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Abstract 

In this paper we study singularly perturbed systems with discontinuity sur-
faces. This means that we have a system of ordinary differential equations with 
a small parameter and a piecewise smooth vector field. The state where the 
trajectory moves on the discontinuity surface is called sliding mode. We present 
an asymptotic representation for trajectories with temporary sliding and apply 
the result to stick-slip vibrations. 
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1 Introduction 

There are many applications of the theory of ordinary differential equations with dis-
continuitiy surface. Often this surface can be described by a scalar equation s = 0, 
for example if there is arising the nonsmooth function sgn ( s) on the righthand side of 
the differential system. This case represents oscillations with dry friction as well 
as relay control systems which are systems with switching devices. 

We start our paper with explaining the term singularly perturbed system with sliding 
mode. 

1.1 Sliding modes 

In early regulators the control has often been of relay type because of their simple 
implementation. 
In control theory the term for the motion on discontinuity surfaces is sliding mode 
motion. From the geometrical viewpoint the trajectory slides on the surface. 1 

In practice, the sliding mode motion is characterized by a high-frequency switching 
of the relay. LEVANT [Le93] calls it real sliding. There is no ideal sliding in real 
relay control systems. Therefore perfect sliding is only an approximation of the real 
behaviour of such systems. In dry friction systems we have a different situation. There 
exists (almost) perfect sticking which means that there is ideal sliding. 

The se:called equivalent control method is characterized by the following procedure 
( cf. [Utk92, Part I.]): Let's consider the system 

x f(x, t,u) 

( ) { 
ut(x, t) if si(x) > 0 

Ui X, i = ( . ( ) i = 1, ... , m u; X, i) If Si X < 0 
(1) 

where x E IRn, t E IR, u, s E IRm. The vector u represents the control by m relays. 
Whenever a sliding mode appears, the velocity vector in the state space lies on the 
tangential plane of one or several discontinuity surfaces. The existence of a sliding 
mode motion means that there is a continuous control function u and a time interval 
[t1, t 2 ] such that for a trajectory starting at time t 1 on the manifold { s( x) = O} C IRn 
the vector s( x) has a zero time derivative along system (1) on [ti, t 2] : 

S = ;;f(x, t, u) = 0 Vt E [ti, t2] . (2) 

A domain Dszi C IRn which satisfies the property that all points d E Dszi are starting 
points of a sliding motion is called sliding domain of (1). 

1 In mechanical systems with dry friction this sliding on the surface corresponds to the sticking of 
two bodies ! If you are not in the sticking region, from the mechanical point of view you have slipping 
of the bodies. This is maybe confusing. 
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If there is a unique continuous solution u = Ueq( x, t) of the algebraic equation (2) 
and Ueq,i is between u-; and ut then substitute this solution Ueq(x, t), referred to as 
equivalent control, in system (1) for u: 

X = f ( X, i, Ueq ( X, t)) . (3) 

This equation is called sliding mode equation. 
The equivalent control method implies a replacement of the undefined discontinuous 
control on the discontinuity surface with a continuous control. From the geometric 
viewpoint, in the case m = 1 one should vary the scalar control from u- to u+, plot 
the vector f(t, x, u) and find the intersection point of the vector and the tangential 
plane at ( x, t). If m = 1 and f depends linearly on u this vector coincides with the 
corresponding vector fo of Filippov type [Fil88, § 4] . Otherwise the two vectors may 
be not even colinear. There is no unambigious answer to the question which equation 
is better for the description of the motion. 
There is an important special case regarding system (1) chracterized by the property 
x = (xi, ... , Xn-m, s1, ... , sm)T. In this case we can separate the differential equation in 
the following way: 

iJ = f1(y,s,t,u), s = f2(y,s,t,u) 

where y = (x1 , .•. , Xn-m)T. If there is a unique solution u = Ueq(y, t) of the algebraic 
equation 

f2(y,0,t,u) = 0 

this case is called first order sliding. 
If f2 does not depend on u then the conditions 

s=s=O 
are not sufficient for determining Ueq· Here we have to consider 

.. d. dj ( ) 
s = dt s = dt 2 y' s' t 

Hence, the algebraic equation which determines the equivalent control is 

(8/2 Ji+°/: M 8ft2ll = o. 
Y (y,s=O,t,u) 

If there is a unique solution Ueq of this equation we have second order sliding ( cf. [BF92]). 
The case of arbitrary sliding manifolds of first or higher order is studied in [Le93] and 
[FL94]. 

The stability of sliding domains is not considered in this paper. A Lyapunov type 
Theorem is stated in [Utk92, p.45ff.]. 
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1.2 Discontinuous singularly perturbed systems 

One of the major obstacles in the use of efficient tools for analyzing dynamical systems is 
a high dimension. If there is a small parameter, in many cases high dimensional systems 
may be reduced to a system of lower dimension by separating them into fast and slow 
components and substituting the fast system by an algebraic system by neglecting the 
small parameter in a certain way. This can be achieved in a rightful way using the 
singular perturbation approach [VBK95] which can be applied to systems of the form 

dz dy 
µ dt = F ( z' y' t)' dt = f ( z' y' t)' z E 1R m' y E IR.n (4) 

which satisfy certain conditions. 

In the discontinuous case there is a theorem on the passage from the reduced system to 
the full system [Utk92, ch.5]. But the result is only valid for a system with linear fast 
motion equation and a relay control added linearly only to the slow motion equation. 
And there is only given an approximation of the full system solution to the zeroth order 
with respect to the small parameter. 
In the following sections these restrictions are not supposed. But otherwise the con-
sideration is restricted to singularly perturbed systems with first order sliding mode. 



L.M. FRIDMAN / R.J. RUMPEL Singularly perturbed systems with sliding mode 5 

2 Asymptotic representation of trajectories 

For smooth singularly perturbed systems there exists not only a result for the Oth order 
approximation of the full system solution with respect to the small parameter [TVS85, 
eh. 7] but an algorithm for the construction of an approximation of any order [VBK95, 
ch.l]. 

For proving existence and uniqueness of the solution of singularly perturbed relay 
control systems as well as their asymptotic behaviour two lemmas will be stated. 

At first we define: 
Kq(r) := {x E IRq I lxl::; r,r > O}. 

Consider the system 
da db 

µdt =F(a,b,t), dt =f(a,b,t) (5) 

where (a,b,t) E G = Km(r1) X Kn(r2) X [t,T], T > max (to, to+ t(µ)), µ E (O,µe] 
and G is a domain, together with two different initial conditions 

a(to,µ) = a0
, b(t0 ,µ) = b0

, 

a(to + t(µ), µ) = a0 + z(µ), b(t0 + t(µ), µ) = b0 + y(µ), 

(a0 , b0 , t 0 ) E G. We assume the following hypotheses: 

(Ho) µe > 0, t := min(to,minµE[O,µe](to + t(µ))) E IR, t(µ) continuous. 

(H1) F, f E Ck+2(G), k 2:: 0. 

(6) 

(7) 

( H2 ) For µ = 0 there is an isolated solution ao = <.p(bo, t), <.p smooth, of F( a, b, t) = 
0, (b0 , t) E Kn(r2 ) x [t, T] with the same smoothness as F. 

(H3 ) The slow motion system 

dbo dt = f(<.p(bo, t), bo, t), bo(to) = b0 

has a unique solution b0 (t) fort E [l, T], and ( <.p(bo(t), t), bo(t), t) E G. 

(H4 ) There is a 'Y > 0 such that for all t E [i, T] the eigenvalues Ai(t) of 

8F 
Ba (<.p(bo(t), t),bo(t), t) 

satisfy 
Re .Ai( t) ::; -1 . 

for all i E { 1, .. , m}. 

(8) 



L.M. FRIDMAN / R.J. RUMPEL Singularly perturbed systems with sliding mode 6 

( H5 ) Let a0 be in the interior of the domain of attraction of the asymptotically stable 
equilibrium point cp(b0 , 0) of the associated system 

da _ o _ o 
dT = F(a, b , t), a(to) =a 

Lemma 1. Assume hypotheses (Ho) to (H6 ) are satisfied. Let 

L(t, µ) = (A(t, µ), B(t, µ)) 

N(t,µ) = (a(t,µ),/3(t,µ)) 

be solutions of system (5) with initial conditions (6) resp. (7). 

Then for sufficiently small µe L(t, µ), N(t, µ) are unique solutions of (5) on [t, T] , and 
it holds 

where 
k 

Lk(t,µ) = L:µi(~(t) + Ilic(T)). 
i=O 

Proof. It's known [VBK95] that Lk(t, µ) is the asymptotic representation of L, and 
there exist K-, fi > 0 such that for all T E [to/µ, T / µ] 

Existence and uniqueness of the solution L follows from the Tychonov theorem [TVS85, 
p.191],[VBK95] which can be applied because of the assumptions (H1 ) to (H5 ). From 
the continuous dependence of the solution on initial conditions we get the same prop-
erties for the solution N, too. 
Without restricting the generality we assume that i = t 0 • 

For all t E [O, t(µ )] we get 

where K1 = SUP(a,b,t)EG llF(a, b, t)ll, K2 = SUP(a,b,t)EG llf(a, b, t)ll· 
From ( H1) we know that for sufficiently small µ there is a unique solution to initial 
condition (7) on the interval [t0 , t0 + 2t(µ)]. It holds due to (H6 ) 



L.M. FRIDMAN / R.J. RUMPEL Singularly perturbed systems with sliding mode 7 

Expanding a around t0 + t(µ) we get 

a(to +t, µ) = a(to + t(µ), µ) + a(to + t(µ), µ)(t-t(µ)) + a(to +t(µ), µ)(t-t(µ))2 + ... = 

a0 + O(µk+l) + F(a0 + z(µ), b0 + y(µ), t 0 )(t - t(µ))/ µ + 0(µ2k+l). 

With 

F(a0+z(µ), b0+y(µ), to)= F(a0
, b0

, to)+O(ll(z(µ),y(µ), t(µ))Tll) = F(a0 , b0 , t0 )+0(µk+l) 

we get 
a(to + t,µ) = a0 + O(µk+l). 

Furthermore, expanding the slow part f3 around t0 + t(µ) we get 

f3(to + t, µ) = f3(to + t(µ ), µ) + /3(to + t(µ), µ )(t -t(µ)) + i3(t0 +t(µ ), µ )(t- t(µ)) 2 + ... = 

= /3(to + t(µ ), µ) + O(µk+i) . 

Therefore, for all t E [O, t(µ)] we get 

L(to + t,µ)) = N(to + t,µ) + O(µk+i). 

Hence, on [to, t0 +t(µ)] the asymptotical representations of Land N are the same up to 
the order k. Because the difference of the initial conditions (7) and (a(t0+t(µ), µ), b(to+ 
t(µ), µ)) = L(t0 + t(µ), µ)is O(µk+l) with the Vasileva Theorem [VBK95, p.26] we get 
the same asymptotic representation of both solutions up to the order k on [to+ t(µ), T]: 
Consider Lk, the k-th order asymptotic representation of L. Since all functions q and 
Ilic are solutions of smooth differential equations and the initial values at time t 0 + t(µ) 
due to these solutions are the same as in the asymptotic representation Nk of N, we 
get the uniqueness of these initial value problem solutions. It follows that for all 
t E [to+ t(µ), T] 

Nk(t,µ) = Lk(t,µ). 
Altogether the assertion is proven because for all t E [l, T] 

II 
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Remarks. 

1. The exponentially fast decreasing function Ilc( T) which is approximated by the 
series of Ilic( T), is called boundary layer function. 

2. A smooth dependence of the righthand side ( F, f) of the small parameter µ 
does not change the result because we use the technique of series expansion with 
respect to µ. 

3. If initial time and initial values depend smoothly on mu i.e. t0 (µ) = t0 + 
O(µ), b0 (µ) = b0 + O(µ) we can reduce this situation to the case t0 (µ) = 0, 
b0 (µ) = b0 by the following transformation: 

s = t - to(µ), 71 = b + b0 
- b0(µ). 

This is an important fact because without this transformation initial time and ini-
tial value of the full and the reduced system are not identical which is a necessary 
condition in the theorems of Tychonov and Vasileva. 

The second lemma is similar to the first but there is an important difference: The initial 
points are assumed to be near to the fast variable solution r.p of the reduced system. 
This additional condition yields the possibility to weaken the condition regarding t(µ ). 

Now consider again system (5) on G, but with two other initial conditions 

a( to,µ) == r.p(b0
, to) , b( to,µ) == b0

, (9) 

a(to + t(µ), µ) = r.p(b0
, to)+ z(µ) 'b(to + t(µ), µ) = b0 + fJ(µ), (10) 

( r.p(b0 , t 0 ) , b0 , t 0 ) E G. We assume the following hypotheses: 

(Ai) F, f E Ck+l(G), k 2:: 0. 

(A2 ) For µ == 0 there is an isolated solution a0 = r.p(b0 , t), of F( a, b, t) = 0, (b~, t) E 
Kn(r2 ) x [t0 , T] with the same smoothness as F. 

( A3 ) The slow motion system 

db~ " ,. " dt == f ( r.p(bo, t), bo, t), bo( to) = b0 (11) 

has a unique solution b0 (t) fort E [f, T], and (r.p(b0 (t), t), b0 (t), t) E G. 
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(A4) There is a i > 0 such that for all t E [i, T] the eigenvalues ~i(t) of 

8F ,. ,. aa (cp(bo(t),t),bo(t), t) 

satisfy 
Re ~i( t) :::; -i . 

for all i E { 1, .. , m}. 

(As) t(·),z(·),y(·) smooth, 
t(µ) = O(µk+i ), z(µ) = O(µk+i ), y(µ) = O(µk+i ). 

Lemma 2. Assume hypotheses (A1) to (As) are satisfied.Let 

M(t,µ) = (A(t,µ),B(t,µ)) 

R(t, µ) = ( a(t, µ ), /3(t, µ )) 

be solutions of system (5) with initial conditions (9) resp. (10). 
Then for sufficiently small µe M(t, µ), R(t, µ) are unique solutions of (5) on [i, T], and 
it holds 

Proof. Existence and uniqueness of the solutions M and R for t E [i, T] follows 
from the Tychonov theorem and the continuous dependence on initial conditions. A 
condition like (Hs) regarding the associated system is satisfied because of condition 
(9). 
Without restricting the generality we assume that i = t0 • 

It holds due to (As) 

t(µ) = O(µk+i), t = O(µk+i), t(µ) - t = O(µk+i). 

With (9) we know that 

A(t0 , µ) = F(x0(µ), b0
, to)/µ= F(cp(b0

, to)+ O(µ), b0
, to)/µ= 0 + 0(1) . 

Let t E [O, t(µ )]. Together with (As) we get 

t2 .. 
.A(to + t,µ) = x 0 (µ) + O(l)t + 2 A(to,µ) + ... = x0 (µ) + O(µk+1

). (12) 

We know further that 
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where k == SUP(a,b,t)EG I If (a, b, t) 11 · 

From ( A1 ) we know that for sufficiently smallµ there is a unique solution to the initial 
condition (10) on the interval [t0 , t0 + 2t(µ)]. Expanding & around t0 + t(µ) we get 

&(to+ t, µ) ==&(to+ t(µ), µ)+&(to+ t(µ), µ)(t - t(µ)) + 6:(t0 + t(µ), µ)(t - t(µ)) 2 + ... 
With 

and 

&(to+ t(µ), µ)(t - t(µ)) = F(x0 (µ) + z(µ), b0 +if(µ), to+ t(µ))(t - t(µ))/ µ == 

(F(x0 (µ), b0
, to)/µ+ O(ll(z(µ),iJ(µ), t(µ))Tll))(t - t(µ))/µ = 

(F(cp(b0 , to))+ O(µ) + O(µk+l))O(µk) = O(µk+i) 

we conclude that for all t E [O, t(µ )] 

Furthermore, expanding the slow part {3 around t 0 + t(µ) we get 
. -

{3(to + t, µ) == {3(to + t(µ), µ) + {3(to + t(µ), µ)(t - t(µ)) + {3(t0 + t(µ), µ)(t - t(µ)) 2 + ... 
== {3(to + t(µ), µ) + O(µk+l) = b0 + y(µ) = {3(t0 , µ) + O(µk+1

) • 

Therefore, for all t E [to, t0 + t(µ)] we get 

M(to + t,µ)) = R(to + t,µ) + O(µk+1
). 

Hence, on [t0 , t0 + t(µ)] the asymptotical representations of M and R are the same 
up to the order k. Because the difference of the initial conditions (10) and (a( t 0 + 
t(µ),µ),b(t0 + t(µ),µ)) == M(t0 + t(µ),µ) is O(µk+l) with Vasileva we get the same 
asymptotic representation of both solutions up to the order k on [to+ t(µ), T]: 

Altogether the assertion is proven because for all t E [t, T] 

Ill 
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2.1 Transition into sliding 

Consider the initial value problem 

dz 
µ dt 

dy 
dt 
ds 
dt 

z(to)=z0
, 

F(z, y, s, u, t) 

f(z, y, s, u, t) 

h(z, y, s, u, t) 

y(to) = y0 , s(t0 ) = s0 

(13) 

where (z, y, s, t) E G = Km(r1) X Kn(r2) X K 1(r3) x [to, T], T >to, µ E (0, µe] and G 
is a domain. Moreover, 

u = sgn ( s) V s =f. 0 

i.e. there is a discontinuity surface S* = { s = O} C G. On this surface we get the 
so-called sliding mode equation by substituting u by the equivalent control function 
Ueq E [-1, 1] [Utk92, p.37],[Fil88, p.54] ( cf. assumption (B1 )). 

We assume: 

(Bo) (zo, Yo, so, to) E s+ = {(z, y, s, t) E Gls > O}. 

(Bi) F, f, h E Ok+2 , k ~ 0. 

(B2) The equation F(z, y, s, 1, t) = 0 has an isolated solution z = r.p+(y, s, t), r.p+ 
smooth, with (y, s, t) E Kn(r2) x K 1 (r3) x [to, T + o] where T < T, 0 > 0. 

( B3) The so-called reduced system 

~ - f( cp+(y, s, t), y, s, 1, t) 
~; - h(r.p+(y,s,t),y,s,1,t) 

y(to) = y0 s(to) = s0 

(14) 

has a unique solution (:Yci(t), st(t), t) in Kn(r2) x K 1(r3) x [to, T+e] fort E [to, T]. 

(B4 ) There is a {31 > 0 such that for all t E [to, T + e] the eigenvalues Ai(t) of 

8F az ( r.p+(Yt(t), st(t), t), Yci(t), st(t), 1, t) 

satisfy 

for all i E { 1, .. , m}. 
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( B5 ) z0 is located in the interior of the domain of attraction of the asymptotically 
stable equilibium point cp+(y0 , s0 , t 0 ) of the associated system 

dz F ( - o o ) -( ) o di = z; y , s , 1, to , z to = z 

where / = (t - t0 )/ µ, 1 E [O, oo ). 

( B6 ) For the reduced system there exists a moment tt = T E ( t 0 , T) where the trajec-
tory arrives at S* with 
• st(Bt) = 0 
• h( cp+(Yt(et), o, et), tJt(et ), o, 1, et) < o, 
• h(cp+eut(et),o,et),tJt(et),0,-1,et) > o. 

( B1) The equation 
h(z, y, 0, u, t) = 0 

has a unique, smooth solution u = Ueq(z, y, t) on a neighbourhood U1 C Km(ri) X 

Kn( T2) x [to, T] of ( cp+ (Yt (et)' 0' et)' Yd (et)' et). Therefore, the sliding mode 
equation with the equivalent control Ueq is of the following form: 

dz* 
µ dt 

dy* 
dt 

F(z*,y*,O,ueq(z*,y*,t),t), 

f (z*, y*, 0, Ueq(z*, y*, t), t) . 

(B8 ) There exists an isolated solution z = cp*(y*, t), cp* smooth, to 

0 = F ( z*, y*, 0, Ueq ( z*, y*, t), t) 

( B9 ) The reduced system in the sliding regime 

dXt* = f( cp*(y*, t), y*, 0, Ueq( cp* (y*, t), y*, t), t) , 

y*(e~) = tJt(e~) 

(15) 

has a unique solution y*(t) E Kn(r2) on [et - c:, T] with the following properties: 

h(cp*(y*(t), t),y*(t), 0, 1, t) < 0, 

h(cp*(y*(t),t),y*(t),0,-1,t) > 0. 

(B10) There is a {32 > 0 such that for all t E [et - c:, T] the eigenvalues .Xi(t) of 

~~ ( cp*(y*(t), t), y*(t), Ueq( cp* (y*( t), t), y*(t), t), t) 

satisfy 

for all i E {1, .. , m}. 
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(B11) cp+(yd(Bt), 0, et) is located in the interior of the domain of attraction of the 
equilibrium point cp*(Yd(et), e~) of the system 

~: = F(Z*; y*( et), o, u.q( cp*(y*( et)), y*( et)), et) 

where T = (t - B~)/ µ, TE [O, oo ). 

( B12) For all .A E [O, 1] it holds 

(16) 

h( .A( cp+(Yd (et), o, et), Yd( et), o, 1, e~ )+(1-.A )( cp*(Yd( et), et), Yd ( e~ ), o, 1, et)) < .o, 
h(.A( cp+(Yd( B~), 0, et), Yd(e~ ), 0, -1, Bt)+(l-.A)( cp*(iJd(et), et), Yd(et ), 0, -1, et)) > 0. 

Theorem 1. Let system (13) satisfy the conditions (Bi) to (B12). Then there ex-
ists a µe > 0 such that for allµ E (O,µe) there is a unique solution x(t,µ) = 
(z(t, µ), y(t, µ), s(t, µ))of the system (13) on [to, T], and the following estimation holds: 

(17) 

where 
k 

Xk(t,µ) = Eµi(xi(t) + rrtx(r) + IIix(Tk+i)) (18) 
i=O 

and 

Tk+l = t- ef+i 
µ 

where ef+i := et+ µBf+ ... + µk+1ef+i is the (k + l)th order approximation of the 
arrival moment tA(µ) of the full system. 

Proof of Theorem 1. Our assumptions (Bo) to (Bs) are sufficient to apply the 
theorems of Tychonov and Vasileva to system (13). Hence, the solution of the IVP 
(13) (z(t, µ), y(t, µ), s(t, µ))exists uniquely in Km(r1 ) x Kn(r2 ) x K 1(r3 ) fort E [t0 , et+ 
e], and forµ-+ 0 z(t,µ),y(t,µ),s(t,µ)) tends to (cp+(yd(t),sci(t),t),yd(t),sci(t)) on 
(t0 , B~+e]. Together with condition (B6 ) we may apply the Implicit Function Theorem 
to s( t, µ) since we know that s( e~, 0) = sci ( B~) = 0. Hence, for the full system there 
exists a arrival moment tA(µ) with limµ-+O tA(µ) = Bt where the solution reaches the 
discontinuity surface transversally. 
We get the asymptotic representation of our solution by separating two steps: analyzing 
the solution starting ins+ until it meets S*, and analyzing the solution moving on S*. 
Due to our assumptions we may apply the Theorem of Vasileva to the solution x+(t) = 
(z+(t), y+(t), s+(t)) of (13) with u = 1 on the time interval [to, et+ e], i.e. 
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The arrival moment tA (µ) depends smoothly on µ. We may write 

tA( ) eA eA k+l(JA k+2 t µ = 0 + µ 1 + ... + µ k+l + µ ~k+2 (19) 

h t 1 a1c+2e(K.A) • h A [0 J v ffi . 1 11 A( ) 0 w ere ~k+2 = (k+2)! aµJc+2 w1t K, E , µ . .ror su c1ent y sma µwe get t µ , .. k+l E 
Ue(B~). Evidently, tA(µ) - ef+i = O(µk+2). Expanding a;+ as series around()~, we 
get: 

+<1c+1) (fJA) 
+(eA ) +(eA h ) +(fJA) . +(eA)h x 0 hk+l. //')( k+2) x .. k+l = x 0 + k+l = x 0 + x 0 k+l + ... + ( k + 1) ! k+l + v µ 

where hk+l = µB1 + ... + µk+l ek+l. Since .z+ = FIµ and 

h - hk+i = O(µk+2) , hi - ht+i = (h - hk+i)O(µi-1) if j ~ 1 

it follows that x+(tA(µ)) - x+(ef+l) = O(µk+l). Moreover, due to Vasileva, we know 
that x+(ef+i) - Xt(et+i) = O(µk+i). This yields 

x+(tA(µ)) - xt(et+l) = O(µk+l). 

Now we consider the solution moving on S*: Because of IFT,(B6 ) and (B7 ) for the 
solution x(t,µ) = (z(t,µ),y(t,µ),s(t,µ)) of system (13) with u = Ueq it holds not only 
s(tA(µ),µ) = s+(tA(µ)) = 0 but for T sufficiently near to tA(µ) 

s(t,µ) = 0 on [tA(µ), T]. 

Therefore, in the following we consider only solutions z;, y; and z;, y; of (15) to the 
initial conditions 

resp. 

For applying Lemma 1 it is necessary to introduce the following new coordinates: 

v * z :=z , 

fJ := y* + bci - y+(tA(µ)) ' 

t := t - tA(µ) 

where bci := :Yt ( (}~ ). Hence, due to (15) we get the following two IVPs: 

(20) 

(21) 
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J.L ~~ = F(Z, Y- bt + y+(tA(µ)), 0, Ueq(Z, Y - bt + y+(tA(µ)),i + tA(µ)), £ + tA(µ)) , (22) 

~~ = J(Z, Y- bt + y+(tA(µ)), 0, Ueq(Z, Y - bt + y+(tA(µ)),i + tA(µ)), £ + tA(µ)) , 

ze(O) = z+(o) , Ye(O) = bci resp. 

za(-µk+2ek+2) = zt(-µk+2ek+2) , :Ya(-µk+2ek+2) = yk+(-µk+2ek+2) + ht -y+(o) . 

With t0 = 0 an~ t(µ) = -µk+2ek+2 we may apply Lemma 1 to system (22) because all 
hypotheses including (H6 ) are satisfied and the righthand side depends smoothly onµ. 
Hence, for the k-th order approximation xk = (Zk, ik, 0) of x = (z, y, 0) it follows that 

After backward transformation we get 

max llx*(t) - XZ(t)ll = O(µk+i) 
tE[0f+1 ,T] 

because llx*(t) - XZ(t)ll = llx(i) - Xk(i)ll. Remark that x*(t) = (z*(t),y*(t), 0) on 
[tA(µ), T]. Finally, glueing together the approximations Xt and XZ at t = et+i we 
get the estimation (17) with 

such that 

x(t, µ) { 
x+(t) if t E [t0, tA(µ)] 

- x*(t) if t E [tA(µ), T] 

_ { X~(t) ~f t E [to~et+i] 
xk (t) 1f t E [ek+i, T] 

and 

_ { xt(t) if t E [to, et+iJ 
xi(t) = xt(t) if t E [et+i, T] i = o, .. , k. 

(23) 

(24) 

Ill 
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2.2 Leaving sliding domain 

Now consider the initial value problem 

dz 
µ dt 

dy 
dt 
ds 
dt 
du 
dt 

F(z, y, s, u, u, t) 

= f (z, y, s, u, u, t) 

h1(z, y, s, u, u, t) 

h2(z, y, s, u, u, t) 

z(to) = z0
, y(t0 ) = y0 

, s( to) = 0, u( to) = u0 

(25) 

where (z, y, s, a, t) E G = Km(r1) X Kn(r2) X K 1(r3) X K 1 (r4) X [to, T], T > to, µ E 
(0, µe] and G is a domain. Moreover, 

We assume: 

(C1) F,f,h1,h2 E Ck+2 , k;::: 0. 

(C2) The equation 

u = sgn ( s) V s =/= 0 . 

h1(z, y, 0, u, u, t) = 0 

has a unique solution u == Ueq(z, y, u, t) on a neighborhood U2 of S*. Therefore 
the sliding mode equation is of the following form: 

dz* 
µ dt 

dy* 
dt 

da* 
dt 

z*(to) = z0
, y*(t0 ) == y0 

F( z*, y*, 0, u*, Ueq( z*, y*, a*, t), t) 

- f ( z*, y*, 0, u*, Ueq ( z*, y*, u*, t), t) 

, u* (to) == u0 

(C3 ) Let (z0 ,y0 ,s0 ,u0 ,to) E {(z,y,s,a,t) ES* I lueq(z,y,a,t)I < 1}. 

( C4 ) There exists a unique solution z = cp*(y*, a*, t), cp* smooth, to 

0 == F(z*, y*, 0, u*, Ueq, t) 

(26) 
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(Cs) Define ileq(y, a, t) := Ueq(<p*(y, a, t),y, a, t). The reduced system in the sliding 
regime 

dXt* = f( cp*(y*, u*, t), y*, 0, u*, Ueq(y*, u*, t), t), 

da* h ( * ( * * ) * * _ ( * * ) ) dt = 2 <p Y , a , t , y , 0, a , Ueq y , a , t , t , (27) 

y*(to) = y0
, a*(t0 ) = a0 

has a unique solution (y*(t), a-*(t)) on [t0 , T + e], t0 < T < T with the following 
properties: For t E [to, T) 

h1(cp*(y*(t),a-*(t).,t),y*(t),O,a-*(t),l,t) < 0, 

hi( cp*(y*(t), a-*(t), t), y*(t), 0, a-*(t), -1, t) > 0. 

(C6 ) There is a {31 > 0 such that for all t E [to, T + e] the eigenvalues .Ai(t) of 

~~ ( cp*(Y*(t), u*(t), t), y*( t), u*(t), u.q(Y*( t), u*( t), t), t) 

satisfy 

for all i E { 1, .. , m}. 

( C7 ) z0 is element of the interior of attraction domain of the (asymptotically stable) 
rest point <p* (y0 , a0 , t0 ) of system 

dz* F ( * o o ( * o o ) ) dT = z ; y , 0, a , Ueq z , y , a , t0 , to (28) 

where T = (t - to)/µ, r E [O, oo ). 

(Cs) Let~:= {(z, y, a, t) E Km(r1) X Kn(r2) X K 1(r4) X [to, T+e] I Ueq(z, y, a, t) = l}. 
Assume (w.l.o.g) that ~ = Km(r1) X Kn(r2) X {O} X [t0 , T + e]. 
There is a leaving moment ("Break-away moment") tg = T E ( t0 , T) of system 
(27) such that 
• ( cp*(y*( e~), o, e~), iJ*( t~), a-*( e~), e~) E ~ , 
• h2( cp*(y*( e~), o, e~), y*( e~), o, o, 1, e~) > o, 
• h1(<p*(y*(Bg),o,e~),y*(Bg),O,O,l,B~) = 0, 
a ~(cp*(y*(Bg), 0, eg), y*(B~), 0, 0, 1, B~) > 0, 
• hi(cp*(Y*(eg), o, e~), y*(B~), o, o, -1, eg) > o. 

( C9 ) The equation F(z, y, s, a, 1, t) = 0 has a unique solution z = cp+(y, s, a, t), cp+ 
smooth, with (y, s, a, t) E R := Kn(r2) x K 1(r3) x K 1 (r4 ) x [8~ - e, T]. 



L.M. FRIDMAN / R.J. RUMPEL Singularly perturbed systems with sliding mode 18 

( C10) The reduced system 

dy 
di 
ds 
di 
da 
di 

y(B~) = y*(B~) , 

- f( cp+(y, s, a, t), y, s, a, 1, t) 

h2 ( <p + ( y' s' (]"' t) ' y' s' (]"' 1, t) 
s(B~) = 0, a(B~) = 0 

has a unique solution (yci(t), sci(t), a-t(t), t) in Ron [B~ - £, T]. 

(011 ) There is a I< 0 such that for all t E [O, T] the eigenvalues Ai(t) of 

8F az ( cp+(yci(t), sci(t), a-ci(t), t), :Yci(t), sci(t), a-ci(t), 1, t) 

satisfy 

for all i E {1, .. , m}. 

( 0 12) z*(O) = cp*(y*( B~), 0, B~) is element of the interior of attraction domain of 
cp+(y*(B~), 0, 0, B~) of system 

~! = F(Z; y*(B~), 0, 0, 1, B~) 

where T = (t - tt)/ µ, r E [O, oo ). 

(29) 

(30) 

(31) 

(32) 

(33) 

Theorem 2. Let system (25) satisfy the conditions ( 0 1 ) to ( C12). Then there exists a 
µe > 0 such that for allµ E (O,µe) there is a unique solution x(t,µ) = (z(t,µ),y(t,µ)) 
of the system (25) on [to, T], and the following estimation holds: 

(34) 

where 
k 

Xk(t,µ) = l:µi(xi(t) + rr;x(r) + IItx(rk)) 
i=O 

and 
t-ef 

Tk=--
µ 

where ef := B~ +µBf+ ... + µkB~ is the k-th order approximation of the leaving 
moment tB (µ) of the full system. Moreover' rrt x = 0 . 
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Proof of Theorem 2. Assumptions ( C1 ) to ( C7 ) are sufficient to apply the the-
orem of Tychonov and Vasileva to system (26). Hence, there is a unique solution 
(z*(t), y*(t), a*(t)) of the IVP (26) in Km(r1) x Kn(r2 ) X K 1(r4 ) fort E [to, t~ + c:]. 

With condition ( C8 ) and the results of Tychonov and Vasileva we may apply the Im-
plicit Function Theorem to 'lj;(t,µ) = a*(t) since we know that 'lj;(t~,O) = 0-*(t~) = 0. 
Hence for the full sliding mode system for sufficiently small µ there exists a time tB (µ) 
continuous depending on µwhere the solution meets ~' which belongs to the bound-
ary of the sliding domain. Furthermore, at this meeting point we have a transversal 
intersection of the solution with ~because from the smoothness of h1 and h2 we may 
conclude 

~>1 ( cp*(y*( (}~), 0, (}~), y*( (}~), 0, 0, 1, (}~) > 0 . 

Moreover, 
h2 ( cp*(y*( ()~), 0, ()~), y*( B~), 0, 0, 1, ()~) > 0 , 

h1 ( cp*(y*( e~), o, e~), y*( e~), o, o, -1, e~) > o . 
Hence, tB(µ) is the leaving moment, i.e. instead of sliding on S* (s = 0) fort::; tB(µ) 
the solution x(t) = (z(t), y(t), s(t), o-(t)) of system (25) moves in s+ for some time 
interval starting at tB (µ). The reason for this behaviour is the following: Assume 
there is a 8 > 0 such that on Ia := (tB(µ), tB(µ) + 8) s(t) < 0. We can choose 8 such 
that on ! 8 s(t) > 0 taking into account the conditions regarding h1 . But this means 
that on !8 s(t) is increasing starting with s(tB(µ)) = 0. This is an contradiction to 
the assumption. Alternatively, assume that for the solution on lo s(t) = 0. Hence, 
s = h1 = 0 on lo. Taking into account the conditions regarding h1 and h2 in ( C8 ) 

we can choose 8 such that on le h1 > 0 for u = 1 and u = -1. According to the 
definition of solution we get a contradiction to the assumption because x would not be 
almost everywhere element of the set corresponding to the discontinuous vector field. 
The conclusion is that the solution must leave S* into s+. 
The leaving moment tB (µ) depends smoothly on µ. We may write 

B ( ) ()B ()B k()B k+i /" t µ = 0 + µ 1 + ... + µ k + µ ':,k+l (35) 

1 ak+1tB(.K:B) • B [ ] 'txr d fi h b k . where (k+i = (k+i)! Bµ.1~+ 1 with K E 0, µ . vve e ne t e rea -away time approx-
imation 

eB. eB eB keB k .= 0 + µ 1 + ... + µ k . 

For sufficiently smallµ we get tB(µ), Gf E Ue;(B~). Evidently, tB(µ) - Gf = O(µk+1 ). 

Expanding x* as series around 8~, we get 
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where hk =µBf+ ... + µkBf. For estimating the difference of x*(tB(µ)) and x*(0f) we 
have to consider x* = ( z*' il' 0' (J*): il and (;* do not depend on µ but 

i*( B~) = F(z*(B~), iJ*(B~), 0, 0-*(B~), Ueq, t~) . 
µ 

Expanding F around µ = 0 we get 

z* ( e~) = F ( cp* (y* ( e~)' a* ( e~)' Ueq' e~)' y* ( e~)' 0' &* ( e~)' Ueq' t~) + () (µ) = 0 + () ( 1) . 
µ 

Since 
h - hk = O(µk+l) and hj - h~ = (h - hk)O(µi-l) if j ~ 1 

it follows that x*(tB(µ)) - x*(0f) = O(µk+l ). Moreover, due to Vasileva, we know 
that x*(0f) - XZ(0f) = O(µk+i ). This yields 

x*(tB(µ)) - XZ(0f) = O(µk+l) . 

Now we consider the solutions (z:, y:, s;, a:) and (zd, Yd, s~, at) of (25) to the initial 
conditions 

resp. 
z:(ef) = Zk(ef), y:(ef) = Yic*(0f), s~(ef) = 0, a;t"(0f) = 0. (37) 

Hence, 
(38) 

From (08 ) we know that 

Ueq(cp*(y*(B~),O,B~),y*(B~),O,B~) = 1. 

Together with ( 0 4 ) it follows that 

F( cp*(i/(B~), 0, B~), y*( B~), 0, 0, ueq( cp*(y*(B~), 0, B~), y*(B~), 0, B~), B~) = 

= F(cp*(y*(B~),O,B~),y*(B~),0,0,l,B~) = 0. 

And by ( 09) and ( 0 10) it holds that 

F ( cp + ( y* ( B~), 0, 0, B~), y* ( B~), 0, 0, 1, B~) = 0 . 
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From the last two equations and the uniqueness of cp* and cp+ it follows that 

cp*(y*(B~), 0, B~) == cp+(:g*(B~), 0, 0, B~) . 

Furthermore, it is well known that 

z:(tB(µ)) == z*(tB(µ)) == cp*(y*(tB(µ)), 0, tB(µ)) + V(µ) . 

With cp*(y*(tB(µ)),0,tB(µ)) == cp*(y*(B~),O,B~) + V(µ) and (39) we get 

z:(tB(µ)) = cp+(y*(B~), 0, 0, B~) + V(µ) . 

For applying Lemma 2 it is necessary to introduce new coordinates: 

z := z+ + cp+(:g*(B~), 0, 0, B~) - z*(tB(µ)) , 

y := y+ + y*(B~) - y*(tB(µ)) , 

s := s' 

a :==a' 

t :== t - tB (µ) . 

Hence, corresponding to (25),(36) and (37) we get the following two IVPs: 

(39) 

(40) 

µ~ = F(z - cp*(y*(B~), o, B~) + z*(tB(µ)), y - y*(B~) + y*(tB(µ)), s, a-, 1, l + tA(µ)) , 
~ == f( z - cp*(y*( B~), 0, B~) + z*(tB (µ) ), y - fj*( B~) + y*(tB(µ )), s, 0-, 1, i + tA(µ)) , 
~ = h1(z - cp*(y*(B~), 0, ()~) + z*(tB(µ)), y - y*(B~) + y*(tB(µ)), s, 0-, 1, l + tA(µ)) ' 
diT 
dt = h2(z - cp*(Y*(B~), 0, B~) + z*(tB(µ)), y - y*(B~) + y*(tB(µ)), s, a, 1, t + tA(µ)) , 

resp. 

ze(O) == cp*(y*( B~), 0, B~), Ye(O) = y*( B~) , se(O) == 0, 0-e(O) == 0 

Za(-µk+l(k+i) = ZZ(-µk+l(k+i) + cp*(y*(B~), 0, B~) - z*(O) , 

(41) 
(42) 

Ya(-µk+l(k+1) = Y/c*(-µk+1(k+i) + jj*(B~) - y*(O), (43) 
sa(-µk+l(k+i) == 0, aa(-µk+l(k+i) == 0 . 

Remark the properties (38) and (40). With t 0 = 0 and t(µ) = -µk+l(k+i we may 
apply Lemma 2 to system (41) because all hypotheses including (As) are satisfied and 
the righthand side depends smoothly onµ. Hence, for the k-th order approximation 
xk == (Zk, flc, sk, fjk) of x == (z, y, s, a) it follows that 

From the derivation of the asymptotic algorithm in [VBK95] we know that IIci (y, s, 0-) = 
0. Moreover it follows that IIci z satisfies a linear homogenuous variational equation 
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with initial condition IIci z( f = 0) = z0 - cp+(y*( B~), 0, 0, B~). Condition ( 42) yields 
.z0 = cp*(y*(B~), 0, ()~). Hence, by (39) we get rrtz(T = 0) = 0 such that 

rrt.z(-r) = o v-r. (44) 

After backward transformation we get 

because llx+(t) - X,t(t)ll = llx(i) - Xk(i)ll. Finally, glueing together the approxima-
tions Xie and X_t at t = tf we get the estimation (34) with 

x(t ) = { x*(t) if t E [t0 , tB(µ)] and 
' µ x + ( t) if t E [ tB (µ), T] 

X (t ) = { Xic(t) if t E [to, Bf] 
k ' µ X;t ( t) if t E [ ef, T] 

such that 
_ { x£(t) if t E [to, Bf] . 
xi(t) = xt(t) if t E [ef' T] i = o, .. ,k. 

From the coordinate change it follows that 

where 

such that 
+ .., B xk (t) = Xk(t - t (µ)) + Xshift. 

Especially, because of ( 44) it follows that 

This means that the Oth order approximation Xt of x+ possesses no boundary layer 
part. Hence, we may conclude that not only IIci(y+, s+, u+) = 0 but IIciz+ = 0. 
Therefore, 

rrtx = 0. 

• 



L.M. FRIDMAN I R.J. RUMPEL Singularly perturbed systems with sliding mode 23 

3 Application: Coupled Oscillators with dry friction 

We consider two pendula which are coupled by a spiral spring. One of them is in contact 
with a uniformly rotating disk. Both pendula have the same distance l := l1 = l2 of the 
centre of gravity from the axis of rotation. In angle coordinates we get the following 
equation of motion for this 2DOF system: 

m1l2(/;1 =-k( 'Pl - cp2) - m1g sin a sin cp1Z - a( cp1 - n) + FRl 
m2l2(/;2 = k( cp1 - cp2) - m2g sin a sin cp2Z - b( cp2 - 0) (45) 

where m 1 , m 2 are the masses of the two pendula, k the hardness of the spring, g the 
gravity constant, a: the clination angle of the disk and a, b constants due to linear 
damping. FR represents the friction force with 

where 
µ(cp1) = µo(l - carctan(Jl;l<P1 - nl)). 

Assuming that e := m2 « m1 and setting Y1 := cp1, Y2 := cp2, s := cp1 - n, z := cp2 we 
get 

ez - ~(Y1 -y2) - egsina:siny2 - ~(z - n) 
Y1 s +n 
Y2 z 
s __ k_(Y1 -y2) - fl. sina:siny1 - EB... - _a_s. 

- m1l2 l m1l m1l2 

To apply Theorem 2 we do one further transformation 

m19l( . . ) a:= Y2 - Y1 - -k- µo cos a:+ sm a: sm y1 . 

Hence, we consider the following nondegenerate system: 

eZ -f}( a+ m~gl (µ0 cos a:+ sin a: sin Y1)) - f2(z - n) 
-ef sin a: sin( a + Y1 + m1gl (µo cos a:+ sin a: sin Y1)) 

s+n 
= F(z, yi, a) 
= f(s) 

s m7z2 a+ f cosa:µo(l - (1- carctan(Jl;lsl))u)- m7z2 s = hi(s,a,u) 
a - z - (s + n)(l + mig~sina: cos Y1) = h2(z, Yi, s) 

(46) 

(47) 



L.M. FRIDMAN I R.J. RUMPEL Singularly perturbed systems with sliding mode 24 

DPendulum on disk, alpha=0.55,mu=0.5,e=0.2 (eps=0.005) 

3 .....--__,.....--,....---_,......--.,..----...-----. 

+ (0.4,1) 

0 
B A 

-3 y1 3 

Figure 1: Comparison between full system and reduced system trajectory 

Ins+ with z = n- ~(a-+ m1gl (µ0 cos a+ sin a sin y1)) = cp+(yi, a-) we get the reduced 
system 

Y1 - f(s)=s+n 

s 
k g a 

h1(s; a-, 1) = -l2 o- + -l cos aµ0 (1 - (1 - carctan(~lsl))) - -l2 s ( 48) 
m1 m1 

O" - h2( \O+(y1, o-), yi, s) = n - ~( 0- + m~gl (µ,o cos a+ sin a siny1)) 

m 1gl sin a 
-(s + n)(l + k cosy1) . 

With Ueq(o-) = 1 + l k a- we get the sliding mode system m1g cosa.µo 

eZ - F(z, Y1, a-) 
Y1 - f (O) 

O" - h2(z, Yi, 0) . 
(49) 

Hence, with z = cp*(y1 , a-) = cp+(y1 , a-) the reduced sliding mode system reads as 
follows: 

i11 = J(O) = n 
a= h2( cp*(yi, a), Yi, 0) = -HO"+ m1gl (µo cos a+ sin a sin Y1)) - mi:zn cos Y1 . 

(50) 



L.M. FRIDMAN I R.J. RUMPEL Singularly perturbed systems with sliding mode 25 

Remarks. 
It is easy to verify that the conditions (Bo) to (Es) and (B7 ) to (B12 ) of Theorem 1 
are satisfied. Also it's easy to compute that conditions ( C1) to ( C7) and ( C9 ) to ( C12 ) 

of Theorem 2 are satisfied. 
The existence and size of the sliding domain depends on the parameters of the oscillator 
system. Therefore, the transition conditions ( B6 ) and ( C8 ) are only satisfied if the 
parameters belong to an appropriate region of parameter space and the initial value is 
carefully choosen. An example is displayed in figure 1 with initial values 

z(O) = 0, Y1(0) = 0.4, s(O) = 1, O"(O) = 0 . 
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