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Abstract 

Stability of localised equilibria arising in a fourth-order partial differential equa-
tion modelling struts is investigated. It was shown in Buffoni, Champneys & Toland 
(1996) that the model exhibits many multi-modal buckling states bifurcating from a 
primary buckling mode. In this article, using analytical and numerical techniques, 
the primary mode is shown to be unstable under dead loading in a large range of 
parameter values, while is likely to be stable under rigid loading for small axial 
loads. Furthermore, for general reversible or Hamiltonian systems, stability of the 
multi-modal solutions is established assuming stability of the primary state. As this 
hypothesis is not satisfied for the buckling mode arising in the strut model, any 
multi-modal buckling state will be unstable for both loading devices. 

1 Introduction 

In this article, localised solutions of the fourth-order ordinary differential equation 

(1) Uxxxx + Puxx + u - u2 = 0, x E lR, 

are investigated. Equation (1) describes equilibrium states of a strut on an elastic founda-
tion with a nonlinear softening restoring force, see, for example, Hunt, Bolt & Thompson 
(1989). Here, x and u are spatial co-ordinate and vertical displacement, respectively. The 
parameter P denotes the axial load, while the bending stiffness has been rescaled to unity. 
The underlying geometry is illustrated in Figure 1. Note that (1) is Hamiltonian with 
associated energy given by 

1 2 12 12 l3 
H(u)=2Pux+uxUxxx-2,Uxx+2,u -3u · 

Localised solutions h of (1) satisfy the condition 

(2) lim h(x) = 0, 
x--+±oo 

i.e., they correspond to homoclinic solutions of (1). It was shown by Amick & Toland 
(1992) that (1,2) has a unique even solution h(P) for each P E (-oo, -2 + ry) for some 
small ry > 0 to which we refer to as the primary buckling mode. In addition, the solutions 
h(P) satisfy the following transversality hypothesis: 

(Hl) h is transversely constructed, i.e., stable and unstable manifolds of the zero equi-
librium of (1) intersect transversely at u = h(O) in the zero level set of the energy 
H. 
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Figure 1: A strut on an asymmetric softening foundation with restoring force Funder an 
axial load P. 

There is numerical evidence that the primary buckling mode h( P) persists up to P = 2 
while still satisfying Hypothesis (Hl), see Buffoni et al. (1996) and the references cited 
therein. Using results of Devaney (1976), Buffoni et al. (1996) proved that for any P E 

(-2, -2 + 'T/ ), with 'T/ sufficiently small, infinitely many buckling modes bifurcate from the 
primary state. The bifurcating equilibria are multi-modal solutions resembling concate-
nated, widely spaced copies of the primary state. Numerical simulations suggest that this 
phenomenon actually occurs for all PE (-2, 2). 

In this article, stability of the localised buckling modes described above is investigated. 
The total energy of such solutions is given by 

(3) 1100 2 W(u) = - u;x(x) - Pu;(x) + u2(x) - -3u3(x) dx, 
2 -oo 

see, for instance, Hunt et al. (1989). We shall consider two different loading devices for (1) 
influencing the notion of stability. Under dead loading, the axial load P is prescribed while 
the displacement u adjusts according to (1). Under rigid loading, the total displacement 

(4) I(u)= 1: u;(x)dx 

is fixed while u and the stress parameter P are varying. Thus, accessing stability of an 
equilibrium under dead loading is equivalent to minimising the total energy W ( u) for fixed 
P, see Thompson & Hunt (1973). This task can be accomplished by verifying positive 
definiteness of the second variation \72W ( h) of W given by 

(5) L(h) V := \72W(h) V = Vxxxx + Pvxx + (1 - 2h)v, 

at a buckling state h. Note that, on account of translational invariance of (1 ), L( h) has 
an eigenvalue at zero. Under rigid loading, we shall minimise W( u) with respect to ( u, P) 
under the additional constraint J( u) = c. This amounts to proving positive definiteness of 
L ( h) restricted to the kernel of \7 I ( h). 
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In this paper, we shall carry out a stability analysis for the localised solutions h of (1) 
described above under both dead and rigid loading by analytical and numerical techniques. 
In Section 2, stability of the primary buckling state is investigated. It is shown by analytical 
means that the primary mode is unstable under dead loading for P E (-oo, -2 + 'TJ ). 

Numerical simulations reveal that it is in fact unstable for all P < 2. We also consider 
vibrations of the primary mode governed by the nonlinear wave equation 

(6) Utt + Uxxxx + Puxx + u - u
2 = 0, x E JR., 

see Lindberg & Florence (1987). For struts under rigid loading, an integral condition 
for stability is derived analytically. Yet we are not able to verify this condition rigorously. 
However, using numerical techniques, it is likely that the primary state ( h( P), P) is unstable 
under rigid loading for P < P* and stable for P > P*, where P* ~ 0.8175. It was shown by 
Thompson (1979) that, generally speaking, stability under dead loading implies stability 
under rigid loading but not vice versa, which is consistent with the results presented here. 
In Section 3, we address the issue of stability of the multi-modal states existing for P E 

(-2, 2). As the linearisation at the primary state possesses negative eigenvalues, all multi-
modal solutions are unstable on account of results by Alexander, Gardner & Jones (1990). 
However, we shall still determine the n critical eigenvalues near zero for n-modal buckling 
states as they can be used to characterise obstacles for the coalescence of multi-modal 
states. As a matter of fact, the results presented in Section 3 hold for fairly general 
systems under generic assumptions on the nature of the primary mode. Thus, they may 
be applied to equations for which the primary mode is stable guaranteeing existence of 
infinitely many stable multi-modal states. In addition, existence of multi-modal states 
is shown for 2m-dimensional equations extending previous results obtained by Devaney 
(1976), Champneys (1994) and Harterich (1993). Finally, in Section 4, we comment on 
other equations exhibiting similar phenomena. 

Acknowledgment. I should like to thank Alan Champneys (University of Bristol) for 
explaining the strut model as well as the mechanics behind it. This work was partially 
supported by a Feodor-Lynen-Fellowship of the Alexander von Humboldt Foundation. 

2 Instability of the primary buckling mode 

Consider the primary buckling state h(P) known to exist for P E (-oo, -2 + 'TJ) and 
satisfying the transversality hypothesis (Hl). We shall assume the following: 
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(H2) The primary buckling mode h(P) persists for PE (-2, 2) while obeying (Hl). 

The linearisation at h(P) is denoted by 

(7) Lp V := L(h(P)) V = V~xxx + Pvxx + (1 - 2h(P))v, 

and is regarded as a self-adj oint operator on H 4 (IR). 

2.1 The linearised eigenvalue problem 

In this section, spectral properties of Lp are investigated. 

Lemma 1 Consider the operator Lp for PE (-oo, -2 + 77). Then the essential spectrum 
is given by O' ess ( L p) = [1, oo). Furthermore, there exists precisely one negative eigenvalue 
Ao(P) of Lp. Ao(P) converges to-~ as P tends to -oo, while the associated eigenfunction 
v0 (P) approaches sech3 (!x). Let Vi = h(P)x be the eigenfunction associated with Ai = 0. 
Then Lp is strictly positive definite on the orthogonal complement of span{ v0 (P), vi(P)} 
in H 4 (R). 

Proof. As h( x) -t 0 for x -t ±oo and all P, the claim about the essential spectrum 
follows immediately. For P E (-oo, -2 + 77 ), the homoclinic orbit h(P) is transverse, see 
Buffoni et al. (1996). Thus, in this range of parameter values, Ai = 0 is a simple eigenvalue 
and therefore, due to self-adjointness of Lp, no other eigenvalues can cross the imaginary 
axis. Hence, it suffices to show that there is a unique negative eigenvalue Ao(P) for P close 
to -oo. Indeed, Lp is sectorial whence no eigenvalues can escape to infinity. Therefore, 
the negative eigenvalue Ao(P) persists at least up to P = -2 by a continuation argument. 

We shall exploit a co-ordinate transformation introduced by Amick & Toland (1992) for 
P -t -oo. Let -P = ,.,/€ + }e and y = etx. Then Lp transforms to 

(8) 

By Amick & Toland (1992), for E -t 0, the continuous family he converges in the sup-norm 
to h0 (y) := ~ sech2 (~y). Consider the eigenvalue problem for the limiting operator Lo at 
e=O 
(9) - Vyy + (1 - 2h0 (y))v = Av, 

Changing co-ordinates according to z = tanh ( !Y) transforms ( 9) into a Legendre equation. 
Using Abramowitz & Stegun (1972, Chapter 8, pp. 332), it is straightforward to calculate 
the eigenvalues An of (9). In fact, we obtain Ao=-~ with eigenfunction v0 (y) = sech3 (~y), 
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Figure 2: The unstable eigenvalue Ao(P) of the linearisation Lp. For P = -100, we have 
Ao(P) = -1.24998 ~ -~. 

A1 = 0 and A2 = ~- In particular, Lo is strictly positive definite on span.L{v0 , (ho)y}. Re-
garding Le as a bounded operator from H4 (1R) to L2 (1R), and using for instance Ljapunov-
Schmidt reduction, we see that the eigenvalue Ao persists for € > 0 with associated eigen-
function v0(c). Furthermore, Le is strictly positive definite on span.L{v0(c), (he)y}· Thus 
the lemma is proved. II 

Note that the conclusion of Lemma 1 holds for the primary buckling mode h(P) as long 
as Hypothesis (H2) is met. 

We computed the unstable eigenvalue ;\0 (P) of L(P) using the driver HOMCONT, see 
Champneys, Kuznetsov & Sandstede (1996) and Champneys, Kuznetsov & Sandstede 
(1995), for the software package AUTO written by Doedel & Kernevez (1986). Projec-
tion boundary conditions with respect to the constant-coefficient operator Vxxxx + Pvxx + v 
are employed for the eigenfunction v0 (P). The initial guess v0 (y) = sech3 (~y), Ao=-~ at 
P = -100 corresponding to c ~ 1 · 10-4 has been used. Continuation in P shows that the 
unstable eigenvalue persists up to P = 2, see Figure 2. 

2.2 Dead loading 

Consider the partial differential equation ( 6) 

(10) Utt + Uxxxx + Puxx + u - u2 = 0, x E lR, 
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governing vibrations of the strut under dead loading. We shall rewrite (10) as a first order 
system 

(11) 

The linearisation of (11) at a primary buckling mode (u,v) = (h(P),O) is given by 

(12) £p = ( 0 id ) = ( 0 id ) . 
-Bxxxx - P8xx - id+2h 0 -Lp 0 

On account of Lemma 1, Lp has a simple negative eigenvalue .A0 (P), one simple eigenvalue 
at zero and the rest of the spectrum is bound to the right of the imaginary axis for 
P < -2 + T/· Thus, for P < -2 + ry, the operator £p has precisely two eigenvalues 
±)-.Ao(P) on the real axis, a 2 x 2 Jordan block at zero while the remainder spectrum is 
located on the imaginary axis. Therefore, we proved the following lemma. 

Lemma 2 The primary buckling mode is linearly unstable with respect to the wave equation 
(10) under dead loading. 

Remark 1 The conclusion of Lemma 2 holds for the primary state h(P) as long as Hy-
pothesis (H2) is satisfied. It is also valid for parabolic or damped hyperbolic versions of 
equation (10). 

Consider a simply supported strut of length 2l described by 

(13) Utt + Uxxxx + Puxx + u - u2 
- 0, x E (-!, l), 

u( ±l) = Uxx( ±l) 0, 

for P < -2 + 'f/ fixed. Using the techniques of Beyn (1990), it follows that the buckling 
mode is unstable for (13) as well provided l is larger than some constant l0 (P) depending 
on P. Indeed, the unstable eigenvalue persists under truncation of the interval. 

2.3 Rigid loading 

Fix the axial load Po and the total displacement c0 = I(h(Po)) of the primary buckling 
state h(P0 ). Then (P, h(P)) satisfies 

Uxxxx + Puxx + u - u 2 0, 

l(u) = L: u;(x) dx c, 
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for some function c(P) with c(Po) = co. Stability of h = h(Po) is tantamount to proving 
positive definiteness of the second variation L( h) defined in ( 5) restricted to the kernel of 
the gradient \7 I ( h) of the constraint I. The underlying space is H = H4 (JR). In other 
words, we shall verify that 

(14) (L(h)u, u) > 0, u E ker \7 I(h), u ff- ker L(h). 

In the next lemma, we derive a condition equivalent to (14). 

Lemma 3 Assume that {H2) is met. Then, zero is a simple eigenvalue of L( h) and 
ker L(h) =span hx. Moreover, {14) holds if and only if 

(15) c'(Po) < 0, 

where ' denotes differentiation with. respect to P and c(P) := I(h(P)). In other words, 
stability of h(P) at P = Po under rigid loading is equivalent to c(P) being strictly decreasing 
near P0 . 

Proof. Consider the functional \ll(h) = hxx: H -7 1R with H = H4 (1R) acting according 
to \lI(h)v = (hxx,v), where(·,·) denotes the L 2-scalar product. On account of the results 
of the last section, there is a unique negative eigenvalue of L(h). Moreover, zero is a simple 
eigenvalue with eigenfunction hx. Note that hx E ker \7 I(h) as (hxx, hx) = 0 by integration 
by parts. Thus we may restrict attention to the space X = span.L hx C H. The operator 
L( h) is self-adjoint and non-singular on X. Hence, L( h) is positive on X if and only if 

(16) 

holds. Indeed, this follows from Alexander, Grillakis, Jones & Sandstede (1995, Proof of 
Lemma 2), see also Maddocks (1985). On the other hand, h(P) satisfy (1) for all P close 
to P0 • Differentiating (1) with respect to P, we see that v = h'(Po) satisfies L(h)v = -hxx· 
Hence, L(ht1hxx = -h'(Po) and (16) reads 

(h'(Po), hxx) > 0. 

Differentiating c(P) = I(h(P)) = f~00 h;(P)(x) dx with respect to P and integrating by 
parts, we conclude that 

(h'(Po), hxx) = -c'(Po). 

Thus (16) and (15) are equivalent. II 

We were not able to verify condition (15) rigorously. Numerical simulations performed on 
(1) using HOMCONT suggest that the primary buckling state is stable for PE (P*, 2), while 
being unstable for P E (-oo, P*), see Figure 3. Here, P* ~ 0.8175. 
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Figure 3: The integral constraint (c(P),P) with c(P) = I(h(P)). The function c(P) is 
increasing for P < P* and decreasing for P > P*. At P = P* = 0.8175 an exchange of 
stability occurs. 

3 Stability of multi-modal solutions 

Consider equation (1) and the eigenvalue problem for (5) 

(17) Uxxxx + Puxx + u - u2 
- 0, 

L(u)v = Vxxxx + Pvxx + (1 - 2u)v - AV. 

Assume that a primary non-degenerate homoclinic solution h1 of (1) has been found. Sup-
pose that hn is a multi-modal homoclinic orbit resembling n copies of h1 widely spaced in 
x. Alexander et al. (1990) proved that close to each eigenvalue of L(h1 ) there are n eigen-
values of L(hn) counted with multiplicity. In particular, there are at least n eigenvalues 
of L(hn) close to zero. Indeed, ,\ = 0 is an eigenvalue of L(h1 ) with eigenfunction (h 1 )x· 
Rewriting (17) as first order system, we obtain 

(18) 

(19) 

f(U), 

(Df(U)+.\B)V, 

where U, VE ~4, f(U) := (U2, U3 , U4, -PU3 -U1 + Ui) and BV := (0, 0, 0, Vi). Section 3.1 
is devoted to the calculation of all eigenvalues of (19) evaluated at an n-modal solution of 
(18) in a neighbourhood of zero. Section 3.2 contains stability results for the strut equation 
under both dead and rigid loading as well as some remarks on exclusion principles for 
coalescence of multi-modal states. 

8 



3.1 The linearised eigenvalue problem 

Consider 

(20) 

(21) 
u - f(u), 

v - (DJ(u) + AB(u)) v, 

for u, v E 1R2m, A E C and f : 1R2m ---+ 1R2m, B : 1R2m---+ JR 2mx 2m smooth. We assume that 
(20) is either reversible or Hamiltonian: 

(H3) Suppose that there exists a linear involution R : JR 2m ---+ JR2m with dim Fix R = m 

such that J(Ru) = -Rf(u) holds for all u. 

(H4) Suppose that there exists a smooth non-degenerate function H : 1R 2m ---+ 1R such that 
f( u) = J\7 H(u) with 

J = ( 0 idm) . 
-idm 0 

Let zero be an equilibrium of (20) with complex leading eigenvalues, i.e., 

(H5) There are simple eigenvalues ±a±i /3 for some a, /3 > 0 contained in O'(D f(O)). The 
modulus of the real part of any other eigenvalue of D f(O) is strictly larger than a. 

Assume that h1 is a primary homoclinic solution of (20) converging to zero for t ---+ 

±oo. 

(H6) h1 is non-degenerate: Th1 (o)W8 (0) n Th1 (o)Wu(o) = spanh1 (0). If (H3) is satisfied, 
we assume in addition that h1 is reversible, i.e., h1(t) = -Rh1(-t). 

As a consequence of Hypothesis (H6), the equation w = -D f(h 1 )* w has a unique bounded 
solution 'lj;(t), see Sandstede (1996). 

Remark 2 Suppose that (H4) is satisfied. Then it is straightforward to check that 'l/;(t) = 
\7 H(h1 (t)). In particular, we obtain the asymptotics 'l/;(t) = \72 H(O) h1 (t) + O(lh1 (t)j 2). 

Remark 2 has very interesting consequences for Hamiltonian flip-bifurcations, see Sandst-
ede, Alexander & Jones (1996). 

(H7) If (H3) is satisfied, we assume that the limit lim e2at jh1 (t)l l'l/J(t)1 > 0 is non-zero. 
t--1-00 

If (H4) holds, assume that lim e2at lh1(t)l lh1(-t)l > 0 is non-zero. 
t--1-00 
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Hypotheses (H6) and (H7) are satisfied for generic systems. Finally, we assume that the 
Evans function D(A.) associated with the primary pulse h1 is regular at A= 0. 

We define the sets 

(22) 
n = {exp(- 2;a n) In E No} u {O} 
A = {exp( - 11"; k) I k E No}. 

Note that n is a closed metric space. 

Definition Suppose that (H3) is satisfied. Then we call a sequence (xj)j=I, ... ,k admissible 

if and only if Xk+I-j = Xj holds for all j. In case (H4) holds, any sequence is called 
admissible. 

Theorem 1 Assume that (H5) to (HB) and either (H3) or (H4) are satisfied. Then there 

exist a 8 > 0 such that for any n 2:: 2 the following holds. 

For any admissible sequence a~ EA for j = 1, ... , n - 1 with a? E {1, exp(-11";)} for some 

i, there exists a:n ro En, To # 0, with the following property: 

(i) There are C0 -functions ai(r) E R for r E R, r ::; ro, with aj(O) = a~ for j = 
l, ... ,n-l. 

(ii) For any r E n with 0 < r ::; r0 , there exists an n-modal solution hn. The return 

times of hn to a fixed section transverse to h1 are given by 

j = l, ... ,n-1 

for some constant L. They correspond to the distances of consecutive humps of the 

n-modal solution. 

(iii} The n-modal orbits satisfying (ii) are unique. If (H3) holds, they are in addition 

reversible. 

Denote by kJ the natural numbers associated with the a~ E A chosen above. Then there 

are precisely n solutions Aj of {21) evaluated at hn in a neighbourhood of zero of size 8, 

and 

(iv) for M > 0 (M < O}, we have 

#{j I 1 ::; j::; n - 1, ReAj < O} - #{j I 1::; j::; n - 1, kJ is odd (even)} 

#{j I 1::; j::; n - 1, ReAj > O} - #{j I 1::; j::; n - 1, kJ is even (odd)} 
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counted with multiplicity. Moreover) An = 0 is a simple eigenvalue inevitable due to 
translational invariance. 

Note that the numbers kJ associated with each aJ - and hence with any n-modal state 
described in Theorem 1 - can be interpreted as the number of half-twists the n-modal 
state undergoes near the zero equilibrium. 

Applying Sandstede (1995, Thm. 1 and 3) provides another way of extending the existence 
results from four-dimensional to higher-dimensional systems. In addition, Sandstede (1995, 
Thm. 1) shows that the recurrent dynamics near the primary mode hi is confined to a four-
dimensional, locally invariant and normally hyperbolic centre manifold Whom containing 
hi. 

The remainder part of the section is devoted to the proof of Theorem 1. 

Proposition 1 Fix n 2:: 2. Then there exists an n-modal homoclinic orbit hn of {20) close 

to hi in phase space if and only if 

a1 sin (- ~ ln(a1 r)) - R1(a, r) 
(23) aj-l sin (- ~ ln(aj-l r)) - aj sin (- ~ ln(aj r)) Rj(a, r) j = 2, ... , n -1 

an-I sin (- ~ ln(an-1 r)) - Rn(a,r) 

is satisfied. As a matter of fact) if {H3) holds) it suffices to solve {23) for j = 1, ... , [n/2L 
where [x] denotes the largest integer smaller than xJ· if {H4) is satisfied) it is sufficient to 
solve {23) for j = 1, ... , n - 1. The remainder terms Rj( a, r) are smooth in a = ( aj) for 

aj E (0, 1] up to r = 0 and 

(24) 

_hold for some/> 0. 

Proof. We shall employ homoclinic Ljapunov-Schmidt reduction. Applying Sandstede 
(1993, Satz 3), existence of n-modal states is equivalent to solving 

(25) 

for large Tj. In order to derive (23) from (25), we proceed as in Sandstede (1996, Sect. 6) 

and refer to that article for the details. The statement on the number of equations to be 
solved for is proved by Sandstede et al. (1996, Lemma 3.1 and 3.2), respectively. Note that 
in the Hamiltonian case (H 4), we have 

(~(t), h1(-t)) (\72 H(O) h1(t), h1(-t)) + O(lh1(t)l 2 lh1(-t)I) 
(h1(t), \72 H(O) h1(-t)) + O(lh1(t)12 lhi(-t)I) 
(hi(t), ~1(-t)) + O(lh1(t)l lh1(-t)I (lh1(t)I + lh1(-t)I)) 
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by Remark 2. Under Hypothesis (H3), we have ('l/;(t), h1(-t)) = ('l/;1(-t), h1(t)) by Sand-
stede (1996, Lemma 5.3). 

Proof of Theorem 1. We shall consider the Hamiltonian case first and comment later 
on the changes necessary for the reversible case. So, assume that (H4) is met. The proof is 
similar to Sandstede (1996, Proof of Thm. 3), where saddle-focus bifurcations for generic, 
non-reversible systems had been studied. 

By Proposition 1, we shall solve 

a1 sin(-~ ln(a1 r)) 
aj-I sin(-~ ln(aj-l r)) - ai sin(-~ ln(aj r)) -

Inserting r = exp(- 2;cx n) with n E N, we obtain 

(26) 
al sin(-~ ln ai) R1(a, r) 
aj-l sin(-f ln aj-1) - aj sin(-~ ln aj) - Rj(a, r) 

This allows us to take the limit r --+ 0 yielding 

a1 sin(-~ ln al) - 0 

j = 2, ... , n - 1. 

j = 2, ... ,n -1. 

aj-l sin(-~ ln aj_1 ) - aj sin(-~ ln aj) 0 j = 2, ... , n - 1. 

However, these equations are satisfied by the chosen sequence a0 = ( aJ) with aJ E A. 
Moreover, the Jacobian of (26) with respect to a at r = 0, aj = aJ is lower-triangular and 
the entries on the diagonal are given by 

(27) 

and thus are non-zero. Therefore, on account of the differentiability of the remainder terms 
stated in Proposition 1, an application of the implicit function theorem yields (i)-(iii) of 
the theorem in the Hamiltonian case. 

It remains to prove item (iv), which is concerned with the stability properties of the n-

modal orbits. Let hn be an n-modal solution given by (a(r), r). Then, proceeding as in 
Section 6 of Sandstede (1996), all eigenvalues .A(r) close to zero of (21) evaluated at hn are 
given by .A(r) = r v(r) for some continuous function v(r) such that v(O) is an eigenvalue of 
the matrix Ao given by 

(Ao)ii = 

bj + bj-1 

-bj-1 

-bj 

0 

12 

J = 'l 

j = i-1 
j = i + 1 
otherwise, 



with bi = ( -1 )kJ c sign M for some positive constant c > 0 and j = 1, ... , n - 1; we 
set bo = 0. Note that Ao is tridiagonal, symmetric and the sum of entries in each row 
vanishes. The number of positive and negative eigenvalues for such matrices has been 
determined in Sandstede (1996, Lemma 5.4). Hence, statement (iv) of Theorem 1 is proved 
for Hamiltonian systems. 

In case (20) is reversible, we shall proceed as above. The only difference is that we solve 
(26) for j = 1, ... , [n/2] instead for j = 1, ... , n-1. This completes the proof of the theorem. 

II 

3.2 Consequences for the strut model 

Buffoni et al. (1996) proved that Hypotheses (H3) to (H6) are satisfied for (1). Hypothesis 
(H7) is met, too, as (1) is four-dimensional. Finally, Assumption (H8) is true, because 
zero is a simple eigenvalue of L(h), see Section 2.1. Therefore, Theorem 1 applies to (1). 
It was proved in Section 2.1 that there exists an unstable eigenvalue of the linearisation 
L( h1 ) of the primary pulse for P E [-2, -2 + 'f/). Moreover, the numerical simulations 
presented in Figure 2 show that the unstable eigenvalue .\0 ( P) is likely to persist up to 
P = 2. It is a consequence of results of Alexander et al. (1990), see also Sandstede (1996), 
that the linearisation L(hn) at a multi-modal state possesses precisely n eigenvalues close 
to .\0 (P). Therefore, all multi-modal solutions of the strut model must be unstable under 
dead loading by the same arguments as in Lemma 2. Moreover, they will be unstable under 
rigid loading as well. Indeed, the constraint I ( u) can be used to compensate for one of the 
unstable eigenvalues; however, the other n - 1 unstable eigenvalues near .X0 (P) will make 
the linearisation restricted to ker \7 I indefinite. 

Buffoni et al. (1996) observed numerically the coalescence of symmetric and asymmetric 
multi-modal buckling states, see Figure 4. Generically, coalescence is expected to occur via 
saddle-node or pitchfork bifurcations _in the underlying partial differential equation. Such 

lul ---------- .... 

-------

.... 
' \ 

(1)~ 
I 

/ .,, __ .... 

lul 

(1) 

p p 

Figure 4: Coalescence of symmetric (solid) and asymmetric (dashed) multi-modal solutions 
via saddle-node (1) and pitchfork (2) bifurcations, see Buffoni et al. (1996, Fig. 24). 
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bifurcations are related to an exchange of stability of the contributing n-modal localised 
solutions. In particular, generically, precisely one eigenvalue should cross the imaginary 
axis at zero - remember that the operators involved are self-adjoint. Therefore, the index -
i.e., the number of unstable eigenvalues - of the involved n-modal solutions should differ by 
one. Note that we have to take then unstable eigenvalues near >.0 (P) into account. That 
immediately prevents coalescence of n1-modal and nrmodal solutions whenever n1 > 2n2. 
Furthermore, observe that the sequence ( kJ)j=l, ... ,n-l associated with each n-modal sym-
metric state is admissible, i.e., kJ = k~-i holds for all j. In particular, eigenvalues of 
n-modal symmetric states come in pairs. Thus, it is likely, that right before two symmetric 
states do coalesce one eigenvalue has to cross the imaginary axis in a pitchfork bifurcation. 
No such obstacle exists for asymmetric states. A refined criterion than just counting un-
stable eigenvalues is to include the symmetry of the corresponding eigenfunctions. Indeed, 
both, the number of even and odd unstable eigenfunctions, have to coincide for coalescence 
of two multi-modal states to occur. For each particular sequence (kJ), these numbers can 
be calculated by computing the eigenvectors of the matrix Ao appearing in the proof of 
Theorem 1. 

4 Discussion 

We shall mention that there are several other fourth-order equations for which multi-modal 
solutions do exist. Consider, for instance, 

Suspension bridge, 

(29) Ut -( €.Uxxxx - Uxx - U + U 3
) Extended Fisher-Kolmogorov. 

Equation (28) models the dynamics of suspension bridges, see McKenna & Chen (1995), 
while equation (29) arises in the study of so-called Lifschitz points in phase transitions. 
Both equations exhibit similar features than ( 6) and therefore the results of Section 2 and 
3 are likely to apply: to them as well. For instance, stable solitary waves for (28) have been 
observed numerically in McKenna & Chen (1995). Therefore, on account of Theorem 1, 
infinitely many stable multi-modal solitary waves are expected to exist. Indeed, Grillakis, 
Shatah & Strauss (1987, Thm. 1) can be used to conclude nonlinear stability. Similarly, 
for equation (29), existence of kinks has been proved by Peletier & Troy (1995a, 1995b). 
As these kinks bifurcate from stable kinks of the N agumo equation at c. = 0, they are 
presumable stable, too. Again, employing Theorem 1, gives the existence of infinitely many 
stable multi-modal kinks of (29) once its hypotheses are met. Note that the assumptions 
of that theorem are generic within the class of reversible Hamiltonian equations. 
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The primary buckling state of (6) bifurcates at P = 2 in a 1:1 resonance, see looss & 
Peroueme (1993). It would be challenging to prove (in)stability of the bifurcating modes 
in this limit. Proceeding this way, the numerical calculations shown in Figure 2 and 3 
could be made rigorous. 
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