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Local well-posedness for thermodynamically motivated
quasilinear parabolic systems in divergence form

Pierre-Étienne Druet

Abstract

We show that fully quasilinear parabolic systems are locally well posed in the Hilbert space
scala if the coefficients of the differential operator are smooth enough and the spatial domain is
sufficiently regular. In the context of diffusion systems driven by entropy, the uniform parabolicity
follows from the second law of thermodynamics.

1 Introduction

LetN ∈ N, T > 0 a time, and Ω ⊂ R3 a bounded domain. We denoteQT :=]0, T [×Ω the parabolic
cylinder. We consider the following system of partial differential equations for functions w1, . . . , wN :
QT → R:

∂tRi(t, x, w) + div J i(t, x, w, wx) = fi(t, x, w, wx) in [0, T ]× Ω (1)

ν J i(t, x, w, wx) = fΓ,i(t, x, w) on [0, T ]× ∂Ω (2)

w = q0 in {0} × Ω . (3)

For i = 1, . . . , N , the functions Ri are defined in QT ×RN , while for i = 1, . . . , N , k = 1, 2, 3 the
flux functions J ik are defined on QT × RN × RN×3.

The equations (1) can a. o. be consistently interpreted (see [DG17]) as the reduced form ofN+1 mass
conservative diffusion/reaction equations for an isothermal mixture of chemical speciesA1, . . . , AN+1

in dynamical equilibrium. The unknown functionswi then play the role of the so called relative chemical
potentials or entropy variables. A phenomenological, nonconservative diffusion/reaction system for N
species also exhibits this structure. In these contexts, the second law of thermodynamics suggests the
following restrictions:

(a) The inequality
∑N

i=1

∑3
k=1 J

i
k(t, x, z, D)Di

k > 0 is valid for all D ∈ RN×3 \ {0} and all
(t, x, z) ∈ Q× RN ;

(b) The matrix Rz(t, x, z) is symmetric and positive definite for all (t, x) ∈ QT and all z ∈ RN .

We will in fact assume the following stronger variational structure:

(1) There is a potential Ψ defined on QT × RN × RN×3 such that D 7→ Ψ(t, x, z, D) is strictly
convex and attains a global minimum in D = 0. We define J ik := −∂DikΨ;

(2) There is a function β defined on QT × RN such that z 7→ β(t, x, z) is strictly convex, and
R = βz.
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P.-É. Druet 2

For the problem (1), (2) and (3), we prove the local–in–time well posedness in the class

V3(QT ; RN) := W 1
2 (0, T ; W 5,2(Ω; RN), W 3,2(Ω; RN)) .

For k, ` ∈ N ∪ {0} and for M being some open subset of a finite dimensional linear space, we
introduce the simplified notation Ck,`([0, T ]×M) := Ck([0, T ]; C`(M)).

Theorem 1.1. Assume that the domain Ω is of class C6. For i = 1, . . . , N assume that the function
Ri is of class (C1,5 ∩ C0,6)([0, T ] × Ω × RN). For i = 1, . . . , N , k = 1, 2, 3, let J ik belong to
(C1,4 ∩ C0,5)([0, T ] × Ω × RN). We assume that f ∈ C0,5([0, T ] × Ω × RN × RN×3) and that
fΓ ∈ C0,5([0, T ]× Ω× RN).

Assume that the thermodynamic conditions (1), (2) are valid. Moreover, we assume that the initial
condition q0 ∈ V3(QT ; RN) and satisfies two compatibility conditions: First

νk(x) J ik(0, x, q
0(x), q0

x(x)) = fΓ,i(0, x, q
0(x)) for i = 1, . . . , N, x ∈ ∂Ω ;

Second, we assume for i = 1, . . . , N and x ∈ ∂Ω that

νk(x)
(
J ik,t(0, x, q

0(x), q0
x(x)) + J ik,zj(0, x, q

0(x), q0
x(x))F 0

j (x)

+ J i
k,Dj`

(0, x, q0(x), q0
x(x))F 0

j,x`
(x)
)

= fΓ,i,t(0, x, q
0(x)) + fΓ,i,zj(0, x, q

0(x))F 0
j (x)

where F 0 is the vector field given by

F 0(x) :=[Rz(0, x, q
0(x))]−1×

× (div(J(0, x, q0(x), q0
x(x)))−Rt(0, x, q

0(x))− f(0, x, q0(x), q0
x(x))) .

Then, there is T > 0 dependent on Ω, the coefficients R, J , f , fΓ and the initial condition q0 such
that the problem (1), (2) and (3) possesses a unique solution of class V3.

To prove the Theorem 1.1, we show that the linearised operator associated with the system (1), (2)
and (3) is invertible in the proposed scala of Hilbert spaces. We make use of the fact that the lineari-
sation in smooth points generates a uniformly parabolic operator (Definition 7 in [LSU68], Chapter VII,
Paragraph 9). In order to obtain estimates in the Hilbert space scala L2W k,2, we employ the basic
method of squaring the operator. From this point of view, our study of the linearisation remains far be-
low the complexity of the results on general linear parabolic systems obtained by the Russian school
in the Sixties both in the scala of anisotropic Sobolev and Hölder spaces (see [LSU68], Chapter VII,
Paragraph 9 and 10 for an overview and references, or the book [EZ98]).

However, our approach is self-contained and it gives sufficient conditions that are ready to apply to fully
quasilinear systems. The most original contribution of this paper consists in showing that the larger
system satisfied by the unknown and its derivatives exhibits the structure of a reduced quasilinear
problem – that is, the case that the flux function J is linear in the gradient. The larger system is
moreover subject to ’mixed’ boundary conditions: a subgroup of the variables w1, . . . , wP is subject
to natural and the remaining wP+1, . . . , wN are subject to Dirichlet boundary conditions. We propose
an original analysis of this system, which directly yields the main result.

For additional context on quasilinear and doubly nonlinear parabolic systems, we mention that the
estimates in Lp spaces for the linearised operator are more complex. The maximal regularity theory
is presently available only for the reduced quasilinear case, the case that the flux function J is linear
in the gradient variable: [HMPW17].
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Local well-posedness for quasilinear parabolic systems 3

The reader can also consult: [Ama90], [Ama93] for the Lp theory of diffusion–reaction systems,
[DiB93] for the case of the p-Laplace system, [DM05] or [Bur14] for almost everywhere C1,α so-
lutions, or [FS15] for the regularity in time. Concerning weak solutions, we refer to [AL83], [Alt12],
[FK95], [Kac97], [Ben13], [Dru17], [HRM16]. Concerning weak solution with degeneracy in ellipticity,
we suggest the references [J1̈5], [CDJ18] or [J1̈7]. This is a collection of excellent results concerning
non-linear parabolic systems that we do not use directly here.

Our plan for the paper is as follows. In the next section 2 we introduce the notation and we collect
the main auxiliary tools for the analysis. The Sections 3, 4 are devoted to the analysis of the reduced
quasilinear problem – that is, J is linear in D. These sections contain the fundamental estimates
respectively for the case of natural and of Dirichlet boundary conditions. In the Section 5, we perform
an intermediate step for systems where a subgroup of the variables w1, . . . , wP is subject to natural
and the remaining wP+1, . . . , wN are subject to Dirichlet boundary conditions. This allows to show
in the Section 6 that the full quasilinear case can be solved by the same method as the reduced
quasilinear problem.

2 Preliminaries

2.1 Notation

Let Ω ⊂ R3 be a bounded domain of class C0,1 at least. The Sobolev spaces W k,2(Ω) for k =
1, 2, . . . are supposed to be well known. For a function u ∈ W 1,2(Ω), we denote∇u = (ux1 , ux2 , ux3)
the weak spatial gradient. We also make use of the short cut ux = ∇u. With W k,2(Ω; R`), ` ∈ N
and ` > 1, we mean the space of vector fields u = (u1, u2, . . . , u`) for which each component ui is
a function of class W k,2(Ω). We extend this way of writing to other functional spaces.

For T > 0, we denote Q = QT =]0, T [×Ω ⊂ R4.

We denote ST the surface ]0, T [×∂Ω.

The parabolic boundary of Q is denoted P := ST ∪ ({0} × Ω) ∪ ({0} × ∂Ω).

2.2 Functional spaces

For T > 0, and Banach spaces X ↪→ Y (continuous injection), we denote

W 1
2 (0, T ; X, Y ) := {u ∈ L2(0, T ; X) : ut ∈ L2(0, T ; Y )},
‖u‖W 1

2 (0,T ;X,Y ) := ‖u‖L2(0,T ;X) + ‖ut‖L2(0,T ;Y ) .

We will call the space of strong solutions for the problem (1) the Banach space

W 1
2 (0, T ; X, Y ) with X = W 2,2(Ω; RN), Y = L2(Ω; RN) .

This space is isomorphic (in fact identical) with the Sobolev space

W 2,1
2 (Q; RN) := {u ∈ L2(Q; RN) : Dr

tD
s
xu ∈ L2(Q; RN) for all 2r + s ≤ 2} .

Note a peculiarity: In general, we will put the time integrability index first and the spatial index second,
except in the case of the Sobolev spaces W 2`, `

p (Q) and the Hölder spaces H2`,`(Q) where we
employ the notation of the book [LSU68].
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A fundamental role in the analysis is played by the state space

W 1
2 (0, T ; X, Y ) with X = W 4,2(Ω; RN), Y = W 2,2(Ω; RN) .

In the standard Hilbert space scala, this is the largest space embedded intoW 1,0
∞ (Q; RN) (see details

below).

For ` = 0, 1, 2, . . ., we make use of the abbreviations

V` = V`(QT ; RN) :=W 1
2 (0, T ; X`+2, X`) with X` = W `,2(Ω; RN) (4)

V`Ω = V`Ω(QT ; RN) :={v ∈ V` : v = 0 in {0} × Ω} .

which are Banach spaces with the norm

‖v‖V` := ‖v‖W 1
2 (0,T ;X`+2, X`) .

Recall that W 0,2 := L2. Moreover, we need the space

V−1 = V−1([0, T ]× R3; RN) := W 1
2 (0, T ; W 1,2(R3), [W 1,2(R3)]∗) (5)

V−1
R3 = V−1

R3 ([0, T ]× R3; RN) := {v ∈ V−1 : v = 0 in {0} × R3} .

We recall the inequality

max
t∈[0,T ]

‖v(t)‖L2(R3) ≤ c ‖v‖W 1
2 (0,T ;W 1,2(R3), [W 1,2(R3)]∗)

and the fact V−1, V−1
R3 ↪→ C([0, T ]; L2(R3; RN)) with continuous injection (see for instance the

survey [Nau]).

We also note the following observation concerning the space V−1.

Lemma 2.1. Consider v ∈ W 1
2 (0, T ; W 2,2(Ω), L2(Ω)) such that v(0) = 0. Then, the functions

vxi are the restriction to ]0, T [×Ω of functions EΩ(vxi) of class W 1
2 (0, T ; W 1,2(R3), [W 1,2(R3)]∗)

such that EΩ(vxi)(0) = 0. Moreover ‖EΩ(vx)‖V−1

R3
≤ c ‖v‖V0 , with a constant c that depends only

on Ω.

Proof. We rely on the existence of a linear extension operator EΩ which is continuous from W `,2(Ω)
into W `,2(R3) for ` = 0, 1, 2, . . . (see Section 6.5.1 of [KJF77]).

Let u ∈ W 1
2 (0, T ; W 2,2(Ω), L2(Ω)). Then EΩu ∈ W 1

2 (0, T ; W 2,2(R3), L2(R3)). For φ ∈
C∞c (R3) arbitrary, one has∣∣∣∣∫

R3

EΩ(ut)φx

∣∣∣∣ ≤ cΩ ‖ut‖L2(QT ) ‖φx‖L2(]0,T [×R3) .

Thus, exploiting that W 1,2(R3) = W 1,2
0 (R3)

‖∂t(EΩ(u))x‖L2(0,T ; [W 1,2(R3)]∗) ≤ cΩ ‖ut‖L2(QT ) .

This shows that (EΩu)x ∈ W 1
2 (0, T ; W 1,2(R3), [W 1,2(R3)]∗).

Lemma 2.2. For ` = 1, 2, . . ., the operation d
dx

belongs to L (V`, V`−1). For ` = 0, the operation
EΩ ◦ d

dx
= d

dx
◦ EΩ belongs to L (V0, V−1).

Proof. The claim for ` ≥ 1 is obvious, while for ` = 0 it is a direct consequence of the Lemma 2.1.
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2.3 Trace spaces

For the analysis of boundary conditions, we will need trace spaces. Recall that there is a linear trace
operator γ ∈ L (L2(0, T ; W 1,2(Ω)), L2(ST )). For a linear subspace W of L2(0, T ; W 1,2(Ω)),
we denote

TrST W := {γ(w) : w ∈ W} . (6)

This is a Banach space with the norm

‖f‖TrST W := inf
w∈W, γ(w)=f

‖w‖W . (7)

Lemma 2.3. For ` ∈ {0, 1, 2} assume that f ∈ TrST V`. Then, if ∂Ω is of class C`+3 the components
of∇Γf belong to TrST V`−1.

Conversely, if∇Γf belongs to TrST V−1, then f belongs to TrST V0.

Proof. Assume that f̄ ∈ V` is an arbitrary extension for f into Ω (that means, γ(f̄) = f ). In the case
` = 0, we extend f̄ to ]0, T [×R3 with the extension operator of Lemma 2.1.

Extending the tangential vectors suitably into Ω (into R3 for ` = 0), we obtain that τ · ∇f̄ ∈ V`−1,
and that

‖τ · ∇f̄‖V`−1 ≤ c ‖τ‖C`+2(Ω;R3) ‖f̄x‖V`−1 ≤ c ‖τ‖C`+2(Ω;R3) ‖f̄‖V` .

Thus, ‖τ · ∇f‖TrST V
`−1 ≤ cΩ ‖f̄‖V` . Since the extension f̄ was arbitrary

‖τ · ∇f‖TrST V
`−1 ≤ cΩ inf

f̄∈V` : γ(f̄)=f
‖f̄‖V` = c ‖f‖TrST V

` .

Now, assume that f ∈ TrST W
1,0
2 (Q; RN) is such that ∇Γf belongs to TrST V−1. We want to show

that f ∈ TrST V0 and that

‖f‖TrST V
0 ≤ c (‖f‖L2(ST ) + ‖∇Γf‖TrST V

−1).

The results of [LSU68], Ch. 4, Par. 2 allow to show that the spaceW 2,1
2 (QT ; RN), which is isomorphic

to V0 satisfies

TrST W
2,1
2 (QT ) = W

3
2
,
3
4

2 (ST ) .

Moreover, we know ([DHP07]) that the Neumann trace ν · ∇ maps W 2,1
2 (QT ) onto

W
1
4

2 (0, T ; L2(∂Ω)) ∩ L2(0, T ; W
1
2
,2(∂Ω)) .

Due to the Lemma 2.8, every function a ∈ TrST V−1 can be represented as the Neumann trace of a
function from W 2,1

2 (QT ). Thus

TrST V−1 ⊆ W
1
4

2 (0, T ; L2(∂Ω)) ∩ L2(0, T ; W
1
2
,2(∂Ω)) .

Thus, if∇Γf ∈ TrST V−1, then obviously

f ∈W
1
4

2 (0, T ; W 1,2(∂Ω)) ∩ L2(0, T ; W
3
2
,2(∂Ω))

= W
3
2
,
3
4

2 (ST ) = TrST W
2,1
2 (QT ) .
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2.4 Multiplication and Nemicki operators

We notice that V1 is by definition a subset of C([0, T ]; W 2,2(Ω; RN)). By means of the Sobolev
embedding theorem. It follows for all t ∈ [0, T ] that

‖D2v(t)‖2
L2(Ω) + ‖∇v(t)‖2

L6(Ω) ≤ cΩ ‖v‖2
V1 . (8)

We shall make use of auxiliary inequalities for u, v ∈ V1:

‖ux vt‖L2(Q) ≤ ‖ux‖L∞,4 ‖vt‖L2,4 ≤ c ‖u‖V1 ‖v‖V1 (9)

‖ux vx,x‖L2 ≤ ‖ux‖L∞,4 ‖vx,x‖L2,4 ≤ c ‖u‖V1 ‖v‖V1 . (10)

Moreover, we can prove that V1 embeds into the Hölder spaceH
1
2
,
1
4 (Q; RN). For instance, we make

use of the fact that the spatial derivative of u ∈ V1 belongs to L∞,6 while the time derivative belongs
to L2,6. We apply the anisotropic embedding theorem of [KP11].

2.4.1 Multiplicator spaces

We say that a Banach space X ↪→ Y (continuous injection) is a multiplicator space for Y if and only
if there is a constant c > 0 such that ‖x y‖Y ≤ c ‖x‖X ‖y‖Y for all x ∈ X and y ∈ Y .

Lemma 2.4. The space V1 is a multiplicator space for the following spaces:L2(0, T ; W 1,2(Ω; RN)),
L2(0, T ; W 2,2(Ω; RN)), V0, and itself.

The space V2 is a multiplicator space for itself.

The space EΩ(V1) is a multiplicator space for V−1.

Moreover, the multiplicator properties extend on the corresponding trace spaces.

Proof. We will prove the claims for scalar functions. For vector fields, we apply the same inequalities
component wise.

Let first a ∈ L2(0, T ; W 1,2(Ω)) and b ∈ V1. Then

‖a b‖L2 ≤ ‖b‖L∞ ‖a‖L2

‖ax b‖L2 ≤ ‖b‖L∞ ‖ax‖L2

‖a bx‖L2 ≤ ‖bx‖L∞,4 ‖a‖L2,4 ≤ c‖bx‖L∞,6 ‖a‖L2W 1,2 .

Thus, invoking (8)

‖a b‖L2(0,T ;W 1,2(Ω)) ≤ c ‖b‖V1 ‖a‖L2(0,T ;W 1,2(Ω)) . (11)

This shows that V1 is a multiplicator space for L2(0, T ; W 1,2(Ω)).

We note further that

‖ax,x b‖L2 ≤ ‖b‖L∞ ‖ax,x‖L2

‖ax bx‖L2 ≤ ‖bx‖L∞,4 ‖ax‖L2,4 ≤ c ‖b‖V1 ‖a‖L2W 2,2

‖a bx,x‖L2 ≤ ‖bx,x‖L∞,2 ‖a‖L2,∞ ≤ c ‖bx,x‖L∞,2 ‖a‖L2W 2,2 . (12)
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Again (8), (11) and (12) yield

‖a b‖L2(0,T ;W 2,2(Ω)) ≤ c ‖b‖V1 ‖a‖L2(0,T ;W 2,2(Ω)) . (13)

This shows that V1 is a multiplicator space for L2(0, T ; W 2,2(Ω)). We also easily show that

‖at b‖L2 ≤ ‖b‖L∞ ‖at‖L2 ≤ c ‖b‖V1 ‖at‖L2

‖a bt‖L2 ≤ ‖bt‖L2,4 ‖a‖L∞,4 ≤ c ‖bt‖L2W 1,2 ‖a‖L∞W 1,2 .

Thus

‖(a b)t‖L2 ≤ c ‖b‖V1 ‖a‖V0 . (14)

Combining (13) and (14) yield

‖a b‖W 1
2 (0,T ;W 2,2(Ω), L2(Ω)) ≤ c ‖b‖V1 ‖a‖V0 .

Since also

‖ax b‖L∞,2 ≤ ‖b‖L∞ ‖ax‖L∞,2
‖a bx‖L∞,2 ≤ ‖bx‖L∞,4 ‖a‖L∞,4 ≤ c ‖b‖L∞W 2,2 ‖a‖L∞W 1,2 ,

we obtain that

‖a b‖V0 ≤ c ‖bV1 ‖a‖V0 . (15)

Thus, V1 is a multiplicator space for V0.

We note that d ∈ V1 if and only if dx ∈ V0. On the other hand, the inequality (15) yields

‖(a b)x‖V0 ≤ c (‖ax‖V0 ‖b‖V1 + ‖a‖V1 ‖bx‖V0)

≤ c ‖a‖V1 ‖bV1 . (16)

This shows that V1 is a multiplicator space for itself.

Similarly, d ∈ V2 if and only if dx ∈ V1. Thus, (16) directly implies that V2 is a multiplicator space for
itself. Finally we show that EΩ(V1) is a multiplicator space for V−1.

Let φ ∈ L2(0, T ; W 1,2(R3)), and a and b be smooth functions defined on R3.

Then ((a b)t, φ)L2(R3) = (at, bφ)L2(R3) + (bt, a φ)L2(R3). Moreover

|(at, bφ)L2([0,T ]×R3)| ≤ ‖at‖L2(W 1,2)∗ ‖bφ‖L2W 1,2

≤ c ‖at‖L2(W 1,2)∗ ‖b‖V1(]0,T [×R3) ‖φ‖L2W 1,2

|(bt, a φ)L2([0,T ]×R3)| ≤ ‖bt‖L2,4 ‖a‖L∞,2 φ‖L2,4

≤ c ‖bt‖L2W 1,2 ‖a‖L∞,2 ‖φ‖L2W 1,2 .

Thus ‖(a b)t‖L2(W 1,2)∗ ≤ c ‖b‖V1(]0,T [×R3) ‖a‖V−1 . Combining the latter with (11), we obtain that

‖a b‖W 1
2 (0,T ;W 1,2, (W 1,2)∗) ≤ c ‖b‖V1(]0,T [×R3) ‖a‖V−1 .

Choosing b = EΩ(b̃) with b̃ ∈ V1(]0, T [×Ω), we see that EΩ(V1) is a multiplicator space for V−1.

Finally, if X is a multiplicator space for Y , and if both X, Y ↪→ L2(0, T ; W 1,2(Ω)), then for all
x ∈ X and y ∈ Y

‖γ(x) γ(y)‖TrST Y
≤ ‖x y‖Y ≤ ‖x‖X ‖y‖Y .

Thus ‖γ(x) γ(y)‖TrST Y
≤ ‖x‖TrST X

‖y‖TrST Y
, and one sees that the multiplicator property extends

to the traces.
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The following consequences are direct.

Lemma 2.5. For u, v : Q→ R smooth enough:

1 ‖ut vx‖L2(0,T ;W 1,2(Ω)) ≤ c ‖u‖V1 ‖v‖V2 ;

2 ‖u vx‖L2(0,T ;W 1,2(Ω)) ≤ c ‖u‖V1 ‖v‖V0 ;

3 ‖u vx‖L2(0,T ;W 2,2(Ω)) ≤ c ‖u‖V1 ‖v‖V1 ;

4 ‖EΩ(u)EΩ(vx)‖V−1 ≤ c ‖u‖V1 ‖v‖V0 ;

5 ‖vx u‖V0 ≤ c ‖u‖V1 ‖v‖V1 .

6 ‖u v‖TrV0 ≤ c ‖u‖TrV1 ‖v‖TrV0 .

7 ‖∇Γ(u v)‖TrV0 ≤ c ‖u‖TrV1 ‖v‖TrV1 .

Proof. We show (2.5) making use of vx ∈ V1 and of the fact that V1 is a multiplicator space for
L2W 1,2. Moreover ‖ut‖L2(0,T ;W 1,2(Ω)) ≤ ‖u‖V1 .

For (1), we make use of the same argument and that ‖vx‖L2W 1,2 ≤ ‖v‖V0
T

.

In order to prove (2), we make use of the fact that V1 is a multiplicator space for L2W 2,2, and that
‖vx‖L2W 2,2 ≤ ‖v‖V1 .

In order to prove (3), we make use of the fact that EΩ(V1) is a multiplicator space for V−1, and that
‖EΩ(vx)‖V−1 ≤ ‖v‖V0 (see the Lemma 2.1).

Since V1 is a multiplicator space for V0, (4) is obvious.

In order to prove (5), note that for arbitrary extensions ū, v̄ into Ω of u and v, the Lemma 2.4 yields
‖ū v̄‖V0 ≤ c ‖ū‖V1 ‖v̄‖V0 . Thus

‖u v‖TrV0 ≤ c ‖ū‖V1 ‖v̄‖V0 ∀ ū ∈ V1, v̄ ∈ V0 : ū = u, v̄ = v on ST .

Thus, (5) follows from the definition of the norm for spaces TrST (cf. (7)).

In order to prove (6), we choose an extension τ ∈ C2(Ω; R3) for an arbitrary tangential vector τ
field given on ∂Ω. We then regard ∇Γ = τ · ∇ as a differential operator that we can apply on bulk
functions. We Since V1 is a multiplicator space for V0, it follows for arbitrary extensions ū and v̄ that

‖ū τ · ∇v̄‖V0 ≤ c ‖τ · ∇v̄‖V0 ‖ū‖V1 ≤ c ‖τ‖C2(Ω) ‖v̄‖V1 ‖ū‖V1 .

Thus ‖u τ · ∇v‖TrST V
0 ≤ c ‖v‖TrST V

1 ‖u‖TrST V
1 . The claim (6) follows easily.

2.4.2 Nemicki operators

Nemicki operators are, beside multiplication operators, another important ingredient for the analysis
of quasilinear equations. In the following statement, we for simplicity regard the spaces V` as sets of
scalar valued functions (N = 1).

Proposition 2.6. Let b : [0, T ] × Ω × R → R. For u : [0, T ] × Ω → R we define Nb(u) :=
b(t, x, u). Then, the following is valid:
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Local well-posedness for quasilinear parabolic systems 9

(1) If b ∈ L∞([0, T ]; C3(Ω× R)), then, the Nemicki operator u 7→ Nb(u) is bounded and continu-
ous from V1 into L2(0, T ; W 3,2(Ω)).

(2) If b ∈ C1([0, T ]; C2(Ω × R)), then u 7→ Nb(u) is bounded and continuous from V1 into
W 1

2 (0, T ; W 1,2(Ω)).

(3) If b ∈ L∞([0, T ]; C3(Ω × R)) ∩ C1([0, T ]; C2(Ω × R)), the operator Nb is bounded and
continuous from V1 into itself. If moreover bu ∈ L∞([0, T ]; C3(Ω× R)) ∩ C1([0, T ]; C2(Ω×
R)), it is even Fréchet differentiable from V1 into itself.

(4) If b, bx, bu ∈ C1([0, T ]; C2(Ω × R)) ∩ L∞([0, T ]; C3(Ω × R)), the operator Nb is bounded
and continuous from V2 into itself. If moreover bx,u and bu,u ∈ C1([0, T ]; C2(Ω × R)) ∩
L∞([0, T ]; C3(Ω× R)), it is Fréchet differentiable.

Proof. The derivatives of f := b(t, x, u) are given by

fxi = bxi + bu uxi
fxi,xj = bxi,xj + bu,xj uxi + bu,xi uxj + bu,u uxi uxj + bu uxi,xj .

The third derivatives are given by an expression

fx,x,x =
∑
α+β≤3

cα,βD
α
xuD

β
xu .

Here, the coefficient cα,β(t, x, u) are given by b and its derivatives after u and x up to order three.
Recalling (9) and the embedding V1 ⊂ L∞(Q), we obtain that

‖f‖L2(0,T ;W 3,2(Ω)) ≤ c(‖u‖L∞(Q)) (1 + ‖u‖V1) = C(‖u‖V1) . (17)

This shows that the Nemicki operator is bounded from V1 into L2(0, T ; W 3,2(Ω)). We easily show
the continuity, proving (1).

We compute the derivatives

ft,x = bt,x + bu,x ut + bu,t ux + bu,u ux ut + bu ux,t .

For u ∈ V1, it follows from (9) that ‖ux ut‖L2 is bounded by ‖u‖2
V1 . Thus

‖f‖W 1
2 (0,T ;W 1,2(Ω)) ≤ c(‖u‖L∞(Q)) (1 + ‖u‖2

V1) . (18)

This shows that the Nemicki operator is also bounded from V1 into W 1
2 (0, T ; W 1,2(Ω)). Combining

(17) and (18), we obtain that Nb is bounded from V1 into itself, that is,

‖Nb(u)‖V1 ≤ cb(‖u‖V1) . (19)

We prove easily the continuity.

If bu ∈ C([0, T ]; C3(Ω × R)), we can show that the mapping Nb : u 7→ b(t, x, u) is a Gateaux
differentiable operator between V1 and itself. The directional derivative at u∗ is the operator

N ′b(u
∗)u = bu(t, x, u

∗)u .
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Making use of the Lemma 2.4, we see that

‖bu(t, x, u∗)u‖V1 ≤ c ‖u‖V1 ‖bu(t, x, u∗)‖V1 .

Reinterpreting bu(t, x, u∗) as Nemicki operator Nbu(u∗) and making use of the first step (19), it
follows that

‖bu(t, x, u∗)u‖V1 ≤ c ‖u‖V1 C(‖u∗‖V1) .

Thus ‖N ′b(u∗)‖L (V1,V1) ≤ cb,bu(‖u∗‖V1). We can show that u∗ 7→ N ′b(u
∗) is continuous from V1

into L (V1, V1) which is nothing else but the C1 property. This shows (3).

To show (4), we consider Nb as an operator on V2. To show that Nb(u) ∈ V2, it suffices to show that
(Nb(u))x ∈ V1, that is

bx(t, x, u) + bu(t, x, u)ux ∈ V1 .

For pairs v = (u, ux) ∈ R4, we introduce b̃(t, x, v) := bx(t, x, u) + bu(t, x, u)ux. If b, bx, bu ∈
C1([0, T ]; C2(Ω × R)) ∩ C([0, T ]; C3(Ω × R)), then b̃ ∈ C1([0, T ]; C2(Ω × R4)) and b̃ ∈
C([0, T ]; C3(Ω × R4)). It then follows from (3) that the Nemicki operator Nb̃ is continuous from V1

into itself. If moreover bx,u, bu,u ∈ C1([0, T ]; C2(Ω×R))∩C([0, T ]; C3(Ω×R)), the operator is
Fréchet differentiable.

Corollary 2.7. Let c ∈ C1([0, T ]; C3(Ω × R4)) ∩ C([0, T ]; C4(Ω × R4)). Then, the Nemicki
operator Nc : u 7→ c(t, x, u, ux) is well defined and Fréchet differentiable from V2 into V1.

Proof. Define Nc(u) = c(t, x, u, , ux) for u ∈ V2. Since ux ∈ V1, we have Nc(u) = Nc̃(u, ux)
with Nc̃(w) = c(t, x, (u, ux)). Here c̃ ∈ C1([0, T ]; C3(Ω×R4)) ∩C([0, T ]; C4(Ω×R4). Thus,
from the Proposition 2.6, (3) we can conclude that Nc is a C1 operator between V2 and V1.

2.5 An extension operator for the oblique derivative problem

In order to homogenise boundary conditions, we need an operator proposed in Lemma 7.19 of [Lie96]
and slightly modified in the following Lemma.

Lemma 2.8. Let f ∈ TrST V−1. If ∂Ω is of class C3, then there exists a function U ∈ V0 such that

U = 0 on ST , ν(x) · ∇U = f(x) on ST
‖U‖V0 ≤ c ‖f‖TrST V

−1 .

Proof. We first construct the operator for a flat situation. Assume at first that f is a function of class
C1
c (] − ∞, +∞[×R3). Let Φ ∈ C∞c (R4) be a smooth function with support in B1(0) such that∫
R4 Φ(z) dz = 1. The variable X ∈ R4 stands here for X = (t, x) where x in R3 is the space

variable. For X ∈ R4 we consider

(Tf)(X) := −X−4
4

∫
R4

Φ(X−Z
Xβ

4

) f(Z) dZ . (20)

Here β := (2, 1, 1, 1). The transformation formula yields the equivalent representation

(Tf)(X) = X4

∫
R4

Φ(Y ) f(X −Xβ
4 Y ) dY . (21)
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Local well-posedness for quasilinear parabolic systems 11

First, for i = 2, 3, we can show that

(Tf)Xi = −X−5
4

∫
R4

ΦXi(
X−Z
Xβ

4

) f(Z) dZ

=

∫
R4

ΦXi(Y ) f(X −Xβ
4 Y ) dY .

For i = 4

(Tf)X4 =−X−5
4

∫
R4

ΦX4(X−Z
Xβ

4

) f(Z) dZ

+X−5
4

∫
R4

4∑
i=1

βi ΦXi(
X−Z
Xβ

4

) Xi−Zi
X
βi
4

f(Z) dZ

+ 4X−5
4

∫
R4

Φ(X−Z
Xβ

4

) f(Z) dZ .

Introducing Ψ(Y ) :=
∑4

i=1 βi ΦXi(Y )Yi, then it follows that

(Tf)X4 =

∫
R4

ΦX4(Y ) f(X −Xβ
4 Y ) dY − 4

∫
R4

Φ(Y ) f(X −Xβ
4 Y ) dY

−
∫
R4

Ψ(Y ) f(X −Xβ
4 Y ) dY .

For i = 2, 3, we make use of

|(Tf)Xi |2 ≤
∫
R4

|ΦXi(Y )| dY
∫
R4

|ΦXi(Y )| f 2(X −Xβ
4 Y ) dY

≤ C

∫
R4

|ΦXi(Y )| f 2(X −Xβ
4 Y ) dY .

Thus, integration over R4 yields

‖(Tf)Xi‖2
L2 ≤ C

∫
R4

|ΦXi(Y )|
∫
R4

f 2(X −Xβ
4 Y ) dX dY

Since by the transformation formula∫
R4

f 2(X −Xβ
4 Y ) dX =

1

1− Y4

‖f‖2
L2

it follows that

‖(Tf)Xi‖2
L2 ≤ C

∫
R4

|ΦXi(Y )|
1− Y4

dY ‖f‖2
L2 .

The choice of Φ now guaranties that
∫
R4

|ΦXi (Y )|
1−Y4

dY ≤ c ‖Φ‖W 2,2(R4). Similarly, we show that
‖(Tf)X4‖2

L2 ≤ C ‖f‖2
L2 . Thus, the operator T extends to a bounded linear operator from L2(R4)

into L2(R; W 1,2(R3)).

Due to (21), we easily verify that the trace of Tf on the plane X4 = 0 is zero.
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Now we verify the claims on the derivatives of Tf and the normal trace. For i = 2, 3, the representa-
tion (20) also implies that

(Tf)Xi = −X−4
4

∫
R4

Φ(X−Z
Xβ

4

) fXi(Z) dZ = T (fXi) , (22)

Thus ‖(Tf)Xi‖L2W 1,2 = ‖T (fXi)‖L2W 1,2 ≤ C ‖fXi‖L2 . For i = 4, we make use of (21) to see that

(Tf)X4 =

∫
R4

Φ(Y ) f(X −Xβ
4 Y ) dY +X4

∫
R4

Φ(Y )
(
fX4(X −Xβ

4 Y )

−
4∑
i=1

fXi(X −X
β
4 Y ) βi Yi X

βi−1
4

)
dY

=

∫
R4

Φ(Y ) f(X −Xβ
4 Y ) dY +X4

∫
R4

Φ(Y )
(
fX4(X −Xβ

4 Y )

−
4∑
i=2

fXi(X −X
β
4 Y )Yi

)
dY − 2X2

4

∫
R4

Φ(Y ) fX1(X −Xβ
4 Y )Y1 dY

Now, there exists a vector field F ∈ L2(R3; R3) such that fX1 = divx F and

‖fX1‖L2(R; [W 1,2(R3)]∗) = ‖F‖L2(R3;R3) .

For i = 1, . . . , 4 define Ψ̃i(Y ) := Φ(Y )Yi and observe that

−2X2
4

∫
R4

Φ(Y ) fX1(X −Xβ
4 Y )Y1 dY = 2X−3

4

∫
R4

Ψ̃1(X−Z
Xβ

4

) divx F (Z) dZ

= −2X−4
4

∑
i=2,3,4

∫
R4

Ψ̃1
Xi

(X−Z
Xβ

4

)Fi(Z) dZ .

We obtain the representation

(Tf)X4 =

∫
R4

Φ(Y ) f(X −Xβ
4 Y ) dY

+ (TfX4)−
∑
i=2,3,4

{(TΨ̃ifXi)− 2 (TΨ̃1
Xi

Fi)} . (23)

Due to the properties of T :

‖TfX4‖L2W 1,2 ≤ C ‖fX4‖L2

‖TΨ̃ifXi‖L2W 1,2 ≤ C ‖fXi‖L2

‖TΨ̃1
Xi

Fi‖L2W 1,2 ≤ C ‖F‖L2 ≤ C ‖fX1‖L2(R; [W 1,2(R3)]∗) .

With similar arguments, we also prove that the function g(X) :=
∫
R4 Φ(Y ) f(X −Xβ

4 Y ) dY satis-
fies ‖g‖L2W 1,2 ≤ C (‖f‖L2W 1,2 + ‖F‖L2). Thus, overall

‖Tf‖L2(R;W 2,2(R3)) ≤ C (‖f‖L2W 1,2 + ‖fX1‖L2[W 1,2]∗) .

Moreover, (23) shows that (Tf)X4 = f on the plane X4 = 0.
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Local well-posedness for quasilinear parabolic systems 13

For the time derivative ∂X1 , we can show that

(Tf)X1 = X−4
4

∫
R4

Φ(X−Z
Xβ

4

) fX1(Z) dZ .

Therefore (Tf)X1 = −X−5
4

∫
R4

∑
i=2,3,4 ΦXi(

X−Z
Xβ

4

)Fi(Z) dZ . It follows that

‖(Tf)X1‖L2 ≤ C ‖fX1‖L2(R; [W 1,2(R3)]∗) .

In order to prove the statement in a curved situation, assume that ]0, T [×Γ =]0, T [×(∂Ω ∩ U) is a
piece of surface such that a C2 diffeomorphism F exists between R × {(X2, X3, X4) : |X4| < 1}
and ]0, T [×U . We then choose U(t, x) = (T (f ◦ F ))(F−1(t, x)) and the claim follows.

2.6 A simple operator theoretic tool

Lemma 2.9. LetX, Y be Banach spaces withX reflexive. Let {L(s)}s∈[0,1] ⊂ L (X, Y ) be a fam-
ily of bounded linear injections such that L(0) is invertible and such that L(s)→ L(s0) in L (X, Y )
for all s → s0 ∈ [0, 1]. Assume moreover that all solutions to L(s)x = y satisfy a uniform bound
‖x‖X ≤ c1 ‖y‖Y . Then, L(1) is invertible.

Proof. Define

s∗ := sup{s ∈ [0, 1] : L(s) is invertible } .

SinceL(0) is invertible, the Banach perturbation argument yields thatL(s) is invertible for all ‖L(s)−
L(0)‖L (X,Y ) < ‖[L(0)]−1‖L (Y,X). Thus, s∗ > 0. We next show that L(s∗) is invertible. By defi-
nition, we can choose a sequence sn ↗ s∗ such that L(sn) is invertible. In particular, for arbitrary
y ∈ Y , we can introduce xn ∈ X such that L(sn)xn = y. We make use of the assumption,
‖xn‖X ≤ c1 ‖y‖Y . Thus, extracting a weakly convergent subsequence xn ⇀ x, and using that

L(s∗)xn = y + (L(s∗)− L(sn))xn

we see that L(s∗)x = y. Thus, L(s∗) is surjective, and therefore invertible.

If now s∗ < 1, the Banach perturbation argument yields that L(s) is invertible for all s > s∗ such that
‖L(s)− L(s∗)‖L (X,Y ) < ‖[L(s∗)]−1‖L (Y,X). This would contradict the definition of s∗.

2.7 Preliminaries associated with the elliptic operator

Localisation. Assume that Ω is a domain of class Cm (m ≥ 1). We find a partition of unity
ζ0, . . . , ζn for the domain Ω (see Theorem 5.3.8 of [KJF77]). For µ = 0, . . . , n, we denote Ωµ =
Ω ∩ supp ζµ. It is possible to assume the following:

� The function ζ0 has a compact support in Ω;

� For µ = 0, . . . , n, there are vector fields V µ,1, V µ,2, V µ,3 ∈ Cm−1(Ωµ; R3) such that

{V µ,1(x), V µ,2(x), V µ,3(x)} is an orthonormal system of R3 for all x ∈ Ωµ

V µ,3(x) = ν(x) for all x ∈ ∂Ω ∩ supp ζµ .

(For extension of the vector ν, see the Section 14.6 of [GT01]).
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In particular, we can decompose the gradient of a function as follows:

wx =
m∑
µ=0

3∑
`=1

(V µ,` · ∇w ζµ)V µ,` . (24)

There the vector fields V µ,1, V µ,2 are tangent on ∂Ω for µ = 1, . . . ,m. With this construction we
can avoid tedious changes of coordinates to locally flatten the boundary.

Linear elliptic systems. We consider a general second order linear PDE system in divergence form

−∂xk(Mi,j,k,`(x) vj,x`) = fi(x) . (25)

The system is uniformly elliptic if there is 0 < ν0(M) such that

ν0 ‖A‖2 ≤
N∑

i,j=1

3∑
k,`=1

Mi,j,k,`(x)Ai,k Aj,` for all A ∈ RN×3 . (26)

We commence with a technical preliminary about the connection between bulk and boundary operator.
The proof is completely elementary and might be left as an exercise.

Lemma 2.10. Assume for i, j = 1, . . . , N and k, ` = 1, 2, 3 that the functions Mi,j,k,` are of class
C0,1(Ω). Consider vector fields V 1, V 2, V 3 that we assume of class C1,1(Ω; R3) and orthonormal
in Ω′ ⊆ Ω.

If v ∈ W 2,2(Ω; RN) satisfies the equations (25) in Ω′, then the following identities are valid for
i = 1, . . . , N :

V 3
k Mi,j,k,` (V 3 · ∇vj)x` = −

2∑
λ=1

V λ
k Mi,j,k,` (V λ · ∇vj)x` − fi

+
3∑

λ=1

V λ
k (Mi,j,k,`(x) (V λ)x` · ∇ vj − V λ · ∇Mi,j,k,` vj,x`) . (27)

and

Mi,j,V 3,V 3 V 3 · ∇(V 3 · ∇vj) = −fi

−
2∑

λ=1

Mi,j,k,` [V λ
k (V λ · ∇vj)x` + V 3

k V
λ
` V

3 · ∇(V λ · ∇vj)]

+
3∑

λ=1

V λ
k (Mi,j,k,` (V λ)x` · ∇ vj − V λ · ∇Mi,j,k,` vj,x`)

−
2∑

λ=1

V 3
k V

λ
` Mi,j,k,` [{(V λ · ∇)V 3 − (V 3 · ∇)V λ}∇vj] (28)

The fundamental Hilbert space estimates for linear equations and systems are very well known: see
[DN55], [Nir55], [JN57]..
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Lemma 2.11. Assume for i, j = 1, . . . , N and k, ` = 1, 2, 3 that the functions Mi,j,k,` are of class
C0,1(Ω) and satisfy (26). If Ω is of class C1,1 the unique solution v ∈ W 2,2(Ω; RN) to the equations
(25) in Ω in connection with one of the following two boundary conditions:

−νkMi,j,k,`(x) vj,x` = 0 on ∂Ω

v = 0 on ∂Ω

satisfies the estimate ‖v‖W 2,2(Ω;RN ) ≤ c(‖M‖C0,1(Ω)) ‖f‖L2(Ω;RN ).

3 Reduced quasilinear parabolic system in divergence form

For functions w1, . . . , wN : QT → R we consider the problem:

∂tRi(t, x, w) + div J i(t, x, w, wx) = fi(t, x, w, wx) in [0, T ]× Ω (29)

Bi(t, x, w, wx) = fΓ,i(t, x, w) on [0, T ]× ∂Ω (30)

w = q0 in {0} × Ω . (31)

The functions R1, . . . , RN are defined on Q × RN . We denote (t, x, z) a generic element of the
latter domain.

The functions J ik (i = 1, . . . , N and k = 1, 2, 3) as well as fi (i = 1, . . . , N ) are defined on
Q × RN × RN×3. We denote (t, x, z, D) a generic element of the latter domain. The functions
fΓ,1, . . . , fΓ,N are naturally defined on ST × RN , but we will for simplicity directly assume that they
are extension functions defined in QT × RN .

In this section, we assume that J generates a restricted quasilinear operator in divergence form for a
fully coupled system, which means that J is linear in the variable D. Therefore

J ik(t, x, w, wx) := −
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w)wj,x` for i = 1, . . . , N, k = 1, 2, 3 . (32)

For i, j = 1, . . . , N and k, ` = 1, 2, 3, the function Mi,j,k,` is defined on Q × RN . With Mi,j,k,`,t,
Mi,j,k,`,x, Mi,j,k,`,z, we denote the partial derivatives of M in these these variables.

The ’parabolicity’ of the system (29) lays in the following assumptions forR andM : There are positive
continuous functions λ0 ≤ λ1 ∈ C(RN) and ν0 ∈ C(RN) such that

|X|2

λ1(z)
≤

N∑
i,j=1

Ri,zj(t, x, z)XiXj ≤
|X|2

λ0(z)
for all X ∈ RN (33)

ν0(z) ‖D‖2 ≤
N∑

i,j=1

3∑
k,`=1

Mi,j,k,`(t, x, z)Di
kD

j
` for all D ∈ RN×3 . (34)

In this paper, we only consider the natural boundary operator

Bi(t, x, w, wx) :=
3∑

k=1

νk(x) J ik(t, x, w, wx)

= −
3∑

k=1

νk(x)

(
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w)wj,x`

)
. (35)

Our main result in the section is the following Theorem.
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Theorem 3.1. Assume that Ω is a bounded domain of class C5. Assume for i = 1, . . . , N that
Ri ∈ (C0,5 ∩ C1,4)([0, T ] × Ω × RN), and that Mi,j,k,` ∈ (C0,4 ∩ C1,3)([0, T ] × Ω × RN) for
i, j = 1, . . . , N and k, ` = 1, 2, 3. Assume that R satisfies (33) and M satisfies (34). Assume that
f ∈ C0,4([0, T ]×Ω×RN) and that fΓ ∈ C0,4([0, T ]×Ω×RN). Let q0 ∈ Tr{0}×Ω V2 satisfy the
condition

−νk(x)Mi,j,k,`(0, x, q
0(x)) q0

j,x`
= fΓ

i (0, x, q0(x)) for all x ∈ ∂Ω . (36)

Then, there is T > 0 depending only on R, M , q0 and the domain Ω such that the problem (29)
possesses a unique solution w ∈ V2(QT ; RN).

The remainder of the section is devoted to the proof of this statement.

3.1 The fundamental case

In this subsection we consider (29) with zero lower–order terms (f = 0 and fΓ = 0). The assumed
compatibility condition (36) is then

−
3∑

k=1

N∑
j=1

3∑
`=1

νk(x)Mi,j,k,`(0, x, q
0(x)) q0

j,x`
(x) = 0 for all x ∈ ∂Ω . (37)

By means of the Lemmas 2.6 and 2.7, it can be shown that

� For R ∈ (C1,4 ∩ C0,5)([0, T ]× Ω× RN), the non-linear mappingR defined via(
R(w)

)
(t, x) := ∂tR(t, x, w)

� For M in (C1,3 ∩ C0,4)([0, T ]× Ω× RN), the non-linear mappingQ defined via(
Q(w)

)
(t, x) := div J(t, x, w, wx)

map continuously the space V2 into L2(0, T ; W 2,2(Ω; RN)). Moreover, R and Q are Fréchet dif-
ferentiable as operators between these classes. To see this in the case of R, we reinterpret R as
a Nemicki operator NR between V2 and itself. This operator is Fréchet differentiable according to
Lemma 2.6, . Thus, the composition operator d

dt
◦ R is Fréchet differentiable as an operator from V2

into L2(0, T ; W 2,2(Ω; RN)).

Similarly, if M ∈ (C1,3 ∩ C0,4)([0, T ] × Ω × RN), we can interpret Q : w 7→ M(t, x, w)wx
as a C1 operator from V2 into V1 (Lemma 2.7). Then, div ◦Q is Fréchet differentiable from V2 into
L2(0, T ; W 2,2(Ω; RN)).

It can be shown under the assumptions M ∈ (C1,3 ∩ C0,4)([0, T ] × Ω × RN) and ∂Ω of class
C5 that the non-linear mapping B : w 7→ B(t, x, w, wx) maps TrST V2 into the space TrST V1. To
see this, we again simply reinterpret B(w) as the Nemicki operator Nc(w) with c(t, x, w, wx) =
ν(x)M(t, x, w)wx, and we apply the Lemma 2.7. Note that we need here an extension of class
C4(Ω; R3) of the normal vector into Ω (see Section 2.7).

We denote throughout the section q0 ∈ V2 the initial data. We introduce a non-linear operator G =
{G1, G2} acting on V2

Ω via

G(v) := {R(v + q0) +Q(v + q0), B(v + q0)} (38)
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Local well-posedness for quasilinear parabolic systems 17

Due to the preliminary remarks, the image of V2
Ω underG is a subspace ofL2(0, T ; W 2,2(Ω; RN))×

TrST V1. Under the compatibility condition (37), it is even a subspace of

Z2 := L2(0, T ; W 2,2(Ω; RN))× TrST V1
Ω . (39)

Moreover, G is Fréchet differentiable as a map between V2
Ω and Z2. It is readily seen that the resolv-

ability of the problem (29) in V2 is equivalent with solving the equation G(v) = 0 in V2
Ω. Our analysis

of this equation shall rely on the implicit function theorem.

We now investigate the directional derivative G′ at a point v∗ ∈ V2
Ω (introduce w∗ := v∗ + q0 ∈ V2),

which is the linear operator given by

G′(v∗) ξ = {R′(w∗) ξ +Q′(w∗) ξ, B′(w∗) ξ} for ξ ∈ V2
Ω . (40)

We identify G′(v∗) as a linear operator of L (V2
Ω, Z

2). For i = 1, . . . , N , we here make use of the
abbreviations

(R′(w∗) ξ)i =
d

dt

(
N∑
j=1

Ri,zj(t, x, w
∗) ξj

)

(Q′(w∗) ξ)i = −
3∑

k=1

d

dxk

(
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w
∗) ξj,x`

+
N∑
m=1

Mi,j,k,`,zm(t, x, w∗) ξmw
∗
j,x`

)

(B′(w∗) ξ)i = −
3∑

k=1

νk

(
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w
∗) ξj,x`

+
N∑
m=1

Mi,j,k,`,zm(t, x, w∗) ξmw
∗
j,x`

)
.

For simplicity, we shall split these operators into a principal part and a lower–order part. We introduce
the following principal parts of these operators:

(R′o(w∗) ξ)i :=
N∑
j=1

Ri,zj(t, x, w
∗) ∂tξj

(Q′o(w∗) ξ)i := −
3∑

k=1

∂xk(
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w
∗) ξj,x`)

(B′o(w∗) ξ)i := −
3∑

k=1

νk (
N∑
j=1

3∑
`=1

Mi,j,k,`(t, x, w
∗) ξj,x`) .

Remark 3.2. The operator ξ 7→ {R′o(w∗) + Q′o(w∗), B′o(w∗)} ξ extends to a linear operator of
L (V0

Ω, Z
0). Here Z0 := L2(Ω; RN)× TrST V−1

R3 .

Proof. Consider the inequalities

‖R′o(w∗) ξ‖L2(Q) ≤ ‖Rz(t, x, w
∗)‖L∞(Q)) ‖∂tξ‖L2(Q)

‖Q′o(w∗) ξ‖L2(Q) ≤ (‖M(t, x, w∗)‖L∞(Q) + ‖ d
dx

M(t, x, w∗)‖L∞(Q)) ‖ξx‖W 1,0
2 (Q) .
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Since w∗ ∈ V2 implies w∗, w∗x ∈ L∞(Q), it follows that

‖(R′o(w∗) +Q′o(w∗)) ξ‖L2(Q) ≤ c(‖w∗‖V2) ‖ξ‖V0 .

Moreover, recalling Lemma 2.5, (3) we obtain that

‖B′o(w∗) ξ‖TrST V
−1 ≤ c ‖M(t, x, w∗)‖V1 ‖ξ‖V0 .

.

Our aim is to show that the Fréchet derivative G′(v∗) is invertible at arbitrary v∗ ∈ V2
Ω. We shall need

several preliminaries.

Lemma 3.3. Assume that the hypotheses of Theorem 3.1 are valid. Assume moreover that the follow-
ing data are given:

1 w∗ ∈ V2;

2 f ∈ L2(0, T ; L2(Ω;RN));

3 fΓ ∈ TrST V−1
R3 ;

4 wΓ ∈ V0
Ω.

Then, the second boundary value problem

B′o(w∗)w = fΓ on ST , w(0) = 0 (41)

and the first boundary value problem

w = wΓ on ST , w(0) = 0 (42)

for the systemR′o(w∗)w +Q′o(w∗)w = f in QT both possess a unique solution in the class V0 of
strong solutions. There is a number c = c(‖w∗‖V2) such that in the case of (41)

‖w‖V0 ≤ c (‖f‖L2(0,T ;L2(Ω;RN )) + ‖fΓ‖TrST V
−1) .

and in the case of (42)

‖w‖V0 ≤ c (‖f‖L2(0,T ;L2(Ω;RN )) + ‖wΓ‖TrST V
0) .

Proof. Since w∗ ∈ V2, then the scalar components of w∗ belong to H
1
2
,
1
4 (Q) ↪→ L∞(Q)). The

matrix Ri,zj(t, x, w
∗) is therefore uniformly invertible.

We consider the following equivalent equations in connection with (41), (42):

∂tw − [Rz(t, x, w
∗)]−1 ◦ Q′o(w∗)w = f̃ := [Rz(t, xw

∗)]−1 f .

We first focus on the problem (41). For t ∈ [0, T ], x ∈ ∂Ω and z ∈ RN , define

(Mν,ν)i,j(t, x, z) :=
3∑

k,`=1

Mi,j,k,`(t, x, z) νk(x) ν`(x), i, j = 1, . . . , N .
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Due to the assumption (34), the matrix Mν,ν(t, x, z) is invertible for all (t, x, z) ∈ ST × RN .

Recall that fΓ ∈ TrST V−1
R3 . In particular, there is a bulk extension fΓ ∈ V−1

R3 . Employing the Lemma
2.8, we find extensions U1, . . . , UN ∈ V0 that satisfy the following conditions

Ui = 0 on ST ∪ ({0} × Ω)

ν · ∇Ui = hΓ,i := −
N∑
j=1

[(Mν,ν)(t, x, w
∗)]−1

i,j fΓ,j

‖Ui‖V0 ≤ c ‖hΓ‖TrST V
−1 .

Making use of these identities, we can show for i = 1, . . . , N that

νkMi,j,k,`(t, x, w
∗)Uj,x` = [Mν,ν(t, x, w

∗)]i,j ν · ∇Uj = fΓ,i .

Moreover, due to the Lemma 2.4, and to the Lemma 2.6, we obtain that

‖hΓ‖TrST V
−1 ≤ c ‖[(Mν,ν)(t, x, w

∗)]−1‖V1 ‖fΓ‖TrST V
−1

≤ c(‖w∗‖V1) ‖fΓ‖TrST V
−1 .

Therefore ‖Ui‖V0 ≤ c(‖w∗‖V1) ‖fΓ‖TrST V
−1 . We consider instead of w the function w̃ = w − U .

For simplicity, note that we in fact loose no generality in assuming fΓ = 0, and in considering the
problem

∂tw + [Rz(t, x, w
∗)]−1 ◦ Q′o(w∗)w = f̃ in ]0, T [×Ω

B′o(w∗)w = 0 on ST , w(0) = 0 .

The fundamental idea to solve this problem is to use the Lemma 2.9. For s ∈ [0, 1], introduce

M s
i,j,k,` = sMi,j,k,` + (1− s) δi,j δk,` (43)

We introduce operators

Q′o(w∗; s)w = −∂xk(M s
i,j,k,`(t, x, w

∗)wj,x`)

B′o(w∗; s)w = −νk(x) (M s
i,j,k,`(t, x, w

∗)wj,x`) . (44)

We now introduce a linear operator acting between V0 and Z0 via

L(s) = {∂tw + [Rz(t, x, w
∗)]−1 ◦ Q′o(w∗; s)w, B′o(w∗; s)w} (45)

The injectivity of L(s) is obvious.

Assume that w is a solution of class V0 to L(s)w = (f̃ , 0). Then, we multiply in the bulk with
−Q′o(w∗; s)w and we integrate over Ω. This procedure yields

−
∫

Ω

∂tw (Q′o(w∗; s)w) +

∫
Ω

[Rz(t, x, w
∗)]−1 [Q′o(w∗; s)w] [Q′o(w∗; s)w]

= −
∫

Ω

f̃ [Q′o(w∗; s)w] .
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To proceed, we make use of the fact that Q is a reduced quasilinear operator in divergence form.
Therefore, making use also of the boundary conditions, we can derive the identity

−
∫

Ω

∂tw (Q′o(w∗; s)w)

= 1
2

d

dt

∫
Ω

{sMi,j,k,`(t, x, w
∗)wj,x` wi,xk + (1− s) |wx(t)|2} (46)

− s
∫

Ω

Mi,j,k,`,zm(t, x, w∗)w∗m,twj,x` wi,xk .

Thus, every strong solution of class V0 satisfies for all t ∈]0, T [ the identity

1
2

∫
Ω

{M s(t, x, w∗(t))wx(t)wx(t)}

+

∫ t

0

∫
Ω

[Rz(t, x, w
∗)]−1 [Q′o(w∗; s)w] [Q′o(w∗; s)]

= −
∫ t

0

∫
Ω

f̃ [Q′o(w∗; s)w] + s

∫ t

0

∫
Ω

Mz(w
∗)w∗t wxwx .

We make use of the assumption (33). It implies that the symmetric part of [Rz(t, x, w
∗)]−1 is uniformly

elliptic. Thus, every strong solution w satisfies the bound

1
2

∫
Ω

{M s(w∗(t))wx(t)wx(t)}+ λ0(‖w∗‖L∞(Q))

∫ t

0

∫
Ω

[Q′o(w∗; s)w]2

≤ 2

λ0(‖w∗‖L∞(Q))

∫ t

0

∫
Ω

[Rz(t, x, w
∗)]−1f · f

+ cM(‖w∗‖L∞(Q))

∫ t

0

∫
Ω

|w∗t | |wx|2 . (47)

We make use of the assumptions (34) on M to see that∫
Ω

M s(w∗(t))wx(t)wx(t) ≥ (s ν0(‖w∗‖L∞(Q)) + 1− s)
∫

Ω

|wx(t)|2 .

Owing to the fact that w∗ ∈ V2, we know that the components of w∗t belong to L2(0, T ; W 2,2(Ω))
which is a subset of L2,∞(Q). Therefore∫

Ω

|w∗t (t)| |wx(t)|2 ≤ ‖w∗t (t)‖L∞(Ω)

∫
Ω

|wx(t)|2

≤ c0 ‖w∗t (t)‖W 2,2(Ω)

∫
Ω

|wx(t)|2 .

Thus, the identity (47) and the Gronwall Lemma yield∫
Ω

|wx(t)|2 ≤ e
2
cM
ν0

∫ T
0 ‖w

∗
t (t)‖W2,2(Ω) 4

λ0 ν0

∫ T

0

∫
Ω

[Rz(t, x, w
∗)]−1f · f

≤ c(w∗) ‖f‖L2(Q) .

In the latter relation, we have defined

c(w∗) := e
2
cM
ν0
‖w∗t ‖L1(0,T ;W2,2(Ω))

4λ1

λ0 ν0

.
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Thus, it follows that every strong solution satisfies the bound

ess supt∈[0,T ]

∫
Ω

|wx(t)|2 ≤ c(‖w∗‖V2) ‖f‖L2(Q) .

Returning into (47), the next is readily deduced∫ T

0

∫
Ω

[Q′o(w∗; s)w]2 ≤ c(‖w∗‖V2) ‖f‖L2(Q) .

We invoke the Lemma 2.11 with M(x) := M(t, x, w∗(t, x)). For domains of class C1,1, we obtain
that

‖w‖L2(0,T ;W 2,2(Ω;RN )) ≤ c(‖w∗‖W 1,0
∞ (QT )) ‖Q

′
o(w

∗; s)w‖L2(Q)

≤ c(‖w∗‖V2) ‖f‖L2(Q) .

It follows that every strong solution to (41) satisfies an estimate

‖w‖L∞(0,T ;W 1,2(Ω;RN )) + ‖w‖L2(0,T ;W 2,2(Ω;RN )) ≤ c(‖w∗‖V2) ‖f‖L2(Q) . (48)

A bound for the time derivative ∂tw in L2(Q; RN) now follows from the equations L(s)w = (f̃ , 0).

Thus, overall, we have shown that L(s)w = (f̃ , 0) implies

‖w‖V0 ≤ c (‖f‖L2(Q;RN ) + ‖fΓ‖TrST V
−1) ,

with c independent on s. The existence can now be deduced from the Lemma 2.9.

The proof for the boundary condition w = wΓ on ST (cf. (42)) is completely similar. Considering
without loss of generality wΓ = 0, it suffices to repeat the same argument starting from (46).

Next we prove some technical preliminaries related to differentiating in the equations.

Lemma 3.4. Assume that w ∈ V1
Ω is a solution to

R′o(w∗)w +Q′o(w∗)w = f in QT .

Assume moreover that

1 w∗ ∈ V2;

2 f ∈ L2(0, T ; W 1,2(Ω; RN));

Let V ∈ C3(Ω; R3) be a given vector field. Then, the vector η = V · ∇w belongs to V0 and is a
solution to

(R′o(w∗) +Q′o(w∗)) η = V · ∇f + D(V, w∗)w in QT .

The operator D satisfies the estimates

‖D(V, w∗)‖L (V0, L2(Q;RN )) ≤ c(‖w∗‖V2) ‖V ‖C2(Ω;R3)

‖D(V, w∗)‖L (V1, L2(0,T ;W 1,2(Ω;RN ))) ≤ c(‖w∗‖V2) ‖V ‖C3(Ω;R3) .
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Proof. We can show directly that the vector ηn := ∂xnw (n ∈ {1, 2, 3}) satisfies the equations

R′o(w∗) ηn +Q′o(w∗) ηn = fxn + g

gi = − d

dxn
Ri,zj(t, x, w

∗)wj,t +
d

dxk

(
d

dxn
Mi,j,k,`(t, x, w

∗)wj,x`

)
. (49)

We introduce the operation

g =: D(en, w∗)w , (50)

Next we consider ζ ∈ C2(Ω) arbitrary. By means of obvious manipulations, the vector η̃n := ηn ζ
satisfies the equations

R′o(w∗) η̃n +Q′o(w∗) η̃n = ζ (fxn + g) + g̃

g̃i = −ζxkMi,j,k,`(t, x, w
∗) ηnj,x` − ∂xk(Mi,j,k,`(t, x, w

∗) ηnj ζx`) . (51)

We introduce the operation

g̃ =: D̃(ζ, w∗)w .

Now we choose ζ = Vn and sum up in the equations (51) for n = 1, 2, 3. The vector η := V · ∇w
then satisfies

R′o(w∗) η +Q′o(w∗) η = V · ∇f + D(V, w∗)w

D(V, w∗)w :=
2∑

n=1

(Vn D(en, w∗)w + D̃(Vn, w
∗)w .

It remains to verify the estimates. First, we consider g in (49). Owing to the Lemma 2.6, the oper-
ator w∗ 7→ Rzj(t, x, w

∗) is continuous from V2 into itself. Thus, w∗ 7→ d
dxn

Rzj(t, x, w
∗) maps

continuously into V1.

It follows that

‖ d
dxn

Ri,zj(t, x, w
∗)wt‖L2 ≤ ‖ d

dxn
Ri,zj(t, x, w

∗)‖L∞ ‖wt‖L2 ≤ c ‖w∗‖V2 ‖w‖V0 .

The Lemma 2.5, case (2.5) with v = Ri,zj(t, x, w
∗) and u = w yields

‖wt d
dxn

Ri,zj(t, x, w
∗)‖L2(0,T ;W 1,2(Ω)) ≤ c ‖w∗‖V2 ‖w‖V1 .

Similarly, w∗ 7→ d
dxn

Mi,j,k,`(t, x, w
∗) is continuous into V1. The Lemma 2.5, case (1) with u =

d
dxn

Mi,j,k,`(t, x, w
∗) and w = v yields

‖ d

dxn
Mi,j,k,`(t, x, w

∗)wx‖L2(0,T ;W 1,2) ≤ c ‖ d

dxn
Mi,j,k,`(t, x, w

∗)‖V1 ‖w‖V0

≤ c ‖w∗‖V2 ‖w‖V0 .

Analogously, employing Lemma 2.5, case (2)

‖ d

dxn
Mi,j,k,`(t, x, w

∗)wx‖L2(0,T ;W 2,2) ≤ c ‖ d

dxn
Mi,j,k,`(t, x, w

∗)‖V1 ‖w‖V1

≤ c ‖w∗‖V2 ‖w‖V1 .

Second we consider g̃ in (51) and we note that the structure is completely similar to the one of g. The
claim follows.
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Lemma 3.5. Assume that w ∈ TrSTV1 is a solution to

B′o(w∗)w = fΓ on ST , fΓ ∈ TrSTV0 .

Let V ∈ C4(Ω; R3) be a given vector field such that V (x) · ν(x) = 0 for all x ∈ ∂Ω. Then, the
vector η = V · ∇w belongs to TrSTV0 and is a solution to

B′o(w∗) η = V · ∇fΓ + DΓ,II(V, w∗)w in QT .

The operator DΓ,II satisfies the estimates

‖DΓ(V, w∗)‖L (TrV0
Ω, TrV−1) ≤ c(‖w∗‖V2) ‖V ‖C4(Ω;R3) ‖ν‖C4(Ω;R3)

‖DΓ(V, w∗)‖L (TrV1
Ω, TrV0

Ω) ≤ c(‖w∗‖V2) ‖V ‖C4(Ω;R3) ‖ν‖C4(Ω;R3) .

Proof. We assume the validity of B′o(w∗)w = fΓ as an identity in TrST V0 ⊂ L2(0, T, W 1,2(∂Ω)).
Thus, we are allowed to apply the tangential differential operator V · ∇ to this identity, and this yields

B′o(w∗) η = V · ∇fΓ + gΓ on ST
gΓ,i = wj,x` (−νkMi,j,k,`′ (V`)x`′ + V · ∇(νkMi,j,k,`)) .

We introduce the operation

gΓ =: DΓ,II(V, w∗)w , (52)

We make use of the estimates of Lemma 2.5, case (3) and (4) to show that

‖u vx‖TrST V
−1 ≤ c ‖u‖TrST V

1 ‖v‖TrST V
0

‖u vx‖TrST V
0 ≤ c ‖u‖TrST V

1 ‖v‖TrST V
1 .

We choose v = w and u = M(t, x, w∗) (−ν (V )x +V (ν)x)− ν V ·∇M(t, x, w∗). Owing to the
Lemma 2.6, note that

‖u‖V1 ≤ ‖ν‖C4 ‖V ‖C4 ‖M(t, x, w∗)‖V1 + ‖ν‖C3 ‖V ‖C3 ‖ d
dx
M(t, x, w∗)‖V1

≤ c ‖ν‖C4 ‖V ‖C4 c(‖w∗‖V2) .

Thus

‖DΓ,II(V, w∗)w‖TrST V
−1 ≤ c ‖ν‖C4 ‖V ‖C4 c(‖w∗‖V2) ‖w‖TrST V

0

‖DΓ,II(V, w∗)w‖TrST V
0 ≤ c ‖ν‖C4 ‖V ‖C4 c(‖w∗‖V2) ‖w‖TrST V

1 .

The claim follows.

Lemma 3.6. Assume that w ∈ V1 is a solution to

B′o(w∗)w = fΓ on ST , fΓ ∈ TrSTV0 .

Let V ∈ C3(Ω; R3) be a given vector field such that V (x) is parallel to ν(x) for all x ∈ ∂Ω. Then,
the vector η = V · ∇w belongs to TrSTV0

Ω and it satisfies

η = |V | ([Mν,ν(t, x, w
∗)]−1 fΓ + DΓ,I(w∗)w) .

The operator DΓ,I satisfies the estimates

‖DΓ,I(V, w∗)w‖TrV0 ≤ c(‖w∗‖V2) ‖ν‖C2(Ω;R3) ‖V ‖C2(Ω;R3) ‖∇Γw‖TrV0

‖∇Γ(DΓ,I(V, w∗)w)‖TrV0 ≤ c(‖w∗‖V2
T
) ‖ν‖C3(Ω;R3) ‖V ‖C3(Ω;R3) ‖∇Γw‖TrV1 .
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Proof. Due to the equation Mi,j,k,` νk wj,x` = fΓ,i, we obtain that

(Mi,j,k,`(t, x, w
∗) νk ν`) ν · ∇wj +

2∑
m=1

(Mi,j,k,`(w
∗) νk τ

m
` ) τm · ∇wj = fΓ,i .

Here, ν is a unit normal to ∂Ω and {τ 1, τ 2, ν} is chosen as an orthonormal basis of R3. It therefore
follows that

|V |−1 (Mi,j,k,`(t, x, w
∗) νk ν`) ηj = fΓ,i −

2∑
m=1

(Mi,j,k,`(w
∗) νk τ

m
` ) τm · ∇wj .

By assumption, the matrices {Mi,j,ν,ν(t, x, w
∗)}i,j=1,...,N are uniformly invertible for w∗ ∈ L∞(Q).

Consequently, for i = 1, . . . , N

ηi := |V |
N∑
j′=1

[Mν,ν(t, x, w
∗)]−1

i,j′

(
fΓj′
−

2∑
m=1

Mj′,j,ν,τm(t, x, w∗) τm · ∇wj

)
.

We denote

DΓ,I(V, w∗)w := −|V (x)| [Mν,ν(t, x, w
∗)]−1

i,j′ Mj′,j,ν,τm(t, x, w∗) τm · ∇wj .

The estimates directly follow from Lemma 2.5, (5) and (6).

Lemma 3.7. Let W, V ∈ C4(Ω;R3) be parallel to ν on ∂Ω. Assume that w ∈ V2
Ω satisfies

(R′o(w∗) +Q′o(w∗))w = f in QT . For i = 1, . . . , N , define φi := W · ∇(V · ∇wi). Then

‖φ‖TrST V
0 ≤ c(‖w∗‖V2) (‖w‖V1 + ‖∇Γw‖TrST V

1) .

Proof. Consider the functions φi := W · ∇(V · ∇wi), where both W and V are parallel to ν on ∂Ω.
In order to treat this case, we introduce for i = 1, . . . , N the abbreviation Ai := −Ri,z(t, x, w

∗) ·
∂tw + fi(t, x). By assumption, the identityQ′o(w∗)w = A is valid, that means,

− div(Mi(t, x, w
∗)wx) = Ai(t, x) for i = 1, . . . , N . (53)

Thus, invoking the Lemmas 2.4 and 2.6

‖A‖V−1 ≤ ‖M(t, x, w∗)wx‖V0 ≤ ‖M(t, x, w∗)‖V1 ‖w‖V1

≤ cM(‖w∗‖V1) ‖w‖V1 .

Moreover, for a vector V tangential to ∂Ω (λ = 1, 2), differentiation in (53) yields

V · ∇Ai =− div(Mi(t, x, w
∗) (V · ∇w)x) + (V )xMi(t, x, w

∗)wx,x

+ div(Mi(t, x, w
∗)wx Vx)− V div(Mi,z(t, x, w

∗)w∗xwx) .

Therefore, with the usual multiplicator arguments

‖V · ∇A‖V−1 ≤ c(‖w∗‖V2) (‖V · ∇w‖V1 + ‖w‖V1) .

The characterisation of Lemma 2.3 now yields

‖A‖TrV0 ≤ c(‖w∗‖V2) (‖V · ∇w‖V1 + ‖w‖V1) . (54)
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Now, we reconsider (53). Locally in Ωµ for µ = 1, . . . ,m, we apply the Lemma 2.10, (28) that yields

−Mi,j,V 3,V 3 V 3 · ∇(V 3 · ∇wj) = Ai +Bi

+
2∑

λ=1

Mi,j,k,` [V λ
k (V λ · ∇wj)x` + V 3

k V
λ
` V

3 · ∇(V λ · ∇wj)]

Bi := −
3∑

λ=1

V λ
k (Mi,j,k,` (V λ)x` · ∇wj − V λ · ∇Mi,j,k,`wj,x`)

+
2∑

λ=1

V 3
k V

λ
` Mi,j,k,` [{(V λ · ∇)V 3 − (V 3 · ∇)V λ}∇wj] .

Here, it can be shown using the properties of multiplicators and Nemicki operators that ‖B‖V0 ≤
c(‖w∗‖V2) ‖w‖V1 . Recalling (54), the vector φ = V µ,3 · ∇(V µ,3 · wx) satisfies

‖φ‖TrST V
0 ≤ c(‖w∗‖V2) (

2∑
λ=1

‖V µ,λ · ∇w‖V1 + ‖A‖TrST V
0 + ‖B‖TrST V

0) .

Now we have all ingredient to show the principal technical statement of the paper: The invertibility of
the principal part G′ with respect to V2.

Corollary 3.8. Let w∗ ∈ V2 and F = (f, fΓ) ∈ Z2. Then the problem

(R′o(w∗) +Q′o(w∗))w = f, B′o(w∗)w = fΓ, w(0) = 0

possesses a unique solution of class V2
Ω.

Proof. We consider the family {L(s)}s∈[0,1] ⊂ L (V2
T , Z

2) of linear operators defined via (45). The
proof strategy is the following: Consider for s ∈ [0, 1] and (f, fΓ) ∈ Z2 an arbitrary solution to
w ∈ V2

Ω to L(s)w = (f, fΓ), and show that a uniform estimate

‖w‖V2 ≤ c1 ‖(f, fΓ)‖Z2 .

is available. Then, by means of Lemma 2.9, the invertibility of L(1) follows.

For notational brevity, we prove the estimate for s = 1. The same argument applies to L(s) for
s < 1 since these operators have exactly the same structure (cp. (43), (44)). Consider thus an
arbitrary solution w ∈ V2

Ω to L(1)w = (f, fΓ). We afore mention that w ∈ V2
Ω implies that

w ∈ C([0, T ]; W 3,2(Ω; RN)) and that w(0) = 0. Thus, also wx(0) = 0 and wx,x(0) = 0.

At first, we recall the estimate of Lemma 3.3

‖w‖V0 ≤ c1 ‖(f, fΓ)‖Z0 (55)

Consider now an arbitrary vector field V ∈ C3(Ω; R3). Then ηi := V · ∇wi ∈ V1
Ω satisfies (see

Lemma 3.4)

(R′o(w∗) +Q′o(w∗)) η = V · ∇f + D(V, w∗)w in QT .
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Now we distinguish three cases. Consider first a multiplier V with a compact support in Ω. Then,
η1, . . . , ηN are strong solutions to the system (51) supplemented by the conditions η = 0 on ST and
{0} × Ω.

The Dirichlet case of Lemma 3.3 guaranties that there is a unique solution of class V0
Ω satisfying a

continuity estimate

‖η‖V0 ≤ c(‖w∗‖V2) ‖V · ∇f + D(V, w∗)w‖L2(Q)

≤ c(‖w∗‖V2) ‖V ‖C2(Ω) (‖fx‖L2(Q) + ‖w‖V0) . (56)

In the second case, we choose V ∈ C3(Ω; R3) tangent to ∂Ω. Owing to Lemma 3.5, the vector η
satisfies

B′o(w∗) η = V · ∇fΓ + DΓ,II(V, w∗)w on ST .

The Lemma 3.3 then ensures that

‖η‖V0 ≤ c(‖w∗‖V2) (‖V · ∇fΓ + DΓ,II(V, w∗)w‖TrV−1)

≤ c(‖w∗‖V2) ‖V ‖C2(Ω) (‖fΓ‖TrV0
Ω

+ ‖w‖TrV0
Ω
) . (57)

The third case is that V is parallel to ν on ∂Ω. Due to the Lemma 3.6, we see that

η = Mν,ν(t, x, w
∗)]−1 fΓ + DΓ,I(V, w∗)w

Owing to the Lemma 3.6

‖η‖TrV0 ≤ c(‖w∗‖V2) (‖fΓ‖TrV0 + ‖∇Γw‖TrV0) .

From the Dirichlet case of the Lemma 3.3, it now follows that

‖η‖V0 ≤ c(‖w∗‖V2) (‖fx‖L2(Q) + ‖∇Γw‖TrV0) . (58)

In order to obtain a bound for ‖w‖V1 , we invoke the construction of Section 2.7, (24) to represent the
gradient, and we see that

wx =
m∑
µ=0

3∑
`=1

ηµ,` V µ,` . (59)

There the vector fields V 0,` have a compact support for ` = 1, 2, 3, while the vector fields V µ,1, V µ,2

are tangent on ∂Ω for µ = 1, . . . ,m. Thus, invoking (56) and (57)

‖ηµ,`‖V0 ≤ c(‖w∗‖V2) (‖fx‖L2(Q) + ‖fΓ‖TrV0
T
) for µ = 0 and for µ > 0, ` ≤ 2 .

Then, we make use of (58), and it follows that

‖ηµ,3‖V0 ≤ c(‖w∗‖V2) (‖fx‖L2(Q) +
∑

µ≥0,`≤2

‖ηµ,`‖TrV0)

≤ c(‖w∗‖V2) (‖fx‖L2(Q) + ‖fΓ‖TrV0) .

Thus, we have obtained the estimate

‖wx‖V0 ≤ c(‖w∗‖V2) (‖f‖L2(0,T ;W 1,2) + ‖fΓ‖TrV0) . (60)
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Now, we go one order further. ForW ∈ C2(Ω; R3), we see that φi := W · (V ·∇wi) ∈ V0
Ω satisfies

(see Lemma 3.4)

(R′o(w∗) +Q′o(w∗))φ = W · ∇(V · ∇f + D(V, w∗)w) + D(W, w∗)V · ∇w .

If W ∈ C2(Ω; R3) is moreover tangent to ∂Ω as well as V , then owing to Lemma 3.5, the vector φ
satisfies

B′o(w∗)φ = W · ∇(V · ∇fΓ + DΓ,II(V, w∗)w) + DΓ,II(W, w∗)V · ∇w on ST .

If W is tangent and V is normal, then

φ = W · ∇(Mν,ν(t, x, w
∗)]−1 fΓ + DΓ,I(V, w∗)w) . (61)

Thanks also to (60), we obtain in these cases an estimate

‖φ‖V0 ≤ c(‖w∗‖V2) (‖F‖Z2 + ‖w‖V1) ≤ c(‖w∗‖V2) ‖F‖Z2 . (62)

Owing to (62) and to (24) that we apply to w ≈ V · ∇w, we obtain a bound

‖(V · ∇w)x‖V0 ≤ c(‖w∗‖V2) ‖F‖Z2 (63)

for each V of class C3(Ω; R3) which has a compact support or is tangent on ∂Ω.

Finally, consider the functions φi := W · ∇(V · ∇wi), where both W and V are parallel to ν on ∂Ω.
Recalling Lemma 3.7 and (63), the vector φ = V µ,3 · ∇(V µ,3 · w) satisfies

‖φ‖TrST V
0 ≤ c(‖w∗‖V2) ‖F‖Z2 .

Now, the Dirichlet case of Lemma 3.3 yields

‖φ‖V0 ≤ c(‖w∗‖V2) ‖F‖Z2 . (64)

We combine with the estimate (63) on the second tangential and mixed tangential–normal derivatives
to obtain overall

‖wx,x‖V0 ≤ c(‖w∗‖V2) ‖F‖Z2 . (65)

This establishes that independently on s ∈ [0, 1], all solutions w ∈ V2
Ω to L(s)w = F satisfy a

bound ‖w‖V2 ≤ c1 ‖(f, fΓ)‖Z2 . We apply the Lemma 2.9 and are done.

We can now prove that the complete Fréchet derivative G′ is invertible. First we need the following
remark.

Remark 3.9. Let L be a linear lower-order operator in the following sense: For ` = −1, 0, 1, the
operator L maps V` continuously into

Z`+1 := L2(0, T ; W 1+`,2(Ω; RN))× TrST V`Ω .

Then, every solution v ∈ V2
Ω to (G′o(v

∗) + L) v = F satisfies ‖v‖V2 ≤ c(‖v∗‖V2) (‖F‖Z2 +
‖v‖V−1), where c depends also on max`=−1,0,1 ‖L‖L (V`, Z`+1).
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Proof. We first obtain (Lemma 3.3)

‖v‖V0 ≤ c(‖v∗‖V2) (‖F‖Z2 + ‖L v‖Z0)

≤ c(‖v∗‖V2) (‖F‖Z2 + ‖L‖L (V−1, Z0) ‖v‖V−1) .

Then, the Lemma 3.8, equation (60) yields

‖v‖V1 ≤ c(‖v∗‖V2) (‖F‖Z2 + ‖L v‖Z1)

≤ c(‖v∗‖V2) (‖F‖Z2 + ‖L‖L (V0, Z1) ‖v‖V0) .

Finally, Lemma 3.8, equation (65) yields the claim.

Lemma 3.10. For F = (f, fΓ) ∈ Z2 and for all v∗ ∈ V2
Ω, the equations G′(v∗) v = F have a

unique solution v ∈ V2
Ω. We denote v := (G′(v∗))−1 F . Then, (G′(v∗))−1 ∈ L (Z2, V2

Ω) and

‖(G′(v∗))−1‖L (Z2,V2
Ω) ≤ C(‖v∗ + q0‖V2) .

Proof. The resolvability of G′(v∗) v = F means that

(R′o(w∗) +Q′o(w∗)) v = f − L1(w∗) v

(L1(w∗) v)i = − d

dxk
Mi,j,k,`,zm(t, x, w∗) vmw

∗
j,x`

+ ∂t(Ri,zj(t, x, w
∗)) vj

B′o(w∗) v = fΓ − L2(w∗) v

(L2(w∗) v)i = −νkMi,j,k,`,zm(t, x, w∗) vmw
∗
j,x`

.

with w∗ := v∗ + q0. The first idea is to show that the operator L(w∗) v = {L1(w∗) v, L2(w∗) v}
is lower-order in the sense of Remark 3.9. This can be done easily as an exercise (apply Lemma 2.4
and Lemma 2.6).

Second, if we can show that every solution to (G′o(v
∗) + sL(w∗)) v = F satisfies a uniform bound

in V−1. Then, the Remark 3.9 yields automatically a bound in V2.

We can rely on the fact that for s = 0, the operator is G′o(v
∗) which is invertible. If we can also show

that G′o(v
∗) + sL(w∗) is injective, we can apply Lemma 2.9 and are done.

Thus, everything is reduced to proving that strong solutions to (G′o(v
∗)+sL(w∗)) v = F are unique

and that they satisfy a bound in V−1. To show this we multiply with v and integrate by parts to obtain
that ∫

Ω

Ri,zj(t, x, w
∗) vj,t vi +

∫
Ω

Mi,j,k,`(t, x, w
∗) vi,xk vj,x`

= −
∫
∂Ω

{fΓ,i + νkMi,j,k,`,zm(t, x, w∗) vmw
∗
j,x`
} vi

+

∫
Ω

{fi + ∂xk(
N∑
m=1

Mi,j,k,`,zm(t, x, w∗) vmw
∗
j,x`

)− ∂t(Ri,zj(t, x, w
∗)) vj} vi .

If the matrix Ri,zj is symmetric, which is a component of our requirement (a), (b) of parabolicity, then∫
Ω

Ri,zj(t, x, w
∗) vj,t vi = 1

2

d

dt

∫
Ω

Ri,zj(t, x, w
∗) vj vi − 1

2

∫
Ω

d

dt
Ri,zj(t, x, w

∗) .
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Thus

1
2

d

dt

∫
Ω

Ri,zj(t, x, w
∗) vj vi +

∫
Ω

Mi,j,k,`(t, x, w
∗) vi,xk vj,x`

= −
∫
∂Ω

{fΓ,i + νkMi,j,k,`,zm(t, x, w∗) vmw
∗
j,x`
} vi

+

∫
Ω

{fi + ∂xk(
N∑
m=1

Mi,j,k,`,zm(t, x, w∗) vmw
∗
j,x`

)− 1
2

d

dt
(Ri,zj(t, x, w

∗)) vj} vi .

The right-hand I obeys the estimate

|I| ≤ c(‖w∗‖L∞(Q) + ‖w∗x‖L∞(Q))

(∫
Γ

{|fΓ|+ |v|} |v|

+

∫
Ω

{|f |+ (1 + |w∗x,x|+ |w∗t |) |v|+ |vx|} |v|
)
.

Thus, we can employ well known inequalities to attain the structure

|I| ≤ν0(‖w∗‖L∞(Q))

2
‖vx(t)‖2

L2 + c (‖fΓ(t)‖2
L2(∂Ω) + ‖f(t)‖2

L2(Ω))

+ c (‖w∗x,x(t)‖W 2,2 + ‖w∗t (t)‖W 2,2 + 1)

∫
Ω

|v(t)|2 .

where c = c(‖w∗‖L∞(Q) + ‖w∗x‖L∞(Q)). Employing the assumption (34), it follows that

1
2

d

dt

∫
Ω

Ri,zj(t, x, w
∗) vj vi + ν0

2

∫
Ω

|vx|2 ≤ c (‖fΓ(t)‖2
L2(∂Ω) + ‖f(t)‖2

L2(Ω))

+ c (‖w∗x,x(t)‖W 2,2 + ‖w∗t (t)‖W 2,2 + 1)

∫
Ω

|v(t)|2 .

Thus, the assumption (33) and the Gronwall Lemma yield

‖v‖L∞(0,T ;L2(Ω;RN )) + ‖vx‖L2(Q;RN ) ≤ c(‖w∗‖V2) (‖f‖L2 + ‖fΓ‖L2) .

From the equations, we now obtain a natural bound for ‖vt‖L2(0,T ; [W 1,2(Ω;RN )]∗). The uniqueness is
obvious.

In order to prove the existence of local strong solutions and to complete the proof of Theorem 3.1, we
next apply a more or less standard fixed-point strategy.

For v ∈ V2
Ω, the mapping

T v := v − [G′(0)]−1G(v)

is well defined. Moreover, we define b0 := [G′(0)]−1G(0) ∈ V2
Ω. SinceG is a C1 mapping, we obtain

that

‖b0‖V2
Ω
≤ ‖[G′(0)]−1‖L (Z2,V2

Ω) ‖G(0)‖Z2 =: f0(T ) .

It is readily verified that lim supT→0 f0(T ) = 0. For δ > 0, we defineMδ := {v ∈ V2
Ω : ‖v −

b0‖V2 ≤ δ}. Obviously, v ∈Mδ implies that ‖v‖V2
Ω
≤ δ + f0(T ).
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Note that

T v − b0 = v − [G′(0)]−1 (G(v)−G(0)) = [G′(0)]−1 (G(v)−G(0)−G′(0) v) .

Thus, for all ‖v‖V2
Ω
∈Mδ

‖T v − b0‖V2 ≤ ‖(G′(0))−1‖L (Z2,V2
Ω) ‖G(v)−G(0)−G′(0) v‖V2

Ω

≤ C0 sup
‖w‖V2≤δ+f0(T )

‖G(w)−G(0)−G′(0)w‖V2

‖w‖V2

(δ + f0(T )) .

Due to the continuous differentiability of G, there is θ0 > 0 such that

sup
‖w‖V2≤θ0

‖G(w)−G(0)−G′(0)w‖V2

‖w‖V2

≤ 1

2C0

.

Thus, if δ + f0(T ) ≤ θ0, we see that T mapsMδ into itself.

With similar arguments, T is a contraction. Thus, T possesses a unique fixed point in v ∈ Mδ, and
q := q0 + v is a strong solution.

3.2 The case of non zero right-hand side

If f and fΓ are non-trivial in the equations (29), we introduce H = {H1, H2} as a mapping acting
on V2

Ω via

(H1(v))i := (G1(v))i − fi(t, x, v + q0, (v + q0)x)

(H2(v))i := (G2(v))i − fΓ,i(t, x, v + q0)

Under the assumptions of the Theorem 3.1 for f and fΓ, we can show that H is a mapping of class
C1 between V2

Ω and L2(0, T ; W 2,2(Ω; RN)) × TrST V1. Under the assumption (36), we can even
show that the image of H is a subset of Z2.

We can further verify that the linearisation of H possesses the structure

H ′1(v∗) ξ = G′1(v∗) ξ + L1(w∗) ξ

L1(w∗) ξ := −fz(t, x, w∗, w∗x) · ξ − fD(t, x, w∗, w∗x) : ξx

H ′2(v∗) ξ = G′2(v∗) ξ + L2(w∗) ξ

L2(w∗) ξ := −fΓ,z(t, x, w
∗, w∗x) · ξ

Our manifold calculations based on the multiplicator and Nemicki Lemmas can be use to show that
L(w∗) is lower–order in the sense of Remark 3.9. Thus,H ′(w∗) is invertible (compare: Lemma 3.10),
and the claim of Theorem 3.1 follows in full generality.

4 The first boundary value problem

The Dirichlet problem for equation (29) can be handled with exactly the same methods if we only adjust
the functional setting. We denote P := ST ∪ ({0}×Ω)∪ ({0}× ∂Ω) the parabolic boundary of the
domain QT . For ` = 0, 1, 2, we denote

V`P := {v ∈ V` : v = 0 on P} .
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We consider

∂tRi(t, x, w)− div(Mi(t, x, w)wx) = fi(t, x, w, wx) in QT ,

w = wΓ on P . (66)

Here, we assume that the vector wΓ possesses an extension w0 of class V2 into QT .

Theorem 4.1. Assumptions of the theorem 3.1. Instead of (37), we assume that the vector q0 :=
wΓ(0) satisfies

Rt(0, x, q
0(x)) +Rz(0, x, q

0(x))wΓ
t (0, x) (67)

= div(M(0, x, q0) q0
x) + f(0, x, q0(x), q0

x(x)) for all x ∈ ∂Ω .

Then, there is T > 0 such that the problem (66) possesses a unique solution of class V2(QT ; RN).

The proof strategy is essentially as above. First we consider the case of a zero right-hand side f .

4.1 The case of no lower–order perturbation

On the space V2
P we introduce a nonlinear operator G via

G(v) := R(v + w0) +Q(v + w0) . (68)

As in Section 3, we can verify that G takes values in L2(0, T ; W 2,2(Ω; RN)). The result of Theorem
4.1 follows by the methods of Section 3 if we can prove that the principal part of the linearisation is
invertible. Thus, for given w∗ ∈ V2 and right-hand f , we consider for w ∈ V2

P the following problem

(R′o(w∗) +Q′o(w∗))w = f (69)

In comparison to Section 3, we must however acknowledge an additional subtle point. Indeed, if
w ∈ V2

P solves the problem (69), then applying the trace operator γ to the equation yields γ(f +
div(Mi(t, x, w)wx)) = 0 on ST . Now, since w ∈ V2

Ω implies that div(Mi(t, x, w)wx) ∈ V0
Ω, it

follows that the resolvability of (69) requires

γ(f) ∈ TrST V0
Ω .

Thus, the image space Z is taken here

Z := {f ∈ L2(0, T ; W 2,2(Ω; RN)) : γ(f) ∈ TrST V0
Ω} .

In order to apply the same theory, it is necessary that G takes its values in Z . This is the reason
why we require (67). Introduce for s ∈ [0, 1] operators Q′o(w∗; s) in the fashion of (43), (44). Then,
everything is reduced to obtaining a uniform bound in V2 for solutions w to (69).

The bound in V0 was already proved in Lemma 3.3, that is

‖w‖V0 ≤ c ‖f‖Z . (70)

In order to obtain a bound of next order (in the space V1), we differentiate the equation in the fashion
of Lemma 3.4 If V ∈ C2(Ω; R3) has compact support or is tangential on ∂Ω, then η = V · ∇w
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satisfies again the condition η = 0 on ST . Thus, the Lemma 3.3 implies that the tangential derivatives
satisfy

‖η‖V0 ≤ c ‖f‖Z . (71)

Employing the equation (69) and Lemma 2.10, we see that the normal derivative η = ν ·∇w satisfies

− νk(x)Mi,j,k,`(t, x, w
∗) ηj,x` = −

2∑
λ=1

τλk Mi,j,k,` (τλ · ∇wj)x` − Ai

+
3∑

λ=1

V λ
k (Mi,j,k,` (V λ)x` · ∇wj − V λ · ∇Mi,j,k,`wj,x`) . (72)

For i = 1, . . . , N , Ai is here the function fi − Ri,z(t, x, w
∗) ∂tw. Applying the trace operator γ to

this identity, and recalling that γ(w) = 0 for all w ∈ V2
P , it follows that A = f on ST . We call fΓ the

trace of the right-hand (72) of the latter identity, that is

fΓ,i :=−
2∑

λ=1

τλk Mi,j,k,` (τλ · ∇wj)x` − fi

+
3∑

λ=1

V λ
k (Mi,j,k,` (V λ)x` · ∇wj − V λ · ∇Mi,j,k,`wj,x`)

Thanks to simple multiplicator arguments and to the estimates (70) and (71), we see that the vector
fΓ satisfies an estimate

‖fΓ‖V−1 ≤ c(‖w∗‖V2 (‖τλ · ∇w‖V0 + ‖w‖V0) ≤ c(‖w∗‖V2) ‖f‖Z .

Recall the definition of the principal part of the natural boundary operator. Obviously, every strong
solution to (69) satisfies

B′o(w∗) (ν · ∇w) = fΓ . (73)

For η = V · ∇w with V parallel to ν on ∂Ω, we thus can conclude that

‖B′o(w∗) η‖V−1 ≤ c ‖f‖Z .

We apply the Lemma 3.3, and it follows that ‖η‖V0 ≤ c ‖f‖Z . Since now all components of the
gradient vector satisfy an estimate in V0, it follows that

‖w‖V1 ≤ c ‖f‖Z . (74)

Next we go one order further, and we consider the second derivatives φ := W · ∇(V · ∇w). If W
and V are both tangential vectors, then W · ∇(V · ∇w) = (W · ∇)V · ∇w. Thus, the vector φ
satisfies a Dirichlet condition with right-hand in V0. The Lemma 3.3 yields the desired estimate for φ
in V0. If W is tangential, but V normal to the boundary, then we differentiate (73) in the direction of
W , and we obtain (notations of Lemma 3.5)

B′o(w∗)W · ∇(ν · ∇w) = W · ∇fΓ +DΓ,II(w∗, W ) ν · ∇w .

We verify that the right-hand satisfies a bound in V−1
Ω . Here it is important that γ(f) ∈ TrV0

Ω. The
Lemma 3.3 thus yields a bound in V0 for the mixed derivatives.

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



Local well-posedness for quasilinear parabolic systems 33

Finally, if W and V are both normal on ∂Ω, we make use of the Lemma 2.10 that yields

Mi,j,ν,ν ν · ∇(ν · ∇wj) = −fi

−
2∑

λ=1

Mi,j,k,` [τλk (τλ · ∇wj)x` + νk τ
λ
` ν · ∇(τλ · ∇wj)]

+
3∑

λ=1

τλk (Mi,j,k,` (τλ)x` · ∇wj − τλ · ∇Mi,j,k,`wj,x`)

−
2∑

λ=1

νk τ
λ
` Mi,j,k,` [{(τλ · ∇)ν − (ν · ∇)τλ}∇wj]

This provides a bound for ν · ∇(ν · ∇w) in TrV0. The Lemma 3.3 yields the desired estimate for the
twice normal derivatives. Now, all spatial derivatives of order two turn out to be uniformly bounded in
V0. Thus every solution w ∈ V2

P to (69) satisfies a uniform bound in this space. We finish the proof of
Theorem 4.1 in the case that there is no lower-order perturbation as in Section 3.

4.2 Adding the lower–order term

In order to finally prove the claim in the case of a right-hand side f(t, x, w, wx), we introduce
H(v) := G(v) + G̃(v), where G̃(v) := −f(t, x, v + q0, (v + q0)x). The regularity of f and
the compatibility condition (67) guaranty that H is C1 from V2

P into the space Z . This is sufficient to
prove the invertibility of the linearisation.

5 An necessary extension to one–sided coupling in the leading
order

The theory of this section is needed for the full quasilinear case. Let 1 ≤ P ≤ N be a natural number.

Remark 5.1. In this section, we will decompose the vectors of RN according toX = (X̄, X ′), where
X̄ = (X1, . . . , XP ) ∈ RP and X ′ = (XP+1, . . . , XN) ∈ RN−P .

For a vector w1, . . . , wN , we consider for i = 1, . . . , N the equations

∂tRi(t, x, w)− d

dxk
(
N∑
j=1

Mi,j,`,k(t, x, w)wj,x`) = fi(t, x, w, wx) in QT , (75)

supplemented on ST with the boundary conditions

−νk
P∑
j=1

Mi,j,`,k(t, x, w)wj,x` = fΓ,i(t, x, w) for i = 1, . . . , P (76)

wi = Di(t, x, w̄) for i = P + 1, . . . , N (77)

and the initial conditionw(0) = q0. The functionsDP+1, . . . , DN in (77) are defined on ST×RP . For
simplicity, we assume throughout the section that they are extension functions defined in QT × RP .
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Theorem 5.2. Assumptions of the Theorem 3.1. We assume that the functionsDP+1, . . . , DN are of
class (C1,4 ∩ C0,5)([0, T ]× Ω× RP ). We moreover assume a special diagonal structure:

1 The functions Mi,j,k,` are defined on Q× RN and Mi,j,k,` = 0 for i ≤ p and j > p;

2 The functions R1, . . . , RN are defined on Q × RN ; For i = 1, . . . , P , Ri depends only on
the components w̄ = (w1, . . . , wP ) ∈ RP . The matrix {Ri,zj(t, x, w̄)}i,j=1,...,P is symmetric
and positive definite for all w̄ ∈ RP ;

3 The block {Ri,zj(t, x, w)}i,j=P+1,...,N is symmetric and positive definite for all w ∈ RN ;

We assume for i = 1, . . . , P the compatibility condition

−νkMi,j,`,k(0, x, q
0(x)) q0

j,x`
− fΓ,i(0, x, q

0(x)) = 0 for all x ∈ ∂Ω . (78)

We assume for i = P + 1, . . . N and all x ∈ ∂Ω the following two compatibility conditions: First

Di(0, x, q̄0(x)) = (q0(x))′i (79)

and second

P∑
j=1

Ai,j(x) (Rj,t(0, x, q̄0)− div(Mj(0, x, q
0) q̄0

x)− fj(0, x, q0(x), q0
x(x))

= Ri,t(0, x, q
0)− div(Mi(0, x, q

0) q0
x)− fi(0, x, q0(x), q0

x(x)) . (80)

Here, {Ai,j(x)}i=P+1,...,N, j=1,...,P is the rectangular matrix

Ai,j(x) :=
P∑
j′=1

[Rz(0, x, q
0)]−1

j,j′× (81)

× [Ri,zj′
(0, x, q0(x)) +

N∑
k=P+1

Ri,zk(0, x, q
0(x))Dk,zj′

(0, x, q0(x))] .

Then, there is T > 0 such that the problem (75), (76), (77) possesses a unique solution of class
V2(QT ; RN).

In this section, we introduce the state–space via

V2
Ω,P(QT ; RP × RN−P ) = V2

Ω(QT ; RP )× V2
P(QT ; RN−P ) .

The elements v ∈ V2
Ω,P are denoted v = (v̄, v′) according to the notation of Remark 5.1. For

v ∈ V2
Ω,P we define

wi = wi(v) =

{
vi + q0

i for i = 1, . . . , P

vi +Di(t, x, v̄ + q̄0) for i = P + 1, . . . , N .
(82)

Under the compatibility condition (79), we see that w̄(0) = q̄0, that w′(0) = (q0)′, and that γ(wi) =
Di(t, x, w̄) on ST for i = P + 1, . . . N .

DOI 10.20347/WIAS.PREPRINT.2454 Berlin 2017



Local well-posedness for quasilinear parabolic systems 35

5.1 The fundamental case

In this subsection we set f = 0 and fΓ = 0 in (75), (76).

We introduce an operator G(v) acting on V2
Ω,P via

G(v) = {G1(v), G2(v)}

(G1(v))i := ∂tRi(t, x, w)− d

dxk
(Mi,j,`,k(t, x, w)wj,x`) for i = 1, . . . , N

(G2(v))i := −νkMi,j,`,k(t, x, w)wj,x` for i = 1, . . . , P .

It is readily seen (cp. Section 3) that this operator maps V2
Ω,P into

Z := L2(0, T ; W 2,2(Ω; RN))× TrST V1
Ω(QT ; RP ) . (83)

Under the regularity condition for the functionD in Theorem 5.2, the mapping v 7→ Di(t, x, v̄+ q̄0) is
of class C1 from V2 into itself. Therefore, we can compose this mapping with other Nemicki operators
enjoying the same property, and see that the C1 property is conserved. We conclude that the operator
G is Fréchet differentiable between V2

Ω,P and L2(0, T ; W 2,2(Ω; RN))× TrST V1(QT ; RP ).

The compatibility condition (78) ensures that G maps into Z . We next want to study the linearisation
{G′1(v∗) ξ, G′2(v∗) ξ} described hereafter. In the remainder, we define w∗ = w(v∗) according to
(82). The P first equations of the linearisation for the variables ξ̄ = ξ1, . . . , ξP are governed by the
bulk operator

∂t(
P∑
j=1

Ri,zj(t, x, w
∗) ξ̄j)− div(

P∑
j=1

Mi,j(t, x, w
∗) ξ̄j,x)

− div(
P∑

m=1

[
Mi,j,zm(t, x, w∗) +

N∑
j′=P+1

Mi,j,zj′
(t, x, w∗)Dj′,zm(t, x, w∗)

]
ξ̄mw

∗
j,x)

+ div(
N∑

m=P+1

Mi,j,zm(t, x, w∗) ξ′mw
∗
j,x)

with the associated boundary operator

− νk
P∑
j=1

Mi,j,`,k(t, x, w
∗) ξ̄j,x`

− νk (
P∑

m=1

[
Mi,j,k,zm(t, x, w∗) +

N∑
j′=P+1

Mi,j,k,zj′
(t, x, w∗)Dj′,zm(t, x, w∗)

]
ξ̄mw

∗
j,x)

+ νk (
N∑

m=P+1

Mi,j,k,zm(t, x, w∗) ξ′mw
∗
j,x) .
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The equations with index P + 1, . . . , N are governed by the operator

∂t(
N∑

j=P+1

Ri,zj(t, x, w
∗) ξ′j)− div(

N∑
j=P+1

Mi,j(t, x, w
∗) ξ′j,x)

+ ∂t(
P∑
j=1

[Ri,zj(t, x, w
∗) +

N∑
j′=P+1

Ri,zj′
(t, x, w∗)Dj′,zj(t, x, w

∗)] ξ̄j)

− div(
P∑
j=1

Mi,j(t, x, w
∗) ξ′j,x +

N∑
j=P+1

Mi,j(t, x, w
∗) ξ̄j,x))

− div(
P∑

m=1

[Mi,j,zm(t, x, w∗) +
N∑

j′=P+1

Mi,j,zj′
(t, x, w∗)Dj′,zm(t, x, w∗)] ξ̄mw

∗
j,x)

+ div(
N∑

m=P+1

Mi,j,zm(t, x, w∗) ξ′mw
∗
j,x) ,

We choose a principal part of the bulk operator via

(G′1,o(v
∗) ξ)i =

P∑
j=1

Ri,zj(t, x, w
∗) ξj,t − div(

P∑
j=1

Mi,j(t, x, w
∗) ξ̄j,x) for i ≤ P

while for i = P + 1, . . . , N

(G′1,o(v
∗) ξ)i =

N∑
j=P+1

Ri,zj(t, x, w
∗) ξj,t − div(

N∑
j=P+1

Mi,j(t, x, w
∗) ξj,x)

+
P∑
j=1

[Ri,zj(t, x, w
∗) +

N∑
j′=P+1

Ri,zj′
(t, x, w∗)Dj′,zj(t, x, w

∗)] ξ̄j,t

− div(
N∑

j=P+1

Mi,j(t, x, w
∗) ξ̄j,x) .

The principal part of the boundary operator is

(G′2,o(v
∗) ξ)i = −νk

P∑
j=1

Mi,j,`,k(t, x, w
∗) ξj,x` for i = 1, . . . , P

For the invertibility of the principal part, there is an additional compatibility condition. Recall the defini-
tions (81) and (83).

Lemma 5.3. Define A as in (81). The principal part G′o(v
∗) is an invertible operator between V2

Ω,P
and the Banach space ZA defined via

ZA = {F = (f, fΓ) ∈ Z : A(x) f̄(0, x) = f ′(0, x) for all x ∈ ∂Ω} .

Proof. We consider the system G′o(v
∗) ξ = F . One can solve for the P first equations making use of

the theory of Section 3 (Lemma 3.8). We obtain for the solution ξ̄ ∈ V2
Ω(QT ; RP ) the bound

‖ξ̄‖V2
Ω(QT ;RP ) ≤ c(‖w∗‖V2) (‖f̄‖L2(0,T ;W 2,2(Ω;RP )) + ‖fΓ‖TrV1

Ω(QT ;RP )) .
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Moreover, recalling (53)

‖Rz(t, x, w
∗) ξ̄t − f̄‖TrST V

0
Ω(QT ;RP )

≤ c(‖w∗‖V2) (‖f̄‖L2(0,T ;W 2,2(Ω;RP )) + ‖fΓ‖TrV1
Ω(QT ;RP )) . (84)

In addition, the limit t→ 0 in the equations yields the identity

P∑
j=1

Ri,zj(0, x, w
∗(0)) ξj,t(0) = fi(0, x) for x ∈ ∂Ω . (85)

Next, we can make use of the Lemmas 2.4 and 2.6 to show that the vector

g1
i := div(

P∑
j=1

Mi,j(t, x, w
∗) ξj,x) for i = P + 1, . . . , N ,

belongs to V0
Ω(QT ; RN−P ). It satisfies a bound

‖g1‖V0
Ω
≤ c(‖w∗‖V2) ‖ξ̄‖V2

Ω(QT ;RP )

≤ c(‖w∗‖V2) (‖f̄‖L2(0,T ;W 2,2(Ω;RP )) + ‖fΓ‖TrV1
Ω(QT ;RP )) .

Further, we denote

g2
i :=

P∑
j=1

[Ri,zj(t, x, w
∗) +

N∑
j′=P+1

Ri,zj′
(t, x, w∗)Dj′,zj(t, x, w

∗)] ξ̄j,t .

Then, obviously

‖g2‖L2(0,T ;W 2,2(Ω;RN−P )) ≤ c(‖w∗‖V2) ‖ξ̄‖V2
Ω(QT ;RP ) .

Further, for j = 1, . . . , P , we can represent ξ̄j,t =
∑P

j′=1[Rz]
−1
j,j′ (

∑P
k=1Rj′,zk ξ̄k,t−fj′+fj′). This

allows to decompose

g2
i = g2,1

i + g2,2
i

g2,1
i =

P∑
j=1

[
Ri,zj(t, x, w

∗) +
N∑

j′=P+1

Ri,zj′
(t, x, w∗)Dj′,zj(t, x, w

∗)
]
×

×
[ P∑
j′=1

[Rz]
−1
j,j′ (

P∑
k=1

Rj′,zk ξ̄k,t − fj′)
]

g2,2
i =

P∑
j=1

[
Ri,zj(t, x, w

∗) +
N∑

j′=P+1

Ri,zj′
(t, x, w∗)Dj′,zj(t, x, w

∗)
] [ P∑

j′=1

[Rz]
−1
j,j′ fj′

]
.

Making use of (84) and of the regularity of f , it follows for the trace operator γ

‖γ(g2,1)‖TrST V
0(QT ;Rp) ≤ c(‖w∗‖V2) (‖f‖L2(0,T ;W 2,2(Ω;RP )) + ‖fΓ‖TrV1

Ω(QT ;RP ))

‖γ(g2,2)‖TrST V
0(QT ;RP ) ≤ c(‖w∗‖V2) ‖f̄‖TrST V

0
Ω(QT ;RP ) .
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Thus, γ(g2) ∈ TrST V0(QT ; RP ). Moreover, (84) guaranties that γ(g2,1) ∈ TrST V0
Ω(QT ; RN−P ).

Thanks to (85), we can next consider the limit for t→ 0 of γ(g2,2(t)), and we obtain for f ∈ ZA that

γ(g2,2
i (0)) =

P∑
j=1

[
Ri,zj(0, x, q

0) +
N∑

j′=P+1

Ri,zj′
(0, x, q0)Dj′,zj(0, x, q

0)
]
×

[ P∑
j′=1

[Rz(0, x, q
0)]−1

j,j′ fj′(0, x)
]

= Aj,j′(x) fj′(0, x) = fi(0, x) .

Thus, γ(g2,2 − f ′) = 0, which means that g2,2 − f ′ ∈ TrST V0
Ω(QT ; RN−P ).

Now, the equations G′1,o(v
∗) ξ = f that have index i ∈ {P + 1, . . . , N} have the form

N∑
j=P+1

Ri,zj(t, x, w
∗) ξj,t − div(

N∑
j=P+1

Mi,j(t, x, w
∗) ξj,x) = fi − g1

i − g2
i ,

and we have proven that the right-hand side satisfies a bound in L2(0, T ; W 2,2(Ω; RN−P )) ∩
TrST V0

Ω(QT ; RN−P ). Thus, we can apply the theory of the Section 4, and the claim follows.

Since the principal part is invertible, we can verify that the Fréchet derivative is an invertible operator,
between V2

Ω,P and the Banach space ZA. If we can prove that G maps V2
Ω,P into ZA, the usual argu-

ments provide the local–in–time resolvability. Straightforward calculations show that the compatibility
condition (80) is necessary and sufficient. The claim of Theorem 5.2 follows.

5.2 Extension to lower order terms

If f and fΓ are not zero in (75), (76), we introduceH(v) = G(v)+ G̃(v), where G̃(v) is the operator

G̃1(v) = −f(t, x, w(v), (w(v))x), G̃2(v) := −fΓ(t, x, w(v)) .

The regularity of f, fΓ and the conditions (78) and (80) guaranty that H maps into ZA. This is, here
also, sufficient for the treatment of lower-order terms.

6 The full quasilinear case

We consider the equation

∂tRi(t, x, w)−
3∑

k=1

d

dxk
J ik(t, x, w, wx) = fi(t, x, w, wx) for i = 1, . . . , N . (86)

For i, the functions Ri are defined in QT × RN , while the flux functions J ik are defined on Q ×
RN × RN×3. We denote (t, x, z, D) a point in the latter domain, and J ik,t, J

i
k,x, J i

k,Dj`
etc. denote

the partial derivatives in these variables.
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We consider the natural boundary condition

−
3∑

k=1

νk(x) J ik(t, x, w, wx) = fΓ,i(t, x, w) for i = 1, . . . , N . (87)

We require the structural conditions (1), (2).

Under this assumption, we observe that

J ik(t, x, z, D) = ∂DikΨ(t, x, z, D)− ∂DikΨ(t, x, z, 0)

=
N∑
j=1

3∑
`=1

∫ 1

0

D2
Dik,D

j
`

Ψ(t, x, z, θ D) dθDj
` .

We abbreviate

M0
i,j,k,`(t, x, z, D) :=

∫ 1

0

D2
Dik,D

j
`

Ψ(t, x, z, θ D) dθ . (88)

Then, (86) has for i = 1, . . . , N the equivalent expression

∂tRi(t, x, w)− d

dxk
(M0

i,j,k,`(t, x, w, wx)wj,x`) = fi(t, x, w, wx) , (89)

while (87) reads

−νk(x)M0
i,j,k,`(t, x, w, wx)wj,x` = fΓ,i(t, x, w, wx) . (90)

The treatment of (86), (87) relies in the end on the analysis of the reduced quasi-linear case in the
section 5.

It shall rely on the following two compatibility conditions

νk(x) J ik(0, x, q
0(x), q0

x(x)) = fΓ,i(0, x, q
0(x)) for i = 1, . . . , N, x ∈ ∂Ω . (91)

Second, we assume for i = 1, . . . , N and x ∈ ∂Ω that

νk(x) (J ik,t(0, x, q
0(x), q0

x(x)) + J ik,zj(0, x, q
0(x), q0

x(x))F 0
j (x))

+ νk(x) J i
k,Dj`

(0, x, q0(x), q0
x(x))F 0

j,x`
(x))

= fΓ,i,t(0, x, q
0(x)) + fΓ,i,zj(0, x, q

0(x))F 0
j (x) (92)

where F 0 is the vector field given by

F 0(x) :=[Rz(0, x, q
0(x))]−1 (div(J(0, x, q0(x), q0

x(x)))−Rt(0, x, q
0(x))

− f(0, x, q0(x), q0
x(x))) .

As a preliminary, we will at first explain our main observations for the proof of Theorem 1.1.
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6.1 Transformation of the bulk operator

Assume that w ∈ V2 is a strong solution to (86). For m = 1, 2, 3, the functions w1,xm , . . . , wN,xm
belong to V1 and they satisfy the equations

∂t(Ri,xm +Ri,zj wj,xm)

−
3∑

k=1

d

dxk

[
J ik,xm +

N∑
j=1

J ik,zj wj,xm +
N∑
j=1

3∑
`=1

J i
k,Dj`

wj,x`,xm

]
=

d

dxm
f .

We make use of a smooth spatial multiplier ζ(x), and we obtain for ηmj := wj,xm ζ (i = 1, . . . , N
and m = 1, 2, 3) the identities

∂t(Ri,xm ζ +Ri,zj η
m
j )−

3∑
k=1

∂xk(ΨDik,D
j
`
(t, x, w, wx) η

m
j,x`

) (93)

= ζ (
d

dxm
f + ∂xk(J

i
k,xm + J ik,zj wj,xm))

− ζxk D2
Dik,D

j
`

Ψ(t, x, w, wx)wj,x`,xm + ∂xk(D
2
Dik,D

j
`

Ψ(t, x, w, wx)wj,xm ζx`) .

Introduce for m = 1, 2, 3, ζ ∈ C2(Ω) and i = 1, . . . , N

Rm,ζ
i = ζ Ri,xm +Ri,zj η

m
j

Bm,ζ
i = ζ (∂xk(J

i
k,xm +

N∑
j=1

J ik,zj wj,xm) +
d

dxm
f)

− ζxk ΨDik,D
j
`
(t, x, w, wx)wj,x`,xm + ∂xk(D

2
Dik,D

j
`

Ψ(t, x, w, wx)wj,xm ζx`) .

The equations (93) possess the structure

∂tR
m,ζ
i (t, x, w, ηm)− d

dxk
(ΨDik,D

j
`
(t, x, w, wx) η

m
j,x`

)

= Bm,ζ
i (t, x, w, wx, wx,x) . (94)

We next localise the problem in the fashion of Section 2.7. For µ = 0, . . . , n, λ = 1, 2, 3 and
ι = 1, . . . , N , we consider the function

ηλ,µι = V µ,λ · ∇wι ζµ .

We define

Rλ,µ
i (t, x, w, ηλ,µ) := ζµ

3∑
m=1

V µ,λ
m Ri,xm(t, x, w) +

N∑
j=1

Ri,zj(t, x, w) ηλ,µj

Bλ,µ
i (t, x, w, wx, wx,x) :=

3∑
m=1

Bm,ζµ V µ,λm
i (t, x, w, wx, wx,x) .

Employing (94), the functions ηλ,µ1 , . . . , ηλ,µN belong to V1 and they satisfy the equations

∂tR
λ,µ
i (t, x, w, ηλ,µ)− d

dxk
(ΨDik,D

j
`
(t, x, w, wx) η

λ,µ
j,x`

)

= Bλ,µ
i (t, x, w, wx, wx,x) . (95)
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We now introduce an auxiliary vector u : QT → RK with K = N (3 (n + 1) + 1). The first N
entries of u are given by w1, . . . , wN . Then, for each λ = 1, 2, and µ = 0, . . . , n we add the entries
ηλ,µ1 , . . . , ηλ,µN . The last N (n+ 1) remaining entries of u are given by η3,0

1 , . . . , η3,n
N . This procedure

in fact constructs a bijection P between on the one hand α ∈ {N+1, . . . , K} and on the other hand
λ ∈ {1, 2, 3}, µ ∈ {0, . . . , n}, and ι ∈ {1, . . . , N}, such that

uP (λ,µ,i) := ηλ,µi . (96)

In this manner, we define a function R : QT × RK → RN

Rα(t, x, u) :=

{
R(t, x, w) for α = 1, . . . , N

Rλ,µ
α (t, x, w, ηλ,µ) for α = N + 1, . . . , K, α = P (λ, µ, ι)

(97)

Next, we recall (59). It follows that there are for α = N + 1, . . . , K and i = 1, . . . , N functions
Cα,i(x) such that

wi,x =
K∑

α=N+1

Cα,i(x)uα (98)

We define

Mα,β(t, x, u) :=


M0

α,β(t, x, w) for α, β = 1, . . . , N

ΨDi,Dj(t, x, w, C(x)u) for α = P (µ, λ, i) and β = P (µ, λ, j)

0 otherwise

. (99)

Moreover, note that (98) also implies that

wi,x,x =
K∑

α=N+1

Cα,i,x(x)uα +
K∑

α=N+1

Cα,i(x)uα,x . (100)

We define

fα(t, x, u, ux) :=

{
fα(t, x, w, C(x)u) for α = 1, . . . , N

Bλ,µ
i (t, x, w, C(x)u, C(x)ux + Cx(x)u) for α = P (λ, µ, i)

(101)

In this place, we recall also (89) and (95) to see that the vector u satisfies

∂tRα(t, x, u)− d

dxk
(
K∑
β=1

3∑
`=1

Mα,β,k,`(t, x, u)uβ,x`)

= fα(t, x, u, ux) . (102)

Let K ′ = N (2(n + 1) + 1). Then, it is readily seen from the definitions (99) and (101) that this
system has sub-diagonal structure with respect to K ′ as defined by Theorem 5.2 (for K = N and
K ′ = P ).
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6.2 Transformation of the boundary operator

We next investigate the boundary operator and assume that w ∈ V2 satisfies (87) (with fΓ = 0).
Applying tangential differentiation (µ ∈ {1, . . . , n} and λ ∈ {1, 2}), we obtain that

−νk ΨDik,D
j
`
ηλ,µj,x` =ζµ (V µ,λ · ∇νk ΨDik

+ νk V
µ,λ
m [ΨDik,xm

+ ΨDik,zj
wj,xm ])

− νk ΨDik,D
j
`
wj,xm (V λ,µ

m ζ(µ)x`) + V λ,µ · ∇fΓ .

Thus, we can introduce lower order functions (BΓ)V,µi such that

−νk ΨDik,D
j
`
(t, x, w, wx) η

λ,µ
j,x`

= (BΓ)V,µi (t, x, w, wx) for i = 1, . . . , N . (103)

Reorganising the system in the manner of (99) we obtain that

− νkMα,β,k,`(t, x, u)uβ,x` = fΓ,α(t, x, u)∀ α ≤ N −K ′ = N (2(n+ 1) + 1) . (104)

Next we show that the variables uK′+1, . . . , uK satisfy Dirichlet conditions on ST . We introduce for
i = 1, . . . , N and z0, z1, z2, X ∈ RN the functions

Fi(t, x, z0, z1, z2, X) := νk(x) ΨDik

(
t, x, z0,

∑
λ=1,2

zλ V µ,λ(x) +X ν(x)
)
. (105)

We observe that

Fi,Xj(t, x, z0, z1, z2, X)

=
3∑

k,`=1

νk(x) ν`(x) ΨDik,D
j
`

(
t, x, z0,

∑
λ=1,2

zλ V µ,λ(x) +X ν(x)
)
.

Thus, the matrix FX is strictly positive definite, and in fact, recalling that we assume (26)

FXη · η ≥ ν0(z0, z1, z2, X) η2 for all η ∈ RN .

The implicit function theorem implies the existence of an function D ∈ C1(ST × (RN)3; RN) such
that all solutions to F(t, x, z0, z1, z2, X) = 0 are globally described by the equation

X = D(t, x, z0, z1, z2) . (106)

Moreover, the derivatives of the function D are given by

Dt(t, x, z
0, z1, z2) = −[FX(t, x, z0, z1, z2, D)]−1 Ft(t, x, z

0, z1, z2, D)

Dx(t, x, z
0, z1, z2) = −[FX(t, x, z0, z1, z2, D)]−1 Fx(t, x, z

0, z1, z2, D)

Dzλ = −[FX(t, x, z0, z1, z2, D)]−1 Fzλ(t, x, z0, z1, z2, D) . (107)

Now, we observe that the validity of (87) is equivalent with

F(t, x, w(x), V µ,1 · ∇w(x), V µ,2 · ∇w(x), ν · ∇w(x)) = 0 .

This implies that

ν · ∇w(x) = D(t, x, w(x), V µ,1 · ∇w(x), V µ,2 · ∇w) .

Thus, for all α = P (3, µ, i),

uα = D(t, x, ū) ,

where ū is the vector (u1, u2, . . . , uK′).

Thus, the boundary operator associated with the equations (102) has the structure

−νkMα,β,k,`(t, x, u)uβ,x` = fΓ,α(t, x, u) for α = 1, . . . , K ′ (108)

uα = Dα(t, x, ū) for α = K ′ + 1, . . . , K . (109)
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6.3 Proof of the main result

The problem (102), (108) possesses the structure of a quasilinear system with sub diagonal coupling
of leading order. This problem was treated in the Section 5. We next can verify that the coefficients in
these relations satisfy the assumptions of Theorem 5.2.

As to the regularity assumptions, the ellipticity assumptions and the sub diagonal structure, this is
a straightforward matter. The validity of (91) guaranties that the assumptions (78) and (79) in the
statement of Theorem 5.2. To see this in the case of (78), we make use for theN first equations of the
relation (90). For the equations with index N + 1, . . . , K ′, we differentiate tangentially with respect to
∂Ω the condition (91). This implies (78)

In the case of (79), the implicit definition (106) of the function D in the equations with index α =
K ′+1, . . . , K shows that (91) is in fact equivalent with ν ·∇w = D(t, x, w, V µ,1 ·∇w, V µ,2 ·∇w)
for (t, x) ∈ [0, T ]× ∂Ωµ.

Thus, it remains to verify the condition (80). This computation is lengthy, but straightforward if we take
into account the formulas (107). It turns out that the condition is precisely (92). Applying the Theorem
5.2, we deduce Theorem 1.1.
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