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ABSTRACT. We prove the long-standing Eckmann-Ruelle conjecture in dimension theory 
of smooth dynamical systems. Namely, we show that the pointwise dimension exists 
almost everywhere with respect to a Borel probability measure with non-zero Lyapunov 
exponents invariant under a c 1+a diffeomorphism of a smooth Ri~mannian manifold. 
This implies in particular that the Hausdorff dimension and box dimension of the measure 
as well as some other characteristics of dimension type of the measure coincide. 

INTRODUCTION 

In this paper we obtain an affirmative solution of the long-standing problem in the 
interface of dimension theory and dynamical systems known as the Eckmann-Ruelle 
conjecture. This problem was explicitly mentioned as an important open problem by 
Young at her ICM address [Y3, p.1232] (see also [Y2, p.318]). It can be stated as 
follows. Let M be a compact smooth Riemannian manifold without boundary, and 
f: M -t Ma c 1+a diffeomorphism of M. Let alsoµ be an !-invariant Borel probability 
measure on M. 

Conjecture. Assume that µ is hyperbolic, i.e., all the Lyapunov exponents of f do 
not vanish at µ-almost all points. Then the following limit exists 

d(x) def lim log µ(B(x, r)) 
r~oo logr (1) 

for µ-almost every point x · E M (where B ( x, r) denotes the ball of radius r centered 
at x). 

The limit in (1) is called the pointwise dimension ofµ at x. If this limit does not 
exist one can consider the lower and upper limits and introduce respectively the· lower 
and upper pointwise dimension ofµ at x which we denote by fl(x) and d(x). The 
functions fl(x) and d(x) are measurable and invariant under f. 

The existence of the limit in (1) for a Borel probability measure µ on M implies 
the crucial fact that all characteristics of dimension type of the measure coincide (see 
Proposition 1 below). The common value is a fundamental characteristic of the fractal 
structure of µ - the fractal dimension of µ. It is intimately related to stochastic 
properties of f with respect to µ .. 

Since hyperbolic measures play a crucial role in studying physical models with per-
sistent chaotic behavior and fractal structure of invariant sets, the conjecture can be 
viewed as a mathematical foundation for such study. 
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We describe some most important characteristics of dimension type (see for example 
[F,P]). Let X be a complete separable metric space. For a subset Z c X and a number 
a 2:: 0, we define the a-Hausdorff measure of Z by 

mH(Z,a) = liminfl.:(diam uyx 
e:-+0 g 

UEQ 

where the infimum is taken over all finite or countable coverings Q of Z by open sets 
with diamQ ~ c. We now define the Hausdorff dimension of Z, denoted dimH Z, by 

dimH Z = inf{a: mH(Z, a)= O} =sup{ a: mH(Z, a)= oo}. 

The Hausdorff dimension was introduced by Hausdorff in 1919. It has since become 
one of the fundamental notions in dimension theory that is used to characterize sets 
with complicated "fractal" structure. 

We now define the lower and upper box dimensions of Z (denoted respectively by 
dimBZ and dimBZ) by 

where 

dimBZ = inf{a: r..~(Z, a)= O} = sup{a: r..H(Z, a)= oo}, 

dimBZ = inf{a: fH(Z,a) = O} = sup{a: fH(Z,a) = oo} 

'I..H(Z,a) = liminfl.:ca fH(Z"a) = llminfl.:ca 
e:-+0 g UEQ e:-+0 .g [[EQ 

and the infimum is taken over all finite or countable coverings Q of Z by open sets of 
diameter c. It is easy to see that 

It is now accepted by most experts in dimension theory that the coincidence of the 
Hausdorff dimension and lower and upper box dimensions of sets is a relatively rare 
phenomenon and can occur only in some "rigid" situations. One well-known class of 
sets for which the coincidence usually takes place is the class of Cantor-like sets, i.e., 
the limit sets for some geometric constructions (see for example [F,PW,B]). 

In order to describe the geometric structure of a subset Z invariant under a dynam-
ical system f acting on X, we consider a measure µ supported on Z and introduce the 
notion of the Hausdorff dimension ofµ and lower and upper box dimensions ofµ (we 
denote them by dimHµ, dimBµ, and dimBµ respectively). We have 

dimHµ = inf{dimH Z I µ(Z) = 1}, 

dimBµ = pm inf{ dimBZ I µ(Z) 2:: 1 - 8}, 
u-+0 

dimBµ = pm inf{ dimBZ I µ(Z) 2:: 1 - 8}. 
u-+0 
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It follows from the definition that 

There is another important characteristic of dimension type ofµ called the information 
dimension ofµ. Given a Borel probability measure /J, on X and a partition ~ of X, we 
define the entropy of~ with respect toµ by 

Hµ(~) = - L µ(Ce) log µ(Ce) 
Ce 

where Ce is an element of the partition~· Given a number c > 0, we set 

where diam~= maxdiam Ce. 
We define the lower and upper information dimensions ofµ by 

- _ -. Hµ(c) 
I(µ) - lim 1 ( I r c:-tO og 1 c 

There is a powerful criterion stated by Young in [Yl] that guarantees the coincidence 
of the Hausdorff dimension and lower and upper box dimensions of measures as well 
as their lower and upper information dimensions. 

Proposition 1. Let X be a compact separable metric space of fi.nite topological di-
mension and µ a Borel probability measure on· X. Assume that 

d.(x) = d(x) = d (2) 

for µ-almost every x E X. Then 

A measure µwhich satisfies (2) is called exact dimensional. 
In [P], many other characteristics of dimension type of measures are introduced 

including correlation dimension and modified Hentschel-Procaccia spectrum for di-
mensions. It is shown in [P] that if a measure µ is exact dimensional then all these 
characteristics coincide and the common value is equal to d. 

The Eckmann-Ruelle conjecture provides the most broad class of measures invariant 
under smooth dynamical systems which are exact dimensional. 

In [Yl], Young obtained the affirmative solution to this conjecture for surface dif-
feomorphisms. 
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Proposition 2. Let f be a ci+a dilieomorphism of a smooth compact surface Mand 
µa hyperbolic ergodic measure with Lyapunov exponents Ai> 0 > A2 . Then 

- ( 1 1) d. = d = hµ (!) Ai - A2 . 

In [L], Ledrappier proved the conjecture for general SRB-measures (after Sinai, 
Ruelle, and Bowen). In [PY], Pesin and Yue extended his approach and proved the 
conjecture for hyperbolic measures satisfying the so-called semi-local product structure 
(this class includes, for example, Gibbs measures on locally maximal hyperbolic sets). 

Let us also point out that neither of the assumptions in the Eckmann-Ruelle con-
jecture can be omitted. Ledrappier and Misiurewicz [LM] constructed an example of 
a smooth map of a circle preserving an ergodic measure with zero Lyapunov exponent 
which is n~t exact dimensional. In [PW], Pesin and Weiss presented an example of a 
Holder homeomorphism with Holder constant arbitrarily close to 1 whose measure of 
maximal entropy is not exact dimensional. 

PRELIMINARIES 

Let M be a smooth Riemannian manifold without boundary, and f: M -+ M a 
c 1+a diffeomorphism dn M. Let also µbe .an /-invariant ergodic Borel probability 
measure on M. 

Given x E M and v E TxM define the Lyapunov exponent of v at x by the formula 

-1 A(x, v) = lim -log lldxfnvll. 
n---+oo n 

If x is fixed then· the function A ( x, ·) can take on only finitely many values Ai ( x) ~ 
· · · ~ Ap(x) where p = dimM. The functions Ai(x) are measurable and !-invariant. 
Sinceµ is ergodic, these functions are constant µ-almost everywhere. We denote these 
constants by Ai ~ · · · ~ Ap. The measure µis said to be hyperbolic if Ai =J=. 0 for every 
i = 1, ... , p. ' 

There exists a measurable function r ( x) > 0 such that for µ-almost every x E M 
the sets 

W 5 (x) = {y E B(x, r(x)) I lim ~ logd(fnx, fny) < o}' 
n---++oo n 

wu(x) = {y E B(x, r(x)) I lim ~ logd(fnx, fny) > o} 
n---+-oo n 

are immersed local manifolds called stable and unstable local manifolds at x. For each 
0 < r < r(x) we consider the balls B 8 (x, r) c W 8 (x) and Bu(x, r) c wu(x) centered 
at x with respect to the induced distances on W 8 (x) and wu(x) respectively. 

Let ~ be a measurable partition of M. It has a canonical systems of conditional 
measures: for µ-almost every x there is a probability measure µx defined on the element 
~(x) of~ containing x. The conditional measures µx are uniquely characterized by the 
following property: if ffiB e is the cr-subalgebra (of the Borel er-algebra) whose elements 
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are unions of elements of e, and A c M is a measurable set, then x r-+ µx (A n e ( x)) is 
EBBe-measurable and µ(A)= f µx(A n e(x)) dµ(x). 

In [LY], Ledrappier and Young constructed two measurable partitions e8 and eu 
of M such that for µ-almost every x EM·: 

(1) e8(x) c W 8 (x) and eu(x) c wu(x); 
(2) e8(x) and eu(x) contain the intersection of an open neighborhood of x with 

W 8 (x) and wu(x) respectively. 
We denote the system of conditional measures of µ with respect to the partitions 
e· and eu respectively by µ~ and µ~, and for any measurable set A c M we write 
µ~(A)= µ~(An e5(x)) and µ~(A)= µ~(An eu(x)). 

Given x EM, consider the lower and upper pointwise dimensions ofµ at x, fi.(x) and 
d(x). Since these functions are measurable and /-invariant they are constant µ-almost 
everywhere. We denote these constants by d. and d respectively. 

In [LY], Ledrappier and Young introduced the quantities 

du(x) def llm log µ~(Bu(x, r)) 
r-+0 log r 

provided that the corresponding limits exist at x E M. We call them respectively 
stable and unstable pointwise dimensions of µ. 

Proposition 3 [LY]. 
(1) For µ-almost every x EM the limits d8 (x) and du(x) exist and are constant 

µ-almost everywhere; we denote these constants by d8 and du. 
( 2) Ifµ is a hyperbolic measure then 

\Vhen the entropy off is zero this inequality implies that d. = d = d8 +du= 0. 
In this paper we prove the following statement. 

Theorem. Let f be a. ci+a difieomorphism on a smooth Riemannian manifold with-
out boundary, and µ an /-invariant compactly supported ergodic Borel probability 
measure. Ifµ is hyperbolic then it is exact dimensional and its pointwise dimension is 
equal to the sum of the stable and unstable pointwise dimensions, i.e., 

Remarks. • 
(1) The assumption in the theorem that the hyperboljc measure is ergodic is not 

essential and the theorem holds for any /-invariant compactly supported Borel 
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probability measure that is hyperbolic. This can be verified in a standard way 
using the ergodic decomposition of the measure. 

(2) It follows immediately from the theorem that the pointwise dimension of an 
ergodic invariant measure supported on a (uniformly) hy-perbolic locally max-
imal set is exact dimensional. This result has not been known before. We 
emphasize that in this situation the stable and unstable foliations need not be 
Lipschitz (in fact they are "generically" not Lipschitz; see [S]), and in general 
the measure need not have a local product structure despite the fact that the 
set itself does. This illustrates that the theorem is non-trivial even for measures 
supported on hyperbolic locally maximal sets. 

DESCRIPTION OF A SPECIAL PARTITION 

We use the following notations. Let 'T/ be a partition. For every integers k, l ~ 1, 
we define the partition 'T/~ = V~=-k 1-n'TJ. We observe that "l2(x) n "lb(x) = 11~(x). 

l,From now on we assume that µ is hyperbolic. In [LY], Ledrappier and Young 
constructed a special countable partition ffiP of· M of finite entropy satisfying the 
following properties. Given 0 < e < 1, there exists a set r c M of measure µ(r) > 
1 - c/2, an integer n0 ~ 1, and a number C > 1 such that for every x Er and any 
integer n ~ n0 , the following statements hold: 

(a) for all integers k, l ~ 1 we have 

(b) 

(c) 

(d) 

c-ie-kh-kc: ~ µ~(ffiP~(x)) ~ ce-kh+kc:, 

c7"1e-lh-lc: ~ µ~(ffiP~(x)) ~ ce-zh+lc:, 

where his the Kolmogorov-Sinai entropy off with respect toµ; 

C(x) n n ffiP~(x) -:_) B 8 (x, e-n°), 
n2'.::0 

eu(x) n n ffiP~(x) :) Bu(x, e-n°); 
n2:::0 

ffiP~~(x) C B(x, e-n) C ffiP(x), 

ffiP~n(x) n C(x) c B 8 (x, e-n) c ffiP(x) n C(x), 

ffiP~n(x) n eu(x) c Bu(x, e-n) c ffiP(x) n eu(x), 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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where ais the integer part of2(1+c)max{l/.Xi,-1/.Xp,1}; 
(e) if Qn(x) is defined by 

{y E Af I EBPgn(y) n Bu(x, 2e-n) i= 0 and EBP~n(Y) n B 8 (x, 2e-n) i= 0} (13) 

then 
B(x, e-n) n r c Qn(x) c B(x, 4e-n); 

it clearly follows from the definition of Qn(x) that for ec;i.ch y E Qn(x), 
EBP~~(y) C Qn(x). 

We can also assume that 
( f) for every x E r and n 2:: no, we have 

B 8 (x, e-n) n r c Qn(x) n c;8(x) c B 8 (x, 4e-n), 
Bu(x, e-n) n r c Qn(x) n eu(x) c Bu(x, 4e-n). 

(14) 

(15) 
(16) 

The above statements are slightly different versions of statements in [LY]. Prop-
erty (3) essentially follows from the Shannon-McMillan-Breiman theorem applied to 
the partition EBP while properties ( 4) and (5) follow from "leaf-wise" versions of this 
theorem. The inequalities in ( 8) and ( 9) are easy consequences of the existence of 
the stable and unstable pointwise dimensions d8 and du (see Proposition 3). Since 
the Lyapunov exponents at µ-almost every point are constant equal to .Xi, ... , Ap, 
the properties (10), (11), and (12) follow from (6), (7), and the choice of a indicated 
above. The inclusions in (14) a.re based upon the continuous dependence of stable and 
unstable manifolds in the ci+a topology on the base point (in each Pesin set). We 
need the following well-known result. 
Borel Density Lemma. Letµ be a fi.nite Borel measure and ACM a measurable 
set. Then for µ-almost every x E A, we have 

lim µ(B(x, r) n A) == 1. 
r-tO µ(B(x, r)) 

Furthermore, if µ(A) > 0 then, for each 8 > 0, there is a set fl. C A with µ(fl.) > 
µ(A) - 8, and a number r0 > 0 such that for all x E fl. and 0 < r < r0 , we have 

µ(B(x, r) n A):::>: ~µ(B(x, r)). 
It immediately follows from the Borel Density Lemma that one can choose an integer 

ni ~ no and a set r c r of measure µ(r) > 1 - c such that for every n 2:: ni and -x Er, 
1 µ(B(x, e-n) n r) 2:: 2,µ(B(x, e-n))~ 

1 
µ~(B8 (x, e-n) n r) 2:: 2,µ~(B8 (x, e-n)); 

1 
µ~(Bu(x, e-n) n r) ~ 2,µ~(Bu(x, e,...n)). 

We establish two additional properties of the partitions EBP~ and EBP~. 

(17) 

(18) 

(19) 
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Proposition 4. There exists a positive constant D = D(f) < 1 such that for every 
k ;::: 1 and x E r, we have: 

µ~(EBP~(x) n r) ;::: D; 

µ~(EBP~(x) n r);::: D. 

Proof. By (6), for every k ;::: 1 and x E r, the set EBP~(x) n r contains the set 
B 8 (x, e-no) n r. It follows from (18) and (8) that 

The second inequality in the proposition can be proved in a similar fashion using the 
properties (7), (19), and (9). D 

The next statement establishes the property of the partition EBP which simulates 
the well-known Markov property. 

Proposition 5. For every x Er and n;::: n0 , we have: 

EBP~~(x) n e8(x) = EBP~n(x) n e8(x); 

EBP~~(x) n eu(x) = EBP~n(x) n eu(x). 

Proof. It follows from (11) and (6) that 

EBP~n(x) n e8(x) c EBP~n(x) n B 8 (x, e-n) c EBP~n(x) n B 8 (x, e-no) 
c EBP~n(x) n EBP~n(x) n e8(x) = EBP~~(x) n e8(x). 

Since EBP~~ ( x) C EBP~n ( x) this completes the proof of the first identity. The proof of 
the other identity is· similar. D 

PREPAH.ATIONAL LEMMATA 

Fix x E r and an integer n ;::: ni. We consider the following two classes EBR(n) 
and EBF ( n) of elements of the partition EBP~~ (we call these elements "rectangles"): 

EBR(n) = {EBP~~(y) c EBP(x) I EBP~~(y) n r i= 0}; 

EBF(n) = {EBP~~(y) c EBP(x) I EBP~n(Y) n f i= 0 and EBP~n(y) n f i= 0}. 

The rectangles in EBR(n) carry all the measure of the set EBP(x)nr, i.e., 'L:REEBR(n) µ(Rnl 
r) = µ(EBP(x) n r). Obviously, the rectangles in EBR(n) that intersect f belong to 
EBF(n). If these were the only ones in EBF(n), the measure µIEBP(x) nr would have the 
"direct product structure" at the "level" n. One could then use the approach in [L,PY] 
to estimate the measure of a ball by the product of its stable and unstable measures. 
In the general case, the rectangles in the class EBF ( n) are obtained from the rectangles 
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in EBR(n) (that intersect f) by. "filling in" the gaps in the "product structure" (see 
Figure 1). 

We wish to compare the number of rectangles in EBR(n) and EBF(n) intersecting a 
given set. This will allow us to evaluate the deviation of the measureµ from the direct 
product structure at the level n. Our main observation is that for "typical" points y Er 
the number of rectangles from the class EBR(n) intersecting W 8 (y) (respectively wu(y)) 
is "asymptotically" the same up to a factor that grows at most subexponentially with 
n. However, in general, the distribution of these rectangles along W 8 (y) (respectively 
wu (y)) may be different for different points y. This causes a deviation from the direct 
product structure. We will use a simple combinatorial argument to show that this 
deviation grows at most subexponentially with n. One can then say that the measure 
µhas an ·"almost direct product structure". 

1{(n) n !F(n) !F(n) \ 1((n) 

FIGURE 1. The procedure of "filling in" rectangles. 

To effect this, for each set AC EBP(x), we define 

N(n,A) = card{R E EBR(n) I RnA i= 0}, 

N 8 (n, y, A)= card{R E EBR(n) IR n e8(y) n r n Ai= 0}, 

Nu(n, y, A)= card{R E EBR(n) IR n ~u(y) n r n A·i= 0}, 

N8 (n, y, A)= card{R E EBF(n) IR n e8(y) n Ai= 0}, 
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fJ-u(n, y, A) ==card {RE ffiF(n) I Rn eu(y) n A f. 0}. 

Note that N(n, ffiP(x)) is the cardinality of the set ffiR(n), and N 8 (n, y, ffiP(x)) (re-
spectively Nu(n, y, ffiP(x))) is the number of rectangles in ffiR(n) that intersect rand 
the stable (respectively unstable) focal manifold at y. The product N8 (n, y, ffiP(x)) x 
fiu(n, y., ffiP(x)) is tl~e cardinality of the set ffiF(n) for a "typical" point y E ffiP(x). 

Lemma 1. For each y E ffiP(x) n I' and integer n ~ n0 , we have: 

Ns(n, y, Qn(Y)) ~ µ~(Bs(y, 4e-n)). Ceanh+ane; 

Nu(n, y, Qn(Y)) ~ µ;(Bu(y, 4e-n)). Ceanh+ane. 

where Qn(Y) is denned by (13). 
Proof. It follows from (15) that 

µ~(B8 (y, 4e-n)) ~ µ~(Qn(Y)) 

~ N 8 (n, y, Qn(Y)). min{µ~(R) IRE ffiR(n) and Rn C(y) n r n Qn(Y) f. 0}. 

Let z E Rn e8(y) n I' n Qn(Y) for sqme R E ffiR(n). By Proposition 5 we obtain 
µ~ ( R) == µ~ ( ffiP~n ( z)) == µ~ ( ffiP~n ( z)). The first inequality in the lemma follows now 
from (4). 

The proof of the second inequality is similar. D 

Lemma 2. For each y E ffiP(x) n f arid integer n ~ n 1, we have: 

Proof. It follows from (17) and (14) that 

1 2µ(B(y, e-n)) ~ µ(B(y, e-n) n r) ~ µ(Qn(Y) n r) 

~ N(n, Qn(Y)) · max{µ(R) IRE ffiR(n) and Rn Qn(Y) f. 0}. 
The desired inequality follows from ( 3). 

We now estimate the number of rectangles in the classes ffiR(n) and ffiF(n). 
D 

Lemma 3. For µ-almost every y E ffiP(x) n f there is an integer n2 (y) ~ n 1 such 
that for each n ~ n2 (y), we have: 

Proof. By the Borel Density Lemma (with A== f), for µ-almost every y E f there is 
an integer n2 (y) ~ n 1 such that for all n ~ n2 (y), 
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Since f c r, it follows from (14} that for all n 2:: n2 (y), 

2µ(Qn(Y) n f) 2:: 2µ(B(y, e-n) n f) 2:: µ(B(y, e-n)) 
2:: µ(B(y,4e-n-2 )) 2:: µ(Qn+2(Y)). 

For any m 2:: n2(y), by (3) and property (e), we have 

µ(Qm(Y)) = L µ(E:BP~:(z)) 2:: N(m, Qm(Y)). c-le-2amh-2ame:. 
E9P~: (z)CQ= (y) 

Similarly, for every n 2:: n2 (y), 'Ye obtain 

µ(Qn(Y) n r) = L µ(E:BP~~(z) n r) ~ Nn. ce-2anh+2ane:, 
E9P~~(z)CQn(Y) 

11 

(20) 

where Nn is the number of rectangles E:BP~~(z) E E:BR(n) that have non-empty inter-
section with f. 

Set m = n + 2. The last two inequalities together with (20) imply that 

(21) 

On the other hand, since y E f the intersections E:BP0n (y) n eu (y) n f and E:BP~n (y) n 
e (y) n f are non-empty. 

Consider a rectangle E:BP~~ ( v) C Q n (y) that has non-empty intersection with f. 
Then the rectangles E:BP~n(v) n E:BP~n(y) and E:BP~n(Y) n E:BP~n(v) are in E:BF(n) and 
intersect -respectively the stable and unstable local manifolds at y. Hence, one can 
associate to any rectangle E:BP~~(v) C Qn(Y) in EBR(n) that has non-empty intersection 
with f, the pair of rectangles ( E:BP~n ( v) n E:BP~n (y), E:BP~n (y) n E:BP0n ( v)) in 

' {RE EBF(n) IR n C(y) n Qn(Y) # 0} x {RE E:BF(n) IR n eu(y) n Qn(Y) -:f. 0}. 

Clearly this correspondence is injective. Therefore, 

The desired inequality follows from (21). D 

Our next goal is to compare the growth rate in n of the number of rectangles 
in E:B.F(n) with the number of rectangles in E:BR(n). We start with an auxiliary result. 

Lemma 4. For each x E f and integer n 2:: ni, we have: 
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Proof. Since the partition tBP is countable we can find points Yi such that the union of 
the rectangles tBP0n(Yi) is tBP(x), and these rectangles are mutually disjoint. Without 
loss of generality we can assume that Yi E f whenever tBP0n (Yi) n f =f. 0. 

We have 

We now estimate N 8 (ri, Yi, tBP0n(Yi)) for Yi E f from below. By Propositions 4 and 5, 
and (4), 

NS( pan( )) > µ~i (fBPon(Yi) n r) 
n, Yi, fB 0 Yi - max{µ~(fBP~~(z)) I z E e8 (Yi) n tBP(x) n r =f. 0} 

> D 
- max{µ~(fBP~~(z)) I z E e8 (Yi) n tBP(x) n r =f. 0} 

D 
- max{µ~(fBP~n(z)) I z E es(yi) n tBP(x) n r =f. 0} 
~ nc-leanh-ans. (23) 

Similarly (3) implies that 

N( P( )) µ(fBP(x)) · C 2anh+2ans 
n, fB x ::; min{µ(fBP~~(z)) I z E tBP(x) n r}· ::;, e · (24) 

We now observe that 

(25) 

Putting (22), (23), (24), and (25) together we conclude that 

Ce2anh+2ans ~ N(n, tBP(x)) 

> 
i:6'P0n (Yi)nf\~0 

~ f.iu(n, x, tBP(x)). nc-1eanh-ans. 

This yields f.iu(n, x, tBP(x)) ::; n-1c 2eanh+3ans. The other inequality can be proved 
in a similar way. D 

We emphasize that the procedure of "filling in" rectangles to obtain the class tBF(n) 
may substantially increase the number of rectangles in the neighborhood of some 
points. However, the next lemma shows that this procedure of "filling in" does not 
add too many rectangles at almost every point. 
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Len1ma 5. For µ-almost every y E ffiP ( x) n f we have: 

Proof. By (15) and (18), for each n ~ ni and y Er, 

Since ffiP~~(z) C tIJP~n(z) for every z, by virtue of (4) and (8) we obtain 

Ns( Q ( )) > µ~(Qn(Y)) 
. n, y, n y - max{µ~(ffiP~~(z)) I z E es(y) n ffiP(x) n r i= 0} 

> ~ µ~(Bs(y, e-n)) 
- 2 max{µ~(ffiP~n(z)) I z E es(y) n ffiP(x}n r i= 0} 

1 e-d8 n-ne 
>------ 2C e--anh+ane · 

Let us consider the set 

For each y E F there exists an increasing sequence {mj}f=1 = {mj(y)}f=1 of positive 
intege:r;s such that 

Ns( . Q (y)) > ~Ns(m· y Q .(y))e7am1e > _!._e-d8 m1+am1h+Sam1e mJ,y, mi -2 J'' m3 -4c (26) 

for all j (note that a> 1). 
We wish to show that µ(F) = 0. Assume on the contrary that µ(F) > 0. Let 

F' c F be the set of points y E F for which it exists the limit 

. log µ~(B8 (y, r)) 
hm = d8

• 
r-70 log r 

Clearly µ(F') = µ(F) > 0. Then we can find y E F such that 

µ~(F) = µ~(F') = µ~(F' n tIJP(y) n e8(y)) > 0. 
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It follows from Frostman's lemma that 

dimH(F' n e8(y)) = d5
• (27) 

Let us consider the countable collection of balls 

8B = {B(z, e-m;(z)) I z E F' n e8(y); j = 1, 2, ... }. 

By the Besicovitch covering lemma (see for example [G]) one can find a subcover 8C c 
8B of F' n e(y) of arbitrarily small diameter and finite multiplicity p = p(dimM). 
This means that for any L > 0 one can choose a sequence of points {zi E F'ne(y)}~1 
and a sequence of integers {ti}~1 , where ti E {mj(zi)}f=1 and ti > L for each i, such 
that the collection of balls 

8C = {B(zi, e-ti) Ii= 1, 2, ... } 

comprises a cover of F' ne(y) whose multiplicity does not exceed p. We write Q(i) = 
Qti (zi). 

The Hausdorff sum corresponding to this cover is 
CX) 

L (diamB)ds-s = L e-ti(ds-e:). 
BE8C i=l 

By (26), we obtain 

CX) CX) 

L e-ti(d8

-c) :::; L JVs(ti, Zi, Q(i)). 4Ce-atih-4atie 
i=l i=l 

CX) 

:::; 4CL e-aqh-4aqe: L JVs(q, Zi, Q(i)). 
q=l i:ti=q 

Since the multiplicity of the subcover 8C is at most p, each set Q(i) appears in 
the sum ~i:ti=q N8 (q, Zi, Q(i)) at most p times. Hence Li:ti=q fVs(q, Zi, Q(i)) :::; 
pN8 (q, y, tBP(y)). It follows from Lemma 4 that 

CX) 

L (diamB)ds-e: :::; 4C L e-aqh-4aqe: pN8 (q, y, tBP(y)) 
BE8C q=l 

CX) CX) 

::; 4n-1 c3 p L e-aqh-4aqs+aqh+3aqe: = 4n-lc3 p L e-aqe < 00. 
q=l q=l 

Since L can be chosen arbitrarily large (and so also the numbers ti), it follows that 
dimH(F'ne(y)):::; d8 -c < d8

• This contradicts (27). Hence µ(F) = 0 and this yields 
the first inequality in the lemma. The proof of the second inequality repeats the same 
arguments. 0 
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PROOF OF THE ECKMANN-RUELLE CONJECTURE 

Proof. By Proposition 3 we only need to prove that d. 2:: d8 + du. 
Given e > 0, let the set f be as in the previous sections. By Lemmas 2 and 3, for 

µ-almost every y E EBP(x) n f and n 2:: n2(y), we obtain 

µ(B(y, e-n-2)):::; iJ"s(n, y, Qn(Y)). fiu(n, y, Qn(Y)). 4c3e4a(h+c:)e-2anh+6am:. 

By Lemma 5, for µ-almost every y E EBP(x) n f there exists an integer n3(y) 2:: n2(y) 
such that for all n 2:: n3 (y) we have 

Ns(n, y, Qn(Y)) < Ns(n, y, Qn(Y))e7anc:, 

Nu(n, y, Qn(Y)) < Nu(n, y, Qn(Y))e7anc:. 

This implies that 

By Lemma 1 we obtain 

This implies that 
lim Iogµ(B(y,.e-n)) > d8 +du - 22ae 

n-r+oo -n -

for µ-almost every y E f. Since µ(r) > 1-e and e > 0 is arbitrarily small, we conclude 
that 

d = lim log µ(B(y, r)) = lim log µ(B(y, e-n)) 2:: ds +du 
- r-70 log r n-r+oo -n 

for µ-almost every y E M. This completes the proof. D 
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