);∇ϕϕϕ(t)

)
d t

→
∫ T

0

(
(dddδ (t) · (∇vvvδ (t))symdddδ (t))dddδ (t)⊗dddδ (t);∇ϕϕϕ(t)

)
d t .

This, together with similar observations for the other terms, shows that∫ T

0
(TTT L

n,δ (t) : ∇ϕϕϕ(t))d t→
∫ T

0
(T̃TT L

δ (t) : ∇ϕϕϕ(t))d t ,

where T̃TT L
δ is given by

T̃TT L
δ := µ1(dddδ · (∇vvvδ )symdddδ )dddδ ⊗dddδ +µ4(∇vvvδ )sym− (µ2 +µ3)(dddδ ⊗qqqδ )sym

− (dddδ ⊗qqqδ )skw +((µ5 +µ6)−λ (µ2 +µ3))
(
dddδ ⊗ (∇vvvδ )symdddδ

)
sym .

Due to (4.16), T̃TT L
δ is equivalent to TTT L

δ
defined analogously to (2.1g) by

TTT L
δ
= µ1(dddδ · (∇vvvδ )symdddδ )dddδ ⊗dddδ +µ4(∇vvvδ )sym +(µ5 +µ6)

(
dddδ ⊗ (∇vvvδ )symdddδ

)
sym

+(µ2 +µ3)(dddδ ⊗eeeδ )sym +λ
(
dddδ ⊗ (∇vvv)symdddδ

)
skw +(dddδ ⊗eeeδ )skw

(4.17)

with

eeeδ := ∂tdddδ +(vvvδ ·∇)dddδ − (∇vvvδ )skwdddδ . (4.18)

This proofs Theorem 2.1.
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5 Convergence for vanishing regularization

5.1 A priori estimates independent of the regularization

The next lemma is a coercivity estimate for the free energy.

Proposition 5.1 (Coercivity I). Let ddd ∈HHH2. Then the following holds:

‖ddd‖2
HHH1 ≤

∫
Ω

((∇·ddd)2 + |∇×ddd|2)dxxx+ c‖ddd‖2
HHH3/2(∂Ω)

(5.1)

and ∫
Ω

|ddd|2|∇ddd|2 dxxx≤ 2
∫

Ω

(|ddd|2(∇·ddd)2 +(ddd ·∇×ddd)2 + |ddd×∇×ddd|2)dxxx+ c‖ddd‖4
HHH3/2(∂Ω)

.

Proof. The following equality can be shown by means of simple vector calculus,

|∇ddd|2 = (∇·ddd)2 + |∇×ddd|2 + tr(∇ddd2)− (∇·ddd)2 . (5.2)

The last two terms can be written as the divergence of a vector field

tr(∇ddd2)− (∇·ddd)2 = ∇·(∇dddddd− (∇·ddd)ddd) . (5.3)

Integrating the identity (5.2) over Ω, using Gauß’ formula, and estimating the boundary terms yields the desired esti-
mate (5.1).

Again, simple vector calculus shows that

|ddd|2|∇×ddd|2 = (ddd ·∇×ddd)2 + |ddd×∇×ddd|2 .

In the same way as in (5.3), we calculate

∇·((∇dddddd− (∇·ddd)ddd)|ddd|2) = (tr(∇ddd2)− (∇·ddd)2)|ddd|2−|∇dddddd−∇dddTddd|2 + |∇dddddd|2 + |∇dddTddd|2

− (∇·ddd)ddd ·∇dddddd− (∇·ddd)ddd ·∇dddTddd .
(5.4)

Another vector identity grants that

|∇dddddd−∇dddTddd|2 = 4|(∇ddd)skwddd|2 = |ddd×∇×ddd|2 .

The term |ddd|2|∇ddd|2 integrated over the domain can be transformed via (5.2) and (5.4) to∫
Ω

|ddd|2|∇ddd|2 dxxx =
∫

Ω

((∇·ddd)2|ddd|2 + |ddd|2|∇×ddd|2 +(tr(∇ddd2)− (∇·ddd)2)|ddd|2)dxxx

=
∫

Ω

((∇·ddd)2|ddd|2 +(ddd ·∇×ddd)2 + |ddd×∇×ddd|2 dxxx

+
∫

Ω

∇·((∇dddddd− (∇·ddd)ddd)|ddd|2)dxxx

+
∫

Ω

|ddd×∇×ddd|2−|∇dddddd|2−|∇dddTddd|2 dxxx

+
∫

Ω

(∇·ddd)ddd ·∇dddddd +(∇·ddd)ddd ·∇dddTddd dxxx .

Young’s inequality, Gauß’ formula and appropriate estimates of the boundary terms show∫
Ω

|ddd|2|∇ddd|2 dxxx≤
∫

Ω

((∇·ddd)2|ddd|2 +(ddd ·∇×ddd)2 +2|ddd×∇×ddd|2 dxxx+ c‖ddd‖4
HHH3/2(∂Ω)

+
∫

Ω

−|∇dddddd|2−|∇dddTddd|2 dxxx

+
∫

Ω

1
2
(∇·ddd)2|ddd|2 + |∇dddddd|2 + |∇dddTddd|2 dxxx

=
∫

Ω

(
3
2
(∇·ddd)2|ddd|2 +(ddd ·∇×ddd)2 +2|ddd×∇×ddd|2 dxxx+ c‖ddd‖4

HHH3/2(∂Ω)
.

Therewith, both asserted coercivity estimates are proven.
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Corollary 5.1 (A priori estimates). There is a constant C > 0, depending on the initial values vvv0, ddd0 and right-hand side
ggg, such that for all δ ∈ (0,1) the constructed weak solution of the regularized system {(vvvδ ,dddδ )} fulfills the estimate

‖vvvδ‖2
L∞(LLL2)+δ‖∆dddδ‖2

L∞(LLL2)+‖dddδ‖2
L∞(HHH1

0)
+ sup

t∈[0,T ]

∫
Ω

|dddδ (t)|2|∇dddδ (t)|2 dxxx

+
∥∥dddδ · (∇vvvδ )symdddδ

∥∥2
L2(L2)

+‖vvvδ‖2
L2(HHH1

0,σ )
+‖(∇vvvδ )symdddδ‖2

L2(LLL2)

+‖qqqδ‖2
L2(LLL2)+‖∂tvvvδ‖L2((HHH2∩HHH1

0,σ )
∗)+‖∂tdddδ‖L2(LLL3/2)

≤C .

(5.5)

Proof. This assertion is obvious by the a priori estimates (4.9), (4.12) and the weakly lower semi-continuity of the appearing
norms. Remark that the right-hand side of (4.9) is bounded independently of ε , since ddd0 is a unit vector a.e. in Ω and Rnddd0
converges strongly to ddd0 in HHH2.

In regard of the time derivative of the director, we observe that the equation (2.12b) holds for all test functions. To estimate
the time derivative, the projection Rn and thus the restriction onto a Hilbert space as in Proposition 4.3 is no longer needed.
With the same argumentation as in Proposition 4.3, we get the asserted L2(LLL3/2) bound.

5.2 Convergence of the solutions to the regularized systems

The energy estimates of the previous corollary allow us to deduce the convergence of a subsequence of the solutions to
the regularized system.

Proposition 5.2. Out of the family of solutions (vvvδ ,dddδ ) to the regularized systems (2.12), we can extract a (not relabled)
subsequence such that

vvvδ

∗
⇀ vvv in L∞(0,T ;LLL2

σ ) , (5.6a)

vvvδ ⇀ vvv in L2(0,T ;HHH1
0,σ ) , (5.6b)

qqqδ ⇀ qqq in L2(0,T ;LLL2) , (5.6c)

(∇vvvδ )symdddδ ⇀ (∇vvv)symddd in L2(0,T ;LLL2) , (5.6d)

dddδ · (∇vvvδ )symdddδ ⇀ ddd · (∇vvv)symddd in L2(0,T ;L2) , (5.6e)

eeeδ ⇀ eee in L2(0,T ;LLL2) , (5.6f)

∂tvvvδ ⇀ ∂tvvv in L2(0,T ;(HHH2∩HHH1
0,σ )

∗) , (5.6g)

∂tdddδ ⇀ ∂tddd in L2(0,T ;LLL3/2) , (5.6h)

dddδ

∗
⇀ ddd in L∞(0,T ;HHH1) . (5.6i)

vvvδ→vvv in Lp(0,T ;LLL2
σ ) for any p ∈ [1,∞) , (5.6j)

dddδ→ddd in Lq(0,T ;LLLr) for any q ∈ [1,∞) ,r ∈ [1,12) , (5.6k)

for δ→0.

Proof. This assertion is similar to the one of Proposition 4.4 and thus, the proof is also similar. The existence of the
weakly and weakly∗ converging subsequences follows from the estimate (5.5) and the Banach–Alaoglu theorem as well
as the definition of the weak derivative. The term eeeδ , defined in (4.18), is bounded due to equation (2.12b) and a priori
estimate (5.5),

‖eeeδ‖L2(LLL2) = ‖∂tdddδ +(vvvδ ·∇)vvvδ − (∇vvvδ )skwdddδ‖L2(LLL2) ≤ |λ |‖(∇vvvδ )symdddδ‖L2(LLL2)‖qqqδ‖L2(LLL2) .

The weak convergence of this term to some eee ∈ L2(0,T ;LLL2) can again be deduced by standard arguments. For vvvδ ,
we make the same observations as in Proposition 4.4 resulting in the strong convergence (5.6j). For dddδ , we have less
regularity than before. We note that HHH1 is compactly embedded in LLLr for r < 6, which implies strong convergence in
Lq(0,T ;LLLr) for any q ∈ [1,∞) and r ∈ [1,6). Due to the boundedness in LLL12, i. e.

‖dddδ‖2
L∞(LLL12) ≤

∥∥|dddδ |2
∥∥

L∞(LLL6)
≤
∥∥∇|dddδ |2

∥∥
L∞(LLL2)

+
∥∥|dddδ |2

∥∥
L∞(LLL2)

≤ ‖∇dddδ |dddδ |‖L∞(LLL2)+‖dddδ‖2
L∞(HHH1) ,

the strong convergence (5.6k) holds due to a standard interpolation argument. The limits in (5.6d), (5.6e), and (5.6f) can
be identified immediately due to the strong convergences (5.6j) and (5.6k).
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Let (vvvδk
,dddδk

) be a sequence of solutions to the regularized system (2.12) for vanishing regularization, i.e. δk→0 for
k→∞. Then we can identify the sequence of gradients of the directors ∇dddδk

(xxx, t) with an (xxx, t) dependent family of
probability measures δδδ ∇dddδk

(xxx,t) on the space of gradients of vector valued functions. Here the δδδ characterizes a point

measure. Instead of studying the weak limits of the functions ∇dddδk
(xxx, t), we can study the weak∗ limit of the probability

distributions δδδ ∇dddδk
(xxx,t). The right sense for this turns out to be the generalized gradient Young measures introduced in

Section 3.

Since we want to go to the limit of the equation (2.1b), we have to take every term of equation (2.12b) in the cross product
with the director. Therefore, we are interested in the limit of the term dddδ ×qqqδ .

Proposition 5.3. The limit of {dddδ ×qqqδ} is given by ddd×qqq, where ddd×qqq can be expressed for every test function ψψψ ∈
C ∞

c (Ω× (0,T )) via∫ T

0
(ddd(t)×qqq(t),ψψψ(t))d t =

∫ T

0
〈〈νt ,

(
ϒϒϒ :
(
SSS(FSSS(hhh,SSS))T )+hhh×Fhhh(hhh,SSS)

)
·ψψψ(t)〉〉d t

+
∫ T

0
([ddd(t)]XXX FSSS(ddd(t),∇ddd(t));∇ψψψ(t))d t .

Proof. We already established the weak convergence (5.6c). It remains to identify the limit of dddδ ×qqqδ . First we observe
that dddδ × (|dddδ |2−1)dddδ = 0 and the term due to the penalization, the last term in (2.8), vanishes.

Recalling the definition of qqqδ (see (2.8)), we find with an integration by parts for every ψψψ ∈ C ∞
c (Ω× (0,T ))∫ T

0
〈[dddδ (t)]XXXqqqδ (t),ψψψ(t)〉d t = δ

∫ T

0
(dddδ (t)×∆

2 dddδ (t),ψψψ(t))d t

+
∫ T

0
〈dddδ (t)×Fhhh(dddδ (t),∇dddδ (t))−dddδ (t)×∇·FSSS(dddδ (t),∇dddδ (t)),ψψψ(t)〉d t

= δ

∫ T

0
(∆dddδ (t)×∆dddδ (t),ψψψ(t))d t +2δ

∫ T

0

(
∆dddδ (t),∇[dddδ (t)]

T
XXX : ∇ψψψ(t)

)
d t

+δ

∫ T

0
(dddδ (t)×∆dddδ (t),∆ψψψ(t))d t +

∫ T

0
(dddδ (t)×Fhhh(dddδ (t),∇dddδ (t)),ψψψ(t))d t

+
∫ T

0

(
ϒϒϒ : (∇dddδ (t) · (FSSS(dddδ (t),∇dddδ (t)))

T ,ψψψ(t)
)

d t

+
∫ T

0
([ddd(t)]XXX FSSS(dddδ (t),∇dddδ (t));∇ψψψ(t))d t

= J1,δ + J2,δ + J3,δ + J4,δ + J5,δ + J6,δ .

The first term vanishes, since it incorporates the cross product of two equal terms. The second and the third term can be
estimated by

J2,δ ≤
√

δc
(√

δ‖∆dddδ‖L∞(LLL2)‖∇dddδ‖L∞(LLL2)‖∇ψψψ‖L2(LLL∞)

)
and

J3,δ ≤
√

δc
(√

δ‖∆dddδ‖L∞(LLL2)‖dddδ‖L∞(LLL6)‖∆ψψψ‖L2(LLL3)

)
,

respectively. Remark that δ‖∆dddδ‖2
L∞(LLL2)

is bounded. The terms thus converge to zero for δ→0. The terms J4,δ and J5,δ

converge in regard of Theorem 3.1∫ T

0

(
〈dddδ (t)×Fhhh(dddδ (t),∇dddδ (t)),ψψψ(t)〉+

〈
ϒϒϒ : (∇dddδ (t) · (FSSS(dddδ (t),∇dddδ (t)))

T ,ψψψ(t)
〉)

d t

−→
∫ T

0

(
〈〈νt ,ϒϒϒ :

(
SSS · (FSSS(hhh,SSS))T ) ·ψψψ(t)〉〉+ 〈〈νt ,hhh×Fhhh(hhh,SSS) ·ψψψ(t)〉〉

)
d t .

Finally, the term J6,δ converges weakly due to (5.6i) and (5.6k) and since the gradient of the director occurs only linearly
(see definition (2.3)),∫ T

0
([dddδ (t)]XXX FSSS(dddδ (t),∇dddδ (t));∇ψψψ(t))d t→

∫ T

0
([ddd(t)]XXX FSSS(ddd(t),∇ddd(t));∇ψψψ(t))d t .
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Proposition 5.4. The Ericksen stress TTT E
δ

converges in the following sense:

∫ T

0

(
TTT E

δ
(t);∇ϕϕϕ(t)

)
d t −→

∫ T

0

(
2〈〈µt ,ΓΓΓ ··· (ΓΓΓ ·∇ϕϕϕ(t))〉〉+ 〈〈νt ,SSST FSSS(hhh,SSS) : ∇ϕϕϕ(t)〉〉

)
d t

for δ→0 and for all ϕϕϕ ∈ C ∞
c (Ω× (0,T )) with ∇·ϕϕϕ = 0.

Proof. Recall the definition of the Ericksen stress (2.9). An integration by parts in the second term yields for every ϕϕϕ ∈
L2(0,T ;C ∞

0,σ (Ω))

∫ T

0

(
TTT E

δ
;∇ϕϕϕ

)
d t =

∫ T

0

(
∇dddT

δ
FSSS(dddδ ,∇dddδ )+δ ∆dddδ ·∇2dddδ −δ∇dddT

δ
∇∆dddδ ;∇ϕϕϕ

)
d t

=
∫ T

0
(∇dddT

δ
FSSS(dddδ ,∇dddδ );∇ϕϕϕ)d t +2δ

∫ T

0
(∆dddδ ·∇2dddδ ;∇ϕϕϕ)d t

−δ

∫ T

0
(∇dddT

δ
∆dddδ ,∆ϕϕϕ)d t = K1,δ +K2,δ +K3,δ .

Regarding the term K1,δ , we can go to the limit due to Proposition 3.1,

K1,δ =
∫ T

0
(∇dddT

δ
FSSS(dddδ ,∇dddδ );∇ϕϕϕ)d t→

∫ T

0
〈〈νt ,SSST FSSS(hhh,SSS) : ∇ϕϕϕ(t)〉〉d t .

For the term K2,δ , we get after two integrations by parts

1
2

K2,δ =
∫ T

0
(∆dddδ ·∇2dddδ ;∇ϕϕϕ)d t = −

∫ T

0

(
∇dddδ : ∇

3dddδ ;∇ϕϕϕ
)
+
(
∇dddT ·∇2dddδ ··, ∇

2
ϕϕϕ
)

d t

=
∫ T

0

(
∇

2dddδ ··, ∇
2dddδ ·∇ϕϕϕ

)
d t +

∫ T

0

(
∇

2dddδ : ∇dddδ ,∇(∇·ϕϕϕ)
)

d t−
∫ T

0

(
∇dddT ·∇2dddδ ··, ∇

2
ϕϕϕ
)

d t

= L1,δ +L2,δ +L3,δ .

For L1,δ holds with Theorem 3.2

∫ T

0

(
∇

2dddδ ··, ∇
2dddδ ·∇ϕϕϕ

)
d t→

∫ T

0
〈〈µt ,ΓΓΓ ··· (ΓΓΓ ·∇ϕϕϕ(t))〉〉d t .

The term L2,δ vanishes since ϕϕϕ is divergence free. Due to a priori estimate (5.5), the coercivity of the Laplace operator

and the regularity of the test function, the remaining terms can be estimated by a constant times
√

δ and go to zero for
δ→0,

K3,δ +L3,δ ≤ cδ (‖∆dddδ‖LLL2 +‖∇2dddδ‖LLL2)‖∇dddδ‖LLL2‖∇2
ϕϕϕ‖LLL∞

≤
√

δ (δ‖∆dddδ‖2
LLL2 +‖ddd‖2

HHH1)
1/2‖∇dddδ‖LLL2‖∇2

ϕϕϕ‖LLL∞→0 .

Proof of Theorem 2.2. It only remains to prove that the limit (vvv,ddd) of Proposition 5.6 satisfies the definition of a measure-
valued solution of the system (see Definition 1). This is shown by passing to the limit in the regularized problem (see
Definition 2.1).

Let us start with the regularized director equation (2.12b). We consider equation (2.12b) in the cross product with the
director and get for the term incorporating the time derivative that it converges due to (5.6h) and (5.6k). The semilinear
terms converge weakly due to the strong convergence of vvvδ and dddδ (see (5.6j), (5.6k)) and the weak convergence of its
gradients (see (5.6b), (5.6i)). Thus, ee obtain for all ψψψ ∈ C ∞

c (Ω× (0,T );R3)

∫ T

0

(
dddδ ×

(
∂tdddδ +(vvvδ ·∇)dddδ −

(
(∇vvvδ )skw−λ (∇vvvδ )sym

)
dddδ

)
,ψψψ
)

d t

−→
∫ T

0

(
ddd×

(
∂tddd +(vvv ·∇)ddd− (∇vvv)skw ddd +λ (∇vvv)sym ddd

)
,ψψψ
)

d t ,
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where we omitted the time dependence for brevity. We observe the convergence of the term qqqδ due to (5.6c) and Proposi-
tion 5.3. Since all terms of the regularized director equation converge, we can go to the limit in equation (2.12b) and attain
the measure-valued formulation (2.14a).

The next step is to go to the limit in the fluid-flow equation. We already established the convergence of the time deriva-
tive in (5.6g). The convection term converges due to the strong convergence of the velocity fields (4.14j) and the weak
convergence of its gradients (4.14b), such that we have for all solenoidal ϕϕϕ ∈ C ∞

c (Ω× (0,T );R3))∫ T

0
((vvvδ ·∇)vvvδ ,ϕϕϕ)d t→

∫ T

0
((vvv ·∇)vvv,ϕϕϕ)d t .

With the strong convergence of the director (see (5.6k)) and the weak convergences (5.6e), (5.6b), (5.6f), and (5.6d), we
get the convergence of the Leslie stress, i.e.∫ T

0

(
µ1(dddδ · (∇vvvδ )symdddδ )dddδ ⊗dddδ +µ4(∇vvvδ )sym +(µ5 +µ6)

(
dddδ ⊗ (∇vvvδ )symdddδ

)
sym ;∇ϕϕϕ

)
d t

+
∫ T

0

(
(µ2 +µ3)(dddδ ⊗eeeδ )sym +λ

(
dddδ ⊗ (∇vvv)symdddδ

)
skw +(dddδ ⊗eeeδ )skw ;∇ϕϕϕ

)
d t→∫ T

0

(
µ1(ddd · (∇vvv)symddd)ddd⊗ddd +µ4(∇vvv)sym +(µ5 +µ6)

(
ddd⊗ (∇vvv)symddd

)
sym ;∇ϕϕϕ

)
d t

+
∫ T

0

(
(µ2 +µ3)(ddd⊗eee)sym +λ

(
ddd⊗ (∇vvv)symddd

)
skw +(ddd⊗eee)skw ;∇ϕϕϕ

)
d t .

(5.7)

The convergence of the Ericksen stress TTT E was already established in Proposition (5.4). This shows that the limit (vvv,ddd)
of solutions {(vvvδ ,dddδ )} to the regularized system (2.12) for vanishing regularization satisfies the system (2.14).

The solution (vvv,ddd) already satisfies the initial values vvv(0) = vvv0 and ddd(0) = ddd0 due to corollary (4.1).

6 Additional properties of the measure-valued solutions

6.1 Additional estimates

This section is devoted to the proof of an additional estimate for the system, i. e. an LLL∞-estimate in space for the direc-
tor. Later on, this allows to characterize the support of the defect angle measure ν∞ and additionally, to give a remark
concerning the existence theory despite the lack of coercivity.

Proposition 6.1. Let the assumptions of Theorem 2.2 be fulfilled with the additional assumption on the constants appear-
ing in the Oseen–Frank energy k := k1 = k2. Let additionally be ε = δ

7/3. For the solutions to the approximate regularized
system, we find ∥∥|dddn,δ |2−1

∥∥
L8/3(L∞)

+
∥∥∇|dddn,δ |2

∥∥
L8/3(L3)

≤ cδ
1/3 .

Proof. To prove this identity, we investigate the variational derivative qqqn,δ . Recall the identity

∆dddn,δ = ∇∇·dddn,δ −∇×∇×dddn,δ .

Remark 9. The result also holds for k1 6= k2, but then the proof gets more technical.

The Definition of qqqn,δ (4.7c) gives

‖qqqn,δ‖2
LLL2 = δ

2‖∆2dddn,δ‖2
LLL2

+2δ

(
∆

2dddn,δ ,Rn

(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )+

1
ε
(|dddn,δ |2−1)dddn,δ

))
+

∥∥∥∥Rn

(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )+

1
ε
(|dddn,δ |2−1)dddn,δ

)∥∥∥∥2

LLL2
.

(6.1)
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We consider the second term on the right-hand side of (6.1). The projection Rn can be ignored since ∆2dddn,δ ∈ Zn. The
definition of the variational derivative now gives

(qqqn,δ ,∆
2dddn,δ )

=
δ

4
‖∆dddn,δ‖2

LLL2 + k(∆2dddn,δ ,−∆dddn,δ )

+ k3
(
(∆2dddn,δ ,−∇((∇·dddn,δ )|dddn,δ |2))+(∆2dddn,δ ,dddn,δ (∇·dddn,δ )

2)
)

+ k4
(
(∆2dddn,δ ,−∇·([dddn,δ ]XXX (dddn,δ ·∇×dddn,δ ))+(∆2dddn,δ ,∇×dddn,δ (dddn,δ ·∇×dddn,δ ))

)
+4k5((∆

2dddn,δ ,−∇·((∇dddn,δ )skwdddn,δ ⊗dddn,δ )skw)+(∆2dddn,δ ,(∇dddn,δ )
T
skw(∇dddn,δ )skwdddn,δ ))

+
1
ε
(∆2dddn,δ ,(|dddn,δ |2−1)dddn,δ )

= I1 + kI2 + k3I3 + k4I4 +4k5I5 +
1
ε

I6 .

(6.2)

The appearing terms are going to be estimated individually. Since ∆Eddd1 = 0, the definition of (4.6) grants γγγ0(∆dddn,δ )≡ 0.
Hence, the boundary terms vanish in the following integration by parts

kI2 =−k(∆2dddn,δ ,∆dddn,δ ) = k‖∇∆dddn,δ‖2
LLL2 .

For the upcoming integration by parts, we transform the functions dddn,δ onto homogeneous Dirichlet boundary conditions.

Due to definition (4.6), dddn,δ can be transformed via d̃ddn,δ := dddn,δ −Eddd1, where d̃ddn,δ takes values in Zn. The terms I3, I4
and I5 in (6.2) can be written as

k3I3 + k4I4 +4k5I5 =
(
∆

2d̃ddn,δ ,−∇·
(
dddn,δ ·ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
+∇dddn,δ : ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
.

With some vector calculus, we see

δ
(
∆

2d̃ddn,δ ,−∇·
(
dddn,δ ·ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
+∇dddn,δ : ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
= δ

(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
+∇d̃ddn,δ : ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
+δ

(
∆

2d̃ddn,δ ,−∇·
(
Eddd1 ·ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
+∇Eddd1 : ΘΘΘ ···∇dddn,δ ⊗dddn,δ

)
+δ

(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇Eddd1⊗dddn,δ

)
+∇d̃ddn,δ : ΘΘΘ ···∇Eddd1⊗dddn,δ

)
+δ

(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇d̃ddn,δ ⊗Eddd1

)
+∇d̃ddn,δ : ΘΘΘ ···∇d̃ddn,δ ⊗Eddd1

)
,

(6.3)

which can be estimated by the Gagliardo–Nirenberg and Young inequality,

k3I3+k4I4 +4k5I5

≥ δ
(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
+∇d̃ddn,δ : ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
−δ‖∆2dddn,δ‖LLL2‖Eddd1‖WWW 1,∞‖dddn,δ‖WWW 1,4‖dddn,δ‖LLL4+

−δ‖∆2dddn,δ‖LLL2‖Eddd1‖LLL∞

(
‖dddn,δ‖HHH2‖dddn,δ‖LLL∞ +‖dddn,δ‖2

WWW 1,4

)
−δ‖∆2dddn,δ‖LLL2‖d̃ddn,δ‖WWW 1,4‖Eddd1‖WWW 1,∞‖dddn,δ‖LLL4

−δ‖∆2dddn,δ‖LLL2‖d̃ddn,δ‖LLL4(‖Eddd1‖WWW 2,∞‖dddn,δ‖LLL4 +‖Eddd1‖WWW 1,∞‖dddn,δ‖WWW 1,4)

−δ‖∆2dddn,δ‖LLL2‖d̃ddn,δ‖2
WWW 1,4‖Eddd1‖LLL∞

−δ‖∆2dddn,δ‖LLL2‖d̃ddn,δ‖LLL∞(‖d̃ddn,δ‖HHH2‖Eddd1‖LLL∞ +‖d̃ddn,δ‖HHH1‖Eddd1‖WWW 1,∞)

≥ δ
(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
+∇d̃ddn,δ : ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
− δ 2

4
‖∆2dddn,δ‖2

LLL2

− c‖Eddd1‖2
HHH4

(
‖dddn,δ‖2

HHH2‖dddn,δ‖2
LLL∞ +‖dddn,δ‖4

WWW 1,4 +‖d̃ddn,δ‖2
HHH2‖d̃ddn,δ‖2

LLL∞ +‖d̃ddn,δ‖4
WWW 1,4 +1

)
≥ δ

(
∆

2d̃ddn,δ ,−∇·
(
d̃ddn,δ ·ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
+∇d̃ddn,δ : ΘΘΘ ···∇d̃ddn,δ ⊗ d̃ddn,δ

)
− δ 2

4
‖∆2dddn,δ‖2

LLL2 − c‖ddd1‖2
HHH7/2(∂Ω)

(
‖dddn,δ‖

8/3

HHH2‖dddn,δ‖
4/3

LLL12 +‖d̃ddn,δ‖
8/3

HHH2‖d̃ddn,δ‖
4/3

LLL12 +1
)
.

(6.4)

It should be recognized that the norms of the transformed variable d̃ddn,δ can still be estimated by the original variable dddn,δ

‖d̃ddn,δ‖HHH2 ≤ ‖dddn,δ‖HHH2 +‖Eddd1‖HHH2 ≤ ‖dddn,δ‖HHH2 + c‖ddd1‖HHH3/2(∂Ω)
.
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In the following, the Laplace operator is going to be applied to the mixed terms. Therefore, we recall the product rule for
the Laplace operator

∆(aaa ·bbb) = ∆aaa ·bbb+2∇aaa : ∇bbb+aaa ·∆bbb for all aaa,bbb ∈ C 1(Ω;R3).

We are going to perform the appropriate estimates for the term I4 in detail, the other terms are bounded analogously. An
integration by parts shows(

∆
2d̃ddn,δ ,−∇·([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))

)
+
(
∆

2d̃ddn,δ ,∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ )
)

.
(6.5)

The boundary terms vanish, since the transformed variable d̃ddn,δ fulfils homogeneous Dirichlet boundary conditions. An-
other integration by parts shows(

∇∆d̃ddn,δ ;∇∇·([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))
)
+
(
∇∆d̃ddn,δ ;−∇

(
∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ )

))
=
(
∆d̃ddn,δ ,−∇·∆([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))

)
+
(
∆d̃ddn,δ ,∆

(
∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ )

))
=
(
∆(∇d̃ddn,δ ),∆([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))

)
+
(
∆d̃ddn,δ ,∆

(
∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ )

))
.

Here, the boundary terms vanish since γγγ0(∆d̃ddn,δ ) = 0. Using the product rule for the Laplace operator, we get(
∆(∇d̃ddn,δ ),∆([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))

)
+
(
∆d̃ddn,δ ,∆(∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ ))

)
=
(
∆(∇d̃ddn,δ ) : [d̃ddn,δ ]XXX +∇×d̃ddn,δ ·∆d̃ddn,δ ,∆(d̃ddn,δ ·∇×d̃ddn,δ )

)
+2
(
(∇∆d̃ddn,δ )skw : [∆d̃ddn,δ ]XXX ,d̃ddn,δ ·∇×d̃ddn,δ

)
+2
(
∆(∇d̃ddn,δ )skw : ∇[d̃ddn,δ ]XXX +(∇(∇×d̃ddn,δ ))

T
∆d̃ddn,δ ,∇(d̃ddn,δ ·∇×d̃ddn,δ )

)
=
∥∥∆(d̃ddn,δ ·∇×d̃ddn,δ )

∥∥2
LLL2 −2

(
∇(∇d̃ddn,δ )skw ···∇[d̃ddn,δ ]XXX ,∆(d̃ddn,δ ·∇×d̃ddn,δ )

)
+2
(
(∇∆d̃ddn,δ )skw : [∆d̃ddn,δ ]XXX ,d̃ddn,δ ·∇×d̃ddn,δ

)
+2
(
∆(∇d̃ddn,δ )skw : ∇[d̃ddn,δ ]XXX +(∇(∇×d̃ddn,δ ))

T
∆d̃ddn,δ ,∇(d̃ddn,δ ·∇×d̃ddn,δ )

)
.

(6.6)

The Hölder, Gagliardo–Nirenberg and Young inequality allow to estimate the non-positive terms on the right hand side of
the previous estimate,

2k4δ
(
∇(∇d̃ddn,δ )skw ···∇[d̃ddn,δ ]XXX ,∆(d̃ddn,δ ·∇×d̃ddn,δ )

)
≤ cδ‖d̃ddn,δ‖WWW 1,6‖d̃ddn,δ‖WWW 2,6‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖LLL3/2

≤ cδ‖d̃ddn,δ‖
3/2

HHH2‖d̃ddn,δ‖
1/2

HHH4‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖
3/4

LLL2 ‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/4

LLL2

≤ δ 2

32
‖∆2d̃ddn,δ‖2

LLL2 +
k4δ

8
‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖2

LLL2 + cδ
1/3‖d̃ddn,δ‖4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
2/3

LLL2 ,

2k4δ
(
(∇∆d̃ddn,δ )skw : [∆d̃ddn,δ ]XXX ,d̃ddn,δ ·∇×d̃ddn,δ

)
≤ cδ‖d̃ddn,δ‖HHH3‖d̃ddn,δ‖HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖LLL∞

≤ cδ‖d̃ddn,δ‖
3/2

HHH2‖d̃ddn,δ‖
1/2

HHH4‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖
3/4

LLL2 ‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/4

LLL2

≤ δ 2

32
‖∆2d̃ddn,δ‖2

LLL2 +
k4δ

8
‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖2

LLL2 + cδ
1/3‖d̃ddn,δ‖4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
2/3

LLL2 ,

2k4δ
(
∆(∇d̃ddn,δ )skw : ∇[d̃ddn,δ ]XXX ,∇(d̃ddn,δ ·∇×d̃ddn,δ )

)
≤ cδ‖d̃ddn,δ‖HHH3‖d̃ddn,δ‖WWW 1,6‖d̃ddn,δ ·∇×d̃ddn,δ‖WWW 1,3

≤ cδ‖d̃ddn,δ‖
1/2

HHH4‖d̃ddn,δ‖
3/2

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
3/4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/4

LLL2

≤ δ 2

32
‖∆2d̃ddn,δ‖2

LLL2 +
k4δ

8
‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖2

LLL2 + cδ
1/3‖d̃ddn,δ‖4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
2/3

LLL2 ,

2k4δ
(
(∇(∇×d̃ddn,δ ))

T
∆d̃ddn,δ ,∇(d̃ddn,δ ·∇×d̃ddn,δ )

)
≤ cδ‖d̃ddn,δ‖HHH2‖d̃ddn,δ‖WWW 2,3‖d̃ddn,δ ·∇×d̃ddn,δ‖WWW 1,3

≤ cδ‖d̃ddn,δ‖
7/4

HHH2‖d̃ddn,δ‖
1/4

HHH4‖(d̃ddn,δ ·∇×d̃ddn,δ )‖
3/4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/4

LLL2

≤ δ 2

32
‖∆2d̃ddn,δ‖2

LLL2 +
k4δ

8
‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖2

LLL2 + cδ
3/4‖d̃ddn,δ‖

7/2

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/2

LLL2 .
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Together, we get

k4δ
((

∆
2d̃ddn,δ ,−∇·([d̃ddn,δ ]XXX (d̃ddn,δ ·∇×d̃ddn,δ ))

)
+
(
∆

2d̃ddn,δ ,∇×d̃ddn,δ (d̃ddn,δ ·∇×d̃ddn,δ )
))

≥ k4δ

2
‖∆(d̃ddn,δ ·∇×d̃ddn,δ )‖2

LLL2 −
δ 2

8
‖∆2d̃ddn,δ‖2

LLL2

− cδ
1/3‖d̃ddn,δ‖4

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
2/3

LLL2 − cδ
3/4‖d̃ddn,δ‖

7/2

HHH2‖d̃ddn,δ ·∇×d̃ddn,δ‖
1/2

LLL2 .

Similarly, we get for the terms I3 and I5

k3I3 +4k5I5 ≥
k3δ

2
‖∆((∇·d̃ddn,δ )d̃ddn,δ )‖2

LLL2 +2k5δ‖∆((∇dddn,δ )skwd̃ddn,δ )‖2
LLL2 −

δ 2

4
‖∆2d̃ddn,δ‖2

LLL2

− cδ
1/3‖d̃ddn,δ‖4

HHH2

∥∥F(d̃ddn,δ ,∇d̃ddn,δ )
∥∥2/3

LLL2 − cδ
3/4‖d̃ddn,δ‖

7/2

HHH2

∥∥F(d̃ddn,δ ,∇d̃ddn,δ )
∥∥1/2

LLL2 .

Remark that the nonlinear terms can be transformed with similar calculations as in (6.3) and estimates as in (6.3) to
estimates for the variable dddn,δ with inhomogeneous boundary values. Therefore, one has to employ as beforehand

∆dddn,δ = ∆d̃ddn,δ .

For the term I6, there is no transformation onto homogeneous boundary values necessary since the given boundary data
has norm one, i.e. |ddd1|= 1 on ∂Ω. Additionally, ∆dddn,δ = 0 on ∂Ω such that the boundary term of the following integration
by parts vanishes

(∆2dddn,δ ,(|dddn,δ |2−1)dddn,δ ) = (∆dddn,δ ,∆(|dddn,δ |2−1)dddn,δ )+(∆dddn,δ ,∆dddn,δ (|dddn,δ |2−1))

+2(∆dddn,δ ,∇dddn,δ ∇(|dddn,δ |2−1))

=
1
2

∥∥∆(|dddn,δ |2−1)
∥∥2

LLL2 − (|∇dddn,δ |2,∆(|dddn,δ |2−1))

+(∆dddn,δ ,∆dddn,δ (|dddn,δ |2−1))+2(∆dddn,δ ,∇dddn,δ ∇(|dddn,δ |2−1)) .

Estimating again the right-hand side with Hölder, Gagliardo–Nirenberg and Young inequality, we get

I6 ≥
1
2

∥∥∆(|dddn,δ |2−1)
∥∥2

LLL2 −‖∇dddn,δ‖2
LLL6‖∆(|dddn,δ |2−1)‖L3/2 −‖∆dddn,δ‖2

LLL2

∥∥|dddn,δ |2−1
∥∥

L∞

−2‖∆dddn,δ‖LLL2‖∇dddn,δ‖LLL6

∥∥∇(|dddn,δ |2−1)
∥∥

L3

≥ 1
2

∥∥∆(|dddn,δ |2−1)
∥∥2

LLL2 − c‖dddn,δ‖2
HHH2

∥∥∆(|dddn,δ |2−1)
∥∥3/4

L2

∥∥|dddn,δ |2−1
∥∥1/4

L2

≥ 1
4

∥∥∆(|dddn,δ |2−1)
∥∥2

LLL2 − c‖dddn,δ‖
16/5

HHH2

∥∥|dddn,δ |2−1
∥∥2/5

L2

Together, we get the coercivity estimate

‖qqqn‖2
LLL2 ≥ δ

2‖∆2dddn,δ‖2
LLL2 +

∥∥Rn
(
Fhhh(dddn,δ ,∇dddn,δ )−∇·FSSS(dddn,δ ,∇dddn,δ )

)∥∥2
LLL2 +

δ

2
‖∇∆dddn,δ‖2

LLL2

+
δk3

2
‖∆((∇·dddn,δ )dddn,δ )‖2

LLL2 +
δk4

2
‖∆(dddn,δ ·∇×dddn,δ )‖2

LLL2

+
δk5

2
‖∆((∇dddn,δ )skwdddn,δ )‖2

LLL2 +
δ

4ε
‖∆|dddn,δ |2‖2

LLL2

− c‖ddd1‖2
HHH7/2(∂Ω)

(
‖dddn,δ‖

8/3

HHH2‖dddn,δ‖
4/3

LLL12 +1
)
− c

δ

ε

∥∥|dddn,δ |2−1
∥∥22/31

L2

− cδ
1/3‖dddn,δ‖4

HHH2

∥∥F(dddn,δ ,∇dddn,δ )
∥∥2/3

LLL2 − cδ
3/4‖dddn,δ‖

7/2

HHH2

∥∥F(dddn,δ ,∇dddn,δ )
∥∥1/2

LLL2 .

(6.7)
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This estimate (6.7) reinserted in (4.9) gives another a priori estimate,

1
2
‖vvvn,δ‖2

L∞(LLL2)+
δ

2
‖∆dddn,δ‖2

L∞(LLL2)+
k
2
‖∇dddn,δ‖2

L∞(LLL2)+
k3

2
‖(∇·dddn,δ )dddn,δ‖2

L∞(LLL2)

+
k4

2
‖dddn,δ ·∇×dddn,δ‖2

L∞(L2)+
k5

2
‖(∇dddn,δ )skwdddn,δ‖2

L∞(LLL2)+
1

4ε

∥∥|dddn,δ |2−1
∥∥2

L∞(L2)

+µ1
∥∥dddn,δ · (∇vvvn,δ )symdddn,δ

∥∥2
L2(L2)

+
µ4

2
‖(∇vvvn,δ )sym‖2

L2(LLL2)+α‖(∇vvvn,δ )symdddn,δ‖2
L2(LLL2)

+β

(
δ

2‖∆2dddn,δ‖2
L2(LLL2)+

∥∥Rn
(
∂hhhF(dddn,δ ,∇dddn,δ )−∇·∂SSSF(dddn,δ ,∇dddn,δ )

)∥∥2
LLL2

)
+β

(
δ

2
‖∇∆dddn,δ‖2

L2(LLL2)+
δk3

2
‖∆((∇·dddn,δ )dddn,δ )‖2

L2(LLL2)+
δ

2ε

∥∥∆|dddn,δ |2
∥∥2

L2

)
+β

(
δk5

2
‖∆((∇dddn,δ )skwdddn,δ )‖2

L2(LLL2)+
δk4

2
‖∆(dddn,δ ·∇×dddn,δ )‖2

L2(LLL2)

)
≤ 2K +βc

(
‖dddn,δ‖

8/3

HHH2 +
δ

ε
‖dddn,δ‖

16/5

HHH2

∥∥|dddn,δ |2−1
∥∥2/5

L2 +δ
1/3‖dddn,δ‖4

HHH2 +δ
3/4‖dddn,δ‖

7/2

HHH2

)
≤ c

(
1+

1
δ

4/3
+

δ
3/5

ε
4/5

+
1

δ
5/3

+
1
δ

)
.

Here, we explicitly used the estimates ‖dddn,δ‖2
HHH2 ≤ δ−1 and

∥∥|dddn,δ |2−1
∥∥2

L2 ≤ ε . By the choice ε = δ
7/3 we see

‖∆(|dddn,δ |2−1)‖2
L2(LLL2) ≤ c

(
ε

δ
+

ε

δ
1/3

+
ε

1/5

δ
2/5

+
ε

δ
8/3

+
ε

δ 2

)
≤ c
(

1+
1

δ
1/3

)
.

The assertion follows with the Gagliardo–Nirenberg inequality,∥∥|dddn,δ |2−1
∥∥

L8/3(L∞)
+
∥∥|dddn,δ |2−1

∥∥
L8/3(W 1,3)

≤ c‖∆(|dddn,δ |2−1)‖3/4

L2(LLL2)
‖|dddn,δ |2−1‖1/4

L∞(LLL2)

≤ c(1+δ
−1/4)δ

7/12 .

Remark 10. If we choose ε = δ
4/3, it can be shown that δ

11/3‖dddn,δ‖2
L2(HHH4)

is bounded. Together with the global bounded-

ness of ‖ddd‖L∞(LLL12), we can derive global boundedness of the term δ‖∆dddn,δ‖2
L11/3 LLL2 by the Gagliardo–Nirenberg estimates

δ

(∫ T

0

(
‖∆dddn,δ (t)‖2

LLL2

)11/3
d t
)3/11

≤ δc
(∫ T

0

(
‖ddd(t)‖6/11

HHH4 ‖ddd(t)‖
16/11

LLL12

)11/3
d t
)3/11

≤ c

(∫ T

0

((
δ

11/3‖dddn,δ (t)‖2
HHH4

)3/11
)11/3

d t

)3/11

‖ddd‖16/11

L∞(LLL12)

≤ c
(

δ
11/3‖dddn,δ (t)‖2

L2(HHH4)

)3/11
‖ddd‖16/11

L∞(LLL12)

Since locally one would expect an LLL∞-bound on the director (compare [5, 29]), this will hopefully lead to additional local
bounds on the defect measure µt .

6.2 Support of the defect angle measure

For the defect angle measure ν∞ in Proposition 3.1 we see that under the additional assumptions of Proposition 6.1, the

support is Sd2−1×Sd−1
1/2

instead of Sd2−1×Bd . Here, Sd−1
1/2

is the sphere with radius 1
2 in Bd , which corresponds to the

unit sphere in untransformed coordinates.

Proposition 6.2. Under the assumptions of Proposition 6.1, the defect measure m is supported on Sd2−1×Sd−1
1/2

.

Proof. In convergence result (3.5), we take the test function f (hhh,SSS) := (|hhh|2−1)(1+ |SSS|2) = |hhh|2−1
|hhh|2+1 (1+ |hhh|

2)(1+ |SSS|2).
First we observe ∫ T

0

(
|dddδ (t)|2−1,1+ |∇dddδ (t)|2

)
d t ≤ c‖|dddδ |2−1‖2

L8/3(LLL∞)

(
‖∇dddδ‖2

L∞(LLL2)+1
)
.
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Thus, the term goes to zero for δ→0 due to Proposition 6.1. On the other hand, we get∫ T

0

(
(|dddδ (t)|2−1),1+ |∇dddδ (t)|2

)
d t −→

∫ T

0

(∫
Ω

〈
ν

0
(xxx,t),
|ddd|2−1
|ddd|2 +1

〉
dxxx+

∫
Ω

〈
ν

∞

(xxx,t),2|hhh|
2−1

〉
mt(dxxx)

)
d t .

Since ddd has norm one a. e. with respect to the Lebesgue measure, the first term on the right-hand side vanishes. This
implies that the second term has to be zero as well. Consequently, the measure ν∞

(xxx,t) is supported on the sphere with

radius one-half, which corresponds to the unit sphere in Rd . Thus, the measure ν∞

(xxx,t) must be supported on Sd2−1×Sd−1
1/2

for mt a. e. (xxx, t) ∈Ω× (0,T ).

Remark 6.1 (Vanishing constants in the non-quadratic part of the Oseen–Frank energy). Due to the additional L∞-estimate
in space for the director, the existence of measure-valued solutions can also be granted, in the non coercive case, when
the constants k3, k4 or k5 vanish. The terms of the form |∇dddδ |2|dddδ |2 can be bounded by

‖∇dddδ |dddδ |‖L8/3(LLL2)
≤ c‖∇dddδ‖2

L∞(LLL2)‖ddd‖
2
L8/3(LLL∞)

.

The convergence result of Proposition 3.1 still holds true. But due to the lack of L∞ regularity in time, the result of Proposi-
tion 3.2 is not valid any more. The associated energy-inequality (6.8) fails to hold and consequently, the associated weak
strong uniqueness is not valid any more.

6.3 Energy inequality

Proposition 6.3 (Energy inequality). Let the assumptions of Theorem 2.2 and additionally Parodi’s relation (µ2+µ3) = λ

(see (2.1j)) be fulfilled. Then there exists a measure-valued solution to the Ericksen–Leslie equations (see Definition 1),
which satisfies the energy inequality

1
2
‖vvv(t)‖2

LLL2 + 〈〈νt ,F〉〉+ 〈〈µt ,1〉〉+
∫ T

0

(
(µ1 +λ

2)‖ddd · (∇vvv)symddd‖2
L2 +µ4‖(∇vvv)sym‖2

LLL2

)
d t

+
∫ T

0

(
(µ5 +µ6−λ

2)‖(∇vvv)symddd‖2
LLL2 +‖ddd×qqq‖2

LLL2

)
d t

≤
(

1
2
‖vvv0‖2

LLL2 +F (ddd0)

)
+
∫ T

0
〈ggg,vvv〉d t .

(6.8)

The time derivatives of the measure-valued solution possess the regularity

∂tvvv ∈ L2(0,T ;(WWW 1,3
0,σ )

∗) and ∂tddd ∈ L2(0,T ;LLL3/2) .

Proof. The existence of measure-valued solutions follows from Theorem 2.2. It is sufficient to show the energy inequality.
Consider the inequality (4.8). Due to Parodi’s relation, the last term on the right-hand side vanishes. Passing to the limit in
the approximate Galerkin space and using the weak lower semi-continuity of the appearing norms gives

1
2
‖vvvδ (t)‖2

LLL2 +
δ

2
‖∆dddδ (t)‖2

LLL2 +F (dddδ (t))+
1

4ε

∥∥|dddδ (t)|2−1
∥∥2

L2 +
∫ t

0
µ4‖(∇vvvδ )sym‖2

LLL2 ds

+
∫ t

0
µ1‖dddδ · (∇vvvδ )symdddδ‖2

L2 +(µ5 +µ6−λ (µ2 +µ3))‖(∇vvvδ )symdddδ‖2
LLL2 +‖qqqδ‖2

LLL2 ds

≤ 1
2
‖vvv0‖2

LLL2 +
δ

2
‖∆ddd0‖2

LLL2 +
∫

Ω

F(ddd0,∇ddd0)ds+
1

4ε

∥∥|ddd0|2−1
∥∥2

L2 +
∫ t

0
〈ggg,vvvδ 〉ds .

(6.9)

On the right-hand side of the above inequality, the initial values (vvv0,ddd0) are inserted. This can be done due to the strong
convergences

Pnvvv0→vvv0 in LLL2
σ and Rndddo→ddd0 in HHH2 .

For the limiting process in the nonlinear energy, we refer to the calculations in Proposition 4.1.

The aim is now to pass to the limit for vanishing regularization in the above inequality (6.9). The penalisation-term on the
right hand side of (6.9) vanish since ddd0 has norm one a. e. and the penalization term on the left-hand side of (6.9) can be
estimated from below by zero. Since ‖∆ddd0‖LLL2 ≤ c, we get δ‖∆ddd0‖2

LLL2→0 for δ→0.
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For positive smooth functions φ ∈ C ∞
c (0,T ) with φ(t)≥ 0 for all t ∈ [0,T ] it follows from Theorem 3.1 that

lim
δ→0

∫ T

0
φ(t)

(
δ

2
‖∆dddδ‖2

LLL2 +F (dddδk
(t))
)

d t =
∫ T

0
φ(t)

(
1
2
〈〈µt ,1〉〉+ 〈〈νt ,F〉〉

)
d t .

The fundamental lemma of variational calculus gives

lim
δ→0

(
δ

2
‖∆dddδk

(t)‖2
LLL2 +F (dddδk

(t))
)
=

1
2
〈〈µt ,1〉〉+ 〈〈νt ,F〉〉 a.e. in (0,T ).

With the weak convergence of the appearing sequences and the weak-lower semi-continuity of the appearing norms, we
can pass to the limit in the regularisation parameter and attain

1
2
‖vvv(t)‖2

LLL2 + 〈〈νt ,F〉〉+ 〈〈µt ,1〉〉+
∫ t

0

(
µ1‖ddd · (∇vvv)symddd‖2

L2 +µ4‖(∇vvv)sym‖2
LLL2

)
ds

+
∫ t

0

(
(µ5 +µ6−λ (µ2 +µ3))‖(∇vvv)symddd‖2

LLL2 +‖qqq‖2
LLL2

)
ds≤

(
1
2
‖vvv0‖2

LLL2 +F (ddd0)

)
+
∫ t

0
〈ggg,vvv〉ds .

(6.10)

Testing the director equation of the regularized system with dddφ , where φ ∈ C ∞
c (Ω× (0,T )), gives∫ t

0

1
2
(∂t |dddδ (t)|2 +vvvδ (t) ·∇|dddδ (t)|2,φ(t))d t +

∫ t

0
(λdddδ (t) · (∇vvvδ (t))symdddδ (t)+qqq(t) ·dddδ (t),φ(t))d t = 0 .

Using two integrations by parts and due to the fact that the weak derivative of a constant function is zero, we get

−
∫ t

0

1
2
(
(|dddδ (t)|2−1,∂tφ(t))+(|dddδ (t)|2−1,∇·(vvvδ (t)φ(t)))

)
d t→0

for δ→0 since for vanishing regularization, we already established that |ddd|= 1 a. e. in Ω× (0,T ). Thus, it holds∫ t

0
(λddd(t) · (∇vvv(t))symddd(t)+qqq(t) ·ddd(t),φ(t))d t = 0

for all φ ∈ C ∞
c (Ω× (0,T )). Since the above terms are in L1(Ω× (0,T )) the equality holds a. e. in Ω× (0,T ). The a

priori estimate (4.9) implies that both terms are bounded in L2(0,T ;LLL2) and their norms must coincide,

‖λddd · (∇vvv)symddd‖L2(LLL2) = ‖qqq ·ddd‖L2(LLL2) . (6.11)

Since |ddd|= 1 a. e. in Ω× (0,T ), we conclude

‖qqq‖2
LLL2 = (qqq,qqq) = (qqq, |ddd|2qqq) =

(
qqq,
(
|ddd|2I−ddd⊗ddd

)
qqq
)
+(qqq ·ddd,qqq ·ddd) = ‖ddd×qqq‖2

LLL2 +‖qqq ·ddd‖2
L2 . (6.12)

Inserting (6.11) and (6.12) into (6.10) gives the asserted energy inequality (6.8).

The estimate (4.12), the weak convergences (5.6g) and (5.6h) and the weak-lower semi-continuity of the norms give the
asserted regularity of the time derivatives.
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