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Local well-posedness for thermodynamically motivated
quasilinear parabolic systems in divergence form

Pierre-Etienne Druet

Abstract
We show that fully quasilinear parabolic systems are locally well posed in the Hilbert space
scala if the coefficients of the differential operator are smooth enough and the spatial domain is

sufficiently regular. In the context of diffusion systems driven by entropy, the uniform parabolicity
follows from the second law of thermodynamics.

1 Introduction

Let N € N, T > O atime,and 2 C R? abounded domain. We denote Q :=]0, T'[x 2 the parabolic

cylinder. We consider the following system of partial differential equations for functions wy, ..., wy :
QT — R:

O Ri(t, z, w) +div J'(t, z, w, w,) = fi(t,z, w, w,)in [0,T] x Q (1)

vJi(t,z, w, wy) = fri(t,z, w) on[0,T] x dQ 2)

w=q" in {0} x Q. ()

Fori =1,..., N, the functions R; are defined in Q7 x RY whilefori =1,..., N, k = 1,2,3 the
flux functions J;. are defined on Q7 x RY x RV*3,

The equations (1) can a. o. be consistently interpreted (see [DG17]) as the reduced form of N+1 mass
conservative diffusion/reaction equations for an isothermal mixture of chemical species A1, ..., An1
in dynamical equilibrium. The unknown functions w; then play the role of the so called relative chemical
potentials or entropy variables. A phenomenological, nonconservative diffusion/reaction system for N
species also exhibits this structure. In these contexts, the second law of thermodynamics suggests the
following restrictions:

(a) The inequality SN S Jit, @, 2, D) DL > 0 s valid for all D € RN*3\ {0} and all
(t,z, z) € Q x RY;

(b) The matrix R.(t,z, z) is symmetric and positive definite for all (£,2) € Qr and all z € R¥.
We will in fact assume the following stronger variational structure:

(1) There is a potential U defined on Q7 x RN x RY*3 such that D + U(t,z, 2, D) is strictly
convex and attains a global minimum in D = 0. We define J,i = —8D2\If;

(2) There is a function 3 defined on Q7 x RY such that z — B(t,z, z) is strictly convex, and
R=3..
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P-E. Druet 2

For the problem (1), (2) and (3), we prove the local-in—time well posedness in the class
V3(Qr; RY) == W5 (0,75 Wo3(Q; RY), W*2(; RY)).

For k, ¢ € N U {0} and for M being some open subset of a finite dimensional linear space, we
introduce the simplified notation C*/([0, T x M) := C*([0, T]; C*(M)).

Theorem 1.1. Assume that the domain Q) is of class C%. Fori = 1, ..., N assume that the function
R; is of class (C*° N C%6)([0,T] x Q@ x RN). Fori = 1,...,N, k = 1,2,3, let J; belong to
(CH N C%)([0,T] x Q x RY). We assume that f € C*([0,T] x Q x RY x R¥*?) and that
fr € C%5([0,T] x Q x RY).

Assume that the thermodynamic conditions (1), (2) are valid. Moreover, we assume that the initial
condition ¢° € V3(Qr; RY) and satisfies two compatibility conditions: First

ve(z) Ji(0, 2, ¢°(2), ¢2(2)) = fr:(0,2, ¢°(x)) fori = 1,..., N, v € O8;
Second, we assume fori = 1,..., N and x € 0f) that

vi(@) (ih (0,2, ¢°(2), ¢3(2)) + Ji ., (0,2, ¢"(2), ¢3(x)) F (x)
+ Ty (0,2, ¢°(@), @2() F,, ()
= frit(0,2, ¢°(x)) + fr.i-, (0,2, ¢°(x)) F} (z)
where F" is the vector field given by

FO(x) :=[R.(0, 2, ¢°(x))] " x
x (div(J(0, 2, ¢"(x), ¢2(x))) — Re(0,z, ¢°(z)) — £(0,z, ¢°(z), ¢¥(x))).

Then, there is T > 0 dependent on (), the coefficients R, J, f, fr and the initial condition ¢° such
that the problem (1), (2) and (3) possesses a unique solution of class V3.

To prove the Theorem 1.1, we show that the linearised operator associated with the system (1), (2)
and (3) is invertible in the proposed scala of Hilbert spaces. We make use of the fact that the lineari-
sation in smooth points generates a uniformly parabolic operator (Definition 7 in [LSU68], Chapter VII,
Paragraph 9). In order to obtain estimates in the Hilbert space scala L?W*2, we employ the basic
method of squaring the operator. From this point of view, our study of the linearisation remains far be-
low the complexity of the results on general linear parabolic systems obtained by the Russian school
in the Sixties both in the scala of anisotropic Sobolev and Hélder spaces (see [LSU68], Chapter VI,
Paragraph 9 and 10 for an overview and references, or the book [EZ98]).

However, our approach is self-contained and it gives sufficient conditions that are ready to apply to fully
quasilinear systems. The most original contribution of this paper consists in showing that the larger
system satisfied by the unknown and its derivatives exhibits the structure of a reduced quasilinear
problem — that is, the case that the flux function J is linear in the gradient. The larger system is
moreover subject to ‘'mixed’ boundary conditions: a subgroup of the variables wq, ..., wp is subject
to natural and the remaining wp41, . . . , Wy are subject to Dirichlet boundary conditions. We propose
an original analysis of this system, which directly yields the main result.

For additional context on quasilinear and doubly nonlinear parabolic systems, we mention that the
estimates in LP spaces for the linearised operator are more complex. The maximal regularity theory
is presently available only for the reduced quasilinear case, the case that the flux function J is linear
in the gradient variable: [HMPW17].
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Local well-posedness for quasilinear parabolic systems 3

The reader can also consult: [Ama90], [Ama93] for the LP theory of diffusion—reaction systems,
[DiB93] for the case of the p-Laplace system, [DMO05] or [Buri4] for almost everywhere C'** so-
lutions, or [FS15] for the regularity in time. Concerning weak solutions, we refer to [AL83], [Alt12],
[FK95], [Kac97], [Ben13], [Dru17], [HRM16]. Concerning weak solution with degeneracy in ellipticity,
we suggest the references [J15], [CDJ18] or [J17]. This is a collection of excellent results concerning
non-linear parabolic systems that we do not use directly here.

Our plan for the paper is as follows. In the next section 2 we introduce the notation and we collect
the main auxiliary tools for the analysis. The Sections 3, 4 are devoted to the analysis of the reduced
quasilinear problem — that is, J is linear in . These sections contain the fundamental estimates
respectively for the case of natural and of Dirichlet boundary conditions. In the Section 5, we perform
an intermediate step for systems where a subgroup of the variables wy, . .., wp is subject to natural
and the remaining wp41, ..., wyN are subject to Dirichlet boundary conditions. This allows to show
in the Section 6 that the full quasilinear case can be solved by the same method as the reduced
quasilinear problem.

2 Preliminaries

2.1 Notation

Let 2 C R3 be a bounded domain of class C*! at least. The Sobolev spaces W"?2(Q) for k =
1,2, ...are supposed to be well known. For a function u € W12(Q), we denote Vu = (ty,, Uy, Uzs;)
the weak spatial gradient. We also make use of the short cut u, = Vu. With W’“’Q(Q; RZ), ¢t eN
and ¢ > 1, we mean the space of vector fields u = (uy, us, ..., u,) for which each component u; is
a function of class W“(Q) We extend this way of writing to other functional spaces.

For T > 0, we denote Q = Qr =]0, T[xQ C R*.
We denote S the surface |0, T'[x 0.
The parabolic boundary of () is denoted P := S U ({0} x ©) U ({0} x 0).

2.2 Functional spaces

For T' > 0, and Banach spaces X < Y (continuous injection), we denote
Wy (0,T; X, Y) :={ue L*0,T; X) : u; € L*(0,T; Y)},
lullwy o, x,vy == llullzor, x) + llwell 207, vy -
We will call the space of strong solutions for the problem (1) the Banach space
Wy (0,T; X, Y)with X = W22(Q; RY), Y = L*(Q; RY).
This space is isomorphic (in fact identical) with the Sobolev space
Wy Q: RY) := {u e L*(Q; RY) : DiD3u e L*(Q; RY) forall 2 + 5 < 2} .

Note a peculiarity: In general, we will put the time integrability index first and the spatial index second,
except in the case of the Sobolev spaces TW2““(Q) and the Hélder spaces H?“‘(Q) where we
employ the notation of the book [LSUG8].

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



P-E. Druet 4

A fundamental role in the analysis is played by the state space
Wy (0,T; X, Y)with X = WH3(Q; RY), Y = W2?(Q; RY).

In the standard Hilbert space scala, this is the largest space embedded into WC}C;O(Q; ]RN) (see details
below).
For ¢ =0,1,2,..., we make use of the abbreviations
VE=VYQr; RY) =W 0,T; X2, X% with X = W2(Q; RY) (4)
V5 =V4(Qr; RY) :={v e V' : v =0in {0} x Q}.

which are Banach spaces with the norm

[ollve := llvllwg o, xer2, xoy -
Recall that W2 := L2. Moreover, we need the space
Vo =VH((0,T] x R RY) == Wy (0, T3 WH(R?), [WH(R)]") (5)
Vs = Ve (0, T] x R* RY) := {v € V' : v =0in {0} x R*}.
We recall the inequality

tgﬁ%{] [o(®)][L2me) < ¢ ||U||W21(0,T;W1v2(R3),[W1v2(R3)]*)

and the fact V=1, Vo' — C([0,T]; L*(R%; RY)) with continuous injection (see for instance the
survey [Nau]).

We also note the following observation concerning the space V1.

Lemma 2.1. Consider v € W}(0,T; W?%(Q), L*(Q)) such that v(0) = 0. Then, the functions

v, are the restriction to |0, T'[x ) of functions Eq(v,,) of class W, (0,T; WH2(R?), [W12(R?)]*)

such that Eq(v,,)(0) = 0. Moreover ||Eg(vx)||v731 < ¢||v|yo, with a constant c that depends only
R

on ().

Proof. We rely on the existence of a linear extension operator F, which is continuous from W%2(2)
into W52(R3) for £ = 0, 1,2, ... (see Section 6.5.1 of [KJF77]).

Let u € W3 (0,T; W2%(Q), L*(Q)). Then Equ € W}(0,T; W*2(R3), L*(R?)). For ¢ €
C>°(IR3) arbitrary, one has

| Batwo.

Thus, exploiting that TV 12(R3) = W, *(R?)

< ca lluellz2@r) 1Pl z2qo,rixms) -

10:(Ea(u))ell L2, wremsy) < ca llulr2qr) -
This shows that (Equ), € W3 (0,T; WH(R3), [WH3(R?)]*). O

Lemma 2.2. For{ = 1,2, ..., the operation -- belongs to £ (V*, V*~1). For { = 0, the operation
Eqo-L =4 o Eq belongs to £ (V°, V7).

Proof. The claim for ¢ > 1 is obvious, while for ¢ = 0 it is a direct consequence of the Lemma 2.1. O
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Local well-posedness for quasilinear parabolic systems 5

2.3 Trace spaces

For the analysis of boundary conditions, we will need trace spaces. Recall that there is a linear trace
operator v € Z(L*(0,T; W2(Q)), L*(Sr)). For a linear subspace W of L?(0,T; W2(12)),
we denote

Trg, W= {y(w) : we W}. (6)

This is a Banach space with the norm
= inf . 7
s, w o= o wlhy )

Lemma 2.3. For( € {0, 1,2} assume that f € Trs, V. Then, if OS) is of class C*™3 the components
of Vi f belong to Trs, V=1,

Conversely, if Vr f belongs to Trs,. V™!, then f belongs to Trs,, VO,
Proof. Assume that f € V'is an arbitrary extension for f into 2 (that means, v(f) = f). Inthe case
¢ =0, we extend f to |0, T'[xR?® with the extension operator of Lemma 2.1.

Extending the tangential vectors suitably into €2 (into R for ¢ = 0), we obtain that 7 - V.f € V1,
and that

17+ Vfllver < ell7lleesa@ps) | fallver < elimllcers@ps 1l

Thus, [|7 - V flw, ve-t < co || Fllye. Since the extension f was arbitrary
17V fllng, vi1 < ca fevfi:g{;f):f [fllve = |l fllws, ve -

Now, assume that f € Trg, W,"(Q; RN) is such that V f belongs to Trs, V1. We want to show
that f € Trs, V° and that

[ f s, vo < e Ulfll2gsry + Ve flls, v-)-

The results of [LSU68], Ch. 4, Par. 2 allow to show that the space I/V22’1 (Qr; RY), which is isomorphic
to V' satisfies

Trs, Wi (Qr) = W24 (Sr) .

Moreover, we know ([DHP07]) that the Neumann trace v - V maps W,"' (Q1) onto

[\ [N}
~lw

1 1
W,H0,T; L*(09Q)) N L*(0,T; W22(09)).

Due to the Lemma 2.8, every function a € Trg, V™! can be represented as the Neumann trace of a
. 2,1
function from W5~ (Qr). Thus

1 1
Trg, V™1 C W0, T; L*(09Q)) N L*(0,T; W22(9Q)).
Thus, if Vi f € Trs, V!, then obviously
1 3
feWH0,T; WH(6Q)) N L*(0, T; W22(0Q))

33
= W24 (Sp) = Trs, W5 (Qr) .
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P-E. Druet 6

2.4 Multiplication and Nemicki operators

We notice that V! is by definition a subset of C'([0,T]; W22(2; RY)). By means of the Sobolev
embedding theorem. It follows for all ¢ € [0, T that

ID*0(t) 1720y + IVV() 76y < callv]in - (8)
We shall make use of auxiliary inequalities for u, v € V*:

lta il 2oy < Nzt lerllza < ellullvr ol ©

[t Va2 < [ltell oot [[vaell 20 < e flullv o]y (10)

11

Moreover, we can prove that V! embeds into the Holder space H 2'4 (Q; RN). For instance, we make
use of the fact that the spatial derivative of u € V! belongs to L% while the time derivative belongs
to L>%. We apply the anisotropic embedding theorem of [KP11].

2.4.1 Multiplicator spaces

We say that a Banach space X < Y (continuous injection) is a multiplicator space for Y if and only
if there is a constant ¢ > 0 such that ||z y||y < ¢ ||z||x ||y|ly forallz € X andy € Y.

Lemma 2.4. The space V' is a multiplicator space for the following spaces: L*(0, T; W'2(£2; RY)),
L2(0,T; W22(Q; RY)), V°, and itself.
The space V? is a multiplicator space for itself.

The space Eq (V') is a multiplicator space for V=!.

Moreover, the multiplicator properties extend on the corresponding trace spaces.

Proof. We will prove the claims for scalar functions. For vector fields, we apply the same inequalities
component wise.

Let firsta € L?(0,T; W12(Q2)) and b € V!. Then

ladllz2 < [[bllze [lall L2
laz bll > < [bl| oo [|a |l 2

Jabelis < Ibellzs lallzes < ellbullzs lallzowsa
Thus, invoking (8)
||a bHL2(07T;W1,2(Q)) <c ||bHV1 HCL||L2(07T;W1,2(Q)) . (11)

This shows that V! is a multiplicator space for L2(0, T; W12(2)).
We note further that

Hax,ar bl[z2 < ||b]| oo Hax,x L2
|az bzl < [[bzlzooa lazlrze < c[[bllyr |lal|z2wz2
labesllz < ||bzellzeoe |allLzee < e llbrgllzoos |lallpzwze - (12)
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Local well-posedness for quasilinear parabolic systems 7

Again (8), (11) and (12) yield
||CL bHLQ(O,T; W2:2(Q)) <c ||bHV1 HCLHLQ(QT; W2:2(Q)) - (13)
This shows that V! is a multiplicator space for L2(0,T'; W?22(2)). We also easily show that
labllzz < [[0]| e laclzz < c[[bllvr [lae 22
labellrz < [|bel[r2a [[allLoes < cl[bll 2wz [la]l poowrz -
Thus
[(@b)l[rz < c[|bllvr [lally, - (14)
Combining (13) and (14) yield
a bHWQl(O,T;W?v?(Q),L?(Q)) < clblly [[allv, -
Since also
@z bll po2 < [[b]| poe [|ag || o2
laballzes < [bellzms fallsms < cDlmree fallmrs,
we obtain that
[abllvo < c|lbva [lal[vo. (15)
Thus, V! is a multiplicator space for V°.
We note that d € V' if and only if d, € V°. On the other hand, the inequality (15) yields
[(@b)zllvo < c([lazllvo |[bllvr + [[al[vr [|bz]lvo)
< cllallys by (16
This shows that V! is a multiplicator space for itself.

Similarly, d € V? if and only if d,, € V. Thus, (16) directly implies that V? is a multiplicator space for
itself. Finally we show that Fq (V') is a multiplicator space for V1.

Let ¢ € L?(0,T; W12(R?)), and a and b be smooth functions defined on R?.
Then ((ab):, @)r2msy = (s, D) r2msy + (bs, @ @) r2(r3). Moreover

bo|| Lowr.e

bllvigorixrs) (|9l Lewr2
[(be, ad)r2(o,ryxra)| < (|02 [|a| o2 @] L2

< c|lbellrewrz |al[ oo ([l L2z -

[(at, b®) L2(j0.11xr3)| < ||ae]| 22y

S C HCLtHLQ(Wl,Q)*

Thus [[(a )| L2ew12)- < c||blv1qorxr3) [|@]|y-1. Combining the latter with (11), we obtain that
|a wag(o,T;wm,(WM)*) <c HbHvl(}o,T[xRi*) ally-1 -
Choosing b = Eq(b) with b € V1(]0, T[x ), we see that Eo(V!) is a multiplicator space for V1.

Finally, if X is a multiplicator space for Y, and if both X, Y < L2(0,T; W'%(Q)), then for all
reXandyeyY

(@) YW llws, vy < llzylly < [lzlx llylly -

Thus [[7(2) Y(¥)llws, v < |llws, x [[Ullwg, v, and one sees that the multiplicator property extends
to the traces. O
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The following consequences are direct.

Lemma 2.5. Foru, v : () — R smooth enough:

1 ||w va |l 20,0 w2y < clullyr |[v]|ve;

2 Juvg|l 2wz < cflullve Jvflve;

3 [luvallLaom w2y < cllullvr (ol

4 [[Eq(u) Eq(vs)[[v-1 < clullvr o]y

5 [[vg ullyo < cfluflyr|v][ys.

6 [[uv[[mve < cllullpvr [[v]l7vo.

7 [Vr(uv)mve < cllullzp [[ofl 5
Proof. We show (2.5) making use of v, € V! and of the fact that V! is a multiplicator space for
L2Wh2 Moreover ||w|| 20,7 w2y < [Jullvr.
For (1), we make use of the same argument and that ||v. || zw12 < [[v][y0.

In order to prove (2), we make use of the fact that V! is a multiplicator space for L21¥/%2, and that
[02| L2w22 < [|v]lyr.

In order to prove (3), we make use of the fact that EQ(Vl) is a multiplicator space for V=1, and that
| Eq(vg)][y-1 < |Jv]|yo (see the Lemma 2.1).

Since V! is a multiplicator space for V°, (4) is obvious.

In order to prove (5), note that for arbitrary extensions #, v into €2 of u and v, the Lemma 2.4 yields
[a5][vo < clfallyr [[D]lyo. Thus

[wv]lye < cllafly |o]poVa eV, s eV’ t=u, v=vonSr.

Thus, (5) follows from the definition of the norm for spaces Trg,. (cf. (7)).

In order to prove (6), we choose an extension 7 € C? (ﬁ; R3) for an arbitrary tangential vector 7
field given on J€). We then regard Vr = 7 - V as a differential operator that we can apply on bulk
functions. We Since V! is a multiplicator space for 1, it follows for arbitrary extensions % and ¥ that

[T - Vol <cllr- Vol llulye < ell7llox@) [[0lv [all -

Thus [[u7 - Vorg vo < c||vflng, v [[ullwg, vi- The claim (6) follows easily. O

2.4.2 Nemicki operators

Nemicki operators are, beside multiplication operators, another important ingredient for the analysis
of quasilinear equations. In the following statement, we for simplicity regard the spaces V! as sets of
scalar valued functions (/N = 1).

Proposition 2.6. Letb : [0,7] x @ x R — R. Foru : [0,7] x Q — R we define Ny(u) :=
b(t,x, u). Then, the following is valid:
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Local well-posedness for quasilinear parabolic systems 9

(1) Ifb € L=([0, T]; C3(Q x R)), then, the Nemicki operator u + N, (u) is bounded and continu-
ous from V' into L*(0, T'; W32(Q)).

@) Ifb € CY[0,T]; C?(2 x R)), then u + N,(u) is bounded and continuous from V' into
W5 (0,75 WH2(Q)).

(@) Ifb € L>=([0,T]; C3(© x R)) N C*([0,T]; C*(Q x R)), the operator Ny, is bounded and
continuous from V' into itself. If moreover b, € L*°([0,T]; C*(Q x R)) N C([0,T]; C*(Q x
R)), it is even Fréchet differentiable from V! into itself.

(4) Ifb, by, b, € C*([0,T]; C?(Q2 x R)) N L>([0,T]; C3(Q x R)), the operator N, is bounded

and continuous from V? into itself. If moreover b,,, and b,, € C'([0,T]; C*(Q x R)) N
L>=([0,T]; C3(Q x R)), itis Fréchet differentiable.

Proof. The derivatives of f := b(t, x, u) are given by

faci,xj = ba:i,acj + bu7acj Uy, + bu,xi uxj + bu,u Uy, uxj + bu uxi,acj .

The third derivatives are given by an expression

f:}c,x,z = Z Ca,p D;‘u Dfu .

a+5<3

Here, the coefficient ¢, s(t, z, u) are given by b and its derivatives after v and = up to order three.
Recalling (9) and the embedding V! C L°°(Q), we obtain that

1|20 wa2@)) < ellfulle) (T + fJullv) = C((lufly) - (17)

This shows that the Nemicki operator is bounded from V! into L?(0, T; W32(Q2)). We easily show
the continuity, proving (1).

We compute the derivatives
Jro = brg 4 Dug Up 4 by g Uy 4 by gy Ug Up + by Ug -
For u € V!, it follows from (9) that ||u, w|| 2 is bounded by ||ul|3,. Thus
1l omswray < clullie) 1+ ul3) (18

This shows that the Nemicki operator is also bounded from V! into W, (0, T'; W12(£2)). Combining
(17) and (18), we obtain that N}, is bounded from V! into itself, that is,

[Ny (w)llvr < ep([ull)- (19)

We prove easily the continuity.

It b, € C([0,T]; C3(Q x R)), we can show that the mapping N}, : u + b(t, z, u) is a Gateaux
differentiable operator between V! and itself. The directional derivative at u* is the operator

N)(u*)u = by (t, 2, u*)u.
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P-E. Druet 10

Making use of the Lemma 2.4, we see that
1bu(t, 2, ™) ullpr < clully bu(t, 2, w")[yr .

Reinterpreting b, (¢, z, u*) as Nemicki operator Ny, (u*) and making use of the first step (19), it
follows that

[bu(t, 2, u*) ulyr < cllully C(lut][v) -
Thus ||V, (u*)]| 2ot vy < cop, (|u*][y1). We can show that u* +— Nj(u*) is continuous from V*
into .Z(V!, V') which is nothing else but the C property. This shows (3).
To show (4), we consider IV, as an operator on 2. To show that N,(u) € V?, it suffices to show that
(Ny(u)), € V', thatis
bo(t,z, u) + by(t,z, u)u, € V'.

For pairs v = (u, u,) € R*, we introduce lN)(t,:r, v) = by(t,x, u) + b,(t,z, u)ug. It b, by, b, €
CY([0,T]; C2(Q2 x R)) N C([0,T]; C3(Q x R)), then b € C([0,T]; C%(Q x RY)) and b €
C([0,T]; C3(Q2 x R*)). It then follows from (3) that the Nemicki operator IV is continuous from V*
into itself. If moreover b, ., b, € C1([0,T]; C*(Q x R))NC([0,T]; C3(2 x R)), the operator is
Fréchet differentiable. O

Corollary 2.7. Letc € C'([0,T]; C3(Q2 x R*)) N C([0,T]; C*(Q x R*)). Then, the Nemicki
operator N.. : u + c(t,z, u, u,) is well defined and Fréchet differentiable from V* into V.

Proof. Define N.(u) = c(t,x, u, ,u,) for u € V*. Since u, € V', we have N.(u) = Na(u, u,)
with Nz(w) = c(t, x, (u,u,)). Here ¢ € C1([0,T]; C3(Q x RY)) N C([0,T]; CHQ x R*). Thus,
from the Proposition 2.6, (3) we can conclude that N, is a C'! operator between V2 and V!, O

2.5 An extension operator for the oblique derivative problem

In order to homogenise boundary conditions, we need an operator proposed in Lemma 7.19 of [Lie96]
and slightly modified in the following Lemma.

Lemma 2.8. Let f € Trs,. VL. IfO) is of class C3, then there exists a function U € V° such that

U=00onSr, v(z) VU= f(x)onSr
[Ullvo < el fllmg, v -

Proof. We first construct the operator for a flat situation. Assume at first that f is a function of class
C(] — oo, +00o[xR?). Let € C>(R*) be a smooth function with support in B;(0) such that
Jgs ®(2) dz = 1. The variable X € R* stands here for X = (t,x) where x in R? is the space
variable. For X € R* we consider

TN =Xt [ o) f(z)az. 20)
R 4
Here § := (2,1, 1, 1). The transformation formula yields the equivalent representation
T = X0 [ @) (X = X7 ¥)ay. @)
R
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Local well-posedness for quasilinear parabolic systems 11

First, for + = 2, 3, we can show that

(Tfx, = —Xi° | Ox,(%

R4

:/ Oy, (V) f(X - X[Y)dY .

?)f(Z2)dz

XB

Fori =14

(Tf)x, =— Xy /<I>X4 f(2)dz

X0t [ Y () S rya
=1

+4X77 | @(5F) f(2)dz.

R4

Introducing ¥(Y) := "7, B; ®x.(Y) Y}, then it follows that

(Tf)x, = / D (V) F(X = X[ Y)Y -4 / (V) f(X — X} Y)dY

R4

—/ U(Y) (X -XPY)dy .

For: = 2, 3, we make use of

(@hxP < [ ox0lay [ jes )X - x]v)ay

<C [ 100 () PO X Y)aY.
R4
Thus, integration over R* yields

Inslie<c [ sl [ Fe-x]y)axay
R4 R4
Since by the transformation formula
1
FAX = X{Y)dX = — || f]72
R4 1-Y,

it follows that

nxi<c [ 5 Bl oy 1.

The choice of ® now guaranties that [g, w dY < ¢||®|lw22ga). Similarly, we show that

(T f)x,l|52 < C||f]|32- Thus, the operator T" extends to a bounded linear operator from L*(R*)
into L?(R; W2(RR?)).

Due to (21), we easily verify that the trace of 7' f on the plane X, = 0 is zero.
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Now we verify the claims on the derivatives of 1" f and the normal trace. For 7 = 2, 3, the representa-
tion (20) also implies that

(Tf)Xz = _X4_4 (I)<X_Z) sz<Z) dZ = T(sz) ) (22)

B
R4 X1

2wz < C| fx,

Thus [[(T'f) x,

w2 = [T(fx;)

12. For 2 = 4, we make use of (21) to see that

T = [ @0 FX = XV) Y +X4 [ 007) (X = X]Y)

4

=T I (X = XYY G XY ay
=1

= [ a0y o= xv)ay £ X0 [ o) (X - X]Y)

R4 4
4

_ Z fo (X =X/ Y)Y)dY — 2 X3 / O(Y) fx,(X = XPY)YidY
i=2 R

Now, there exists a vector field I’ € L?(R?; R?) such that fy, = div, F' and
£ 2@ 2oy = I F N2y -

Fori =1,...,4define U?(Y) := ®(Y)Y; and observe that

Xy

-2 X} / DY) fx,(X = XV Vidy =2X;7° [ O ESE) div, F(Z)dZ
R4

R4
=-2X" ) /Réltilﬁ(i(x)q;Z)E(Z)dZ.

i=2,3,4

We obtain the representation

(T, = [ o) F(X = X[¥v)ay

+(Tha) = D ATafx) = 2Ty, F)}- (29)

i=2,3,4

Due to the properties of 1":

1T fx 2w < O fx, |2
| Tg: fx: || 22 < C| fx,
[Ty Fill 2wz < C|F|

LZ

2 < O fx [l 2w w2 msy)-) -

With similar arguments, we also prove that the function g(X) := [, ®(Y) f(X — X?Y)dY satis-
fies ||g||L2W1,2 < C (HfHLzWLQ + HFHLz) Thus, overall

T fll L2 weems)) < C ([ fllzewre + [ fx, | 2mrzy) -

Moreover, (23) shows that (7'f) x, = f on the plane X4 = 0.
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Local well-posedness for quasilinear parabolic systems 13

For the time derivative Jx,, we can show that
(Thx, =X, [ () fx,(£)dZ .
R4 X4

Therefore (Tf)x, = —X1° [as Doios4 ¢X1’(%) F,(Z)dZ. It follows that
= 4

I(Tf)x N2 < O\l fxo |2 w2 @sye) -

In order to prove the statement in a curved situation, assume that |0, 7'[xI" =]0, T'[x (02 NU) is a
piece of surface such that a C? diffeomorphism F exists between R x {(X», X3, X4) @ | Xy] < 1}
and 0, T[xU. We then choose U (t,x) = (T(f o F))(F (¢, z)) and the claim follows. O

2.6 A simple operator theoretic tool

Lemma2.9. Let X, Y be Banach spaces with X reflexive. Let { L(s) }scjon] C Z (X, Y) be a fam-
ily of bounded linear injections such that £(0) is invertible and such that L(s) — L(sg) in £ (X, Y)
forall s — sy € [0, 1]. Assume moreover that all solutions to L(s)x = y satisfy a uniform bound
|lzllx < e |lylly- Then, L(1) is invertible.

Proof. Define
s* :=sup{s € [0,1] : L(s)isinvertible } .

Since L(0) is invertible, the Banach perturbation argument yields that £(s) is invertible for all || £(s) —
L(0)]| 2x,v) < III£0)]" .2y, x)- Thus, s* > 0. We next show that £(s*) is invertible. By defi-
nition, we can choose a sequence s” * s* such that £(s") is invertible. In particular, for arbitrary
y € Y, we can introduce " € X such that £(s")z™ = y. We make use of the assumption,
|z™]|x < e1]|ylly- Thus, extracting a weakly convergent subsequence =" — x, and using that

L(s")a" =y + (L(s7) = L(s")) ="
we see that L(s*) x = y. Thus, L(s") is surjective, and therefore invertible.

If now s* < 1, the Banach perturbation argument yields that £(s) is invertible for all s > s* such that
1£(s) — L(s*)||.zx,v) < II£(s*)] " |2 (v, x)- This would contradict the definition of s*. O

2.7 Preliminaries associated with the elliptic operator

Localisation. Assume that ) is a domain of class C" (m > 1). We find a partition of unity
Co, - - - » G, for the domain €2 (see Theorem 5.3.8 of [KJF77]). For 1 = 0, ..., n, we denote €}, =
{2 N supp (. It is possible to assume the following:

B The function (, has a compact support in €2;
B Foru =0,...,n,there are vector fields V1, V12 Vi3 € C™=1(Q,,; R?) such that

{vel(z), V#*(z), V*3(z)} is an orthonormal system of R® for all z € Q,,
Vi3 (x) = v(x) forallz € 9Q Nsupp C,, .

(For extension of the vector v, see the Section 14.6 of [GTO1]).
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In particular, we can decompose the gradient of a function as follows:

m 3
we = Y (VM- Vw(,) Vi (24)
pn=0 ¢=1
There the vector fields V1, V2 are tangent on O for ;. = 1, ..., m. With this construction we

can avoid tedious changes of coordinates to locally flatten the boundary.

Linear elliptic systems. We consider a general second order linear PDE system in divergence form

_awk (Mivjvkag(m’) Ujﬂ»‘z) - fz(x) . (25)

The system is uniformly elliptic if there is 0 < vo(M ) such that

N 3
vollAIIP < DY Mijre() Ak Ajeforall A € RV (26)

i,j=1k=1

We commence with a technical preliminary about the connection between bulk and boundary operator.
The proof is completely elementary and might be left as an exercise.

Lemma 2.10. Assume fori,j = 1,..., N andk,{ = 1,2, 3 that the functions M ; ., are of class
C%Y(Q). Consider vector fields V1, V2 V3 that we assume of class C11(); R?) and orthonormal
inQ C Q.

Ifv € W22(Q; RY) satisfies the equations (25) in S, then the following identities are valid for
i=1,... N:

2
VE Mijis (V2 V0))zy = = VR Mijie (V- V), — fi
A=1
3

+ Z ‘/k)\ (Mi,j,k,g(l’) (v)\>x5 . VUj - V)\ . VMi,j,k,Z Uj,zg) . (27)
A=1

and

M;jysys V2 -NV(V? Vo) = —f;
2
= Mijre [V (V- Voy)a, + VEVA V- V(VA - V)]
A=1

3
Y VR (Mijae (VNa, - Vg = VA VMg s,
A=1
2
Y VEVA My [{(VA-V)VE — (V3 V)V V)] (28)
A=1

The fundamental Hilbert space estimates for linear equations and systems are very well known: see
[DN55], [Nir55], [UN57]..
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Local well-posedness for quasilinear parabolic systems 15

Lemma 2.11. Assume fori,j = 1,...,N and k,{ = 1,2, 3 that the functions M, ; . ¢ are of class
C%1(Q) and satisfy (26). If Q) is of class C'! the unique solution v € W?2(§); RY) to the equations
(25) in Q) in connection with one of the following two boundary conditions:

— v M, j o(%) vj 2, = 0 on OS2
v =0 0ondf2

satisfies the estimate ||v ||y 2.2, rvy < || M| cor(a)) | fl 220 r)-

3 Reduced quasilinear parabolic system in divergence form

For functions wq, ..., wy : @T — IR we consider the problem:
O Ri(t, z, w) +div J'(t, z, w, wy) = fi(t,z, w, wy)in [0,T] x Q (29)
Bi(t,x, w, wy) = fr(t,, w) on[0,T] x 99 (30)
w = ¢° in {0} x Q. (31)
The functions Ry, ..., Ry are defined on @ x RY. We denote (t,z, z) a generic element of the

latter domain.

The functions J,i t=1,...,Nand k = 1,2,3)aswellas f; (i = 1,...,N) are defined on
Q x RY x RN¥*3 We denote (t,z, z, D) a generic element of the latter domain. The functions
fra, ..., fr,n are naturally defined on St x RN, but we will for simplicity directly assume that they
are extension functions defined in @T x RV,

In this section, we assume that .J generates a restricted quasilinear operator in divergence form for a
fully coupled system, which means that .J is linear in the variable D. Therefore
N 3
Ji(t,z, w, wy) == — Z Z M jke(t,z, w)wj,, fori=1,..., N, k=1,2,3. (32)
j=1 ¢=1
Fori,j = 1,...,Nand k,{ = 1,2, 3, the function M, ; ;. , is defined on Q x RY. With M j ket
M; j k02> M; j ke -, we denote the partial derivatives of M in these these variables.

The ’parabolicity’ of the system (29) lays in the following assumptions for 2 and M : There are positive
continuous functions Ay < A\; € C(RY) and vy € C(RY) such that

|X|2<§:R (t )XX<| |2f Il X e RY (33)
iz (b, 2) X X < ora
M(z) T A= 77 Xo(2)
N 3 '
vo(2) [DI* <> Mijnelt, x, z) Dj, D forall D € RN (34)
i,j=1k,l=1
In this paper, we only consider the natural boundary operator
3
Bi(t, z, w, w,) = Zyk(x) Ju(t, x, w, w,)
k=1
3 N 3
= — Z Vk<.%') (Z Z Mi,j,k,f(ta x, w) wj7x£> . (35)
k=1 j=1 ¢=1

Our main result in the section is the following Theorem.
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Theorem 3.1. Assume that ) is a bounded domain of class C°. Assume fori = 1,... N that
R; € (C% N CY)([0,T] x Q x RY), and that M 1, € (C%* 1N CL3)([0,T] x Q x RY) for
i,j=1,...,Nandk,{ = 1,2,3. Assume that R satisfies (33) and M satisfies (34). Assume that
f€C%([0,T] x @ x RY) and that fT € C*4([0,T] x Q x RY). Let gy € Tryoyxn V? satisfy the
condition

—vi(x) M; jre(0,2, ¢°(2)) ), = f1(0, z, ¢°(x)) forall z € DN (36)

Then, there is T > 0 depending only on R, M, ¢° and the domain Q) such that the problem (29)
possesses a unique solution w € V*(Qr; RY).

The remainder of the section is devoted to the proof of this statement.

3.1 The fundamental case

In this subsection we consider (29) with zero lower—order terms (f = 0 and fr = 0). The assumed
compatibility condition (36) is then

N 3
- Z Z () M;j1ee(0, 2, ¢°(2)) 45, (x) = Oforall z € Q2. (37)

3
k=1 j=1 (=1

By means of the Lemmas 2.6 and 2.7, it can be shown that

B For R € (CY* N C%)([0,T] x 2 x RY), the non-linear mapping R defined via

(R(w))(t, z) == O, R(t, x, w)

B For M in (C*? N C%*)([0,T] x Q x RY), the non-linear mapping Q defined via
(Q(w))(t,z) :==div J (¢, z, w, wy)

map continuously the space V2 into L2(0, T; W22(Q; RY)). Moreover, R and Q are Fréchet dif-
ferentiable as operators between these classes. To see this in the case of R, we reinterpret R as
a Nemicki operator N between V? and itself. This operator is Fréchet differentiable according to

Lemma 2.6, . Thus, the composition operator % o R is Fréchet differentiable as an operator from 12
into L2(0, T; W22(Q; RY)).

Similarly, it M € (C'* N C%"([0,T] x Q x RY), we can interpret Q : w > M(t,z, w)w,
as a C! operator from V? into V! (Lemma 2.7). Then, div oQ is Fréchet differentiable from V2 into
L2(0,T; W22(Q; RY)).

It can be shown under the assumptions M € (C'* N C%*)([0,T] x Q x RY) and 99 of class
C? that the non-linear mapping B : w — B(t,x, w, w,) maps Trg, V? into the space Trg,. V!. To
see this, we again simply reinterpret B(w) as the Nemicki operator N.(w) with ¢(t, x, w, w,) =
v(z) M(t,z, w)w,, and we apply the Lemma 2.7. Note that we need here an extension of class
C*(Q; R?) of the normal vector into €2 (see Section 2.7).

We denote throughout the section ¢° € V? the initial data. We introduce a non-linear operator G =
{G1, G5} acting on V3 via

Gv) = {Rw+¢")+ Qv+ ¢"), Blv+¢")} (38)
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Local well-posedness for quasilinear parabolic systems 17

Due to the preliminary remarks, the image of V3 under G is a subspace of L2(0, T'; W22(Q; RY)) x
Trs, V1. Under the compatibility condition (37), it is even a subspace of

2% = L2(0,T: W?2(0: RY)) x Tr, V. (39)

Moreover, GG is Fréchet differentiable as a map between V3 and Z2. It is readily seen that the resolv-
ability of the problem (29) in V? is equivalent with solving the equation G'(v) = 0 in V3. Our analysis
of this equation shall rely on the implicit function theorem.

We now investigate the directional derivative G at a point v* € VEZ (introduce w* := v* + ¢° € V?),
which is the linear operator given by

G'(v) € ={R'(w) &+ Q(w") &, B'(w*) &} for § € V5. (40)

We identify G’(v*) as a linear operator of £ (V3, Z?). Fori = 1,..., N, we here make use of the
abbreviations

(Q(w")§); = _Zdik (ZZM,JM (t,x, w*) &ay

k=1 j=1 ¢=1

N
+ Z Mi,j,k’,f,zm(tv Z, U)*) gm w;u>

m=1

3 N 3
(B'(w*) &) = — Vk (ZZM,JkétI W) &y
k=1

7j=1 ¢=1

1

m

N
+ Z Mivjvkvévzm (t7 x’ w*> fm w;':x£> .

For simplicity, we shall split these operators into a principal part and a lower—order part. We introduce
the following principal parts of these operators:

N
(RL(W*) 5)1 = Z Ri,Zj (t7 xz, ”LU*) atgj

Jj=1

3 N 3

(Qu(w")§); == — Zaxk ZZM,;,M (t, o, w*)&ja,)
k=1 Jj=1 /=1
3 N 3

By(w) €)i ==Y vk (O )  Mijualt,, w*) &) -
k=1 j=1 ¢=1

Remark 3.2. The operator § — {R,(w*) + Q. (w*), B, (w*)} & extends to a linear operator of
LV, Z°). Here Z° := L*(; RY) X Trg, Vgs .

[y

Proof. Consider the inequalities
IRG(w*) €llz2(@) < [[R:(E, 2, )| (@)) 10:€]l22(0)

* * d *
196(w™) €llrz@) < (IM(E @, w) (@) + | Mt 2, w)lli=@) e lwpog) -
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Since w* € VZ implies w*, w’ € L>(Q), it follows that
(R (w™) + Q,(w")) €l 2@y < elllw™{lv2) [|€][vo -
Moreover, recalling Lemma 2.5, (3) we obtain that
1B5(w") Ellmeg, v-1 < c[[M(E, 2, w)llvr [[E]lvo-

O

Our aim is to show that the Fréchet derivative G’ (v*) is invertible at arbitrary v* € V3. We shall need
several preliminaries.

Lemma 3.3. Assume that the hypotheses of Theorem 3.1 are valid. Assume moreover that the follow-
ing data are given:

1 w* € V?;
2 fe L*0,T; L*(Q;RY));
3 fr € Trs, Vis's
4 wh e Vy.
Then, the second boundary value problem
B (w*)w = fronSr, w(0)=0 (41)
and the first boundary value problem
w=w"onSr, w(0)=0 (42)

for the system R. (w*) w + Q! (w*)w = f in Qr both possess a unique solution in the class V° of
strong solutions. There is a number ¢ = c(||w*||y2) such that in the case of (41)

[wlvo < e (I fllz20r; 22 mm)) + [ frll s, v-1) -
and in the case of (42)

|wllyo < C(HfHLQ(O,T;LQ(Q;RN)) + ||wFHTrST vo) .

11l
Proof. Since w* € V2 then the scalar components of w* belong to H2'1(Q) < L>*(Q)). The
matrix I2; . (¢, z, w*) is therefore uniformly invertible.

We consider the following equivalent equations in connection with (41), (42):
dw — [R.(t,z, w)] o @ (w)w = f:=[R.(t, zw")] ' f.
We first focus on the problem (41). For t € [0, 7], z € 9Q and z € RY, define

3
(M,,)i(t, z, 2) = Z M, it z, 2)vp(x) ve(z), i,5=1,...,N.

k=1
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Due to the assumption (34), the matrix M, , (¢, z, z) is invertible for all (¢, z, z) € Sp x RY.

Recall that fr € Trg, Vﬂgg,l. In particular, there is a bulk extension fr € Vﬂggl. Employing the Lemma
2.8, we find extensions U1, ..., Uy € V° that satisfy the following conditions

U,‘ZOOHSTU({O} X Q)
N
v- VUi = hp; = — Z[(M,W)(t,x, Uﬁ)];jl Jr

j=1
[Uillvo < cllhrllwg, v-1 -
Making use of these identities, we can show forz = 1, ..., N that
Vi Mi7j7k7g(t,l‘, w*) Uj,a:g = [M,/’V(t,f, w*)]m v - VU] = fni .

Moreover, due to the Lemma 2.4, and to the Lemma 2.6, we obtain that

1hr g, v-r < e I[(Myu)(t, 2, w)] 7 v [ fellvg, v-1

< c(lwlv) [[frllwes, v-r -

Therefore [|Ui|vo < c([|w*[[v1) [| fr[lws, v-1. We consider instead of w the function w = w — U.
For simplicity, note that we in fact loose no generality in assuming fr = 0, and in considering the
problem

dyw + [R.(t,z, w)] ™ o @ (w*)w = fin]0,T[xQ
B (w*)w=00onSr, w(0)=0.

The fundamental idea to solve this problem is to use the Lemma 2.9. For s € [0, 1], introduce

Mz‘s,j,k,é =S Mz’,j,k:,f + (1 — S) 51',]’ 5k,g (43)
We introduce operators
Q;(w*; 3) w = _aﬂfk< z‘s,j,k,f(ta Z, w*) wj,xz)
B(w"; s)w = —vi(@) (M7 0(t, 2, w) w)a,) . (44)

We now introduce a linear operator acting between V° and Z° via
L(s) = {Ow + [R.(t,z, w")] o Q. (w*; s)w, B, (w*; s)w} (45)
The injectivity of L(s) is obvious.

Assume that w is a solution of class V° to £(s)w = (f, 0). Then, we multiply in the bulk with
— Q! (w*; s) w and we integrate over 2. This procedure yields

—A@mqwm$M+Ammmww*@wm$w@mw@w

—— [ Fieiw s)ul.
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To proceed, we make use of the fact that () is a reduced quasilinear operator in divergence form.
Therefore, making use also of the boundary conditions, we can derive the identity

- [ @y )
g [ Mt ) g, + (1= ) s () (46
-5 /QMi7j7k;7£7zm(t, x,w") Wy, 4 Wi zy Wiz, -
Thus, every strong solution of class V° satisfies for all ¢ €]0, T'[ the identity

b0 0w wo)

+ / | / [Ra(tz, w*)] 7 [Q(w"; ) w] [Q(w"; s)]
<~ s [ [

We make use of the assumption (33). It implies that the symmetric part of [R. (¢, z, w*)]‘1 is uniformly
elliptic. Thus, every strong solution w satisfies the bound

%/Q{MS(w*(t))wx(t)wx(t)}+)\0(||w*||LOO(Q))/0/Q[Q;(w
9 ! .
Ao([lw* ]|z () /0 /Q[Rz(t,x,w)] f-f

t
el lom@) [ [ il @)
0o Ja
We make use of the assumptions (34) on M to see that
[ @) ) w ) = nllelme) +1-3) [ lo.0F

Owing to the fact that w* € V2, we know that the components of w; belong to L?(0, T'; W22(Q))
which is a subset of L?>°((Q). Therefore

/Q () s ()P < 7 (8)] ey / s (8)
< e [0 (8) lwezcay / s (£)

Thus, the identity (47) and the Gronwall Lemma yield

2 CA/I f() ”wt ||W2 2() _4 T *\1—1
|wx )< e’ v Yoo R.(t,z, w")| " f- f
0 Q

< c(w) [|fllz2@)

In the latter relation, we have defined

* _ ZCM ”w ”Ll(O T W2’2(Q))
c(w*) :=¢e" w T

4\
)\0 140 )
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Thus, it follows that every strong solution satisfies the bound

€8S SUP;c(0,7] /Q |wz(t)|2 < c(flw*][y2) ||f||L2(Q) :

Returning into (47), the next is readily deduced

/ / Qs ) wl? < el llve) |z -
0 Q

We invoke the Lemma 2.11 with M () := M (t,x, w*(t,x)). For domains of class C'!, we obtain
that

lwll 2205 waz(eirn)) < elllw”llyrogp) 1Q6(w™s s) wllzag)
< c(lfwllve) £l -

It follows that every strong solution to (41) satisfies an estimate
[wl] Lo o,y w2y + w200 wez@sryy) < e(llw*llve) | fllrz) - (48)

A bound for the time derivative d;w in L*(Q; RY) now follows from the equations £(s) w = (f, 0).

Thus, overall, we have shown that £(s) w = (f, 0) implies

lwllvo < e (1fllz2@rm) + [1frllns, v-1)

with ¢ independent on s. The existence can now be deduced from the Lemma 2.9.

The proof for the boundary condition w = w! on Sy (cf. (42)) is completely similar. Considering
without loss of generality w' = 0, it suffices to repeat the same argument starting from (46). O

Next we prove some technical preliminaries related to differentiating in the equations.

Lemma 3.4. Assume thatw € V), is a solution to
R (w)w+ Q. (w)w = f inQr.
Assume moreover that
1 w* eV
2 fe L0, T; Wh2(Q; RY));

LetV € C3(Q; R3) be a given vector field. Then, the vectorn = V - Vw belongs to V° and is a
solution to

(R.(w*) + QL (w))n=V -Vf+2(V, w)winQr.
The operator & satisfies the estimates

1Z(V, w)ll 2z, 2@irvy) < clllw”llv) IV ez ps)

12V, w)| 2o, 20mmrz@rvy) < c(lwllve) [V | es @ ps) -
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Proof. We can show directly that the vector ™ := 0,, w (n € {1, 2, 3}) satisfies the equations

Ro(w™)n" + Qu(w ) n" = fo, + 9
d d d
%Ri,zj (t, Z, w*) Wi ¢ + — (%M@jk,g(t, Z, w*) ij) . (49)

9 == d.ﬁlﬁk
We introduce the operation

g=:9(", w)w, (50)

Next we consider ¢ € C2(12) arbitrary. By means of obvious manipulations, the vector 7" := 7" ¢
satisfies the equations

Ro(w) " + Qu(w) 7" = ((fa, +9) + 7
Gi = =G, My ji ety )07, — O (Mi et @, w) 0 Crp) - (51)

We introduce the operation
§g=2(¢, w)w.

Now we choose ( = V,, and sum up in the equations (51) forn = 1,2,3. The vector ) := V - Vw
then satisfies

Ro(w)n+ Q(w )n=V-Vf+2(V, w)w
2 ~
2(V, w")w = Z(Vn D", w)w+ 2 (V,, w)w.
n=1
It remains to verify the estimates. First, we consider g in (49). Owing to the Lemma 2.6, the oper-
ator w* — R, (t,z, w*) is continuous from V?* into itself. Thus, w* %sz (t,z, w*) maps
continuously into V.

It follows that
I3 Rz (2, w) wil| 2 < g2 Rz (8 2, w0) || oo [l 22 < e Jlw™[lye [Jw]lyo -

The Lemma 2.5, case (2.5) with v = R; ., (¢, 7, w*) and u = w yields

d

[[we ERLZJ- (2, w)|[r2007; w2 < clw{lv2 lw][yr.

Similarly, w* — M jo(t, z, w*) is continuous into V. The Lemma 2.5, case (1) with u =

d
dzn
=M g o(t, 2, w*) and w = v yields

d . d .
H%Mi,j,k,f(t:% W) we || 20,0 w12y < C||%Mi,j,k¢(t,$, w”) ||y [|wlyo
n n

< cllwflve fwllve .

Analogously, employing Lemma 2.5, case (2)

d
HEMi,j,k,f(t;:a w*) meLQ(O,T;WQJ) S C ||d_.];nMi’j’k’€<t7x’ w*)HV1 ||wHV1
< cllwlyz lwllyr .

Second we consider g in (51) and we note that the structure is completely similar to the one of g. The
claim follows. 0
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Lemma 3.5. Assume thatw € Trs, V! is a solution to
Bg(w*) w= fronSr, fré€ TI’STVO .

Let V € C*(Q; R®) be a given vector field such that V (z) - v(z) = 0 for all x € OS). Then, the
vectorn = V - Vw belongs to Trs,. V" and is a solution to

B(w)n=V-Vfr+ 2"V, w)winQr.
The operator "1 satisfies the estimates
12" (V, w)l| g, w1y < clllwlve) [V Ileagmey (7]l o rey
||9F(V» w*)”.,i”(TrVé,TrVg) < c(flw* =) HV||04(§;R3) ||V||c4(§;R3) .
Proof. We assume the validity of B, (w*) w = fr as an identity in Trg,, V° C L*(0,T, W2(09Q)).
Thus, we are allowed to apply the tangential differential operator V' - V to this identity, and this yields

Bg(w*) n=V- Vfr + gr on St
gri = Wiz, (= Mijre (Vi)a, +V - V(e Mijx))

We introduce the operation
gr =2 2"V, w*)w, (52)
We make use of the estimates of Lemma 2.5, case (3) and (4) to show that
[t ve[[rg,v-1 < e lluflmg, v [v]lwg,wo
[t vg[[rg,vo < ¢ llullmg v [v]lwg, w1 -

We choose v = wandu = M (t,z, w*) (—v (V). +V (v),) —vV - VM(t, z, w*). Owing to the
Lemma 2.6, note that

[ullvr < [[vlles [Viies IM & @, w*)[lv + [[v]lcs [[V]]es H%M(t,x, W)y

< clvlies IV lles ellwly2) -
Thus

1251V, w) wliwg,v-1 < cllvllo [V]os e(llw[[ve) [[wlwg, vo

1251 (V, w*) wllag, vo < clvllen [[V]Ion e(llw[lve) [[w]lwg, v -
The claim follows. O
Lemma 3.6. Assume thatw € V! is a solution to
B (w*)w = fronSy, fr€ Trs, V.

LetV € C3(Q; R?) be a given vector field such that V (x) is parallel to v(z) for all z € 0. Then,
the vectorn = V - Vw belongs to Trs, VS and it satisfies

n=VI([Myu(t,z, w)] ™! fo+ 25 (w*) w).
The operator "1 satisfies the estimates
1251V, w*) wllmo < e(l[w*[lv2) [Vl e rey IV ez re) 1V 0wl 700

IVe(Z25(V, w) w)llave < e(llwllvg) 1V llcs @zs) 1V los@ ps) [ Vrwllm
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Proof. Due to the equation M; ; ¢ Vi W; 4, = fr,i, we obtain that

2

(M; jro(t,z, w)vpvy) v - Vw; + Z M;jpe(w) v )™ - Vw; = fr,.

m=1

Here, v is a unit normal to 9 and {7!, 72, v/} is chosen as an orthonormal basis of R?. It therefore
follows that

2

VI (M jre(t, @, w*) veve) mj = fri— Z(Mzgk€<w*) vt )T - V.

m=1

By assumption, the matrices {M; ;.. (t, z, w*)}; =1, n are uniformly invertible for w* € L>(Q)).
Consequently, forc =1,..., N

|V|Z VVtxw (fF/ Z ]V’T‘mtx w)mij>
J'=1
We denote
UV, w)w = —|V(2)] [M,, (¢, z, w )] M jyrm(t,z, W)™ - Vw, .
The estimates directly follow from Lemma 2.5, (5) and (6). O

Lemma 3.7. Let W, V € C*(X%;R?) be parallel to v on OS). Assume that w € V2 satisfies
(R (w*) 4+ QL (w*))w = finQr.Fori =1,..., N, define ¢; := W - V(V - Vuw;). Then

D ll7s, ve < elllw?[v2) ([lwllyr + IVrwl[zg, v)-

Proof. Consider the functions ¢; := W - V(V - Vw;), where both W and V' are parallel to v on 0f2.
In order to treat this case, we introduce for ¢ = 1,..., N the abbreviation A; := —R, .(t,z, w*) -
Oyw + f;(t, ). By assumption, the identity Q' (w*) w = A is valid, that means,

—div(M;(t, z, w*)w,) = A;i(t,z) fori=1,...,N. (53)
Thus, invoking the Lemmas 2.4 and 2.6

[Ally—r < [|M (L, 2, w*) wallyo < [|M(E 2, w) v lwllys

< en(flwfvr) lwllyr -
Moreover, for a vector V' tangential to 0€2 (A = 1, 2), differentiation in (53) yields

V-VA, =—div(M;(t,z, w*) (V- Vw),) + (V) Mi(t, z, w*) wy,
+ div(M;(t, z, w*)w, Vi) =V div(M, . (t, z, w*) w} w,) .

Therefore, with the usual multiplicator arguments
V- VA[y-1 < c([fw[lv2) (IV - Vwllvs + [Jw]lyr) .
The characterisation of Lemma 2.3 now yields

[0 < e(lfw[lv2) (IV - Vwllyr + [lwlfyr) - (54)
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Now, we reconsider (53). Locally in Qu forpy =1,...,m, we apply the Lemma 2.10, (28) that yields
— Mi,j,V3,V3 VS . V(VB . ij) = Al + BZ

2
Y M [V (VY Vwy)e, + VEVAVE-V (V- V)]
A=1

3
B, :=— Z Vk’\ (Mi,j,k,é (VA)CEZ ’ ij -V VMi,j,k,f wj,o:z)
A=1

2
+ 3 VAV My [{(V - V)VE = (V3 V)V V).
A=1

Here, it can be shown using the properties of multiplicators and Nemicki operators that || B||y0 <
c(]|w*||yz2) [Jw]|y . Recalling (54), the vector ¢ = V13 . (V3 . w, ) satisfies

2

19]lns, vo < elllwllve) Y NIV*A - Vawlivs + | Allvg, vo + | Bl vo)

A=1

O

Now we have all ingredient to show the principal technical statement of the paper: The invertibility of
the principal part G’ with respect to V2.

Corollary 3.8. Letw* € V? and F' = (f, fr) € Z2. Then the problem
(Ro(w™) + Qu(w)w = f, By(w)w=fr, w(0)=0

possesses a unique solution of class Vé.

Proof. We consider the family {£(s)}seo,1] € £ (VF, Z?) of linear operators defined via (45). The
proof strategy is the following: Consider for s € [0,1] and (f, fr) € Z? an arbitrary solution to
w € V3 to L(s)w = (f, fr), and show that a uniform estimate

[wllve < ex [I(f, fo)llz -

is available. Then, by means of Lemma 2.9, the invertibility of £(1) follows.

For notational brevity, we prove the estimate for s = 1. The same argument applies to L(s) for
s < 1 since these operators have exactly the same structure (cp. (43), (44)). Consider thus an
arbitrary solution w € V3 to L(1)w = (f, fr). We afore mention that w € V3 implies that
w e C([0,T]; W32(Q; RY)) and that w(0) = 0. Thus, also w,.(0) = 0 and w, ,(0) = 0.

At first, we recall the estimate of Lemma 3.3

[wllyo < er I(f; fr)llzo (55)

Consider now an arbitrary vector field V' € C3(Q; R?). Then 1, := V - Vw; € V] satisfies (see
Lemma 3.4)

(Ro(w*) + Q,(w™))n =V -Vf+ 2V, w)winQr.
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Now we distinguish three cases. Consider first a multiplier V' with a compact support in €2. Then,
M, - .., NN are strong solutions to the system (51) supplemented by the conditions 7 = 0 on S7 and

{0} x Q.

The Dirichlet case of Lemma 3.3 guaranties that there is a unique solution of class VS% satisfying a
continuity estimate

[nllve < c(lw[v) [V -V f+ 2(V, w*) w2
< cl[w ) IVl o2y (1 fell 2@ + llwllve) - (56)

In the second case, we choose V € C*(€2; R?) tangent to 9). Owing to Lemma 3.5, the vector 7
satisfies

B(w)n=V-Vfr+ 2"V, w)won Sr.
The Lemma 3.3 then ensures that

Inllve < c(llw*llve) (IV - V fr + 251V, w) wllwy-1)
< c(lwlva) [Vl ey ([ frllmg + llwliwg) - (57)

The third case is that V' is parallel to v on 0. Due to the Lemma 3.6, we see that
n=M,,(tz, w) " fr+ 2"V, w)w
Owing to the Lemma 3.6

[llwwe < ellw™([v2) ([ frllwo + [[Vrwllmo) -

From the Dirichlet case of the Lemma 3.3, it now follows that

nllve < c(llw*llv2) (1 fellz2@) + IVrwllwan) - (58)

In order to obtain a bound for ||w||1, we invoke the construction of Section 2.7, (24) to represent the
gradient, and we see that

m 3
Wy = Z Z e (59)
n=0 (=1

There the vector fields V% have a compact support for ¢ = 1,2, 3, while the vector fields V1, V12
are tangent on OS2 for 4 = 1, ..., m. Thus, invoking (56) and (57)

[as

Then, we make use of (58), and it follows that

72 lve < e(llwllve) (I fellzziy + D 10" llvo)

pn>0,0<2
< c(l[w*llv2) (Ifzll2@) + I frllmn) -

vo < ellfullve) (| fellzzi + 1 felwg) for jr = O and for o > 0,6 < 2.

Thus, we have obtained the estimate

[wallvo < e([w"[lv) (Ifll 2. wr2) + [Lfrllo) - (60)
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Now, we go one order further. For W € C?(Q; R?), we see that ¢; := W - (V - Vw;) € V) satisfies
(see Lemma 3.4)

(RL(w*) + Q. (w)p =W -V(V-Vf+ 2V, w)w)+ 2(W, w)V -Vuw.

If W € C2(Q; R?) is moreover tangent to JS2 as well as V, then owing to Lemma 3.5, the vector ¢
satisfies

B(w*)¢ =W -V(V-Vfr+ 2"V, w)w) + 2" (W, w*)V - Vwon Sr.
If W is tangent and V' is normal, then
¢=W -V(M,,(t,z, w)]" fr+ 2"V, w)w). (61)
Thanks also to (60), we obtain in these cases an estimate
[0llvo < e(lw*llve) ([|1Fllz2 + [wlv) < elllw?|[v2) [[Fll2= - (62)
Owing to (62) and to (24) that we apply to w ~ V' - Vw, we obtain a bound
(V- Vw)ellvo < clfw?([v2) [|F]| 22 (63)

for each V of class C*(€2; R®) which has a compact support or is tangent on 2.

Finally, consider the functions ¢; := W - V(V - V), where both W and V' are parallel to v on 0.
Recalling Lemma 3.7 and (63), the vector ¢ = V3 . V(V#3 . w) satisfies

D[l vo < elllw[lv) |1 22 -

Now, the Dirichlet case of Lemma 3.3 yields

[@llve < c(llw?[v2) [1F]] 2 - (64)

We combine with the estimate (63) on the second tangential and mixed tangential-normal derivatives
to obtain overall

[z allve < e(llw[ly2) [[Fl] 2 (65)

This establishes that independently on s € [0, 1], all solutions w € V3 to L(s)w = F satisfy a
bound ||w||y2 < ¢ ||(f, fr)||z2. We apply the Lemma 2.9 and are done. O

We can now prove that the complete Fréchet derivative G is invertible. First we need the following
remark.

Remark 3.9. Let L be a linear lower-order operator in the following sense: For { = —1,0, 1, the
operator L maps % continuously into

Z9 = L2(0,T; WH92(Q; RY)) x Trs, V5.

Then, every solution v € V3 to (G, (v*) + L)v = F satisfies ||v]ly2 < c(|[v*|lv2) (| F|lz2 +
|v]|y-1), where c depends also on max,—_1 0,1 || £]| v, ze+1).-
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Proof. We first obtain (Lemma 3.3)

[ollve < e(llv*[lv2) (1Flz2 + [ £ 0]l 20)
< c([[o*llv2) (1Fll 22 + 1]l 2w-1, 20y [0l lv-1) -

Then, the Lemma 3.8, equation (60) yields

[ollvr < e(l[o*llv2) (1F |22 + 1€ 0]l 21)
< c([[o*llve) (1F [l z2 + 1]l zwo, 20) [[0][wo) -

Finally, Lemma 3.8, equation (65) yields the claim. O

Lemma 3.10. For I’ = (f, fr) € Z? and for all v* € V3, the equations G'(v*)v = F have a
unique solutionv € V3. We denote v := (G'(v*))~! F. Then, (G'(v*))~! € £ (Z?, V3) and

(G () 2z vz) < CI0" + ¢ llve).
Proof. The resolvability of G'(v*) v = F' means that

(Ro(w") + Qp(w™)) v = f = La(w) v

* d * * *
(L1(w)v); = _d_xk M, gtz (2, W) vy, wr,, + Oi( Rz, (t, o, w*)) v
B(w*)v = fr— Lo(w")v
(EQ (w*) U)i = —V Mi,j,k,&zm (t, Z, w*) Um w;w .

with w* := v* + ¢°. The first idea is to show that the operator £(w*)v = {L1(w*) v, Lo(w*) v}
is lower-order in the sense of Remark 3.9. This can be done easily as an exercise (apply Lemma 2.4
and Lemma 2.6).

Second, if we can show that every solution to (G/,(v*) + s L(w*)) v = F satisfies a uniform bound
in V1. Then, the Remark 3.9 yields automatically a bound in V2.

We can rely on the fact that for s = 0, the operator is G/, (v*) which is invertible. If we can also show
that G (v*) + s L(w*) is injective, we can apply Lemma 2.9 and are done.

Thus, everything is reduced to proving that strong solutions to (G (v*) + s L(w*)) v = F are unique
and that they satisfy a bound in V1. To show this we multiply with v and integrate by parts to obtain
that

* *
/ Ri,zj (tv T, w ) Ut Ui + / Mi,jyk,f(tv T, w ) Uiz, Vj,ae
Q Q

= — {fr, + vk M ke, (t x, w)uvy, w;,w} v;
a0

N
+ /{fZ + @ck(z M, kb2 (2, W) Uy w;’me) — O Rz, (t, 2, w*)) v} v; .
Q m=1

If the matrix Rz‘,zj is symmetric, which is a component of our requirement (a), (b) of parabolicity, then

d d
/ Ri. (t,z, w*)vj,v; = %E / Ri.,(t,z, w")vjv; — % / ERLZ]. (t,z, w*).
Q Q Q
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Thus

N =

d
_/Riz.(t,l’, w*)UjUi—i‘/Mijkg(t,l’, w*)vmkvsz
dt Jo 77 o ’ ’

e aﬂ{fr,i + Uk Mi kg2, (67, W) Ui, }

N
* * d *
+ /{fi + 00, O Mg, (tx, w) v w),,) — 3 7 (R, (b, w)) vy} o
Q m=1 ¢
The right-hand I obeys the estimate
1] < c([[w*[| @) + lwillL=@) (/F{Ifrl + v[} vl
# 01+ Qb it + o) o]+ ol )

Thus, we can employ well known inequalities to attain the structure

v (llw*llLe (@)
1] <= lue ()22 + e (1O Z200) + 1 OllZ20)
+ c([lwg o () lw2 + lwy () w2z + 1) /Q [o()]*.
where ¢ = c(||w*|| (@) + ||w} || (q))- Employing the assumption (34), it follows that

d S
15 [ Fatta o) vu g [P < ce@on + 1O

+ e ([Jwg o (O)llw22 + [wi () lw=2 + 1) /Q [o(t)[.
Thus, the assumption (33) and the Gronwall Lemma yield

V]l 2 0,7 2@ mvy) + 02|z @iy < cllwllv2) (LFNl 2 + [l frllz2) -

From the equations, we now obtain a natural bound for HthLz(O,T; (Wi2(Q;RN)J*)- The uniqueness is
obvious. 0

In order to prove the existence of local strong solutions and to complete the proof of Theorem 3.1, we
next apply a more or less standard fixed-point strategy.

For v € V3, the mapping
Tov:=v—[G0)]"'Gw)

is well defined. Moreover, we define b° := [G’(0)]~* G(0) € V2. Since G is a C' mapping, we obtain
that

16°[lve < G (O0)] " .z, vz) IGO0l z2 = fo(T) -

It is readily verified that lim sup;_,, fo(7') = 0. For § > 0, we define Ms := {v € V3 : |v —
b°[ly2 < &} Obviously, v € M implies that [[v[|yz < & + fo(T).

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



P-E. Druet 30

Note that
Twv—1by=v~—[G'(0)]7 (G(v) = G(0)) = [G"(0)] " (G(v) = G(0) = G"(0) v).
Thus, for all [|v|lyz € M;

17w = bollve < (G"(0) " 2(z2,v3) IG(v) — G(0) = G'(0) v]lyz

sup
wllyy2 <6+ fo(T) [|w][y2

Due to the continuous differentiability of (7, there is 6y > 0 such that
G(w) —G(0) —G'(0 1
wp 16 =GO =GO wlhe _

llw]lyy2 <60 [|w]]y2 —2C,°

Thus, if § + fo(T') < 6y, we see that T maps M into itself.

With similar arguments, 7 is a contraction. Thus, 7 possesses a unique fixed point in v € M, and
q = ¢ + v is a strong solution.

3.2 The case of non zero right-hand side

If f and fr are non-trivial in the equations (29), we introduce H = {H,, H»} as a mapping acting
on V3 via

(Hi(v)i = (G1(v))i — fult,x, v +¢°, (v +¢°)2)

(Hs(v))i == (G2(v))i — fra(t,, v+ ¢°)
Under the assumptions of the Theorem 3.1 for f and fr, we can show that H is a mapping of class

C! between V3 and L?(0,T; W2%(Q; RY)) x Trg, V!. Under the assumption (36), we can even
show that the image of H is a subset of Z2.

We can further verify that the linearisation of H possesses the structure
Hi(v")§ = Gi(v") €+ La(w”) ¢
Ly(w") &= = [t o, w, wy) - § = fplt,x, w", wy) = &
Hy(v") § = Go(v") €+ La(w”) ¢
Lo(w*) & = — frs(t,z, w, wy) -

Our manifold calculations based on the multiplicator and Nemicki Lemmas can be use to show that
L(w*) is lower—order in the sense of Remark 3.9. Thus, H'(w*) is invertible (compare: Lemma 3.10),
and the claim of Theorem 3.1 follows in full generality.

4 The first boundary value problem

The Dirichlet problem for equation (29) can be handled with exactly the same methods if we only adjust
the functional setting. We denote P := S7 U ({0} x Q) U ({0} x 992) the parabolic boundary of the
domain Q7. For £ = 0, 1, 2, we denote

Vs ={veV' : v=00onP}.
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We consider

O R;(t, x, w) — div(M;(t, z, w)w,) = fi(t,z, w, w,) in Qr,
w=w" onP. (66)

Here, we assume that the vector w' possesses an extension w” of class V? into Q1.

Theorem 4.1. Assumptions of the theorem 3.1. Instead of (37), we assume that the vector ¢° :=
w' (0) satisfies

Ri(0, 2, ¢"(x)) + R-(0,z, ¢°(«)) w; (0, ) (67)
= div(M (0,2, ¢°) ) + f(0,2, ¢"(x), ¢3(x)) forall x € HS.

Then, there is'T' > 0 such that the problem (66) possesses a unique solution of class VQ(QT; RN ).

The proof strategy is essentially as above. First we consider the case of a zero right-hand side f.

4.1 The case of no lower-order perturbation

On the space V% we introduce a nonlinear operator G via
G(v) :=R(v+u) + Qv +w’). (68)

As in Section 3, we can verify that G takes values in L2(0, T; W%2(£2; RY)). The result of Theorem
4.1 follows by the methods of Section 3 if we can prove that the principal part of the linearisation is
invertible. Thus, for given w* € V? and right-hand f, we consider for w € V3 the following problem

(Ro(w®) + Q(w™))w = f (69)

In comparison to Section 3, we must however acknowledge an additional subtle point. Indeed, if
w e V% solves the problem (69), then applying the trace operator - to the equation yields ~(f +
div(M;(t, z, w)w,)) = 0 on Sr. Now, since w € V3 implies that div(M;(t, z, w) w,) € V3, it
follows that the resolvability of (69) requires

’}/(f) € TI’ST VSQZ .
Thus, the image space Z is taken here
Z ={f € L*(0,T; W22(Q; R™)) : v(f) € Trs, VO } -

In order to apply the same theory, it is necessary that GG takes its values in Z. This is the reason
why we require (67). Introduce for s € [0, 1] operators Q/ (w*; s) in the fashion of (43), (44). Then,
everything is reduced to obtaining a uniform bound in V? for solutions w to (69).

The bound in V° was already proved in Lemma 3.3, that is

[wllvo < cl[fllz (70)

In order to obtain a bound of next order (in the space V'), we differentiate the equation in the fashion
of Lemma 3.4 If V € C?(2; R?) has compact support or is tangential on 92, thenp = V - Vw
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satisfies again the condition 7 = 0 on St. Thus, the Lemma 3.3 implies that the tangential derivatives
satisfy

Inllvo < clIfllz- (71)

Employing the equation (69) and Lemma 2.10, we see that the normal derivative n = v - Vw satisfies

2

— V(@) Mo (t, @, W) 00, = ZTI? gt (T4 Vwj)g, — A

3
+ 3 VR (Mijae (VN - Vo = VA VM wsa,) (72)
A=1

Fori =1,..., N, A, is here the function f; — R; .(t, z, w*) O;w. Applying the trace operator 7 to
this identity, and recalling that y(w) = 0 for all w € V3, it follows that A = f on Sz. We call fT the
trace of the right-hand (72) of the latter identity, that is

ZTk gt (T4 NVwj)z, — fi

+ Z Vit (Mijre (VA)ay - Vg = VA VMg o w;g,)

Thanks to simple multiplicator arguments and to the estimates (70) and (71), we see that the vector
fr satisfies an estimate

1 fellv-r < eCllw®[lve (I7* - Vewllvo + [lwllve) < e(llw[lv2) [1f]l2 -

Recall the definition of the principal part of the natural boundary operator. Obviously, every strong
solution to (69) satisfies

Bl (w*) (v Vw) = f'. (73)
Forn =V - Vw with V' parallel to v on 02, we thus can conclude that

1B5(w*) nlly-+ < el flz-

We apply the Lemma 3.3, and it follows that ||n||y, < c¢||f||z. Since now all components of the
gradient vector satisfy an estimate in V', it follows that

[wllyr < el fllz- (74)

Next we go one order further, and we consider the second derivatives ¢ := W - V(V - Vw). lf W
and V' are both tangential vectors, then W - V(V - Vw) = (W - V)V - Vw. Thus, the vector ¢
satisfies a Dirichlet condition with right-hand in V°. The Lemma 3.3 yields the desired estimate for ¢
in VY. If W is tangential, but V' normal to the boundary, then we differentiate (73) in the direction of
W, and we obtain (notations of Lemma 3.5)

B (w )W -V(v-Vw) =W -V fr+ D" (w* W)v-Vuw.

We verify that the right-hand satisfies a bound in V. Here it is important that (f) € TrV§. The
Lemma 3.3 thus yields a bound in V' for the mixed derivatives.
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Finally, if W and V' are both normal on 02, we make use of the Lemma 2.10 that yields

M'JVVV' V(l/ ij) = —fi

—Z ot [T (T VW), + v v - V(T V)]
+ ZTk it (T)ay - Vwy = 7V M pw;.,)

—Z v} Mo [{(74 - Vv = (v - V)7 V]

This provides a bound for v - V(v - Vw) in Tr VY. The Lemma 3.3 yields the desired estimate for the
twice normal derivatives. Now, all spatial derivatives of order two turn out to be uniformly bounded in
VY. Thus every solution w € V% to (69) satisfies a uniform bound in this space. We finish the proof of
Theorem 4.1 in the case that there is no lower-order perturbation as in Section 3.

4.2 Adding the lower—order term

In order to finally prove the claim in the case of a right-hand side f(¢,z, w, w,), we introduce
H(v) = G(v) + G(v), where G(v) := —f(t,x, v + ¢°, (v + ¢°).). The regularity of f and
the compatibility condition (67) guaranty that H is C' from V3 into the space Z. This is sufficient to
prove the invertibility of the linearisation.

5 An necessary extension to one-sided coupling in the leading
order

The theory of this section is needed for the full quasilinear case. Let 1 < P < N be a natural number.

Remark 5.1. In this section, we will decompose the vectors of RY accordingto X = (X, X'), where
X =(X1,...,.Xp) ERP and X' = (Xps1,..., Xy) € RN-P,

For a vector wy, ..., wy, we consider fori = 1, ..., N the equations
N
d .
atRi(tu €, U}) - d_ffk (Z Mi,j,f,k(ta €, ’UJ) wj,xl) - fi(twra w, wr) In QT? (75)
j=1

supplemented on S with the boundary conditions

P
-y Z M;jor(t,x, w)w;,, = fri(t,z, w)fori=1,..., P (76)
j=1
w; = Dy(t,z, w) fori=P+1,...,N (77)
and the initial condition w(0) = ¢°. The functions Dp.1, ..., Dy in (77) are defined on Sp x RY. For

simplicity, we assume throughout the section that they are extension functions defined in @T x RF.
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Theorem 5.2. Assumptions of the Theorem 3.1. We assume that the functions Dp. 1, ..., Dy are of
class (C1* N C%5)([0,T] x Q x RY). We moreover assume a special diagonal structure:

1 The functions M, ; 1., are defined on Q x RN and M; ., = 0 fori < p andj > p;

2 The functions Ry, ..., Ry are defined on Q x RN ; Fori = 1,..., P, R; depends only on
the components 0 = (wy, ..., wp) € RY. The matrix {Ri.,(t, @, W)} j=1,..p is sSymmetric
and positive definite for all w € RY;

3 The block {R; ., (t,x, w)}i j—p1,.. N is symmetric and positive definite for all w € RV
We assume fori = 1, ..., P the compatibility condition
— vk M0 (0,2, ¢°(2)) 45, — fri(0, 2, ¢°(x)) = O forall z € OQ. (78)

We assume fori = P + 1,... N and all x € OS2 the following two compatibility conditions: First

Di(0,z, ¢°(x)) = (¢°(x)); (79)
and second
P
ZA%(ZL’) (Rj,t(07'r7 q_O) - le(MJ(07 xz, qO) q_oa:> - fj(()? xz, qO(I)7 qg(l’))
j=1
= Ris(0,2, ¢°) — div(M;(0, 7, ¢°) ¢7) — fi(0, =, ¢°(2), g5 (x)) . (80)

Here, { A; j(x) }i=p+1,...N, j=1,... p is the rectangular matrix

P
Aij() = [R.(0,2, ¢")]7 ) ¥ (81)
j'=1
N
 [Riz, (0,2, ¢"(x)) + Y Riz (0,2, ¢"(x)) Dy, (0,2, ¢"(x))].
k=P+1

Then, there is T' > 0 such that the problem (75), (76), (77) possesses a unique solution of class
V2(Qr; RY).

In this section, we introduce the state—space via
Vo.p(Qri RY x RNP) = V3(Qr; R”) x V3(Qr; RVF).

The elements v € V{ , are denoted v = (7, v) according to the notation of Remark 5.1. For
v € V4§ p we define

s = wi() = v + ¢ fori=1,...,P @2)
‘ ’ vi+ Di(t,z, v+ q) fori=P+1,...,N.

Under the compatibility condition (79), we see that @ (0) = ¢°, that w’(0) = (¢°)’, and that y(w;) =
D;(t,x, w)on Spfori =P +1,...N.
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5.1 The fundamental case

In this subsection we set f = 0 and fr = 0in (75), (76).

We introduce an operator G/(v) acting on V3 5, via

G(v) = {Gi(v), Ga(v)}

(G1(v)); == O R;(t, x, w) — %

(G2(0)); === M, jux(t,z, w)w,,, fori=1,... P.

(M jon(t,z, w)wj,,)fori=1,...,N

It is readily seen (cp. Section 3) that this operator maps Vfw into
7 = L*(0,T; W22(Q; RY)) x Trg, V4(Qr; RY). (83)

Under the regularity condition for the function D in Theorem 5.2, the mapping v +— D;(t, z, 1+q°) is
of class C! from V? into itself. Therefore, we can compose this mapping with other Nemicki operators
enjoying the same property, and see that the C! property is conserved. We conclude that the operator
G is Fréchet differentiable between V3  and L*(0, T; W2(Q; RY)) x Trg, V!(Qr; R).

The compatibility condition (78) ensures that G maps into Z. We next want to study the linearisation
{G(v*) &, G4(v*) £} described hereafter. In the remainder, we define w* = w(v*) according to
(82). The P first equations of the linearisation for the variables £ = &, ..., &p are governed by the
bulk operator

P P
8t(z R (t,z, w")&;) — diV(Z M; (t,z, w*)&z)
=1 i=1
P N
_ djv<z M; ;... (t,z, w") + Z M., (t,x, w*) Dy, (t, @, w*) Em w5 ,)
m=1 ji=P+1
N
+ div( Z M., (t,x, w*) &, wj,)
m=P+1

with the associated boundary operator

P
— Vg Z Mi,j,f,k(ta xz, U}*) gj@e
j=1
p N
— Vi (Z Mi,j,k,zm <t7 Z, w*) + Z Mi,j,k,zj/ (ta L, w*) Dj',zm (t, Z, w*) gm w;@)
m=1 J'=P+1

N
+ Vg ( Z Mi,j,k,zm (t, x, U}*) 57/71 w;:p) .

m=P+1
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The equations with index P + 1, ..., [N are governed by the operator

ZRzzjtxw)g) le ZMZ]txw)gjx)

j=P+1 j=r+l1
P
—i—@t(Z[ S (A Z Ri.,(tx, w*) Dy . (¢ 2, w*)] &)
j=1 j'=P+1
P N
—div(Y Mtz w) g+ Y Mtz w') §a))
j=1 j=P+1
P
— div( Z i (t, T, W) + Z M., (t 2, w*) Dy s, (82, w)] §mw],)
m= j'=P+1
N
+ diV( Z Mz‘,j,zm(t7 €, w*> g:n w;,;r> )
m=P+1

We choose a principal part of the bulk operator via

P P
(G (") €); = Z Ri..(t,o, w) &, — div(z M, ;(t,z, w*) &) fori < P
j=1 J=1
whilefori = P+ 1,..., N
N N
( ll,o(v*) 5)1 = Z Ri,Zj (t’ €, w*) £j7t - diV( Z Mm’(t,.%, ’LU*) 5]’750)
j=P+1 j=P+1
P —
_'_Z[RZZ] t I w Z RZZ/ t x w )Djlfzj<t7$’ w*)] gj’t
j=1 j'=P+1
N —
— le( Z Ml,j (ta xz, w*> gj@) .
j=P+1

The principal part of the boundary operator is
( lz,o(v*)ﬁ)i = —Vg Z Mi,j,e,k(t,x, w*)é},xé forir=1,..., P

Jj=1

For the invertibility of the principal part, there is an additional compatibility condition. Recall the defini-
tions (81) and (83).

Lemma 5.3. Define A as in (81). The principal part G'(v*) is an invertible operator between Vé’P
and the Banach space Z 4 defined via

Za={F=(f fr)€Z : A(x) f(0,2) = f'(0,) forallz € 00} .

Proof. We consider the system G’ (v*) £ = F'. One can solve for the P first equations making use of
the theory of Section 3 (Lemma 3.8). We obtain for the solution £ € V3(Qr; RY) the bound

I€lva@rirry < clllwllve) (1fllzz0r; weazry + I frllnvy@rrr)) -

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



Local well-posedness for quasilinear parabolic systems 37
Moreover, recalling (53)
IR-(t, x, w*) & fHTrST (Qr:RP)

< c([lw*llv2) (1f1 20,7 we2 (s mPy) + | fellwvy@rirr) - (84)

In addition, the limit ¢ — 0 in the equations yields the identity
P
D R (0,2, w(0) &4(0) = £:(0,) forz € 00 (85)
j=1

Next, we can make use of the Lemmas 2.4 and 2.6 to show that the vector

P
gi = div(z M, (t,z, w*)&,)fori=P+1,...,N,

j=1
belongs to V3 (Qr; RY~F). It satisfies a bound

g vy < elllwllve) Ellva @ mr)

< c(flw*][y2) (Hﬂ\L?(o,T; w22(Q;RP)) T HfFHTrV}](QT;RP)) :

Further, we denote

g7 = Z[Rzz] (t,z, w* Z R, (t,x, w*) Dy . (t x, w)]§;

j=1 j'=P+1
Then, obviously

H92HL2(O,T;W272(Q;RN*P)) < c(flw*flv2) ||§_HV§Z(QT;]RP) .

P

Further, for j = 1,..., P, we canrepresent £, = >, [R.] (r  Ryry ki — fir + f). This

allows to decompose

2,1 2,2
9 =9"+gy;
P

gfl Z[RZZ] (t,z, w* Z Rm, (t,z, w*) Dj ., (t, x, w*)]x

j=1 =P+1

X[ ” ZRJ zkgkzt fg)]

Mw

Il
—

j,
P

ZI_D: [ ie (t 2, W Z Ri.,(t,x, w") Dy . (t,, w*)] [Z [Rz];]l/ fj/:| .

j'=P+1 j'=1

Making use of (84) and of the regularity of f, it follows for the trace operator y

V(9" lwsy vo@rirey < cllw®llve) (1f lz20m w22 mey) + I fellvvy @rier))

195" s, vor@rirry < clllwllve) [ fllvs, vo@rier) -
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Thus, 7(g%) € Trs, V°(Qr; RY). Moreover, (84) guaranties that y(g*!) € Trg, V3 (Qr; RN -P).
Thanks to (85), we can next consider the limit for ¢ — 0 of y(¢*%(¢)), and we obtain for f € Z4 that

A (0) = 3 | RBisy (0,2, ¢°) Z Ri., (0,2, ¢°) Dy..,(0,2, ¢°)| x

j=1 j'=P+1
P
(S R0. 7, ")) fjf(O,x)]
i'=1

Thus, 7(¢*% — f’) = 0, which means that g*? — f’ € Trg, V5(Q7; RV ).
Now, the equations &} ,(v*) § = f that have index i € {P + 1,..., N'} have the form

N N
Z Rivzj (tv Z, w*> fj,t - diV( Z Mi,j(tv Z, w*> fj:fﬁ) = fl - gil - giza
j=P+1 j=P+1

and we have proven that the right-hand side satisfies a bound in L2(0,7; W22(Q; RN=F)) N
Trs, VO (Qr; RY~T). Thus, we can apply the theory of the Section 4, and the claim follows. O

Since the principal part is invertible, we can verify that the Fréchet derivative is an invertible operator,
between ng) and the Banach space Z 4. If we can prove that (G maps Vfw) into Z 4, the usual argu-
ments provide the local-in—time resolvability. Straightforward calculations show that the compatibility
condition (80) is necessary and sufficient. The claim of Theorem 5.2 follows.

5.2 Extension to lower order terms

If f and fr are not zero in (75), (76), we introduce H (v) = G(v) + G(v), where G (v) is the operator

él(v) =—f(t,z, w(v), (W(v))z), Ga(v):=—fr(t,x, wv)).

The regularity of f, fr and the conditions (78) and (80) guaranty that H maps into Z4. This is, here
also, sufficient for the treatment of lower-order terms.

6 The full quasilinear case

We consider the equation

3
d
O R;(t, x, w) Zd— (t,z, w, w,) = fi(t,z, w, w,) fori =1,...,N. (86)

k=1

For i, the functions R; are defined in Q7 x RY, while the flux functions .J; are defined on Q x
RY x RV*3, We denote (t, x, z, D) a point in the latter domain, and .Jj. ,, J}. ,. J; p; ©tc. denote
the partial derivatives in these variables.
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We consider the natural boundary condition
3
Zl/k )itz w, wy) = fri(t,z, w)fori=1,...,N. (87)
k=1

We require the structural conditions (1), (2).

Under this assumption, we observe that

Ji(t,x, z, D) = Opi V(t,z, z, D) — Op; ¥(t, z, z, 0)

N 1
:ZZ/ D, VU(t,x, z, 0 D)do D).
0 kL

3
j=1 ¢=1

We abbreviate

1
ng7k7é(t,x, z, D) = / D? Z7Df§\p<t’x’ z,0D)df. (88)
0 ;
Then, (86) has fort = 1, ..., N the equivalent expression
8tRi(ta z, w) - d_%(Mz?j7k7Z(t7x7 w, wLB) wj,:tz) - fz(t7 T, W, wx) ) (89)
while (87) reads
—vg(x) MSij’e(t,aj, W, Wy) W), = fri(t,z, w, wy). (90)

The treatment of (86), (87) relies in the end on the analysis of the reduced quasi-linear case in the
section 5.

It shall rely on the following two compatibility conditions
vi(2) J(0, 2, ¢*(x), ¢2(@)) = fra(0,z, °(@) fori=1,... N,z € Q2. (91)

Second, we assume fori = 1,..., N and = € 0f) that

vi(2) (S0, 2, ¢ (), 42(2) + i ., (0,7, ¢°(2), ¢:(2)) £ (x))
+vr(@) Iy 1 (0,7, ¢ (2), ¢2(2)) Fy, (7))
= fris(0,2, ¢°(2)) + friz; (0,2, ¢°(x)) F} (x) (92)

where F' is the vector field given by

FO(x) :=[R.(0, 2, ¢°(2))] 7 (div(J(0, 2, ¢°(2), g>(x))) — Ru(0,z, ¢°(x))
0
As a preliminary, we will at first explain our main observations for the proof of Theorem 1.1.

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



P-E. Druet 40

6.1 Transformation of the bulk operator

Assume that w € V? is a strong solution to (86). For m = 1,2, 3, the functions Wigy - WNzm
belong to V! and they satisfy the equations

at(Ri,xm + R 2z Wy, xm)
5. 4 d
_kz:; d!)ﬁ' [kam+zjllcz wjxm—’_;;‘]zl)]ijxm :E

We make use of a smooth spatial multiplier ((), and we obtain for 17" := w;,, ¢ (i =1,...,N
and m = 1, 2, 3) the identities

3
at(Ri,:L"m C + Ri,zg' 77}”) - Z awk(\Ileic,Dz (t7 T, W, ww) 77;?71» (93)
k=1

d 1 1
= C(Wf + awk(‘]k,xm + ‘]Ic,z- wj@m))

— (o D? U(t,z, w, Wy) W)y, + O ( U(t,z, w, wy) W)z, Cp) -

z D] Dz DJ
Introduce form = 1,2,3,( € C?(Q)andi=1,...,N
mvC N m
Ri - CRi,zm + Ri,z]- 77j
al d
B = ((O0n (S g + D iy Wiy) + mf)
j=1
— Cay \Isz D (t, 7, W, Wy) Wj.pp 2y, + Oy (D? DL DJ\If(t,x, W, Wy) Wy, Coy) -

The equations (93) possess the structure

d
e .
— Blm’c(t,x, W, Wy, Wy y) - (94)
We next localise the problem in the fashion of Section 2.7. For 4 = 0,...,n, A = 1,2,3 and
t=1,..., N, we consider the function
et = VIV, ¢,
We define
3 N
)\, >\7
Rt 2, w, p™H) == ¢ Z VEA Ry (t 2, w) + Z R (t, z, w)n;*
m= 7=1

BA’M ¢ . Bm»C“ Vit "
i ( y Ly Wy W,y wx,x) = i ( y Ly W,y Wy, wxﬂf)'

Employing (94), the functions 771\”’“, . ,n?\,’“ belong to V! and they satisfy the equations

atR?7u<t7x7 w, 77)\7“) - _(\IIDi,DZ(twra w, wx) nj,zfz)

dl’k
= B?’“(t,:c, W, Wy, Wy g) - (95)
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We now introduce an auxiliary vector u : Q7 — R with K = N (3(n + 1) + 1). The first N

entries of u are given by wy, ..., wy. Then, foreach A = 1,2,and u = 0, ..., n we add the entries
m*, . . The last N (n + 1) remaining entries of u are given by 7; 0, ..., m". This procedure
in fact constructs a bijection P between on the one hand « € { N +1, ..., K} and on the other hand

Ae{1,2,3},n€{0,...,n},and ¢t € {1,..., N}, such that

Up() =1, (96)

In this manner, we define a function R : Q7 x RX — RV

R(t,x, w) fora=1,...,N
Ry (t,x, u) := \ \ (97)
RV (t,x, w, M) fora=N+1,...,K, a=P(\ u,t)
Next, we recall (59). It follows that there are foraa = N + 1,..., K andi = 1,..., N functions
Ca,i(x) such that
K
Z Coi(x) ug (98)
a=N+1
We define
M 5(t, 2z, w) fora, 3=1,...,N
Myg(t, o, w) == S Wpi pi(t,x, w, C(x)u) fora= P, i)and = P(u, A7) . (99)
0 otherwise
Moreover, note that (98) also implies that
K K
Wi g0 = Z Coz,i@(m) Uq + Z Coz,i(x) U,z - (100)
a=N+1 a=N+1
We define
o(t,z, w, C(x)u fora=1,...,N
folt,x, u, uy) == f}\(# (z)u) . (101
B (t,x, w, C(x)u, C(x) uy + Cp(z)u) fora = P\, p,1)
In this place, we recall also (89) and (95) to see that the vector u satisfies
g 3
O R, (t, x, u) " ZZMﬂMtx U) UG z,)
B=1 =1
= falt, 2, u, ug). (102)

Let K" = N (2(n + 1) 4+ 1). Then, it is readily seen from the definitions (99) and (101) that this
system has sub-diagonal structure with respect to K’ as defined by Theorem 5.2 (for X = N and
K' = P).
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6.2 Transformation of the boundary operator

We next investigate the boundary operator and assume that w € V? satisfies (87) (with fr = 0).
Applying tangential differentiation (x € {1,...,n} and A € {1,2}), we obtain that

—ve W gty =CH (VI -V Uy + g VA Wy o+ Wy o w5,,])
— Ve Ve i Wi, (Vi Ct)ay) + VM-V
Thus, we can introduce lower order functions (BF)ZV’“ such that
-y \IID?QDZ (t,z, w, wy) 773)\:52 = (Br)y’“(t,x, w, wy)fori=1,...,N. (103)
Reorganising the system in the manner of (99) we obtain that
— v Mo gro(t, o, w)ugy, = frot,z, )V a < N—K =N 2(n+1)+1). (104)

Next we show that the variables w1, ..., ux satisfy Dirichlet conditions on St. We introduce for
i=1,...,Nandz% z' 22, X € R" the functions
Filt,z, 20, 21, 2%, X) = v (x) Up: (t,x, 20, Z VRN z) + Xy(x)> : (105)
A=1,2

We observe that

0 1 2
EQ{].(LJJ,Z,Z,Z,X)
3

= Z vi(x) ve(z) \IJD27DZ (t, z, 2° Z VRN 2) + Xy(x)> .

k=1 A=1,2
Thus, the matrix F'x is strictly positive definite, and in fact, recalling that we assume (26)
Fxn-n> (2% 24 2% X)n*forallp € RY .

The implicit function theorem implies the existence of an function D € C'(S7 x (R™)3; RY) such
that all solutions to F (¢, z, 2%, 2!, 22, X) = 0 are globally described by the equation

X = D(t,z, 2°, 2%, 2%). (106)
Moreover, the derivatives of the function D are given by
Dy(t,x, 2%, 2, 2*) = —[Fx(t,z, 2°, 2%, 22, D)t Fy(t,z, 2°, 2, 2*, D)
Dy(t,x, 2°, 2%, 2%) = —[Fx(t,z, 2°, 2%, 2%, D) ' Fu(t,z, 2° 2%, 2%, D)
D, = —[Fx(t,z, 2°, 2%, 22, D)7t Foa(t,x, 2°, 2%, 2%, D). (107)
Now, we observe that the validity of (87) is equivalent with
F(t,z, w(z), V¥ Vw(z), V*? . Vw(r), v Vw(r)) =0.
This implies that
v-Vuw(r) = D(t,z, w(x), V' Vw(x), V. Vuw).
Thus, for all « = P(3, u, i),
uq = D(t,x, u),
where @ is the vector (uq, ug, . .., uk:).
Thus, the boundary operator associated with the equations (102) has the structure
—v Mo gpe(t,z, u)ugy, = fra(t,z, u)fora=1,..., K’ (108)
Uy = Do(t,z, u) fora =K +1,.... K. (109)
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6.3 Proof of the main result

The problem (102), (108) possesses the structure of a quasilinear system with sub diagonal coupling
of leading order. This problem was treated in the Section 5. We next can verify that the coefficients in
these relations satisfy the assumptions of Theorem 5.2.

As to the regularity assumptions, the ellipticity assumptions and the sub diagonal structure, this is
a straightforward matter. The validity of (91) guaranties that the assumptions (78) and (79) in the
statement of Theorem 5.2. To see this in the case of (78), we make use for the /V first equations of the
relation (90). For the equations with index N + 1, ..., K’  we differentiate tangentially with respect to
0f the condition (91). This implies (78)

In the case of (79), the implicit definition (106) of the function D in the equations with index o =
K’'+1, ..., K shows that (91) is in fact equivalent with v- Vw = D(t, z, w, V*'-Vw, V2. Vuw)
for (¢, z) € [0,T] x 052,,.

Thus, it remains to verify the condition (80). This computation is lengthy, but straightforward if we take
into account the formulas (107). It turns out that the condition is precisely (92). Applying the Theorem
5.2, we deduce Theorem 1.1.
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