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An analogue of grad-div stabilization in nonconforming methods
for incompressible flows

Mine Akbas, Alexander Linke, Leo G. Rebholz, Philipp W. Schroeder

Abstract

Grad-div stabilization is a classical remedy in conforming mixed finite element methods for
incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass
conservation. Such errors arise due to the relaxation of the divergence constraint in classical
mixed methods, and are excited whenever the spacial discretization has to deal with comparably
large and complicated pressures. In this contribution, an analogue of grad-div stabilization is pre-
sented for nonconforming flow discretizations of Discontinuous Galerkin or nonconforming finite
element type. Here the key is the penalization of the jumps of the normal velocities over facets of
the triangulation, which controls the measure-valued part of the distributional divergence of the
discrete velocity solution. Furthermore, we characterize the limit for arbitrarily large penalization
parameters, which shows that the proposed nonconforming Discontinuous Galerkin methods re-
main robust and accurate in this limit. Several numerical examples illustrate the theory and show
their relevance for the simulation of practical, nontrivial flows.

1 Introduction

Classical conforming and inf-sup stable mixed finite element methods for the incompressible (Navier–
)Stokes equations, such as the mini [2], the Bernardi–Raugel [3] and the Taylor–Hood elements [43],
relax the divergence constraint ∇ ·u = 0, in order to construct optimally convergent spacial dis-
cretizations on regular unstructured triangulations [19, 4]. Indeed, the discrete velocities solutions uh
are not divergence-free, but only discretely divergence-free, i.e., it holds∇h ·uh := π0(∇ ·uh) = 0,
where ∇h · denotes the discrete divergence operator and π0 denotes the L2 best approximation in
the discrete pressure space.

While relaxing the divergence constraint facilitates the construction of inf-sup stable discretizations,
it was soon realized that discretely divergence-free is sometimes not good enough. For example, al-
ready in 1989 D. Pelletier, A. Fortin and R. Camarero titled in their article [36] by the provocative
question “Are FEM solution of incompressible flows really incompressible (or how simple flows can
cause headaches!)” and pointed to the problem of poor mass conservation. Poor mass conservation
describes velocity errors that are excited when the pressure is comparably large and complicated [23].
This happens in many flow problems, including Boussinesq flows [20, 36, 13, 18, 15, 16], potential
and generalized Beltrami flows [30, 29, 23], quasi-geostrophic flows [42, 10, 29], electrophoresis [37],
and two-phase flows with surface tension [17, 28]. Physical problems where poor mass conservation
is not strong are rather limited, and include for example pressure-driven Stokes and pressure-driven,
low-Reynolds number Navier–Stokes flow through a channel with zero exterior forcing, where for the
momentum balance approximately holds −ν∆u+∇p ≈ 0, i.e., where the pressure gradient is pro-
portional to the friction force.
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Phenomenologically, poor mass conservation is often accompanied by comparably large violations of
the divergence error ‖∇ ·uh‖L2 , see for example [16, Table 1]. To address this, in 1988 T. Hughes
proposed to enhance the Navier–Stokes momentum balance of conforming mixed finite element meth-
ods by a consistent term [14]

γ(∇ ·uh,∇ ·vh),
which penalizes large divergence errors, and is nowadays often called grad-div stabilization [33]; here
γ > 0 denotes the grad-div stabilization parameter. Indeed, grad-div stabilization for conforming
mixed finite element methods has recently been investigated in depth, both from a theoretical and
computational point of view [32, 33, 35, 16, 34, 7, 31, 22, 1]. A better understanding of grad-div sta-
bilization was achieved, when the limit behavior for arbitrarily large stabilization parameters γ → ∞
was investigated [7, 31, 22]; it turned out that grad-div stabilization is not so much a stabilization, but
instead a kind of penalization procedure. On a fixed grid, for γ → ∞ the grad-div stabilized discrete
velocity solution uγh converges to a divergence-free velocity solution u∞h which is the solution of a
divergence-free conforming mixed finite element method with the same discrete velocity space, but
with a richer discrete pressure space. Since divergence-free, conforming mixed finite element meth-
ods are pressure-robust [23, 30], i.e. their velocity error does not depend on the continuous pressure,
grad-div stabilized discrete velocities behave in a more robust manner against large and complicated
continuous pressures. However, this theoretical understanding also revealed limitations of grad-div
stabilization in that large grad-div stabilization parameters can cause classical Poisson locking phe-
nomena, whenever the limiting divergence-free mixed method is not inf-sup stable [22]. However, on
certain mesh families and for certain conforming mixed finite elements, grad-div over-stabilization can
be avoided [22, Corollary 1, Case 2].

Of course, nonconforming mixed methods like the Crouzeix–Raviart finite element method [11] are
as much endangered by poor mass conservation as conforming ones, since they are not pressure-
robust (their velocity error depends on the continuous pressure). In [27, 26] it was recognized that
pressure-robustness of a mixed method for incompressible flows does not depend on the fact that the
discrete velocity trial functions are divergence-free, but it only depends on the discrete velocity test
functions. They have to be divergence-free in the weak sense of H(div), in order to be orthogonal
to any gradient field in the L2(Ω) scalar product for vector fields [23, 27]. Recall that a vector field
v ∈ L2(Ω) is said to be weakly divergence-free, if its distributional divergence [23]

φ 7→ −
∫

Ω

v ·∇φ dx

vanishes for all φ ∈ C∞0 (Ω), i.e. if it is orthogonal in L2(Ω) to all smooth gradient fields [23]. This
shows that it is actually a very strong property for a vector field v to be weakly divergence-free, at
least compared to being only discretely divergence-free. Indeed, applying the general definition of the
distributional divergence to nonconforming finite element methods and Discontinuous Galerkin (DG)
methods, it turns out that the distributional divergence of a velocity test function vh is given by

φ 7→
∑
K∈Th

∫
K

φ∇ ·vh dx−
∑
F∈Fi

h

∮
F

φ(JvhK ·nF ) ds,

since vh is elementwise polynomial and an integration by parts can be applied. Therefore, the dis-
tributional divergence of vh vanishes only if it holds ∇ ·vh = 0 elementwise for all K ∈ Th and
JvhK ·nF = 0 for all F ∈ F ih. Instead, if a vector field vh is discretely divergence-free, this implies
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Analogue of grad-div for nonconforming methods 3

for usual, i.e., not pressure-robust [23], discretizations that only

φh 7→
∑
K∈Th

∫
K

φh∇ ·vh dx−
∑
F∈Fi

h

∮
F

φh(JvhK ·nF ) ds,

vanishes for all φh ∈ Qh from a finite-dimensional space Qh of pressure test functions. Hence, an
analogue for grad-div stabilization for nonconforming methods has to penalize the elementwise de-
fined broken divergence∇h ·vh, and the facet jumps JvhK ·nF of the normal velocities (i.e. the mass
flux). Therefore, in the following a penalization procedure with a penalization parameter γ is proposed,
which enforces in the limit γ → ∞ — on a fixed grid — that the discrete velocity solution u∞h will
be elementwise divergence-free and the jumps of the normal velocities over inner facets will vanish,
likewise. Then, this discrete velocity solution u∞h will be shown to be the discrete velocity solution
of another DG method, where also the velocity test functions vh are weakly divergence-free, and
therefore this discrete velocity solution will be pressure-robust, i.e., the discrete velocity solution is
pressure-independent [23].

In the context of the Crouzeix–Raviart finite element method, the importance of penalizing the jumps
of the normal velocities was recognized by E. Burman and P. Hansbo in 2005 [6]. However, they did
not investigate possible problems of over-stabilization in the case of small kinematic viscosities, if the
jumps of the normal velocities are strongly penalized. In the context of DG methods, in [41] an el-
ementwise divergence penalization has been used (seemingly) for the first time. It was shown that
even this incomplete stabilization method can improve poor mass conservation for both inf-sup stable
QQQdc
k /Qdc

k−1 and equal-order DG methods QQQdc
k /Qdc

k on tensor-product meshes in practical applica-
tions of non-isothermal flows. Further, it was recognized independently in the recent works [25] and
[24] that in DG methods, the mass balance across interior facets has to be accounted for, in addition to
the classical (broken) grad-div stabilization. For laminar and turbulent flows, the authors of Ref. [25] —
improving earlier results [24] — use a velocity-correction time integration with equal-order QQQdc

k /Qdc
k

elements on tensor-product meshes and an implementation in deal.ii. The additional terms they
favor are different from the stabilization that is proposed in this work, see [25, 4.2.3 and 4.2.4]. Fur-
ther, the authors do not rigorously justify their approach by numerical analysis and do not consider a
possible lack of robustness against over-stabilization.

A major contribution of this work is to propose an analogue of grad-div stabilization for DG meth-
ods as motivated above. We will prove error estimates which show that the same positive results for
grad-div stabilization in conforming methods also hold in this setting with these penalizations. More-
over, for DG methods using the pair PPPdc

k /Pdc
k−1 on simplices, we are able to characterize the limit

behavior of the penalization procedure for arbitrarily large parameters. It turns out that the method
is perfectly robust against over-stabilization since in the limit, one obtains the weakly divergence-free
inf-sup stable DG methods proposed by B. Cockburn, G. Kanschat, and D. Schötzau [8, 9]. Further,
some remarks are made concerning DG methods on tensor product meshes, and the nonconforming
Crouzeix–Raviart element. Our theory is restricted to the incompressible Stokes problem, however,
an extension to the Navier–Stokes problem would be straightforward, although naturally with more
technical details. Several numerical examples for the Stokes problem, the Navier–Stokes problem and
some coupled Boussinesq flows show the practical relevance of the proposed penalization procedure.

Organization of the article This article is arranged as follows. In Section 2 we provide some nota-
tion and mathematical preliminaries to allow for a cleaner analysis to follow. Section 3 considers the
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case of the proposed stabilization for DG on simplices, Section 4 considers tensor product meshes,
and Section 5 considers the enhancement in Crouzeix–Raviart elements. Several numerical tests of
concept are given in Sections 3 and 4, and in Section 6, we consider applications of the proposed
penalization outside of the Stokes setting, to Navier–Stokes equations and to Boussinesq. In all nu-
merical tests the (sometimes dramatic) improvement offered by the proposed penalization is clear.
Finally, conclusions are drawn in Section 7, and future research directions are discussed.

2 Stokes problem and DG setting

We consider a domain Ω ⊂ Rd, d=2,3, to be a simply connected set with smooth boundary, or a con-
vex polygon. For K ⊆ Ω we use the standard Sobolev spaces Wm,p(K) for scalar-valued functions
with associated norms ‖·‖Wm,p(K) and seminorms |·|Wm,p(K) for m > 0 and p > 1. Spaces and
norms for vector- and tensor-valued functions are indicated with bold letters. We use the Lebesgue
space Lp(K) = W 0,p(K) and the Hilbert space Hm(K) = Wm,2(K). Additionally, the closed
subspaces H1

0 (K) consisting of H1(K)-functions with vanishing trace on ∂K and the set L2
0(K) of

L2(K)-functions with zero mean inK play an important role. The L2(K)-inner product is denoted by
(·, ·)K and, if K = Ω, the domain is omitted completely when no confusion can arise.

2.1 Continuous Stokes problem

We consider the stationary Stokes problem with no-slip boundary conditions:
−ν∆u+∇p = f in Ω,

∇ ·u = 0 in Ω,

u = 0 on ∂Ω.

(1)

With V = H1
0 (Ω) and Q = L2

0(Ω), the weak formulation of (1) reads: Find (u, p) ∈ V ×
Q s.t., ∀ (v, q) ∈ V ×Q,

νa(u,v) + b(v, p)− b(u, q) = (f ,v). (2)

The bilinear forms are given by

a(w,v) =

∫
Ω

∇w :∇v dx and b(w, q) = −
∫

Ω

q(∇ ·w) dx. (3)

Weakly divergence-free velocities belong to

V div = {v ∈ V : b(v, q) = 0, ∀ q ∈ Q}. (4)

2.2 Discontinuous Galerkin setting

Let Th be a shape-regular FE partition of Ω without hanging nodes and mesh size h = maxK∈Th hK ,
where hK denotes the diameter of the particular element K ∈ Th. Since the subsequent velocity
approximation will not beH1-conforming, the broken Sobolev space is introduced as follows:

Hm(Th) =
{
w ∈ L2(Ω) : w

∣∣
K
∈Hm(K), ∀K ∈ Th

}
. (5)
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Define the broken gradient∇h : H1(Th)→ L2(Ω) by

(∇hw)
∣∣
K

:= ∇
(
w
∣∣
K

)
,

and similarly define the broken divergence. We additionally introduce the space

H(div; Ω) =
{
w ∈ L2(Ω) : ∇ ·w ∈ L2(Ω), w ·n

∣∣
∂Ω

= 0
}
. (6)

In our context it is worth to remind the reader that the expression∇ ·w ∈ L2(Ω) has the meaning that
the distributional divergence ofw can be expressed as a L2(Ω) function, i.e., there exists s ∈ L2(Ω)
(called the weak divergence ofw) such that it holds for all φ ∈ C∞0 (Ω)−

∫
Ω
v ·∇φ dx =

∫
Ω
s φ dx,

see [23].

The skeleton Fh denotes the set of all facets with FK = {F ∈ Fh : F ⊂ ∂K} and hF represents
the diameter of each facet F ∈ Fh. Note that hF 6 hK holds true for all F ∈ FK and additionally,
we define N∂ = maxK∈Th card(FK). Moreover, Fh = F ih ∪ F∂h where F ih is the subset of interior
facets and F∂h collects all boundary facets F ⊂ ∂Ω. To any F ∈ Fh we assign a unit normal vector
nF where, for F ∈ F∂h , this is the outer unit normal vector n. If F ∈ F ih, there are two adjacent
elements K+ and K− sharing the facet F = ∂K+ ∩ ∂K− and nF points in an arbitrary but fixed
direction. Let φ be any piecewise smooth (scalar-, vector- or tensor-valued) function with traces from
within the interior of K± denoted by φ±, respectively. Then, we define the jump J·KF and average{{
·
}}
F

operator across interior facets F ∈ F ih by

JφKF = φ+ − φ− and
{{
φ
}}
F

=
1

2

(
φ+ + φ−

)
. (7)

For boundary facets F ∈ F∂h we set JφKF =
{{
φ
}}
F

= φ. These operators act componentwise
for vector- and tensor-valued functions. Frequently, the subscript indicating the facet is omitted. Note
that if w ∈ H(div; Ω), then JwK ·nF = 0 for all F ∈ F ih; cf. [12, Lemma 1.24]. This is why the
proposed stabilization of DG methods in this work is also sometimes called ‘H(div)-stabilization’.

3 Mass flux penalization applied to inf-sup stable DG methods
on simplicial meshes

In the following,Pk(K) (vector-valued:PPPk(K)) denotes the space of all polynomials onK with degree
less or equal to k. Restricting ourselves to simplicial meshes, the global discrete spaces are

Vh =
{
vh ∈ L2(Ω) : vh

∣∣
K
∈ PPPk(K), ∀K ∈ Th

}
, (8a)

Qh =
{
qh ∈ L2

0(Ω) : qh
∣∣
K
∈ Pk−1(K), ∀K ∈ Th

}
. (8b)

This finite element (FE) pair is also called PPPdc
k /Pdc

k−1 and it forms an inf-sup stable velocity/pressure
pair; cf., for example, [38, Section 6.4]. Moreover, on simplicial meshes, we have the important property
∇h ·PPPdc

k ⊂ Pdc
k−1.

REMARK 3.1 : On tensor-product meshes, which we consider in the next section, the inf-sup stable
pressure/velocity pair QQQdc

k /Qdc
k−1 is the common element choice. A key departure for such elements

from the simplicial mesh framework is that∇h ·QQQdc
k 6⊂ Qdc

k−1, which creates an additional obstacle to
handle in the analysis since here the additional penalization of the broken divergence is needed.
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On Vh the following discrete trace inequality is valid; cf. [12, Remark 1.47]:

∀vh ∈ Vh : ‖vh‖2
L2(∂K) 6 CtrN∂h

−1
K ‖vh‖2

L2(K) , ∀K ∈ Th. (9)

A similar trace inequality holds true for the pressure spaceQh. The appearance below of certain traces
of velocity facet values, and their normal derivatives, leads to the technical assumption for the proofs
below that the involved velocities belong (at least) to H

3
2

+ε(Th) for some ε > 0; cf. [38, Section
2.1.3]. Relaxing this assumption is possible [21], of course, but beyond the scope of this contribution.
We thus define the compound space

V (h) = Vh ⊕
[
V ∩H 3

2
+ε(Th)

]
. (10)

We consider the symmetric interior penalty (SIP) method with σ sufficiently large to guarantee the
coercivity estimates below, and so define the bilinear form

ah(wh,vh) =

∫
Ω

∇hwh :∇hvh dx+
∑
F∈Fh

σ

hF

∮
F

JwhK · JvhK ds

−
∑
F∈Fh

∮
F

{{
∇wh

}}
nF · JvhK ds−

∑
F∈Fh

∮
F

JwhK ·
{{
∇vh

}}
nF ds. (11)

The natural discrete energy norm corresponding to the SIP bilinear form forw ∈ V (h) is given by

|||w|||2e = ‖∇hw‖2
L2(Ω) +

∑
F∈Fh

σ

hF
‖JwK‖2

L2(F ) . (12)

The discrete bilinear form for the pressure-velocity coupling is defined by

bh(wh, qh) = −
∫

Ω

qh(∇h ·wh) dx+
∑
F∈Fh

∮
F

{{
qh
}}

(JwhK ·nF ) ds. (13)

As mentioned above, the FE pair Vh/Qh is discretely inf-sup stable. More precisely, there exists an
even smaller discrete velocity space Wh ⊂ Vh, with Wh ⊂ H(div; Ω), such that Wh/Qh is also
inf-sup stable; cf., for example, [38, Section 6.4]. This ensures the existence of a β∗ > 0, independent
of h, such that

β∗ ‖qh‖L2(Ω) 6 sup
wh∈Wh\{0}

bh(wh, qh)

|||wh|||e
6 sup

vh∈Vh\{0}

bh(vh, qh)

|||vh|||e
, ∀ qh ∈ Qh. (14)

We will also utilize a stronger energy norm on V (h):

∀w ∈ V (h) : |||w|||2e,] := |||w|||2e +
∑
K∈Th

hK ‖∇w ·nK‖2
L2(∂K) . (15)

Then, there exists a M > 0, independent of h, such that

∀ (w,vh) ∈ V (h)× Vh : ah(w,vh) 6M |||w|||e,]|||vh|||e. (16)
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Analogue of grad-div for nonconforming methods 7

Concerning a proof, see for example [12, Section 4.2.3] for a scalar-valued analogue. Moreover, note
that the |||·|||e and |||·|||e,] norms are uniformly equivalent on Vh. That is, there exists a C > 0 such
that C|||vh|||e,] 6 |||vh|||e 6 |||vh|||e,] for all vh ∈ Vh; cf. [12, Lemma 4.20] (scalar-valued).

The key idea of this work is to add the following mass flux penalization term to the DG formulation:

jh(wh,vh) =
∑
F∈Fh

1

hF

∮
F

(JwhK ·nF )(JvhK ·nF ) ds. (17)

We will show the remarkable positive impact this term can have, as it improves mass conservation
as well as the pressure-robustness of the solution. In fact, the analytical and numerical results we
obtain are similar to what is found with using grad-div stabilization in conforming methods for Stokes
problems, which is why we characterize this penalization as an analogue to grad-div stabilization for
nonconforming methods. This term penalizes normal jumps and therefore, roughly speaking, the differ-
ence between a fully discontinuous DG velocity and a normal-continuous H(div) velocity. However,
we emphasize an important advantage over grad-div stabilization in conforming methods: in the pro-
posed DG setting, over-stabilization is never possible, as it will be shown. For a discussion on the
issue of over-stabilization in conforming methods with grad-div stabilization, see [22, Corollary 1].

For all vh ∈ Vh we introduce the notation

|vh|2nj =
∑
F∈Fh

1

hF

∮
F

(JvhK ·nF )2 ds =
∑
F∈Fh

1

hF
‖JvhK ·nF‖2

L2(F ) ,

and note that |vh|nj 6 |||vh|||e for all vh ∈ V (h).

For approximating (2), the proposed DG method with mass flux penalization is given by: Find (uh, ph) ∈
Vh ×Qh satisfying ∀ (vh, qh) ∈ Vh ×Qh,

νah(uh,vh) + bh(vh, ph) + γjh(uh,vh) = (f ,vh), (18)

−bh(uh, qh) = 0, (19)

where γ > 0 is the penalization parameter.

Discretely divergence-free DG velocities belong to

V div
h = {vh ∈ Vh : bh(vh, qh) = 0, ∀ qh ∈ Qh},

and thanks to the inf-sup condition, an equivalent and pressure-free formulation of (18)–(19) can be
expressed as:

uh ∈ V div
h s.t. νah(uh,vh) + γjh(uh,vh) = (f ,vh) ∀vh ∈ V div

h .

3.1 Energy estimate

Making use of the discrete coercivity property of the SIP bilinear form ah, cf., for example, [38, Lemma
6.6] or [12, Section 6.1.2.1], we also easily obtain discrete coercivity with a constant Cσ > 0, inde-
pendent of h, in the following sense:

∀vh ∈ Vh : ah(vh,vh) + γjh(vh,vh) > Cσ|||vh|||2e + γ|vh|2nj > Cσ|||vh|||2e. (20)
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The well-posedness of the formulation thus follows using this discrete coercivity property and discrete
inf-sup stability. The following energy estimate follows immediately as well.

LEMMA 3.2 (Energy estimate)

Let f ∈ L2(Ω) and assume that σ > 0 is sufficiently large to guarantee discrete coercivity. Then,
with a constant C > 0, one obtains the following estimate for the FEM solution (uh, ph) to (18)–(19):

νCσ
2
|||uh|||2e + γ|uh|2nj 6 Cν−1 ‖f‖2

L2(Ω) , (21a)

‖∇h ·uh‖2
L2(Ω) 6 Cγ−1ν−1 ‖f‖2

L2(Ω) , (21b)

‖ph‖2
L2(Ω) 6 C ‖f‖2

L2(Ω) . (21c)

PROOF : Testing with (vh, qh) = (uh, ph) in (18)–(19), together with coercivity from (20) and Cauchy–
Schwarz leads to

νCσ|||uh|||2e + γ|uh|2nj 6 ‖f‖L2(Ω) ‖uh‖L2(Ω) . (22)

Further estimating the right-hand side requires a DG analogue of the Poincaré–Friedrichs (PF) in-
equality; cf., for example, [12, Corollary 5.4]. Then, Young’s inequality can be invoked to obtain

‖f‖L2(Ω) ‖uh‖L2(Ω) 6
1

2

CPF

νCσ
‖f‖2

L2(Ω) +
νCσ

2
|||uh|||2e. (23)

Reordering shows the first bound. For an estimate of the divergence of the DG solution, choose qh =
∇h ·uh in (19). After an additional application of Cauchy–Schwarz and inserting hF

γ
γ
hF

= 1, we have

‖∇h ·uh‖2
L2(Ω) =

∑
F∈Fh

∮
F

{{
∇ ·uh

}}
(JuhK ·nF ) ds

6

(∑
F∈Fh

hF
γ

∥∥{{∇ ·uh}}∥∥2

L2(F )

)1/2(∑
F∈Fh

γ

hF
‖JuhK ·nF‖2

L2(F )

)1/2

. (24)

For any qh ∈ Qh, the discrete trace inequality (9) yields∑
F∈Fh

∮
F

∣∣{{qh}}∣∣2 ds 6
∑
F∈Fh

[∥∥q+
h

∥∥2

L2(F )
+
∥∥q−h ∥∥2

L2(F )

]
6
∑
K∈Th

‖qh‖2
L2(∂K)

6
∑
K∈Th

CtrN∂h
−1
K ‖qh‖2

L2(K) .

Thus, with a generic constant C > 0, using hF 6 hK for all F ∈ FK , we obtain(∑
F∈Fh

hF
γ

∥∥{{∇ ·uh}}∥∥2

L2(F )

)1/2

6 Cγ−
1/2 ‖∇h ·uh‖L2(Ω) . (25)
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For the second term, we use the energy estimate (21a) for the velocity; that is,(∑
F∈Fh

γ

hF
‖JuhK ·nF‖2

L2(F )

)1/2

= γ
1/2|uh|nj 6 Cν−

1/2 ‖f‖L2(Ω) . (26)

Using (26) and (25) in (24) shows the second bound of the lemma.

For the pressure bound, we invoke the discrete inf-sup condition (14) inWh/Qh and obtain

β∗ ‖ph‖L2(Ω) 6 sup
wh∈Wh\{0}

bh(wh, ph)

|||wh|||e
= sup

wh∈Wh\{0}

[
(f ,wh)

|||wh|||e
− ν ah(uh,wh)

|||wh|||e

]
. (27)

Here, the fact that jh(uh,wh) = 0 since wh ∈ Wh ⊂ H(div; Ω) has been used. A further
estimation of the right-hand side uses Cauchy–Schwarz and Poincaré–Friedrichs for the term involving
f together with boundedness of ah (16) and uniform equivalence of |||·|||e and |||·|||e,] on Vh for the
viscous term. Thus, the supremum vanishes thereby leading to

β∗ ‖ph‖L2(Ω) 6 C[‖f‖L2 + ν|||uh|||e]. (28)

Inserting the energy estimate (21a) for the velocity concludes the proof. �

3.2 Error estimate

For the error analysis that follows, it is important that the following property holds. A proof is straight-
forward and based on the consistency of both the DG method andH(div)-stabilization.

COROLLARY 3.3 (Galerkin orthogonality)

Let (u, p) ∈ V ×Q solve (2) and (uh, ph) ∈ Vh×Qh solve (18)–(19). If additionallyu ∈H 3
2

+ε(Th)
and p ∈H 1

2
+ε(Th) for ε > 0, then, for all (vh, qh) ∈ Vh ×Qh:

νah(u− uh,vh) + bh(vh, p− ph)− bh(u− uh, qh) + γjh(u− uh,vh) = 0. (29)

Under the assumptions of the previous corollary we decompose the error as

u− uh = (u− πhu)− (uh − πhu) = ηu − euh ,
p− ph = (p− π0p)− (ph − π0p) = ηp − eph,

where (πh, π0) : V × Q → Vh × Qh represent appropriate approximation operators and we refer
to (ηu, ηp) and (euh , e

p
h) as approximation and discretization error, respectively. For the pressure,

π0 simply denotes the local L2-projection onto Qh. For the approximation operator for the velocity,
we require πh : V → Wh ⊂ Vh, and recall from above that Wh ⊂ H(div; Ω). It is well-known
that functions belonging to H(div; Ω) have a continuous normal component across interior facets.
Specifically, we define the operator πh to be the Brezzi–Douglas–Marini (BDM) interpolation operator
of order k; cf. [4, Sections 2.3 and 2.5]. A very important property of the BDMk interpolator πh is the
following commuting diagram property:

∀w ∈H(div; Ω) : ∇ · (πhw) = π0(∇ ·w). (30)

Note that for the Stokes velocityu, we have that∇ ·u = 0 holds weakly, which implies that∇ · (πhu) =
0 also holds weakly. This property is important for the following theorem.
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THEOREM 3.4 (Error estimate)

Let f ∈ L2(Ω) and assume that σ > 0 is sufficiently large to guarantee discrete coercivity. Under
the assumptions of the previous corollary, the following error estimate holds true:

|||u− uh|||e 6 C
[
|||ηu|||e,] + γ−

1/2ν−
1/2 ‖ηp‖L2(Ω)

]
(31a)

‖π0p− ph‖L2(Ω) 6 Cν|||u− uh|||e,] (31b)

‖p− ph‖L2(Ω) 6 Cν|||ηu|||e,] +

[
C

√
ν

γ
+ 1

]
‖ηp‖L2(Ω) (31c)

REMARK 3.5 : Due to the fact that the BDM interpolator has optimal approximation properties, one ob-
tains the standard convergence rate of hk whenever the exact solution (u, p) is smooth enough. Thus,
the overall convergence rate of the proposed stabilized method remains the same as the unstabilized
method, see e.g. [38]. Moreover, the accuracy of the discretization is robust and optimal with respect
to the limit γ →∞, i.e., over-stabilization is not possible.

REMARK 3.6 : Although the mass flux penalization does not alter the spacial convergence rate, it can
dramatically lower the velocity error for certain flows. In particular, in the unstabilized DG method,
the coefficient of the pressure error term in the velocity estimate is ν−1 [38], whereas we obtain
γ−1/2ν−1/2 due to the penalization. This is analogous to the effect of using grad-div stabilization in
conforming methods, and as we show below, can dramatically reduce the velocity error when ν is
small and/or the pressure is large. Further, due to (31b) in the limit γ →∞ also the discrete pressure
is pressure-robust in some sense, see [23, Remark 4.5].

PROOF : Testing with (vh, qh) = (euh , e
p
h) ∈ V div

h × Qh in Corollary 3.3, inserting the error splitting
and reordering leads to

νah(e
u
h , e

u
h ) + γjh(e

u
h , e

u
h ) + bh(η

u, eph)− bh(euh , eph) + bh(e
u
h , e

p
h)

= νah(η
u, euh ) + γjh(η

u, euh ) + bh(e
u
h , η

p). (32)

On the left-hand side, due to (30), ∇ ·ηu = 0 holds weakly, and thus bh(ηu, eph) = 0 since also
ηu ∈ H(div; Ω). The other two mixed terms on the left-hand side cancel, as they are negative of
each other. On the right-hand side, we observe that ηu ∈ H(div; Ω), and thus JηuK ·nF = 0 for
all facets F ∈ Fh, and so jh(ηu, euh ) = 0. For the remaining mixed term on the right-hand side, note
that∇ · euh

∣∣
K
∈ Pk−1(K) and since ηp is orthogonal to Pk−1, we obtain

bh(e
u
h , η

p) = −
∫

Ω

ηp(∇h · euh ) dx+
∑
F∈Fh

∮
F

{{
ηp
}}

(Jeuh K ·nF ) ds

=
∑
F∈Fh

∮
F

{{
ηp
}}

(Jeuh K ·nF ) ds.

In (32), applying discrete coercivity (20) on the left-hand side and boundedness (16) plus Cauchy–
Schwarz on the right-hand side now results in

νCσ|||euh |||2e + γ|euh |2nj 6
√
νM |||ηu|||e,]

√
ν|||euh |||e

+

(∑
F∈Fh

hF
γ

∥∥{{ηp}}∥∥2

L2(F )

)1/2(∑
F∈Fh

γ

hF
‖Jeuh K ·nF‖2

L2(F )

)1/2

= T1 + T2.
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We further estimate these right-hand side using Young’s inequality:

T1 6
νM2

2Cσ
|||ηu|||2e,] +

νCσ
2
|||euh |||2e,

T2 6
1

2

(∑
F∈Fh

hF
γ

∥∥{{ηp}}∥∥2

L2(F )

)
+
γ

2
|euh |2nj.

Thus, the terms involving the velocity discretization error euh can be absorbed in the left-hand side.
For the term involving the average of ηp, we use the discrete trace inequality, analogously as for the
energy estimate, and obtain

∑
F∈Fh

hF
γ

∥∥{{ηp}}∥∥2

L2(F )
6 Cγ−1 ‖ηp‖2

L2(Ω) . (34)

Combining all above estimates leads to

νCσ|||euh |||2e + γ|euh |2nj 6 Cν|||ηu|||2e,] + Cγ−1 ‖ηp‖2
L2(Ω) . (35)

Reordering, dropping the positive H(div; Ω)-stabilization term on the left-hand side, and taking the
square root reveals

|||euh |||e 6 C
[
|||ηu|||e,] + γ−

1/2ν−
1/2 ‖ηp‖L2(Ω)

]
. (36)

Application of the triangle inequality and the fact that |||ηu|||e 6 |||ηu|||e,] gives the claim for the
velocity error estimate. For the pressure estimate, we again invoke the discrete inf-sup condition (14)
inWh/Qh and the error splitting:

β∗ ‖eph‖L2(Ω) 6 sup
wh∈Wh\{0}

bh(wh, e
p
h)

|||wh|||e
= sup

wh∈Wh\{0}

[
bh(wh, η

p)− bh(wh, p− ph)
|||wh|||e

]
. (37)

It remains to further estimate the numerator in the last term. Arguing similarly as above,∇ ·wh

∣∣
K
∈

Pk−1(K) asWh ⊂ Vh, and using the fact that ηp is orthogonal to Pk−1 yields

bh(wh, η
p) =

∑
F∈Fh

∮
F

{{
ηp
}}

(JwhK ·nF ) ds = 0, (38)

where the last equality makes use of JwhK ·nF = 0 for all F ∈ Fh. Then, Corollary 3.3 and (16)
together withwh being normal-continuous leads to

−bh(wh, p− ph) = −bh(wh, π0p− ph) = νah(u− uh,wh) 6 νM |||u− uh|||e,]|||wh|||e.
(39)

This proves (31b). Equivalence of the |||·|||e- and |||·|||e,]-norm, the velocity error estimate (31a) and
the triangle inequality conclude the proof. �
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Table 1: Errors for the no-flow problem with the mass flux penalized (controlled by γ) and broken divergence
penalized (controlled by γgd) DG method PPPdc

3 /Pdc
2 , for ν = 10−3 and using a structured triangular mesh with

h = 1
32 .

γ γgd ‖u− uh‖L2 ‖∇h(u− uh)‖L2 ‖p− ph‖L2 ‖∇h ·uh‖L2

0 0 3.94 · 10−6 1.29 · 10−3 1.31 · 10−5 9.91 · 10−4

1 0 3.19 · 10−7 1.01 · 10−4 1.27 · 10−5 4.52 · 10−5

10 0 3.48 · 10−8 1.1 · 10−5 1.27 · 10−5 4.77 · 10−6

102 0 3.52 · 10−9 1.11 · 10−6 1.27 · 10−5 4.79 · 10−7

103 0 3.72 · 10−10 1.12 · 10−7 1.27 · 10−5 4.8 · 10−8

0 1 3.47 · 10−6 1.12 · 10−3 1.38 · 10−5 5.11 · 10−6

0 10 3.48 · 10−6 1.12 · 10−3 1.38 · 10−5 5.15 · 10−7

0 102 3.48 · 10−6 1.12 · 10−3 1.38 · 10−5 5.16 · 10−8

0 103 3.48 · 10−6 1.12 · 10−3 1.38 · 10−5 5.16 · 10−9

3.3 Numerical illustration of the error estimate

We now present results of a numerical experiment, in order to illustrate Theorem 3.4. Take as the
domain the unit square Ω = (0, 1)2, viscosity ν = 10−3, constant interior penalty parameter σ =
4k2, and a third order (k = 3) DG method with PPPdc

3 /Pdc
2 elements on a structured triangular mesh

with h = 1
32

. In order to show that the straight-forward addition of the well-known (broken) grad-div
stabilization alone is not sufficient for DG methods, the term

γgd

∫
Ω

(∇h ·uh)(∇h ·vh) dx (40)

is added to the left-hand side of (18)–(19). Therefore, the parameter γ now controls the amount of
mass flux penalization, whereas γgd controls the amount of (broken) divergence penalization. We
make use of the high-order finite element library NGSolve [39].

The problem we consider is a version of the no-flow problem where the exact solution is chosen to be
u = 0 and p = sin (2πx+ 2πy). Note that

∫
Ω
p dx = 0 and the corresponding forcing vector is the

gradient field f = ∇p. The results of our experiment are shown in Table 1.

As the mass flux stabilization parameter γ increases (with fixed γgd = 0), we observe convergence
of the velocity to the no-flow solution. However, for fixed γ = 0 and increasing γgd, we do not observe
an improvement in the velocity error, only in the (broken) divergence error. The discrete pressure is
not significantly influenced by either stabilization.

In contrast to Theorem 3.4 which predicts an error reduction with rate γ−1/2, Table 1 indicates a better
(linear) reduction behaving like γ−1. The purpose of the next section is to consider the limiting behavior
of the method as γ →∞, and resolves this issue of scaling with γ.
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Analogue of grad-div for nonconforming methods 13

3.4 Convergence as γ →∞ to the BDM solution

We now prove a limiting result for the mass flux penalized DG method as γ → ∞. In particular, we
will prove that the method converges to a weakly divergence-free BDM solution, with rate O(γ−1).
Since BDM optimally approximates Stokes, this result explains the linear convergence with γ−1 to the
true solution, in the numerical test of the previous subsection.

To begin, we precisely define the BDMk spaceWh by

Wh =
{
vh ∈H(div; Ω) : vh

∣∣
K
∈ PPPk(K)

}
.

The corresponding inf-sup stable FE pair is given by Wh/Qh, also denoted BDMBDMBDMk/Pdc
k−1. For more

information onH(div)-FEM, the reader is referred to [40]. Note that the pressure spaces for DG and
H(div) method coincide. A sketch of the local degrees of freedom for both DG andH(div) methods
in the 2D case with k = 3 is shown in Figure 1.

BDMBDMBDM3Pdc
2PPPdc

3

b b b b

b b b

b b

b

b b b

b b

b

b b

bb

bb

b b
∇·∇·

# loc{DOFs}=20 # loc{DOFs}=6 # loc{DOFs}=20

Figure 1: Shown above is a sketch of degrees of freedom in 2D for DG andH(div) methods.

We then introduce the following weakly divergence-freeH(div)-DG method: Find (ûh, p̂h) ∈Wh×
Qh such that for all (wh, qh) ∈Wh ×Qh,

νah(ûh,wh) + b(wh, p̂h)− b(ûh, qh) = (f ,wh). (41)

Note that due to the H(div)-conformity and in contrast to (18)–(19), the pressure-velocity coupling
in (41) is the same as in the continuous weak formulation (2) of the Stokes problem. Since velocities
inWh are normal-continuous, the mass flux penalization naturally vanishes and the SIP bilinear form
ah in (41) acts only on the tangential component of the involved velocities.

The discretely divergence-free subspace ofWh is defined by

W div
h = {wh ∈Wh : b(wh, qh) = 0, ∀ qh ∈ Qh},

and note that these discretely divergence-free H(div) velocities are even weakly divergence-free,
i.e.W div

h = {wh ∈H(div; Ω) : ∇ ·wh = 0}.

The aim of this section is to show that the solutionuh of the stabilized DG method (18)–(19) converges
to the weakly divergence-freeH(div) solution ûh of (41) as γ →∞. To begin, notice that ah defines
a symmetric bilinear form onVh. Due to the inclusionW div

h ⊂ V div
h , and since both spaces are finite-

dimensional, the orthogonal complement

Rdiv
h =

(
W div

h

)⊥
=
{
vh ∈ V div

h : ah(vh,wh) = 0, ∀wh ∈W div
h

}
(42)
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makes it possible to obtain the following inner direct sum decomposition:

V div
h = W div

h ⊕Rdiv
h , W div

h ∩Rdiv
h = {0}, (⊥ w.r.t. ah inner product). (43)

Thus, W div
h contains weakly divergence-free, normal-continuous velocities whereas a velocity v′h ∈

Rdiv
h is either not inH(div; Ω), or v′h ∈H(div; Ω) but∇ ·v′h 6= 0. The following lemma is the key

property for showing the convergence of uh → ûh as γ →∞.

LEMMA 3.7

The mapping |·|nj : Vh → R defines a norm onRdiv
h .

PROOF : We show that if |v′h|nj = 0, then v′h ≡ 0 for all v′h ∈ Rdiv
h , which is the only non-trivial

property. Let v′h ∈ Rdiv
h with |v′h|nj = 0. We know that v′h is discretely divergence-free; that is,

bh(v
′
h, qh) = 0 for all qh ∈ Qh. Inserting qh = ∇h ·v′h, multiplying by hFh

−1
F = 1, using Cauchy–

Schwarz and applying the discrete trace inequality leads to

‖∇h ·v′h‖2
L2(Ω) =

∑
F∈Fh

∮
F

{{
∇ ·v′h

}}
(Jv′hK ·nF ) ds

6 C ‖∇h ·v′h‖L2(Ω) |v′h|nj = 0.

Thus,∇h ·v′h = 0. The fact that |v′h|nj = 0 also means that v′h is normal-continuous and therefore in

H(div; Ω). Hence, we infer that v′h ∈W div
h and sinceW div

h ∩Rdiv
h = {0}, v′h ≡ 0 is proven. �

Next, decompose both the DG solution uh = u0
h + u′h with (u0

h,u
′
h) ∈ W div

h ×Rdiv
h and the DG

test functions vh = v0
h + v′h with (v0

h,v
′
h) ∈W div

h ×Rdiv
h . Inserting this decomposition and using

the properties of the spacesW div
h andRdiv

h leads to the following decoupled system:

νah
(
u0
h,v

0
h

)
=
(
f ,v0

h

)
, ∀v0

h ∈W div
h , (44a)

νah(u
′
h,v

′
h) + γjh(u

′
h,v

′
h) = (f ,v′h), ∀v′h ∈ Rdiv

h . (44b)

Since the solution ûh to the weakly divergence-free H(div)-FEM is unique, we infer from (44a) that
u0
h = ûh. For the other part, testing with v′h = u′h in (44b) and using discrete coercivity (20) leads to

νCσ|||u′h|||2e + γ|u′h|2nj 6 ‖f‖L2(Ω) ‖u′h‖L2(Ω) . (45)

From this inequality, we can directly obtain the limit behavior as γ →∞.

THEOREM 3.8 (Convergence to divergence-freeH(div) solution)

Let f ∈ L2(Ω) and assume that σ > 0 is sufficiently large to guarantee discrete coercivity. Letuh be
the solution of the stabilized DG method (18)–(19) with γ > 0, and ûh be the weakly divergence-free
H(div) solution of (41). Then there exists a constant C independent of γ such that

|||uh − ûh|||e 6 Cγ−1 ‖f‖L2(Ω) (46a)

‖ph − p̂h‖L2(Ω) 6 Cγ−1ν ‖f‖L2(Ω) (46b)
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REMARK 3.9 : Although this result is for a fixed mesh, we note that the constant C includes constants
arising from norm equivalences, and could potentially depend on h.

PROOF : First note that

|||uh − ûh|||e =
∣∣∣∣∣∣uh − u0

h

∣∣∣∣∣∣
e

= |||u′h|||e. (47)

Due to the fact that in finite-dimensional spaces all norms are equivalent, an application of Lemma 3.7
on the left-hand side of (45) (drop the viscous energy norm multiplied by ν) and Poincaré–Friedrichs
on the right-hand side leads to

Cγ|||u′h|||2e 6 νCσ|||u′h|||2e + γ|u′h|2nj

6 ‖f‖L2(Ω) ‖u′h‖L2(Ω)

6 CPF ‖f‖L2(Ω) |||u′h|||e.

Reordering shows the first claim. For the pressure convergence, we use the discrete inf-sup condition
(14) for the FE pair Wh/Qh. Since both methods use the same pressure space, we can consider
qh = ph − p̂h ∈ Qh:

β∗ ‖ph − p̂h‖L2(Ω) 6 sup
wh∈Wh\{0}

bh(wh, ph − p̂h)
|||wh|||e

= sup
wh∈Wh\{0}

νah(ûh − uh,wh)

|||wh|||e
6 νM |||ûh − uh|||e,].

Here, we used the boundedness of ah (16). The final step is to acknowledge that |||·|||e- and |||·|||e,]-
norm are uniformly equivalent on Vh. Reordering and (46a) shows the convergence rate for the pres-
sure. �

We now illustrate Theorem 3.8 with a numerical experiment. We take Ω = (0, 1)2, ν = 10−3,
σ = 4k2 and the exact solution as

u =

(
π sin2(πx) sin(2πy)
−π sin(2πx) sin2(πy)

)
, p = cos(πx) sin(πy).

The corresponding right-hand side is

f =

(
−ν2π3(2 cos(2πx)− 1) sin(2πy)− π sin(πx) sin(πy)
ν2π3 sin(2πx)(2 cos(2πy)− 1) + π cos(πx) cos(πy)

)
.

We use a structured triangular mesh with h = 1
20

, k = 3, and (uh, ph) ∈ Vh × Qh. Results are
shown in Table 2, and we observe the O(γ−1) convergence in both pressure and velocity, as γ → 0.

DOI 10.20347/WIAS.PREPRINT.2448 Berlin 2017



M. Akbas, A. Linke, L. Rebholz, Ph. Schroeder 16

Table 2: Convergence behavior of H(div)-stabilized DG solution (uh, ph) ∈ Vh × Qh to the weakly
divergence-freeH(div)-DG solution (ûh, p̂h) ∈Wh ×Qh as γ →∞.

γ ‖uh − ûh‖L2 ‖∇h(uh − ûh)‖L2 ‖ph − p̂h‖L2

0 1.63 · 10−5 3.01 · 10−3 4.73 · 10−6

1 1.05 · 10−6 2.05 · 10−4 3.97 · 10−7

10 1.14 · 10−7 2.23 · 10−5 4.31 · 10−8

102 1.17 · 10−8 2.28 · 10−6 4.2 · 10−9

103 1.53 · 10−9 2.8 · 10−7 5.53 · 10−10

Table 3: Errors for the no-flow problem with the mass flux stabilization (controlled by γ) and broken grad-div
(controlled by γgd) stabilized DG method QQQdc

3 /Qdc
2 with ν = 10−3 on a structured quadratic mesh with h = 1

32 .

γ γgd ‖u− uh‖L2 ‖∇h(u− uh)‖L2 ‖p− ph‖L2 ‖∇h ·uh‖L2

0 0 4.28 · 10−6 1.87 · 10−3 3.14 · 10−7 1.82 · 10−3

102 0 1.58 · 10−6 4.6 · 10−4 3.01 · 10−7 4.92 · 10−7

103 0 1.58 · 10−6 4.6 · 10−4 3.01 · 10−7 4.92 · 10−8

104 0 1.58 · 10−6 4.6 · 10−4 3.01 · 10−7 4.91 · 10−9

105 0 1.58 · 10−6 4.6 · 10−4 3.01 · 10−7 4.86 · 10−10

0 102 1.61 · 10−6 5.25 · 10−4 5.5 · 10−6 5.57 · 10−8

0 103 1.61 · 10−6 5.25 · 10−4 5.5 · 10−6 5.57 · 10−9

0 104 1.61 · 10−6 5.25 · 10−4 5.51 · 10−6 5.6 · 10−10

0 105 1.61 · 10−6 5.25 · 10−4 7.94 · 10−6 8.1 · 10−11

102 102 1.19 · 10−7 3.45 · 10−5 4.8 · 10−6 4.87 · 10−8

103 103 1.38 · 10−8 4.02 · 10−6 4.79 · 10−6 4.87 · 10−9

104 104 1.41 · 10−9 4.09 · 10−7 4.8 · 10−6 4.89 · 10−10

105 105 1.42 · 10−10 4.11 · 10−8 7.37 · 10−6 7.53 · 10−11

4 Stabilization of inf-sup stable DG methods on tensor-product
meshes

As mentioned in the previous section, on tensor-product elements (quads and hexes) usingQQQdc
k /Qdc

k−1,
the situation is slightly more involved since∇h ·QQQdc

k 6⊂ Qdc
k−1. In order to demonstrate the difference,

we repeat the no-flow test from the previous section with QQQdc
k /Qdc

k−1 elements on a structured mesh
consisting of squares. The results are shown in Table 3.

Interestingly, neither mass flux penalization alone (γ > 0, γgd = 0), nor broken grad-div stabiliza-
tion alone (γgd > 0, γ = 0), is able to improve the pressure-robustness of the considered method,
although each of them independently improve the (broken) divergence error. However, when they are
added simultaneously (γ > 0, γgd > 0), Table 3 clearly indicates that the resulting stabilized DG
method yields better results. In the following, we briefly sketch how this can be shown by the numeri-
cal analysis.
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The global discrete spaces in this setting are

Vh =
{
vh ∈ L2(Ω) : vh

∣∣
K
∈ QQQk(K), ∀K ∈ Th

}
, (48a)

Qh =
{
qh ∈ L2

0(Ω) : qh
∣∣
K
∈ Qk−1(K), ∀K ∈ Th

}
. (48b)

Again, we need an H(div)-conforming space Wh ⊂ H(div; Ω) and we assume that Wh =
Vh ∩H(div; Ω). There also has to be an H(div) interpolator πh : V → Wh ⊂ Vh which ful-
fills the commuting diagram property (30). Finally, the pairWh/Qh also has to be inf-sup stable.

For the sake of brevity in the analysis, we only allow one stabilization parameter γ for both mass flux
and broken grad-div stabilization and redefine the stabilization bilinear form as

jh(wh,vh) =

∫
Ω

(∇h ·wh)(∇h ·vh) dx+
∑
F∈Fh

1

hF

∮
F

(JwhK ·nF )(JvhK ·nF ) ds.

THEOREM 4.1 (Error estimate on tensor-product meshes)

Under the assumptions of Theorem 3.4, the following error estimate holds true for the stabilized DG
method on tensor-product elements:

|||u− uh|||e 6 C
[
|||ηu|||e,] + γ−

1/2ν−
1/2 ‖ηp‖L2(Ω)

]
, (49a)

‖p− ph‖ 6 Cν|||ηu|||e,] +

[
C

√
ν

γ
+ 2

]
‖ηp‖L2(Ω) . (49b)

PROOF : The proof is very similar to that of Theorem 3.4. We only comment on the parts where differ-
ences occur between simplicial and tensor-product elements.

First, we observe that also for the new stabilization term, it holds jh(ηu, euh ) = 0 since ηu ∈
H(div; Ω) and ∇ ·ηu = 0 hold exactly. The main difference occurs in the treatment of the mixed
term of bh, where, after Cauchy–Schwarz and Young, we obtain

bh(e
u
h , η

p) = −
∫

Ω

ηp(∇h · euh ) dx+
∑
F∈Fh

∮
F

{{
ηp
}}

(Jeuh K ·nF ) ds

6 Cγ−1 ‖ηp‖2
L2(Ω) +

γ

2
‖∇h · euh‖2

L2(Ω) +
γ

2
|euh |2nj.

Applying the same ideas as in the proof for simplices, we arrive at

νCσ|||euh |||2e + γ|euh |2nj + γ ‖∇h · euh‖2
L2(Ω) 6 Cν|||ηu|||2e,] + Cγ−1 ‖ηp‖2

L2(Ω) ,

which yields the velocity error estimate. It is critical to note here that without the (broken) grad-div
stabilization, the coefficient of 6 Cν|||ηu|||2e,] + Cγ−1 would be ν−1 instead of γ−1.

For the pressure estimate, the discrete inf-sup condition (14) inWh/Qh is again essential. However,
since∇h ·QQQdc

k 6⊂ Qdc
k−1, forwh ∈Wh we have to estimate

bh(wh, η
p) = −

∫
Ω

ηp(∇ ·wh) dx 6 ‖ηp‖L2(Ω) ‖∇ ·wh‖L2(Ω) . (50)
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From here, ‖∇ ·wh‖L2(Ω) 6 |||wh|||e leads immediately to the same situation as in the proof of
Theorem 3.4. �

REMARK 4.2 : Concerning the convergence of the stabilizedVh/Qh DG solution to theWh/QhH(div)
solution as γ → 0, basically the same arguments as in Section 3.2 can be applied. Unfortunately, to
the best of the authors’ knowledge, the H(div)-FE space Wh is not known in the literature, and so
we do not present the analysis here. We mention, however, that RTRTRT[k−1] ⊂ Wh ⊂ RTRTRT[k] where
RTRTRT[k] denotes the Raviart–Thomas space of order k on tensor-product elements; cf. [4].

5 Improving pressure-robustness in Crouzeix-Raviart approxima-
tions

The mass flux penalization can also be applied, with similar results, to the Crouzeix–Raviart (CR) ele-
ment, and we include some results for completeness. In a sense, it is somewhat easier to analyze than
the DG case considered above, and we find a similar fundamental result: penalization of the mass flux
reduces the effect of the pressure error on the velocity error. Such a result is proven implicitly for CR
elements in a recent work of Burman and Hansbo [6] for the Darcy–Stokes problem, where multiple
stabilizations were used. Interestingly, the motivation for using the stabilization in that work was ‘to
control the nonconformity emanating from the pressure term’, and in effect they proved something
similar to what we prove above for DG: the scaling of the pressure term in the error estimate is im-
proved from ν−1 to ν−1/2γ−1/2.

However, there is (seemingly) a potential negative consequence for CR that is not an issue with DG:
the use of the stabilization seemingly increases the scaling of the velocity error in the error estimate.
Hence it is unclear whether large stabilization parameters can be used without negative consequence,
as can be done in the DG case (at least, up to difficulties in linear solvers due to matrix conditioning).

The nonconforming Crouzeix–Raviart finite element velocity and pressure spaces are defined by:

Vh =

{
vh ∈ L2(Ω) : vh

∣∣
K
∈ PPP1(K), ∀K ∈ Th,

∮
F

JvhK = 0, ∀F ∈ Fh
}
,

Qh =
{
qh ∈ L2

0(Ω) : qh
∣∣
K
∈ P0(K), ∀K ∈ Th

}
.

The discrete bilinear forms for CR elements are defined as

ah(wh,vh) =

∫
Ω

∇hwh :∇hvh dx,

bh(wh, qh) = −
∫

Ω

qh(∇h ·wh) dx.

Vh is equipped with the norm

‖vh‖1,h :=

(∫
Ω

∇hvh :∇hvh dx

)1/2

=

(∑
K∈Th

‖∇vh‖2
L2(K)

)1/2

.
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We propose to consider CR together with the mass flux penalization: find (uh,vh) ∈ Vh ×Qh such
that for all (vh, qh) ∈ Vh ×Qh

γjh(uh,vh) + νah(uh,vh) + bh(vh, ph) = (f , vh) (51)

−bh(uh, qh) = 0. (52)

Since jh(uh,uh) > 0, the classical well-posedness results for CR (see e.g. [5]) will hold also for
(51)–(52) with any fixed γ > 0.

We now present an error estimate, which follows from the recent work of Burman and Hansbo for
a Darcy–Stokes problem with multiple stabilizations [6], and making the appropriate simplifications
(hence we omit the proof).

THEOREM 5.1 (Error estimate for Crouzeix–Raviart elements)

Let (u, p) ∈ (V ∩H2(Ω)) × (Q ∩H1(Ω)) be the Stokes solution, and (uh, ph) the solution to
(51)–(52) with parameter γ > 0. Then it holds that

‖u− uh‖1,h 6 Ch
[(

1 + γ1/2ν−1/2
)
|u|H2(Ω) + γ−1/2ν−1/2|p|H1(Ω)

]
.

REMARK 5.2 : This error estimates reveal, just as in the DG case, that the facet jump stabilization
reduces the negative effect of the pressure on the velocity error by changing the coefficient of the pres-
sure from ν−1 to ν−1/2γ−1/2. However, the dependence on ν−1/2 in the term

(
1 + γ1/2ν−1/2

)
|u|H2(Ω)

seems to be unavoidable for the nonconforming CR-element, indicating the danger of over-stabilization,
which is nothing more than a kind of Poisson locking for the divergence-free limit as γ →∞.

6 Application to more complex flows

We show here that the pressure-robust approach above can have a considerable impact on much
more complicated problems than the steady incompressible Stokes equations. We consider first a
numerical test for steady incompressible Navier–Stokes equations (NSE), followed by a numerical test
for non-isothermal flow.

6.1 Steady Navier–Stokes equations

Consider now the steady incompressible Navier–Stokes equations{
−ν∆u+ (u ·∇)u+∇p = f in Ω,

∇ ·u = 0 in Ω,
(53)

with inhomogeneous Dirichlet velocity boundary condition gD. The new pressure-robust space dis-
cretization approach will be superior, whenever a difficult pressure spoils the velocity error.

In order to show this, we construct a simple polynomial potential flow u = ∇χ on the unit square
Ω = (−1, 1)2, where χ is defined by the real part of the complex polynomial z5, i.e., χ = Re(z5) =
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Re(x+ iy)5 = x5 − 10x3y2 + 5xy4. The resulting flow consists of ten colliding jets, meeting at the
stagnation point (0,0), see Figure 2. Indeed, (u, p) = (∇χ, 1

2
|∇χ|2) solves the steady incompress-

ible NSE (53) with appropriate inhomogeneous Dirichlet velocity boundary conditions, for all ν > 0.
Since p is a polynomial of order eight, a pressure-robust low-order DG space discretization should be
comparably accurate — at least at non-negligible Reynolds numbers — as a high-order DG approxi-
mation which is not pressure-robust.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2: Streamlines for the steady incompressible Navier–Stokes benchmark with ten jets and a stagnation
point at (0, 0).

The stabilized PPPdc
k /Pdc

k−1 DG method for the stationary Navier–Stokes equations (53) is the following:
Find (uh, ph) ∈ Vh ×Qh satisfying ∀ (vh, qh) ∈ Vh ×Qh,

νah(uh,vh) + ch(uh;uh,vh) + bh(vh, ph) + γjh(uh,vh)

= (f ,vh) + νa∂h(gD;vh) + γj∂h(gD;vh),

bh(uh, qh) = b∂h(gD; qh).

Due to the weak imposition of a non-zero Dirichlet boundary condition gD = u
∣∣
∂Ω

, additional bound-
ary facet terms arise from the SIP bilinear form, the pressure-velocity coupling and the mass flux
stabilization term:

a∂h(gD;vh) =
∑
F∈F∂

h

σ

hF

∮
F

gD ·vh ds−
∑
F∈F∂

h

∮
F

gD ·∇vhn ds,

b∂h(gD; qh) =
∑
F∈F∂

h

∮
F

qh(gD ·n) ds,

j∂h(gD;vh) =
∑
F∈F∂

h

1

hF

∮
F

(gD ·n)(vh ·n) ds.

In contrast to the Stokes problem, we also additionally have to deal with nonlinear inertia effects. For
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Table 4: Errors for the Navier–Stokes potential flow problem with the mass flux penalized (controlled by γ) DG
method PPPdc

4 /Pdc
3 with ν = 10−2 on an unstructured triangular mesh with h = 0.1.

γ ‖u− uh‖L2 ‖∇h(u− uh)‖L2 ‖p− ph‖L2 ‖∇h ·uh‖L2

0 1.96 · 10−4 1.11 · 10−2 7.79 · 10−4 9.15 · 10−3

1 3.96 · 10−5 3.22 · 10−3 2.64 · 10−4 2.44 · 10−3

10 7.79 · 10−6 6.28 · 10−4 1.15 · 10−4 4.19 · 10−4

102 8.86 · 10−7 7.12 · 10−5 1.01 · 10−4 4.57 · 10−5

103 9 · 10−8 7.22 · 10−6 1 · 10−4 4.61 · 10−6

treating this, we choose the following standard convection term with upwinding:

ch(wh;uh,vh) =

∫
Ω

(wh ·∇h)uh ·vh dx

−
∑
F∈Fi

h

∮
F

({{
wh

}} ·nF )JuhK ·{{vh}} ds+
∑
F∈Fi

h

∮
F

1

2

∣∣{{wh

}} ·nF ∣∣JuhK · JvhK ds.

For the numerical test, we use ν = 10−2 and compute with the FE pair PPPdc
4 /Pdc

3 on an unstructured
triangular mesh with h = 0.1. The results can be seen in Table 4, and show a clear and remark-
able effect on the velocity error. Since the true velocity solution is a fourth degree polynomial, and the
method becomes pressure-robust as γ → ∞, we observe very small velocity errors for the larger
penalization parameters.

6.2 Non-isothermal flows

We consider for our final test Rayleigh–Bénard with infinite Prandtl number (which corresponds phys-
ically to silicon oil) and Rayleigh number Ra = 106. Here we test the CR approximation, with and
without the mass flux penalization. The problem setup is taken from [22], and we approximate the
problem

∇p− ν∆u = RaTe2,

∇ ·u = 0,

u ·∇T −∆T = 0,

on Ω = (0, 1)2, with no-slip boundary conditions on all walls, insulated boundary conditions on the
top and bottom: ∇T ·n

∣∣
ΓT∪ΓB

= 0, and Dirichlet temperature conditions on the left and right walls,

T
∣∣
ΓL

= 1, T
∣∣
ΓR

= 0. The system is approximated using CR elements for the velocity and pressure,

and Sh = P1 ∩H1(Ω) for the temperature approximation. The scheme takes the form

γjh(uh,vh) + νah(uh,vh) + bh(vh, ph) = Ra(The2,vh), (54)

bh(uh, qh) = 0, (55)

(uh ·∇Th, sh) + (∇Th,∇sh) = 0, (56)

together with appropriate boundary conditions, and we resolve the nonlinear problem using Newton’s
method.
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Simulations were run using (54)–(56), for γ ∈ {0, 0.1, 10, 103} on a 48×48 uniform mesh that was
additional refined along the boundary. Results are shown in Figure 3, and additionally we show a
reference solution found using (PPP2,P1,P2) elements on a 64×64 mesh (we note this solution matches
that found in [22]). From the plots, we observe that with no stabilization, the CR solution is very poor:
the velocity streamlines are very under-resolved, and the predicted temperature contours are visibly
inaccurate. Clear improvement is seen in the solution as the stabilization parameter is increased, and
with γ = 103, there is no visual difference between the stabilized CR solution and the reference
solution.

7 Conclusions

We have proposed (in effect), analyzed and tested a penalization(s) for nonconforming methods that
has an effect on solutions analogous to that of grad-div stabilization for conforming methods. The pe-
nalization is a mass flux penalization, and also a broken divergence stabilization in elements where
the divergence of the velocity space is not contained in the pressure space.

Our theoretical results include error estimates that reduce the scaling of the velocity error by the
pressure from ν−1 to γ−1/2ν−1/2, analogous to the effect of grad-div for conforming methods [22].
Additionally, we prove limiting behavior results for the penalized DG method on simplex meshes, and
in particular that the limit as γ → ∞ is the associated (optimal) BDM solution. Therefore, over-
stabilization is not possible in this DG context, surprisingly. We also consider the limiting behavior on
tensor-product meshes, and find a limit that is seemingly not in the literature, but is in between suc-
cessive RT element spaces (and is thus optimal).

Since there is now an overwhelming body of work done for grad-div stabilization, we expect that many
similar results will also hold with our proposed penalization for DG methods. This includes further error
analyses on more complex problems, linear algebra considerations, turbulence models, and so on.
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