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Non-intrusive tensor reconstruction for high dimensional
random PDEs

Martin Eigel, Johannes Neumann, Reinhold Schneider, Sebastian Wolf

ABSTRACT. This paper examines a completely non-intrusive, sample-based method for the computation
of functional low-rank solutions of high dimensional parametric random PDEs which have become an
area of intensive research in Uncertainty Quantification (UQ). In order to obtain a generalized polynomial
chaos representation of the approximate stochastic solution, a novel black-box rank-adapted tensor
reconstruction procedure is proposed. The performance of the described approach is illustrated with
several numerical examples and compared to Monte Carlo sampling.

1. INTRODUCTION

For applications in engineering and the natural sciences, the inclusion of uncertainties in modeling
and simulation has become a standard requirement. This can also be seen at the thriving success
of the interdisciplinary field of Uncertainty Quantification (UQ), which brings together viewpoints from
statistics, (numerical) analysis and other disciplines in order to accommodate and quantify random
effects common in real-world settings, see e.g. [1, 2]. The treatment of randomness often is based
on the description of data (e.g. coefficients, forces and domains) by means of random fields. Here,
we are interested in PDE models with random data. A classical approach would then be to evaluate
statistics of the solution or a quantity of interest from random draws of the stochastic data as is done
with Monte Carlo sampling and modern variants such as MLMC and QMC. As an alternative, functional
approximations seek to determine a surrogate model in some discretization of the function space of
the problem. The most common approaches are nonintrusive interpolation methods based on sparse
grids (Stochastic Collocation) and intrusive Galerkin methods (Stochastic FEM) [3–6]. A fundamental
advantage of these (spectral) methods is that properties of the solution manifold, in particular sparsity
and low-rank approximability, can be exploited in order to achieve optimal convergence rates possibly
much higher than with sampling methods. However, one caveat is that computations can be significantly
more involved. One reason for this is that a parametric representation of the stochastic fields (in
countable infinite stochastic parameters) forms the basis for the functional discretization, which leads to
very high dimensional systems. To alleviate this obstacle, different model reduction techniques may
be employed, e.g. adaptivity and reduced basis methods. Especially promising for UQ applications
are low-rank compression techniques based on hierarchical tensor representations [7–12]. It has
been demonstrated that these representations can circumvent an otherwise exponential discretization
complexity, allowing for the numerical treatment of high dimensional parametric PDEs which would
otherwise be intractable [13–15].

In this paper, we aim to attain a functional approximation of the entire solution manifold in orthogonal
polynomials (so-called generalized polynomial chaos) in parameter space and conforming finite ele-
ments (FE) in physical space. Given a tensorized basis, the functional approximation can be identified
with a single high dimensional coefficient tensor. However, the exponential scaling in the order – which
is equivalent to the stochastic dimensions – usually would render the accurate representation of such
a tensor unfeasible. To handle this so called curse of dimensionality, we employ recent hierarchical
tensor approximation techniques. In particular the Hierarchical Tucker [16] format and the tensor train
(TT) [11] format have been shown to be well-suited for this problem class. Applications of these formats
are various and can e.g. be found with high-dimensional PDEs like the Fokker Planck and the many
particle Schrödinger equations, neuroscience, graph analysis, signal processing, computer vision,
machine learning, and computational finance, see for instance the extensive survey of [10] and [17]. In
earlier works on uncertainty quantification it was shown empirically that the operators for the parametric
PDEs often exhibit a low rank structure, see for example [14, 18–20] and [12] for the analysis of the
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low-rank structure of some linear operators. In [21] this setting was used to formulate a fully adaptive
intrusive solution algorithm for uncertainty quantification, which provides a low rank representation of
the Galerkin solution. It was empirically shown that in several cases the solution tensor of the parametric
problem is efficiently representable in the low rank format, hence aleviating the curse of dimensionality,
see also [22, 23] for related numerical methods and examples.

Different approaches are available to compute a tensor representation of a parametric solution. The
adaptive algorithm used by [21] for a stochastic FEM requires to construct a low rank representation
of the parametric operator and right hand side. Moreover, an efficient algorithm to solve the system
in a low rank fashion is needed. This in particular requires adjustments for each problem setting and
prevents the use of existing (possibly highly optimized) deterministic PDE solvers. The latter property is
the reason why these methods are called intrusive. As a remedy to the mentioned difficulties, in this
work, we propose a completely non-intrusive black box reconstruction algorithm, which attempts to
recover the complete solution tensor from a set of Monte Carlo measurements of the solution. These
can be obtained without further modifications from any existing PDE solver of choice. Additionally, since
we do not require a specific choice of measurements, this method can also be applied for already
available data, without the need for recomputations. The presented approach is based on a so-called
tensor reconstruction, which is an generalization of the well-known matrix reconstruction [24–26]. We
refer the interested reader to [22, 27] for related approaches.

This paper starts with a brief description of the considered UQ setting for parametric random PDEs in
Section 2. In particular, the representation of the stochastic solution in high dimensional tensor spaces
is given. Section 3 provides an overview of the Tensor Train (TT) format. The rank adaptive alternating
steepest descent algorithm employed in the reconstruction algorithm is described in Section 4. Its
performance is illustrated in the numerical experiments in Section 5. Finally Section 6 summarizes the
results.

2. UNCERTAINTY QUANTIFICATION WITH HIGH DIMENSIONAL TENSORS

In this section, we briefly review the setting of PDEs with countable (infinite) stochastic parameters
as commonly considered in UQ, cf. [2, 28] and also [6, 21, 29, 30] for results in the adaptive Galerkin
setting. We are concerned with the computation of a feasible (regarding the complexity) representation
of the parametric solution u(x,y) ∈ V = X ⊗ Y of an abstract problem

D(u;y) = 0.

Here, D encodes the model in a physical domain D ⊂ Rd, d = 1, 2, 3, and y is a M (possible
infinite M =∞) dimensional parameter vector describing the data. We assume a product parameter
domain Γ and the components of y to correspond to i.i.d. random variables with associated joint
product density γ. For the PDE models we consider, a classical Karhunen-Loève representation of
some finite variance stochastic field a(x,y) with x ∈ D and y ∈ Γ is assumed, see e.g. [2, 31,
32]. In particular, for the numerical experiments, we examine the two prototypical cases of affine and
lognormal dependence on y such that either

a(x,y) = a0 +
M∑
m=1

am(x)ym, (1)

with Γ = [−1, 1]M and yi ∼ U(−1, 1), i = 1, . . . ,M , or

a(x,y) = exp

(
M∑
m=1

am(x)ym

)
,
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Random PDE TT reconstruction 3

with Γ = RM and ym ∼ N (0, 1), m = 1, . . . ,M . We are interested in the solution u ∈
L2(Γ , γ;X ) ' X ⊗ Y , usually with X = H1

0 (D) and Y = L2(Γ , γ). An approximation uN
in a discrete subspace VN ⊂ V is given by

u ≈ uN(x,y) =
∑
α∈IN

uα(x)Pα(y).

Here, IN ⊂ F is some finite subset of the set of multiindices with finite support F . For α ∈ IN ,
the orthonormal tensorized basis polynomials Pα(y) =

∏M
m=1 Pαm(ym) are based on univariate

Legendre or Hermite polynomials (depending on the distribution of the ym) Pk of degree k with
Eγ[PkPl] = δk,l, k, l ∈ N. The coefficients uα are functions in a discrete conforming FE space
Xp(T ) = span{ϕj}j=1,...,S ⊂ X of order p on a triangulation T of the domain D. Hence, VN =
span{ϕj ⊗ Pα | j = 1, . . . ,S,α ∈ IN} with FE basis functions ϕi ∈ Xp(T ).
Since Γ exhibits a Cartesian product structure, the underlying energy space V is a (countable) tensor
product of Hilbert spaces endowed with a cross-norm. A truncated expansion of the field a(x,y), i.e.
M <∞, yields a finite tensor product which makes it amenable for computations in tensor formats.
This leads to the discrete representation

uN(x,y) =
S∑
j=1

∑
α∈IN

W(j,α)ϕj(x)Pα(y), (2)

with coefficient tensorW ∈ RS×q1×···×qM where qm− 1 is the maximal polynomial degree in the m-th
mode, encoded in IN . The non-intrusive black box computation ofW is the subject of the following
sections.

3. HIERARCHICAL TENSOR DECOMPOSITIONS

As shown in the previous section the complete (parametric) solution to a given differential equation
can be represented in one high dimensional tensorW ∈ RNX×q1×···×qM . The main drawback of this
representation is the exponential scaling of higher order tensors, often referred to as the curse of
dimensionality. This means that even for a small local dimensions n1, . . . ,nd with n := max(ni) and
moderate order d the storage complexity of O(nd) quickly becomes unfeasible. This problem is not
specific to the uncertainty quantification application but an intrinsic property of high dimensional tensor
spaces. In this section we present one possible remedy to this major complexity problem, namely the
Hierarchical Tucker (HT) format and in particular its special case the Tensor Train (TT) format. Both
formats can be considered as high dimensional generalizations of the popular matrix singular value
decomposition (SVD) and allow for very efficient storage and computations on a rich set of low rank
tensors.

3.1. Notation. We first provide a brief introduction of the tensor notation used in this work. For an
in-depth discussion of the following concepts and tensor spaces in general, we refer to the monograph
of Hackbusch [33]. For the sake of simplicity tensors in this work are simply regarded as d-dimensional
real arrays in Rn1×...×nd . The individual dimensions of the array are refereed to as the modes of
the tensor. It is often expedient to combine certain subsets of modes into single modes and thereby
interpret a tensor as a lower order object, usually a vector or a matrix. This operation is formalized as
the matrifications of a tensor.

Definition 1 (Matrification). Given a tensor space Rn1×...×nd , let α ⊆ {1, . . . , d} denote a subset of
the modes and let β = {1, . . . , d} \α be its complement. Define nα :=

∏
j∈α nj and nβ :=

∏
j∈β nj .
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Given a bijection

ϕ : Nn1 × . . .× Nnd → Nnα × Nnβ

(i1, . . . , id) 7→ (ϕα(ik|k ∈ α),ϕβ(ik|k ∈ β)),

the mapping

Matα : Rn1×...×nd → Rnα×nβ

T 7→ Matα(T )
Matα(T )[i, j] := T [ϕ−1(i, j)] ∀i ∈ Nnα , j ∈ Nnβ

is called an α-matrification.

In this work the choice of the bijection ϕ does not matter since it is supposed to be the same in all
instances. We henceforth assume a simple lexicographical ordering of the indices.

To denote the contraction of two tensors along certain modes we use the ◦ symbol indexed by the
nodes that are contracted. For instance, A ◦(i,j),(k,l) B means that the i-th and k-th mode ofA and
B are contracted, as well as the j-th and l-th mode. If no indices are given, a contraction of the last
mode of the left operand and the first mode of the right operand is assumed. As writing this for larger
tensor expressions quickly becomes cumbersome we also use a diagrammatic notation to visualize
these contractions. In this notation a tensor is depicted as a block with edges corresponding to each of
its modes. If appropriate, the local dimension of the corresponding mode is given as well. From left to
right the following diagrams show this for an order one tensor (vector) v ∈ Rn, an order two tensor
(matrix)A ∈ Rm×n and an order four tensor T ∈ Rn1×n2×n3×n4 .

v
n

A
m n

T
n3

n1

n2

n4

If a contraction is performed between two modes the corresponding edges are joined. The following
shows this exemplarily for the inner product of two vectors u,v ∈ Rn and a matrix-vector product with
A ∈ Rm×n and v ∈ Rn.

u v A
m

v
n n

There are two special cases concerning orthogonal and diagonal matrices. If a specific matrification of a
tensor yields an orthogonal or diagonal matrix, the tensor is depicted by a half filled square (orthogonal)
or a circle with a diagonal bar (diagonal). The half filling and the diagonal bar both divide the square
in two halves. The edges joined to either half correspond to the mode sets of the matrification, which
yields the orthogonal or diagonal matrix. As an example, the diagrammatic notation can be used to
depict the singular value decompositionA = UΣV T of a matrixA ∈ Rm×n with rank r, as shown
in the following.

A
m n

= U

m

Σ V

n

r r
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Random PDE TT reconstruction 5

3.2. The Tensor Train Format. In this section we introduce the Tensor Train format. The formulation
used in this work was first introduced by Oseledets [11]. However, an equivalent formulation was known
in quantum physic for quite some time, see e.g. [34] for an overview. The TT format is closely related to
the more general hierarchical Tucker (HT) format introduced by Hackbusch and Kühn [16] and is often
considered to be a special case thereof. See [35] for the details of their relation.

The fundamental idea of the TT format is to separate the modes of a higher order tensor into d tensors
of small order two or three. This results in a tensor network, that is exemplarily shown for an order four
tensor T = U1 ◦ U2 ◦ U3 ◦ U4 in the following diagram.

T

n1
n2

n3

n4

= U1 U2 U3 U4
n1 n2 n3 n4

r1 r2 r3

Formally the tensor train format can be defined as follows.

Definition 2 (Tensor Train Format). Let T ∈ Rn1×...×nd be a tensor of order d. A factorization

T = U1 ◦ U2 ◦ . . . ◦ Ud−1 ◦ Ud
into component tensors U1 ∈ Rn1×r1 , Ui ∈ Rri−1×ni×ri , i = 2, . . . , d − 1 and Ud ∈ Rrd−1,nd ,
is called a tensor train (TT) representation of T . The tuple of the dimensions (r1, . . . , rd−1) of the
component tensors is called the representation rank and is associated with the specific representation.
The tensor train rank (TT-rank) is defined as the minimal rank tuple r = (r1, . . . , rd−1) such that there
exists a TT representation of T with representation rank equal to r.

Theorem 3 (Oseledets [11]). Every tensor T ∈ Rn1×...×nd admits a TT-representation with minimal
representation rank r = (r1, . . . , rd−1). Furthermore this minimal rank r, which thereby is the TT-rank
of T , is related to the ranks of a certain matrification of T via

ri = rank
(
Mat(1,2,...,i) (T )

)
.

Storing a tensor T ∈ Rn1×...×nd with TT-rank r = (r1, . . . , rd−1) in a minimal TT-representation
requires Θ(dnr2) memory for the component tensors, where n = maxi(ni) and r = maxi(ri). This
means the storage requirement scales only linearly in the order, which is a drastical reduction compared
to the exponential scaling for general tensors. A similar scaling can also be obtained for many common
operations on tensors in the TT representation, like sums, entriewise products and certain contractions,
which makes the TT format a very powerful tool when dealing with high dimensional data.

It can easily be shown that a the TT representation is not unique, e.g. for any invertible matrix
A ∈ Rr1×ri there holds

T = U1 ◦ U2 ◦ . . . ◦ Ud−1 ◦ Ud
= U1 ◦ U2 ◦ . . . ◦ Ui ◦A ◦A−1 ◦ Ui+1 ◦ . . . ◦ Ud−1 ◦ Ud
= U1 ◦ U2 ◦ . . . ◦ Ũi ◦ Ũi+1 ◦ . . . ◦ Ud−1 ◦ Ud

It is often convenient to ”normalize“ the representation by enforcing that for a given 1 ≤ i ≤ d all
component tensors with smaller index are left orthogonal, i.e. the matrification which combines all but
the last mode is an orthogonal matrix, and all component tensors with larger index are right orthogonal,
i.e. the matrification which combines all but the first mode is an orthogonal matrix. The component
tensor which is not orthogonal is called the core – or more precisely is said to carry the core. The
following diagram shows a normalized order four tensor, where the second component carries the core.
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U1 U2 U3 U4
n1 n2 n3 n4

r1 r2 r3

In the following we assume that all TT representations are normalized in this way, unless explicitly
stated otherwise. Note however that even with this normalization the representation is still not unique,
as for example choosingA to be an orthogonal matrix is still valid in the above example.

As a natural generalization of the low rank matrix manifold [36], it is shown by Holtz et al. [37] that the
setMr (Rn1×...×nd) of tensors with TT rank r forms a manifold.

Theorem 4 (Tensor Train Manifold [37]). For fixed dimensions n1, . . . ,nd and a fixed rank r =
(r1, . . . , rd−1) the setMr (Rn1×...×nd) is a smooth manifold of dimension

dim (Tr) =
d∑
i=1

ri−1niri −
d−1∑
i=1

r2i ,

where by convention r0 = rd = 1.

This manifold structure ofMr (Rn1×...×nd) will be important later for the derivation of our reconstruc-
tion algorithm. For this we also need the following result on the structure of the tangent space of
Mr (Rn1×...×nd).

Theorem 5 (Tangent Space [37]). The tangent space TXMr (Rn1×...×nd) at a point X = U1 ◦ . . . ◦
Ud ∈Mr (Rn1×...×nd) is given by

TX = V1 ⊕ . . .⊕ Vd

where, for j = 1, . . . , d− 1,

Vj = {U1 ◦ . . . ◦ Uj−1 ◦∆ ◦ Uj+1 ◦ . . . ◦ Ud
|∆ ∈ Rrj−1×ni×rj ,Ui ◦(1,2),(1,2) ∆ = 0

}
,

Vd =
{
U1 ◦ . . . ◦ Ud−1 ◦∆ |∆ ∈ Rrd−1×nd×1

}
.

Here it is assumed that the decomposition is normalized such that U1, . . . ,Ud−1 are left orthogonal.

In this theorem the construction of the spaces Vj ensures that all spaces are orthogonal to each other.
For this work this orthogonality is not required and in the following we will instead use the spaces

Vj =
{
U1 ◦ . . . ◦ Uj−1 ◦∆ ◦ Uj+1 ◦ . . . ◦ Ud|∆ ∈ Rrj−1×ni×rj

}
,

for all 1 ≤ j ≤ d. It is easy to verify that TX = V1 + . . .+ Vd still holds, but the spaces are no longer
complementary. The decomposition of the tangent space into these subspaces has the advantage that
explicit projectors on these spaces can be given as shown by Lubich et al. [38].

Theorem 6 (Tangent Subspace Projection [38]). The projectors P̂Vj onto the the subspaces Vi of the
tangent space TXMr (Rn1×...×nd) at a point X ∈Mr (Rn1×...×nd) can be explicitly given. For this,
define the tensors

U<j = U1 ◦ U2 ◦ . . . ◦ Uj−1,
U>j = Uj+1 ◦ Uj+2 ◦ . . . ◦ Ud.
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Random PDE TT reconstruction 7

Here, the Uk are the respectively left or right orthogonal components of a TT representation of X such
that the core is at position j. The projector is then given by

P̂Vj(T ) =
(
U<j ◦(j),(j) U<j

)
◦(1,...,j−1),(1,...,j−1) T

◦(j+1,...,d),(1,...,d−j+1)

(
U>j ◦(1),(1) U>j

)
.

The composition of the projector can be expressed intuitively in the graphical notation, shown exemplarily
for an order five tensor in the following

P̂V3 (T ) =
U1U<3 U2 U4 U5 U>3

U1U<3 U2 U4 U5 U>3

T

These subspace projectors conclude the theoretical tools needed for the reconstruction approach
described in the next section.

4. RECONSTRUCTION APPROACH

The aspiration of our reconstruction based approach is in the setting of section 2, to recover the complete
solution tensorW ∈ RNX×q1×···×qM , using only a set of Monte Carlo measurements. If the solution
is a general tensor this would require at least as many measurements as the tensor has degrees of
freedom, i.e. the exponential number of its entries. In almost all cases this would be unfeasible. However
it was empirically shown e.g. in [21–23] that for stochastic PDEs the resulting solution tensor can exhibit
a very low TT-rank, see also the references given in the introduction. Using a low rank assumption,
the degrees of freedom of the solution reduce to the dimension of the corresponding TT manifold. In
particular, this number scales only linearly in the order. Following the ideas of compressive sensing,
one could therefore hope to reconstruct the solution from a rather small number of measurements.
Formally, one could try to reconstruct the solution by solving the following minimization problem,

minimize TT-Rank (X )

subject to Â (X ) = b .
(3)

where Â is a linear operator corresponding to the parameters of the measurements and b corresponds
to the measured values, i.e. the solution for these parameters. In our particular setting, the samples are
indexed by k and Â and b are given as(

Â(X )
)
j,k

=
(
X ◦M

(
ξ
(k)
1 ⊗ . . .⊗ ξ

(k)
M

))
[j]

bj,k =
∑
α∈IN

W(j,α)Pα(y) ,
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for k = 1, . . . ,N and j = 1, . . . ,S. Here, assuming a function basis {Pj} as described in Section 2,
ξ(k)m are vectors of base evaluations for the k-th sample (i.e. a parameter realization),

ξ(k)m :=


P1(y

(k)
m )

P2(y
(k)
m )

...

Pqi(y
(k)
m )

 ∈ Rqm .

Problem (3) is exactly the so called low rank tensor recovery setting, which is the high dimensional
generalization of the well established matrix reconstruction setting. In fact, for tensors of order two,
this is the matrix reconstruction problem. In this case it is proven that under some assumptions
on the measurement operator A there is a unique solution to this problem, which is attained by
solving the convex trace norm minimization problem. The important result is that even for random
measurements, the number of needed measurments scales only as (m + n)r, see e.g. [39] and
[24]. Unfortunately, equivalent results could not yet be obtained for higher order tensors and finding
a convex relaxation of the rank minimization problem proves to be a highly non-trivial task, see [40].
Nevertheless, there is much numerical evidence that also for higher order tensors, reconstruction from
incomplete measurements is possible, see e.g. [26, 41]. Similar to the referenced works we “bypass”
the rank minimization by starting at a rank one tensor and employ a heuristical rank adaption during the
optimization. Let us initially assume that the optimal rank r∗ is known, then (3) can be recast as an
optimization problem on the low rank manifoldMr∗,

minimize J(X ) = ‖A(X )− b‖
subject to X ∈Mr∗ .

There are several algorithms which solve such optimization problems posed on the low rank manifold,
see e.g. [17] for a recent survey. Most popular is probably the alternating least squares (ALS) algorithm
[42], which optimizes one of of the components Ui of the TT representation at a time. A second more
recent approach are Riemannian optimization techniques which directly exploit the manifold structure of
Mr∗, see for example [41] for an application to tensor completion. For this work we use an alternating
steepest decent algorithm which can be considered to lie in between the two groups of algorithms.

4.1. Alternating Steepest Descent. The alternating steepest descent algorithm used in this work
can be seen as a generalization of the alternating directional fitting (ADF) algorithm developed by
Grasedyck et al. [43] for tensor completion. Our derivation however is quite different and may provide
some additional insight into the algorithm.

As established in Theorem 4, the set of rank r tensorsMr forms a smooth embedded manifold. For
the optimization algorithm we will in particular exploit the orthogonal decomposition of the tangent
space (Theorem 5) and the closed form for the projector P̂TXMr of Theorem 6. The essential idea
is to create an iteration by projecting the gradient onto one of the spaces Vj at a time and perform
an update in this direction. The main advantage is that independent of the step size such an update
never leaves the manifold 1, because only the core component is altered in each step. In contrast to
Riemannian optimization algorithms which rely on a retraction to stay on the manifold, this allows a
direct calculation of the optimal step size with respect to the global optimization problem 1. Given the

1That is, the rank cannot increase. Theoretically the update could end in a critical point, i.e. a tensor with smaller rank.
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Algorithm 1: Abstract Alternating Steepest Descent

Input: Inital guess X0, operator Â and right hand side b
for i = 1, 2, . . . until converged do

for j = 1, . . . , d do
Calculate the projected gradient P̂j(∇J(Xi))

Calculate the optimal step size αi =
〈Â(Xi)−b, Â(P̂j(∇J(Xi)))〉
‖Â(P̂j(∇J(Xi)))‖2

2

Update Xi+1 = Xi − αiP̂j(∇J(Xi))

current iterate Xi and an update direction Yi the iteration step size is given as

αi =

〈
Â(Xi)− b, Â(P̂j(Y))

〉
∥∥∥Â(P̂j(Y))∥∥∥2

2

.

Here P̂j are orthogonal projectors onto the spaces Vj from Theorem 6. An abstract outline of the
complete alternating steepest decent algorithm is provided in Listing 1.

4.2. Block Alternating Steepest Descent. The alternating steepest descent, as well as Riemannian
optimization algorithms on the TT-manifold, only works with a fixed TT-rank. In order to tackle the tensor
reconstruction problem from the beginning of this section, one either has to guess the optimal rank
a priori or use a rank adaptation strategy. The first approach is naturally very efficient if a sufficiently
accurate rank estimate is available. However for most settings, including the UQ setting considered here,
such an estimate is not available. The simplest rank adaptation strategy is to increase the TT-ranks by
adding a rank increasing random perturbation to the current iterate, whenever the manifold optimization
gets stuck in a (local) minimum. More elaborated but also more expensive approaches estimate the
potential gain of a rank increase at each position and increase the rank by adding a low rank truncation
of the real gradient at this position, see also [44].

Instead we propose a new rank adaptation strategy for the tensor recovery setting which is an adoption
from the block-ALS algorithms, introduced by Dolgov et al. [45] for the calculation of extreme eigenvalues.
This strategy allows for the selective increase of ranks at beneficial positions and also provides a specific
subspace for the increase. The essential idea is to split the measurements into two (or possibly more)
sets, and use the block-TT format to optimize separate iterates using one set of measurements each.
This block-TT was introduced by Dolgov et al. [45] and allows to represent several tensors in the
TT-format which share the same orthogonal basis for all but one mode.

Definition 7 (Block Tensor Train [45]). The tensors T1, . . . , Tl ∈ Rn1×...×nd are said to be in the block-
TT format with core position µ if there exist left orthogonal U1, . . . Uµ−1, right orthogonal Uµ+1, . . . ,Ud
and Uµ,1, . . . ,Uµ,l such that for all p

Tk = U1 ◦ . . .Uµ−1 ◦ Uµ,p ◦ Uµ+1 ◦ . . . ◦ Ud .

That is T1, . . . , Tl can be represented in the same TT-representation with only the core tensor changing.
It will be convenient to use a core tensor Uµ ∈ Rrµ−1×nµ×l×rµ of order four, where the third mode
encodes the extra index. In the following this is exemplary shown in the diagrammatic notation.
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U1 U2 U3 U4
n1 n2

l

n3 n4

r1 r2 r3

In the proposed block ASD, this format is used to perform two separate ASD iterations in parallel, while
enforcing a coherent basis for all components which are not currently optimized. To this end the set
of measurements is randomly split into two equally large subsets. This gives rise to two independent
operators Âp and right hand sides bp and thereby to two independent optimization problems

minimize Jp(X ) := ‖Ap(X )− bp‖
subject to X ∈Mr .

For each of these optimization problems the ASD is used, with the addition that when moving the core
after each micro iteration, the block TT-format is preserved, i.e. a common orthogonal basis is calculated.
This is achieved naturally by moving the core including the extra ”block“ mode by calculating a complete
singular value decomposition. The heuristic is that if the basis of the true solution is found, all iterates
stay within this subspace and moving the core will not increase the rank. However if the current basis is
too small, the different sub-problems evolve in different directions, which can be quantified by the singu-
lar value decomposition and is used subsequently to increase the rank when moving the core. As this
is done separately for each core position, this allows a selective rank increase and also the prescription
of an accuracy for which an increase or decrease should be carried out. It has shown to be beneficial to
slowly increase this accuracy whenever the algorithms gets stuck with the current rank. The complete
algorithm is given in Listing 2. For both sets, the algorithms starts with the average of all measurements
as an inital guess. Additionally to the two sets of measurements used for the optimization, a third set
containing a small amount of the measurements is used to prevent over-fitting when increasing the rank.

The most important property of the block alternating steepest descent algorithm is that it can be
implemented very efficiently for the problem at hand. Surprisingly the rank adaptation method via the
block-TT format be added without any significant increase of the computational complexity compared
to the standard ASD. In particular, by storing and reusing partial applications of the projectors and
measurement operators Ap, the computational complexity of one iteration scales as O(NSr2 +
NMqr2), where N is the number of samples, r = maxi(ri) and q = maxi(qi).

4.3. TT Postprocessing. Many statistical properties of the solution are directly available from the TT
reconstruction. Assuming orthognormal Hermite or Legendre polynomials, depending on the random
distributions, the expectation value is directly given as E[u(x)] =

∑S
j=1W [j, 0, . . . , 0]ϕj(x), which

is obtained from the TT representation with a negligible cost. Another benefit of the tensor representation
is that the solution for any given parameter set, i.e. a realization of the random variables, can be
calculated at significantly reduced costs by contractingW with the corresponding parameter vectors.
The computational complexity of these contractions scales asO(Sr +Mr2n). For reasonable ranks
this is a drastic cost reduction compared to actually solving the PDE with the corresponding parameters
as done in Monte Carlo sampling.
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Algorithm 2: Block Alternating Steepest Descent for Recovery

Input: Measured parameters
(
ξ
(k)
1 , . . . , ξ

(k)
M

)
k=1,...,N

and values b.

Set ε = 0.1

SetU [j, p] := 1
N

∑N
k=1 bj,k, p = 1, 2

Set X := U1 ◦ . . . ◦ UM+1 = U ⊗ e1 ⊗ . . .⊗ e1
With Xp denote X with the block mode fixed at index p

Random partition measurements, yielding Â1, Â2, Âtest, b1, b2, btest
for i = 0, 1, 2, . . . until stopping criterion do

for µ = 1, . . . ,M + 1 do
for p = 1, 2 do

Calculate D = U<j ◦(1,...µ−1),(1,...,µ−1) ∇Jp(Xp) ◦(µ+1,...,M+1),(2,...,M+1−µ) U>j

Calculate α =
〈Âp(Xp)−bp, Âp(U0◦...◦Uµ−1◦D◦Uµ+1◦...◦UM )〉
‖Âp(U0◦...◦Uµ−1◦D◦Uµ+1◦...◦UM )‖2

2

Update Uµ[:, :, p, :] −= αD[:, :, :]

if µ < M then
Calculate SVD with tolerance ε: U ◦Σ ◦ V = Mat(1,2) (Uµ)
Set Uµ = U
Set Uµ+1 = S ◦ V ◦ Uµ+1

Shuffle the block mode to the third position in Uµ+1

for µ =M ,M − 1, . . . , 0 do
for p = 1, 2 do

Calculate D = U<j ◦(1,...µ−1),(1,...,µ−1) ∇Jp(Xp) ◦(µ+1,...,M+1),(2,...,M+1−µ) U>j

Calculate α =
〈Âp(Xp)−bp, Âp(U0◦...◦Uµ−1◦D◦Uµ+1◦...◦UM )〉
‖Âp(U0◦...◦Uµ−1◦D◦Uµ+1◦...◦UM )‖2

2

Update Uµ[:, :, p, :] −= αD[:, :, :]

if µ > 0 then
Calculate SVD with tolerance ε: U ◦Σ ◦ V = Mat(1,3) (Uµ)
Set Uµ = U
Set Uµ−1 = Uµ+1 ◦ V ◦ S
Shuffle the block mode to the third position in Uµ+1

if J((X1 + X2)/2) did not decrease for 10 iterations then
Set ε = ε/2

if Jtest((X1 + X2)/2) did not decrease for 100 iterations then
Stop the iteration

return (X1 + X2)/2

5. NUMERICAL EXPERIMENTS

This section is concerned with illustrating the performance of the proposed tensor reconstruction
approach for a set of parametric benchmark problems. To assess the quality of the functional tensor
representation of the stochastic solution, the error of the expectation and the variance with respect
to a reference Monte Carlo reference solution is depicted. In all settings the reference solution is
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Figure 1. Comparison of the reconstruction results for the parametric PDE setting (I)
a MC simulation using the exact same samples (left) and with several MC simulations
using various numbers of samples (right).

calculated from 100, 000 samples.2 In all numerical experiments, the domain is D = (0, 1)2 and a
lowest-order conforming Finite Element discretization is employed. The sought stochastic solutions
admit the representation (2) in a tensor basis with either Legendre or Hermite polynomials as described
in Section 2. For the reconstruction a maximal degree of 4 (Hermite) and 12 (Legendre) is allowed
for each polynomial basis. The maximal allowed rank is set to be 40, which for most problems is
not a restriction. Additionally we prevent excessive rank increases by allowing each rank to increase
only once every 10 iterations. The examined problems comprise linear and nonlinear PDEs with data
expansions based on uniform and Gaussian random variables in Section 5.1. Moreover, results for the
so-called cookie problem are reported on in Section 5.2. Since the numerical results exhibit similar
behavior, we postpone the discussion to the concluding Section 6.

The computation of the FE solutions are performed with the freely available FEniCS software packages.
For the tensor reconstructions the xerus C++ library [46] is used, which is freely available and also
contains the complete implementation of our block ASD algorithm.

5.1. Linear and Nonlinear Parametric PDEs. As in [6, 21, 29, 30], we assume a random field
expansion (1) given by3

a0 ≡ 1, am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2), m ∈ N,

where αm = 9
10ζ(2)

m−2 with the Riemann zeta function ζ . Moreover,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)

with k(m) := b−1/2 +
√

1/4 + 2mc. We consider the following stationary parametric PDEs with
homogeneous Dirichlet boundary conditions and a(x, y) truncated after M = 10 terms in all cases:

(I) Diffusion (affine)
−∇ · (a(x, y)∇u(x, y)) = 1

(II) Diffusion (lognormal)

−∇ · (exp(a(x, y))∇u(x, y)) = 1

(III) Nonlinear Diffusion (affine)

−∇ ·

((
a(x, y)

10
+ u(x, y)

)2

∇u(x, y)

)
= 1

2We aim at significantly improving the quality of the reference solution using an increased number of samples for the
revision of this paper.

3This choice corresponds to the slow decay experiments e.g. in [6, 29].
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Figure 2. Comparison of the reconstruction results for the parametric PDE setting (II)
a MC simulation using the exact same samples (left) and with several MC simulations
using various numbers of samples (right).

10−5

10−4

10−3

10−2

10−1

100

0 2500 5000 7500 10000

R
el

at
iv

e
er

ro
r

Number of Samples

Expectation value
Variance

MC Expectation value
MC Variance

10−5

10−4

10−3

10−2

10−1

100

0 25000 50000 75000 100000
R

el
at

iv
e

er
ro

r
Number of Samples

MC Expectation value
MC Variance

Figure 3. Comparison of the reconstruction results for the parametric PDE setting
(III) with a MC simulation using the exact same samples (left) and with several MC
simulations using various numbers of samples (right).
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Figure 4. Comparison of the reconstruction results for the parametric PDE setting
(IV) with a MC simulation using the exact same samples (left) and with several MC
simulations using various numbers of samples (right).

(IV) Convection-Diffusion (affine, SUPG stabilized FEM)

−∇ · (κ∇u(x, y)) + β · ∇u(x, y) = 1,

with κ = 10−2 and β =
(
0.99− a(x, y) 0.99− |a(x, y)|

)ᵀ
.

In figures 1 to 4 the relative errors for the expectation value and variance obtained by the reconstruction
is compared to Monte Carlo simulations.

5.2. A Cookie Problem. Let 4 subdomains of D be given by discs Dk (k = 1, . . . , 4) with fixed
radius r = 3/16 and centers c =

(
i/4 j/4

)ᵀ
for i, j ∈ {1, 3}. The considered problem depends

on y =
(
y1 y2 y3 y4

)ᵀ
with yk ∼ U(1/2, 3/2), has homogeneous Dirichlet boundary conditions
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Figure 5. Comparison of the reconstruction results for the cookie setting with a MC
simulation using the exact same samples (left) and with several MC simulations using
various numbers of samples (right).

and is given by
−∇ · (κ(x, y)∇u(x, y)) = 1,

where κ|D\∪k=1,...,4Dk = 1 and κ|Dk = yk.

The relative errors for the expectation value and variance obtained by the reconstruction is compared
to Monte Carlo simulations in figure 5.

6. CONCLUSIONS

This work is concerned with the derivation of a completely non-intrusive tensor recovery approach for
the generation of numerical parametric PDE solutions in tensor Hilbert spaces. Some comments about
the proposed method and its numerical performance as demonstrated in the last section are in order:

� The approach can be conceived as an alternative to a Monte Carlo method, based on principally
the same (but possibly much fewer) samples of realizations of the random parametric solution.
In contrast to many other approaches no specific choice of samples is required at all.

� The reconstruction only requires the solution samples and information on the distribution.
The tensor rank is adaptively determined within the reconstruction algorithm. Therefore this
reconstruction approach can be used as an effective black-box replacement for Monte Carlo
simulations.

� For the examined linear and nonlinear parametric PDEs in Section 5 with affine and non-affine
coefficient fields, it is apparent (and mostly known from earlier references) that the solution
manifolds have low rank. The same holds true for the cookie problem.

� An observation common to the examined examples is that the tensor reconstruction requires
orders of magnitude fewer samples when compared to a classical Monte Carlo solution. This is
shows for the convergence of the expectation of the solution and its variance.4
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