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ABSTRACT. A lot of works has been devoted to stability analysis of a stationary 
point for linear and non-linear systems of stochastic differential equations. Here we 
consider the stability of an invariant compact manifold of a non-linear system. To 
this end we derive a linearized system for orthogonal displacements of a solution from 
the manifold. For this system, we introduce notions of Lyapunov exponents, moment 
Lyapunov exponents, and stability index. The stability index controls the asymptotic 
behavior of solutions of the input system in a neighborhood of the manifold. · Most 
extensively we study these problems in the case when the invariant manifold is an 
orbit. 

1. INTRODUCTION 

Consider an autonomous system of stochastic differential equations in the sense of 
Ito 

q 

dX = ao(X)dt + :E ar(X)dwr(t) (1.1) 
r::::l 

where X is a d-dimensional vector, ar(x), r = 0, 1, ... , q, are d-dimensional vector 
functions, and Wr ( t), r = 1, ... , q, are independent standard Wiener processes on a 
probability space (n, F, P). 

Let the origin be a stationary point for the system (1.1), i.e., 

ar(O) = 0, r = 0, 1, ... ,q 

The linearized system for ( 1.1) has a form 
q 

dX = AoXdt + :E ArXdwr(t) (1.2) 
r=l 

. . . . 8a~ ( ) where .Ar = { a;:1} is a d x d-matrix with the elements a; = Bxi 0 , i, j = 1, ... , d. 
In the deterministic case, the solutions Xx(t), Xx(O) = x, of the nonlinear system 

and the solutions of the linearized one usually have many common features in their 
asymptotic behavior if x is sufficiently small. The stochastic case is far intricate, and 
a great many asymptotic characteristics for (1.2) do not reflect the behavior of the 
solutions of (1.1). For example, such an important characteristic for the system (1.2) 
as the moment Lyapunov exponent 

g(p) = lim ,!. ln EIXx(t)IP 
t~oo t (1.3) 

is usually positive for sufficiently large p > 0 even for stable systems because of large 
deviations. At the same time, a situation is possible for the system (1.1) when all 
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its trajectories Xx(t) for lxl ~ r, r > 0 is some number, 0 ~ t < oo, are uniformly 
bounded. In this case the limit in (1.3) for the system (1.1) is always non-positive. 

Recently Arnold and Khasminskii have proved a theorem in which they have indi-
cated a characteristic that precisely relates (1.1) and (1.2) in the sense of asymptotic 
behavior of solutions. The characteristic is called stability index in [3]. 

Let M be an invariant manifold for (1.1), i.e., x E M implies Xx(t) E M, t > 0. 
The manifold M is supposed to be not a stationary point. In the present paper we 
investigate the asymptotic behavior of the distance p(Xx(t),M) for x ~ M. Instead 
of (1.2), we derive a linearized system for orthogonal displacerrients of the solution 
from the manifold (briefly linearized orthogonal system). Then we introduce the no-
tions of Lyapunov exponent, moment Lyapunov exponents, and stability index for the 
linearized orthogonal system. They are analogous to the known ones for the system 
(1.2). Finally we prove an analogue of the Arnold-Khasminskii theorem and thereby 
introduce the concept of stability index for invariant manifolds of the system (1.1). 

In Section 2 we review some well-known results (the Khasminskii theorem [13], the 
Arnold-Oeljeklaus-Pardoux theorem [4], and the Baxendale theorem [6]) for the system 
(1.2) and the Arnold-Khasminskii theorem for the system (1.1). In Section 3 we give 
some auxiliary consequences of the Stroock-Varadhan support theorem. Most exten-
sively we study the stability problems in the case when Mis an orbit in Rd. Sections 
4-7 are devoted to the orbital stability provided that the orbit is a phase trajectory of 
a deterministic system and, besides that, the system noise vanishes on the trajectory. 
The orbital stability with diffusion on the very trajectory is considered in Section 8. 
And finally, the stability index for general invariant manifolds is studied in Section 9. 

2. PRELIMINARY 

A large literature has been devoted to studying asymptotic properties of the linear 
autonomous stochastic system (1.2). Various characteristics of the asymptotic behavior 
of its solutions such as Lyapunov exponents, moment Lyapunov exponents, stability 
index, rotation numbers, and some others are derived and studied in [13], [14], [1]-[6] 
(see also references therein). 

The first results related to Lyapunov exponents for the system (1.2) are due to 
Khasminskii [13], [14]. Adopting some ideas of Furstenberg [9], Khasminskii uses the 
new coordinates 

x .:\=j;j, p=lnlxl, x~O, 

shows that the projection of x onto the unit sphere sd-l, i.e., the process 

is also a Markov diffusion process, and introduces a system for A. The Khasminskii 
system has the following form 

q 

dA = ~(A)dt + L hr(A)dwr(t) (2.1) 
r=l 

where the vector fields hr ( .:\), r = 0, 1, ... , q, on sd-l are equal to 

1 q q 3 q 

~(.:\)=Ao.:\ - (Ao.:\,.:\).:\ - 2 L(Ar\ Ar.:\).:\ - L(Ar\ .:\)Ar.:\+ 2 L(ArA, .:\)2
.:\ 

r=l r=l r=l 
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In what follows we shall suppose the Lie algebra condition to be fulfilled: 

dim LA(h1, .•. , hq) = d - 1 for all A. E gd-l 

(2.2) 

(2.3) 

where LA denotes the Lie algebra generated by the given vector fields. For many things 
some weaker conditions would be sufficient but in order to avoid some complications 
we impose (2.3). 

In [13], [14] the following theorem is proved. 

Theorem 2.1 (Khasminskii). Under the condition (2.3) the process A is ergodic, 
there exists an invariant measure µ(A.), and, for any x =f 0, there exists the limit (which 
does not depend on x) 

P-a.s. lim -.
1 

ln IXx(t)I = lim .!.Eln IXx(t)I = f Q(A.)dµ(A.) :=A.* (2.4) 
t-+oo t t-oo t Jsd-1 

where 
1 q . q 

Q(A.) = (AoA., A.)+ 2 L(ArA., ArA.) - L(Ar\ A.) 2 

· r=l r=l 
(2.5) 

The limit A.* is called Lyapunov exponent of the system (1.2). 

The next essential step in studying asymptotic properties of the solutions of (1.2) 
was connected with introducing the concept of moment Lyapunov exponents (the idea, 
used for another object of study, goes back to Molchanov [17]). First results here are 
due to Arnold [1] for the real noise case and to Arnold, Oeljeklaus, and Pardoux [4] for 
the white noise case. 

Ito's formwa gives for every p ER 
1 q 

djX(t)IP = (pQ(A) + 2p2 R(A))IX(t)IPdt + p 2:(ArA, A)IX(t)!Pdwr(t) (2.6) 
r=l 

where Q(A.) is from (2.5), and 
q 

R(A.) = L(ArA., A.)2 (2.7) 
r=l 

Let X(O) = A., IA.I = 1. For any p E R, a strongly continuous semigroup It(p) of 
positive operators on C(Sd-l) can be introduced : 

(2.8) 
Let L(p) be a generator of the semigroup Tt(p). Under Lie algebra condition (2.3), 

any operator Tt(p), t > 0, -oo < p < oo, is compact and irreducible (even strongly 
positive). We recall that a positive operator Tin C(Sd-l) is called irreducible if {O} 
and C(Sd-l) are the only T-invariant closed ideals and T is called strongly positive if 
T f(A.) > 0, A. E sd-l, for any f 2:: 0, f =f 0. The generalized Perron-Frobenius theorem 
ensures for each p ER the existence of a strictly positive eigenfunction for Tt(p) (and, 
consequently, for L(p)) corresponding to the principal eigenvalue. Some properties of 
the function g(p) and a connection between g(p) and L(p) are given in [4]. 
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Theorem 2.2 (Arnold-Oeljeklaus-Pardoux). Under Lie algebra condition (2.3) the 
limit g(p) in (1.3) exists for any p ER and is independent of x, x-/:- 0. The limit g(p) 
is a convex analytic function of p ER, g(O) = 0, g(p)/p is increasing, and 

(2.9) 

Further, the moment Lyapunov exponent g(p) is an eigenvalue for L(p) with a strictly 
positive eigenfunction ep( ,\) : 

(2.10) 
The eigenvalue g(p) is simple and g(p) strictly dominates the real part of any other 

point of the spectrum of L(p). 

Let us note that if the matrix Ao in (1.2) is replaced by Ao+ al, where a is a scalar 
and I is th~ identity matrix, then g(p) is replaced by g(p) + ap, and the new Lyapunov 
exponent is equal to ,\*+a. Therefore in many cases we can restrict ourselves to the 
case,\* < 0. If,\* < 0 then the trivial solution of the system (1.2) is a.s. asymptotically 
stable. It is well known (see, for instance, [14]) and follows from (2.9) that in this case 
g(p) < 0 for all sufficiently small p, i.e., the solution X = 0 of (1.2) is p-stable for 
such p. It is shown in [4] that g(p) ~ oo for p ~ oo unless there exists a non-singular 
matrix G such that GArG-1 , r = 1, ... , q, are skew-symmetric matrices. If g(p) ~ oo 
for p ~ oo then the equation 

g(p) = 0 (2.11) 

has a unique positive root 1*. It is clear that the solution X = 0 of (1.2) is p-stable for 
0 < p < 1* and p-unstable for p > 1*. 

The concept of moment Lyapunov exponent was further developed by many other.au-
. thors and especially by Baxendale. In particular Baxendale shows in [6] that the root 1* 

of (2.11) is connectedwith the asymptotic behavior of the probability P{supt>o IXx(t)I > 
8}, lxl/8 ~ 0, if 1* < 0 and of the probability P{inft~o IXx(t)I < 8}, lxl[8 ~ oo, if 
1* > 0. . 

Theorem 2.3 (Baxendale). Assume (2.3). If,\* < 0 and the equation (2.11) has a 
positive root 1* > 0 then there exists K > 1 such that for all 8 > 0 and for all x with 
lxl < 8 

Kl (lxl/8)7*::; P{sup IXx(t)j > 8}::; K(lxl/8)7* 
t~O 

(2.12) 

If,\* > 0 and the equation (2.11) has a negative root 1* < 0 then there exists K ~ 1 
such that for all 8 > 0 and for all x with Ix I > 8 

1 • • 
K(lxl/8)7 ::; P{~~~ IXx(t)I < 8} ::; K(lxl/8)7 (2.13) 

Thus, Baxendale has established that the probability with which a solution of the 
linear system ( 1. 2) exceeds a threshold is controlled by the number 1*. Arnold and 
Khasminskii call this number stability index. Their main result in [3] consists in proving 
that the estimates (2.12)-(2.13) remain true for the nonlinear system as well. 
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Theorem 2.4. (Arnold-Khasminskii). Let the system of linear approximation (1.2) 
for the system (1.1) be such that the condition (2.3) is fulfilled. Assume that the stability 
index 1* for (1.2) does not vanish, 1* :/: 0. Then 

Case 1* > 0 : There exists a sufficiently small p > 0 and positive constants a1 , a2 
such that for any 8 E (0, p) and all lxl < 8 the solution Xx(t) of (l.l) satisfies the 
inequalities 

(2.14) 

Case 1* < 0 : There exists a sufficiently small p > 0, positive constants a3, a4, and 
a constant 0 <a< 1 such that for any 8 E (0, ap) and all lxl < 8 the solution Xx(t) 
of ( 1.1) satisfies the inequalities 

c3(lxl/8)'Y* < P{ inf IXx(t)I < 8} < c4(lxl/8)'Y* (2.15) - 09<r -

Here T := inf{t: IXx(t)l > p}. 

Remark 2.1. As a matter of fact Arnold and Khasminskii have proved a more 
general theorem. They consider the situation when a nonlinear system is close to a 
homogeneous one in a neighborhood of the origin. The point is that the theory of 
moment Lyapunov exponents can be carried over to stochastic systems with positive 
homogeneous coefficients of degree one. For such systems, the stability index can also 
be introduced and the estimates (2.12)-(2.13) can be established (see [3] and references 
therein). 

3. INVARIANT MANIFOLDS OF A DIFFUSION PROCESS 

A set SC Rd is said to be invariant for (1.1) if x ES implies Xx(t) ES, t > 0. One 
can to find out whether the set Sis invariant by the Stroock-Varad.han support theorem 
(see, for instance, [12]). This theorem has a more simple formulation for equations in 
the sense of Stratonovich. 

q 

dX = ao(X)dt + L ar(X) 0 dwr(t) (3.1) 
r=l 

Suppose ao(x) to have bounded continuous first order derivatives and ar(x), r = 
1, ... , q, to have bounded continuous second order derivatives in Rd. Let C be a space 
of d-dimensional continuous functions on [O, oo) with the topology of the uniform con-
vergence on finite closed intervals. Introduce Sstr(x) CC: 

Sstr(x) = { X(t), 0 ~ t < oo: X(t) = x + l ao(X(s))ds+ 

~ l a,(X(s))w;(s)ds, Wr E W} 
where Wr(s), r = 1, ... , q, are arbitrary smooth functions, W is a set of functions with 
continuous derivative on [O, oo ). 

Theorem 3.1 (Stroock-Varad.han support theorem}. Let x E Rd, Xx(t) be a solution 
of the system (3.l), Px be its distribution, S(Px) be the support of Px (i.e., the smallest 
closed set of C with measure equal to l}. Then 

(3.2) 
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We shall use the following simple consequence of this theorem. 

Corollary 3.1. Let S C Rd be a closed set. If for any x E S every point ofany 
trajectory from Sstr(x) belongs to S {what we shall write shortly: Sstr(x; t) C S) then 
S is invariant for (3.1). 

Using the well known connection between stochastic equations in the sense of Ito and 
of Stratonovich one can formulate the Stroock-Varadhan's theorem for the Ito system 
(1.1). We restrict ourselves to the following consequence: 

·Corollary 3.2. Let S C Rd be a closed set and 

{ !a
t 1 q !at 8a Sit0 (x; t) = X(t) : X(t) = x + a0 (X(s))ds - -

2 
I: -8 r (X(s))ar(X(s))ds+ 

0 r=l 0 X 

~ t a,.(X(s))w;(s)ds, W, E W} 
If Srto(x; t) CS for every x ES then S is invariant for (1.1). 

Remark 3.1. Let Sstr(x; t) C S (respectively Srto(x; t) C S) be fulfilled. Then 
Corollary 3.1 (respectively Corollary 3.2) is valid if a0(x) has bounded continuous 
first order derivatives and ar(x), r = 1, ... , q, have bounded continuous second order 
derivatives in some neighborhood of S. 

Example 3.1. Consider.the Khasminskii system (2.1) in Rd. The set Srto(.A) has a 
form 

Srto(.A) = {A(t), O ·:::; t < oo : A(t) =.A+ 

r 1 q 1 q 
Jo (AoA - (AoA, A)A - 2 L A~A + 2 L(A~A, A)A)ds+ 

0 r=l . r=1 

~ t (A,.A - (A,.A, A)A)W;ds} 

For A(t) from Srto(.A) we have 

d(l -d~A,A)) = -(1- (A,A))(2(.AoA,A)- t(A;A,A))-
r=t 

q 

2(1- (A,A)) L(ArA,A)w;, A(O) = .:\ 
r=l 

From here it easily follows that the unit sphere sd-l = { .:\: (.:\, .:\) = 1} is an invariant 
manifold for (2.1). It is clear also that the sets {.:\ : _,\ = O}, {.:\ : 0 < (.:\, .:\) < 1}, 
{.:\: (.:\, .:\) > 1} are invariant ones for (2.1). 
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Example 3.2. Let x = e(t) be a T-periodic solution of the deterministic system 

dd~ = ao(X) 

and M be the phase trajectory of this solution (ao(e(t)) =I= 0, 0 :::; t < T). Consider 
the following system in the sense of Stratonovich 

q 

dX = (ao(X)ao(X) + bo(X))dt + l:(ar(X)ao(X) + br(X)) o dwr(t) (3.3) 
r=l 

where br(x) = 0, r = 0, 1, ... , q, if x EM, i.e., br(e(t)) = 0, 0 :::; t < T, and ar(x) are 
scalars, a0 (x) =I= 0 if x EM. 

Using Corollary 3.1 it is not difficult to prove that M is an invariant manifold for 
(3.3). 

Example 3.3. Let a k-dimensional sufficiently smooth manifold M C Rd defined 
by equations 

mi(x1, ... , xd) = 0, i = 1, ... , d - k (3.4) 

be an invariant manifold for (1.1). 
Thus, the system (1.1) defines a diffusion process P(t) on the manifold M. Let us 

find a formula for a generator.of the process P(t). 
For certainty, let the system (3.4) be resolvable with respect to xk+l, ... , xd in some 

piece Mo of M : 
i i( 1 k) . k + 1 d x =<.p x, ... ,x ,i= , ... , 

We have in Mo : 

dXi = at(X1, ... , Xk, cpk+l(X1, ... , Xk), ... , cpd(X1, ... , Xk) )dt+ 

q E a~(X1, ... , xk' <pk+l(X1' ... , Xk), ... , cpd(X1, ... , Xk))dwr(t), 
r=l 

i = 1, ... ,k,k + 1, ... ,d (3.5) 

Due to Ito's formula 
k 8<.pm . q . 1 k 82<.pm q . . 

dXm = ~ 8xi (a~dt + :E a~dwr(t)) + 2 -~ 8xi8xj L a~a~dt, m = k + 1, ... , d 
i=l r=l i,3=1 r=l (3.6) 

where the arguments are the same as in (3.5). 
Comparing the last d - k equalities from (3.5) with (3.6) we obtain for the points 

from Mo 
k 8 m '""' <.p ( 1 k) i ( 1 k k+ 1 ( 1 k) d ( 1 k)) -L,-8 i x , ... ,x ar x , ... ,x ,<.p x , ... ,x , ... ,<p x , ... ,x -

i=l x 

a~(x1 , ..• , xk, <pk+l(x1, ... , xk), ... , <pd(x1 , ••. , xk)), m = k + 1, ... , d 
and (with the same arguments as in (3.7)) 

k 8<.pm . 1 . k 82 <pm q . . 
'""-8 .a~+-E 8 .8 .:Ea~a~=a~, m=k+1, ... ,d ~ xi 2.. xi x3 i=l i,3=1 r=l 
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Let g E C2 (M) and let g have compact support. The function g can be expressed in 
M 0 in terms of x1 , ..• ,xk. There exists (and not unique) a function g(x1, ... ,xd) which 
is C2-function with compact support and which is an extension of g : 

g(x1' ... , xk) = g(x1' ... , xk' <pk+l(x1' ... , xk), ... , cpd(x1' ... , xk)) (3.9) 

Let us denote the generator for the process P(t) by Land for the process X(t) by 
L. We have for PE Mo (see the first k equalities from (3.5), and then (3.9), (3.7), and 
(3.8)) 

k a 1 k q . a2 
1 k L.g LLi. g Lg(P) = Lg(x , ... , x ) = a~-8 . + - ara~ a "8 . = . x"' 2.. x"' xJ i=l i,3=1 r=l 

k i 8{J . d 8g 8cpm 
~a(-+ ~ -·-)+ 
~ 0 8xi L.,, axm 8xi . 
i=l m=k+l 

1 k q . . d d a29 8cpl 8cpm d 8g a2cpm 
-~~a"'a1(~ ~ ·-.·-.+~-... )= 
2 L.,, L.,, r r L.,, L.,, a ma l a J a 't L.,, a m a ia J 

i,j=l r=l m=k+l l=k+l X X X X m=k+l X X X 

d a~ 1 d q a2~ . 
~ i _JJ_ - ~ ~ i j g - ~ ~ 1 k k+l 1 k d 1 k 
~ ao 8xi + 2 .~ L.,, arar 8xi8xi - Lg( x ' ... 'x 'cp ( x ' ... 'x ) ' ... 'cp ( x ' ... 'x ) ) 
i=l i,3=1 r=l 

i.e., we prove a formula 

Lg(P) = Lg(P), p EM 

4. THE LINEARIZED SYSTEM FOR ORTHOGONAL DISPLACEMENT 

Consider the system of deterministic differential equations 

dX = ao(X)dt 

(3.10) 

(4.1) 

We suppose x = e(t) to be a T-periodic solution of the system (4.1), a0 (e(t)) =f 0 
for every 0- :::; t < T . Let M be the phase trajectory (orbit) of th.is solution. Results 
on orbital stability related to the first Lyapunov method see, for example, in [11], [18] 
and results related to the second Lya.punov method see in [15]. A method of orbital 
Lyapunov functions has been proposed in [15] for deterministic systems ( 4.1) and 'it 
has been extended in [16] to stochastic systems of the form 

q 

dX = ao(X)dt + L ar(X)dwr(t) (4.2) 
r=l 

It is assumed that 

ar ( e ( t)) = 0, 0 :::; t < T, r = 1, ... , q (4.3) 
and consequently x = e(t) remains a T-periodic solution for the system ( 4.2) as well. 

Some sufficient conditions for mean square orbital stability have been obtained in [16] 
provided that there is a sufficiently small neighborhood of orbit M which is invariant 
for the system ( 4.2). 
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We suppose U to be a tubular neighborhood (a toroidal tube) of the orbit M such 
that for any point x E U one can uniquely find a quantity 'l9(x), 0 :::; 'l9(x) < T for 
which e('l9(x)) is the point on the trajectory M that is nearest to x. It is clear that the 
vector 

8(x) = x - e(.a(x)) 

is a displacement from the orbit normal to the vector a0 (e('l9(x))), i.e., 
d 

L:(xj - ej(.a(x))). aMe(.a(x))) = o (4.4) 
j=l 

We suppose also that all the functions ar(x), r = 0, 1, ... , q, x E U, are sufficiently 
smooth. Since we are interested in the local behavior of solutions of the system (4.2) 
close to Mand Mis a compact, without any loss we can consider the coefficients ar(x) 
to have uniformly bounded derivatives in Rd. Let lc5(x) I ~ r where r is sufficiently 
small .. 

Differentiating (4.4) with respect to xi and taking into account the equality 

e' ( 'l9 ( x)) = ao ( e ( 'l9 ( x))) 

we obtain 
. 2 a.a 

a~(e(.a(x))) - lao(e(.a(x)))I · -8 . (x)+ xi 

t(:x! -ei(fi(x))). (Ao(e(fi(x)))ao(e(fi(x))))j. ;~ (x) = 0 

where .Ao(x) is a matrix with the elements a~ (x) = aaa~ (x), i, j = 1, ... ,d. 
xJ 

From here 

8'l9 ( x) = a~ ( ~ ( 'l9 ( x))) 
8xi cp(x) 

where 

cp(x) = lao(~('l9(x)))l 2 
- (Ao(e('l9(x)))ao(e('l9(x))), x - e('l9(x))) 

Using Ito's formula for c5(X) we find 
q 

dok(X) = a~(X)dt + L:a~(X)dwr(t)-
r=1 

a~(e('l9(X))) . ta~(~('l9(X))). (a~(X)dt + t a~(X)dwr(t))-
ep(X) i=l r=l 
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In view of ( 4.3) 

ar(e('B(X))) = 0, X EU 

and we have 

a~(X) = (Ar(~(fi(X)))8(X))k + O(l8(X)l2) 

where Ar(x) is the matrix with the elements a~(x) = aaa~(x), i,j = 1, ... ,d. 
xJ 

(4.7) 

Here and below all the 0 are uniform with respect to 0::; fi < T and l8(x)I ::; r. 
Consequently 

q 

L a~(X)a~(X) = O(l8(X)l2) 
r=l 

and ( 4. 6) can be rewritten as 

dli.k(X) = cp(~) (a~(X)cp(X) ~ a~(e('!9(X))) · ~a~(e('!9(X)))a~(X))dt+ 

"t(a:(x) - a~(e(fi(X))). 2:t=1 ab(e(fi(X)))a~(X))dwr(t) + O(l8(X)l2)dt (4.8) 
r=l cp(X) 

We have (see expression for cp( x)) 

But 

d 

· a~(X)cp(X) - a~(e(fi(X))) · L:a~(e(fi(X)))a~(X) = 
i=l 

d 

a~(X) · lao(e(fi(X)))l2 - a~(e(fi(X))) · l.:a~(e(fi(X)))a~(X)-
i=l 

a~(X) · (Ao(e(fi(X)))ao(e(fi(X))),X - e(fi(X))) = 

(a~(X) - a~(e(fi(X)))) · lao(e(fi(X)))l2
-

d 

a~(e(fi(X))) · L:a~(e(fi(X))) · (a~(X) - a~(e(fi(X))))-
i=l 

a~(X) · (Ao(e(fi(X)))ao(e(fi(X))), 8(X)) (4.9) 

a~(X) - a~(e(fi(X))) = (Ao(e(fi(X)))8(X))i + O(l8(X)l 2) (4.10) 
and cp(X) is representable in the form 

cp(X) = lao(e(fi(X)))l2 + O(l8(X)I) (4.11) 
From (4.9)-(4.11) we obtain the following expression for the drift coefficient in (4.8): 

cp(~) (a~(X)cp(X) - a~(e('!9(X))) · ~aMe('!9(X)))a~(X)) + O(l8(X)l2) = 
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(Ao(e(t9(X)))o(x))k - (Ao(e(t9(%~{~%~~)DWt9(x)))) a~(e(t9(X)))-

(Ao(e( fi(X)) )ao(e( fi(X))), 8(X)) ak(e( fi(X))) + O(lc5(X) !2) ( 4.12) 
lao( e( fi(X)) }1 2 0 

The diffusion coefficients can be obtained analogously due to ( 4. 7): 

ak(X) _ a~(e(fi(X))) · 2=t=1 aMe('l9(X)))a~(X) = (Ar(e(fi(X)))o(X))k-
r cp(X) 

(Ar(e('l9(X)))8(X), ao(e(fi(X)))) ak(e('l9(X))) + O(lc5(X)l2) (4.13) 
lao(e( fi(X))) 1

2 0 

Now we .can write the system for c5(X) in the following form 

d8(X) = (Ao - aoaJ(Ao+ AJ)) · 8(X)dt+ 
laol 2 

q aaTA q 
~(A,. - la~\2 r)8(X)dwr(t) + 0(\8(X)\2)dt + ~ 0(\8(X)i2)dwr(t) (4.14) 

where a0 and Ak, k = 0, 1, ... , q, have the quantity e(fi(X(t))) as their argument. 
It is not difficult to obtain 

q 

d'l9(X(t)) = dt + O(l8(X)l)dt + L O(l8(X)l)dwr(t) (4.15) 
r=l 

as well. 
The relations (4.14), (4.15) can be considered as stochastic differential equations for 

the process (fi(X), 8(X)) in view of a replacement X = e(fi(X)) + 8(X). The process 
(fi(X), 8(X)) belongs to a d-dimension~l manifold since aJ (e('l9(X)))8(X) = 0. 

Let us introduce a linear system of stochastic differential equations with periodic 
coefficients (a linearized orthogonal system for orbit) 

q 

d~ = Bo(t)~dt + LBr(t)~dwr(t) (4.16) 
r=l 

where 

B (t) = Ao(e(t)) _ ao(e(t))aJ (e(t) )(Ao(e(t)) + AJ (e(t) )) ( 4.17) 
0 lao(e(t))l 2 ' 

B (t) = A(t(t)) - ao(e(t))aJ (e(t))Ar(e(t)) r = 1 q (4.18) 
r ~ ~ lao(e(t))l2 ' ' ••• , 

Let us note that e ( t) can be defined for all t as a T-periodic function. 

Lemma 4.1. If ~(to) is orthogonal to ao(e(s +to)) for some s, 0 < s < oo, to ~ 
0, then ~(t) is orthogonal to ao(e(s + t)) for all t ~to, i.e., 

d 

aci (e(s + t))~(t) = L a~(e(s + t)). ~i(t) = o, t ~to (4.rn) 
i=l 
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Proof. The proof consists in simple checking the identity 
d 

d(L: a~(e(s + t)). L\i(t)) = 0, t ~to 
i=l 

Remark 4.1. The following form 

ar ( x) = ar (I 8 ( X) I), r = 1, ... , q 

is fairly natural for the diffusion coefficients. 

(4.20) 

In (4.20) the functions a~(p) of the scalar argument p ~ 0 are supposed to be suffi-
ciently smooth, ar(O) = 0. But the derivatives 818(x)l/8xi do not exist for x belonging 
to the phase trajectory M, and the same is true for the derivatives 8ar(l8(x)l)/8xi if 
a~(O) f. 0. Therefore, Ar, r = 1, ... , q, do not exist and one cannot use (4.7). 

Instead of (4.13) we can write in the case (4.20) 

k(X) - a~(e('a(X))). Et=l a~(e(fi(X)))a~(X) = 
ar cp(X) 

(Jk • l8(X)l - a-: ao(e(fi(X)))) · l8(X)I ak(~(fi(X))) + O(l8(X)l2) 
r lao(e( fi(X))) 12 0 

where the ~-dimensional vector ar is equal to a~(O). 
Let us write down an analogue of the linearized orthogonal system in the case (4.20): 

q 

dL\ = Bo(t)L\dt + IL\I I: br(t)dwr(t) (4.21) 
r=l 

where the matrix Bo ( t) is the same as in ( 4.17) and the. vector br ( t) is equal to 

( 
k a-: ao(e(t)) k 

br t) = a r - I ao ( e ( t)) 12 a0 ( e ( t)) , r = 1, ... , q (4.22) 

It is not difficult to verify that Lemma 4.1 is true for the system (4.21) as well. 
The system ( 4.21) is not linear but it is homogeneous of degree one. In the case of 
stationary point it is known that the theory of moment Lyapunov exponent can be 
carried over to such systems (see [3] and references therein). In the case of orbit the 
same can be done (the concept of moment LyapU.nov exponent for the system (4.16) is 
given in the next section). 

Remark 4.2. The behavior of 8(X) has also been considered in the deterministic 
theory of orbital stability. For instance, in [18] a new coordinate system is introduced 
in every hyperplane passing through a point e ( s), 0 :::; s < T, orthogonally to the 
orbit. The point e(s) is taken as an origin and d - 1 mutually orthogonal axis are 
drawn in the hyperplane through ~(s) : Ot;(s)Y\ ... , Ot;(s)Yd-l. Directions of the vectors 
Ot;(s)Yi, i = 1, ... , d - 1, are supposed to be some continuously differentiable functions 
of s. The old coordinates x1 , ... , xd are expressed in terms of new ones s, y1 , ... , yd-l by 
formulas: 

d-1 
xi = I: bij ( s )yj + ei ( s)' i = 1, ... ' d 

j=l 

where the T-periodic functions bij(s) depend on the choice of the axis Ot;(s)Y\ ... , 
Ot;(s)Yd-l. After that a system of d - 1 differential equations for y1 , .•• , yd-l can be 
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derived and linearized. The linearized system is a linear system with periodic coeffi-
cients. This system is used in studying orbital stability (see [18]). A disadvantage of 
such an approach consists in the linearized system being dependent on the choice of 
the coordinate axis what leads to the non-constructiveness of the system. At the same 
time the system (4.16) has an explicit form. True, its dimension is equal to d and we 
have to use (4.19). But this does not lead to any serious complications (see the next 
section). 

Remark 4.3. Another system exploited in the deterministic theory of orbital sta-
bility is a system of the first approximation in a neighborhood of the orbit M. Such a 
system for ( 4.2) has evidently the following form 

q 

dX = Ao(e(t))Xdt + L Ar(e(t))Xdwr(t) (4.23) 
r=l 

It should be noted that due to (4.3) X(t) = ao(e(t)) is a solution of (4.23). Mention 
also the following connection (what can be checked by direct evaluations) between 
solutions of the systems (4.16) and (4.23): if X(t) is any solution of the system (4.23) 
then 

~ ( t) = x ( t) - ( x ( t) ' ao ( e ( t + s))) ao ( e ( t + s)) 
lao(e(t + s))l 2 ( 4.24) 

is a sqlution of the system (4.16) for any s, 0 ~ s < oo, and the relatio~ (4.19) is 
satisfied. Clearly ~(t) from (4.24) is the projection of X(t) .on the hyperplane that is 
orthogonal to the orbit at the point e(t + s ). 

In the author's opinion, it is the linearized orthogonal system (4.16) that to a con-
siderable extent corresponds to stability problems of invariant manifolds (even in the 
deterministic case). However some questions (for instance, the behavior of a phase of 
a perturbed motion) require in addition the system of the first approximation. 

Remark 4.4. Consider the Stratonovich system (3.1). As before we suppose that 
x = e(t) is a T-periodic solution of the system (4.1) and that (4.3) is fulfilled. The 
linearized orthogonal system in this case is 

q 

d~ = Bo(t)t:,.dt + L Br(t)t:,. o dwr(t) 
r=l 

with the same matrices B0 (t) and Br(t) as in (4.17) and in (4.18). 

5. MOMENT LYAPUNOV EXPONENTS AND STABILITY INDEX FOR A LINEARIZED 
ORTHOGONAL SYSTEM 

Due. to the T-periodicity of Bk(t), k = 0, 1, ... , q, the system (4.16) reduces to the 
following autonomous system 

q 

dt:,. = Bo(8)t:,.dt + L Br(8)t:,.dwr(t) (5.1) 
r=l 

d8 = dt, 8(0) = {) (5.2) 

where e is considered to be a cyclical variable. 
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Let ~(O) =/= 0 and 
d L a~ ( ~ ( rJ)) . ~ i ( o) = o 

i=l 

Introduce 

and consider the process ( 8, A). 
The Khasminskii system has now the following form 

·q 

dA = bo(8, A)dt + L br(8, A)dwr(t) 
r=l 

d8 = dt, 8(0) = rf) 

The vectors bo ( rJ, A) and br ( rfJ, A) are equal to 

bo(1J, .A)= Bo.A - (Bo.A, .A).A-

(5.3) 

(5.4) 

(5.5) 

(5.6) 

1 q q 3 q 

2 L(BrA, BrA)A - L(BrA, .A)BrA + 2 L(BrA, .A)2 A (5.7) 
r=l r=l r=l 

br(1l, .A) =Er.A - (Er.A, ..\).A, r = 1, ... , q (5.8) 
where Bk= Bk(rJ), k = 0, 1, ... , q. 

Clearly due to (5.3) and (5.4) we have (see Lemma 4.1) 

aJ (e(1J + t))A(t) = 0, AT (t)A(t) = 1 (5.9) 
i.e., (8, A) is a Markov process on the (d- 1)-dimensional compact manifold D which 
is defined in the space of d + 1 variables rJ, .A1, ..• ,_Ad by the following equations · 

D ={(rfJ, .A) : aJ{e(fJ)).A = 0, A TA= 1} 
The manifold Dis invariant for the (d+l)-dimensional process defined by the system 

(5.5)-(5.6). 
Ito's formula gives for every -oo < p < oo 

dJ.6.(t)IP = (pQ(8,A) + ~p2R(8,A))J.6.(t)!Pdt + p i)BrA,A)J.6.(t)IPdwr(t)(5.lO) 
r=l . 

where 
1 q q . 

Q(1J, A) = (Bo(1J).A, .A)+ 2 L(Br(1J)A, Er.A) - L(Br(1J)A, .A)2 (5.11) 
r=l r=l 

q 

R(1J, .A) = L(Br(rJ).A, .A) 2 (5.12) 
r=l 

Let .6.(0) = A, _AT A= 1. The following formula defines a strongly continuous semi-
group of positive operators on C(D) : 

Tt(p)f(1J, .A) = EJ(819(t),A191,\(t))l~19,,\(t)IP, (1J, .A) ED, f E C(D) (5.13) 

This fact can be proved by direct checking the definition of a strongly continuous 
semigroup. 
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Our most urgent goal is to find a generator A(p) for the semigroup yt (p). 
Let D _c U C Rd+l where U is an open set and Q is compact (U is the closure of 

U). Let f be an C 2-extension off E C 2(D) and let f vanish beyond U. 
We have 

f(819(t),A1'J,>.(t)) = /(819(t),A1'J,>.(t)), t ~ 0, ('l9, .A) ED (5.14) 

Ito's formula gives 

From (5.13), (5.14) and (5.15) it follows 

1t(p)f ('l9, .A) - f('l9, .A) = Ef(819(t), A19,>.(t))l~19,>.(t)IP - f ('l9, .A) = 

ft q aJ ft 1 
E lo P ~(O>., b.)· (BrA{),>., A{),>.)· l~{),>.(s)IPds + E lo J · (pQ + "2p2 R) · J~{),>.(s)IPds 

and, consequently, 

aJ aJ . 1 d q a2 J i . 
A(p)f('l9, .A)= 8'l9 +(8.A' bo) + 2 .~ L 8.Ai8.Aibr~+ 

i,3=1 r=l 

~(af . ) ( ~ ( 1 2 p L...J 8.A' br . Br\ .A)+ f. pQ + 2p R), ('l9, .A) ED 
r=l 

(5.16) 

Formula (5.15) can be rewritten in the form 

df(819(t), A19,>.(t))l~19,>.(t)IP = A(p)f(819(t), At9,>.(t)) · 1~19,>.(t)IPdt+ 

It should be noted that -due to the cyclicity of 8 any operator Tt(P), t > 0, -oo < 
p < oo, is neither compact no irreducible (see, for instance, Section 7 below) in contrast 
to the operator (2.8). But the whole semigroup (5.13) can be irreducible. We recall 
that a positive semigroup Tt(P) in C(D) is called irreducible if {O} and C(D) are the 
only invariant closed ideals for all Tt(P), t ~ 0. 
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A simple sufficient condition of the irreducibility consists in 

dimL(b1 (fi, .A), ... , bq(fi, .A))= d - 2 for any (fi, .A) ED (5.18) 
where L denotes the linear hull spanned by the given vector fields. 

It follows due to [10], [8] that the spectrum a(A(p)) of the generator A(p) of the 
positive semigroup 1t(p) is not empty and 

s(A(p)) :=sup{ Reµ:µ E a(A(p))} = 

max{µ ER:µ E a(A(p))}, -oo < s(A(p)) < oo 

Moreover the resolvent R(µ, A(p)) is strongly positive forµ> s(A(p)) because Tt(P) is 
irreducible, and 

R(µ, A(p))f(1J, >.) =lo°" e-µ,tTi(F)f(1J, >.)dt (5.19) 

Let us show that under some natural assumption the resolvent R(µ, A(p)) is compact. 
To this end consider the following system 

q q 

dA = bo(8, A)dt + p 2:(Br(8)A, A)br(8, A)dt + L br(8, A)dwr(t), A(O) =A 
r=l r=l (5.20) 

d8 = dt, 8(0) = fi, (fi, .A) ED (5.21) 
instead of (5.5)-(5.6). It is not difficult to verify that (5.9) is true for the system (5.20)-
(5.21) as well and that the manifold D is invariant for the process (8,A) defined 
by this system. Due to Girsanov's theorem the semigroup (5.13) has the following 
representation (see the analogous transformation in (4]) 

Tt(P)f(1J, .A) = Ef(819(t), ArJ,>.(t))· 

exp {t (pQ(8.i( s ), A.i,>.( s)) + ~p2 R(8.i(s ), A.i,>.( s)) )ds} (5.22) 

where f E C(D), (fi, .A) ED, and 819(t), ArJ,>.(t) is the solution of (5.20)-(5.21). 
Let P(t, (fi, .A), (dJxdA)) be the transition probability function of the Markov process 

( 8, A). Here dJ is an element of the length on the orbit M, and dA is an element of 
the area o~ the sphere 5' TA = 1. Suppose that 

P(t, (fi, .A), (dJ x dA)) = 8(t + fi, dJ)p(t, (fi, .A), A)dA (5.23) 
where 

o(t + 'l9 dJ) = { 1. , t + 'l9 Ed~ 
' 0, t + r{) tJ. dr{) 

and the density p(t, (rfJ, .A))) over A is continuous with respect to t, fi, .A, A under 
t 2:: to for any t0 > 0. 

Then 

where 

rp(t, 1J, 5.) =exp {l (pQ(1J + s, 5.) + ~p2 R(1J + s, 5.))ds} 
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and 

R(µ, A(p))J(79, ..\) = 

r - rX) f(t)) exp {µ(79 - t)} cp(t - 79, 79))p(t - 'l9, (fi, ..\)))dtd~ (5.24) }>.T .\=l }{) 

Now it is not difficult to prove directly that under sufficiently largeµ> O the repre-
sentation (5.24) implies the compactness of the operator R(µ, A(p)). Due to Hilbert's 
resolvent equality the resolvent R(µ, A(p)) is compact for any µ E p(A(p)) where 
p(A(p)) is the resolvent set of A(p). 

Apparently, the assumption (5.23) is fulfilled not only under the condition (5.18) but 
also under some weaker one, for instance, under the condition (just as in [4] and [6]) 

dimLA{b1(79, ..\), ... , bq(79, ..\)) = d - 2 for any (79, ..\)ED 
which is analogous to (2.3). 

Now we formulate a basic hypothesis which is supposed to hold below in a lot of 
statements. 

Hypothesis (H). For each p ER the positive semigroup Tt(P) is irreducible and its 
resolvent is compact. 

Let us show that the hypothesis (H) ensures the existence of a strictly positive 
eigenfunction hp ( 79, ,,\) of A(p) corresponding to an eigenvalue g (p) : 

(5.25) 
The eigenvalue g(p) is real and simple. But in contrast to [4] the real part of any 

other point of the spectrum of A(p) is not always strictly less than g(p). It can be equal 
to g(p), i.e., g(p) is more or equal to the real part of any other point of the spectrum 
of A(p). 

Indeed, letµ> s(A(p)). The relation 

a(R(µ, A(p))) = (µ - a(A(p))t1 

implies(µ- s(A(p))t1 E a(R(µ,A(p))) because s(A(p)) E a(A(p)). Since R(µ,A(p)) 
is compact and strongly positive, the number (µ-s(A(p))t1 is a simple isolated eigen-
value of R(µ, A(p)) which exceeds a module of any other eigenvalue of R(µ, A(p)). More-
over there exists a unique hp E C(D) with hp(79, ..\) > 0 for all (fi, ..\) E D, llhpll = 1, 
and a unique positive measure Vp over D with llvpll = 1 such that they are corre-
spondingly an eigenfunction of the operator R(µ, A(p)) and an eigendistribution of 
the conjugate operator R*(µ, A(p)). Denoting s(A(p)) by g(p) we get (5.25) and the 
equality 

A*(p)vp = g(p)vp (5.26) 

Further, as (µ- s(A(p))t1 is a pole of the resolvent of the operator R(µ, A(p)), the 
number s(A(p)) = g(p) is a pole of R(µ, A(p)) (see [10]). In such a case the generalized 
Perron-Frobenius theorem [10] (see also [8]) sets besides (5.25) and (5.26) that all the 
points from a(A(p)) with real part g(p) are g(p) + iak, k = 0, ±1, ±2, ... , for some 
a~ a,· and they are all simple isolated eigenvalues of A(p). Thus, the above-:-mentioned 
assertion is justified. 

We underline that the noted above distinction from [4] is not any obstacle for carrying 
over the theory of moment Lyapunov exponents to the system (5.1)-(5.2). 
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Now we are ready to formulate a number of theorems relating to stability properties 
of the system (5.1)-(5.2). These theorems are analogous to the corresponding ones 
from [14], [4], and [6] and their proofs are not adduced here. 

The following theorem is an analogue of the Khasminskii theorem (see Theorem 2.1). 

Theorem 5.1. Assume (H). Then the process (8, A) on D is ergodic, there exists 
an invariant measure µ(1J, A) and, for any 1J, 8 i= 0 with aJ (e(1J))8 = 0, there exists the 
limit (which does not depend on 1J, 8) 

P-a.s. lim _! ln 1~19 c5(t) I = lim _! E ln 1~19 c5(t) I = { Q( 1J, )..)dµ( 1J, )..) : = ).. * (5.27) 
hoot ' hoot ' k 

The limit )..* is called Lyapunov exponent of the system (5.1)-(5.2). 

The following theorem is an analogue of the Arnold-Oeljeklaus-Pardoux theorem (see 
Theorem 2.2). 

Theorem 5.2. Assume (H). Then for all 1J,8 i= 0 with aJ(e(1J))8 = 0 the limit 
(which is c_alled the pth_moment Lyapunov exponent for (5.1)-(5.2)) 

lim _!lnEl~19c5(t)IP = g(p) (5.28) 
t-+oo t ' 

exists for any p E R and is independent of (1J, 8). The limit g(p) is a convex analytic 
function of p ER, g(p)/p is increasing, g(O) = 0 and g'(O) = )..*. 

Further, the moment Lyapunov exponent g (p) is an eigenvalue for A(p) with a strictly 
positive eigenfunction hp ( 1J, ).. ) : 

A(p)hp(1J, )..) = g(p)hp(1J, )..), hp(1J, )..) > 0, (1J, )..) ED (5.29) 

The eigenvalue g(p) is simple and g(p) is more or equal to the real part of any other 
point of the spectrum of A(p). 

These results can be applied (as in the case of a stationary point) to study the 
behavior of P{supt>o 1~19,c5(t)1 > p}, 181 << p, for asymptotically stable systems ()..* < 
0), and of P{inft~o1~19,c5(t)1<p},181 » p, for unstable systems()..*> 0) (of course it 
is supposed that aJ(e(1J))8 = 0). 

The following theorem is an analogue of the Baxendale theorem (see Theorem 2.3). 

Theorem 5.3. Assume (H). If g'(O) = )..* < 0 and the equation 

g(p) = 0 (5.30) 
has a root 1* > 0 then there exists K > 1 such that for all p > 0 and for all 8 with 
l8l<p and aJ (e(1J))8 = o 

~(181/ p)'Y' :::; P{~~~ l~.i,5(t)I > p} :::; K(l81/ p)'Y' (5.31) 

If g'(O) = )..* > 0 and the equation (5.30) has a root 1* < 0 then there exists K 2: 1 
such that for all p > 0 and for all 8 with l8l>p and aJ (e(1J))8 = 0 

~(181/ p)"Y' :::; P{~~~ l~.i,5(t)I < p} :::; K(l81/ p)"Y' (5.32) 
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The root 1* is called stability index of the linearized orthogonal system (5.1)-(5.2). 

Example 5.1. Clearly from (4.16), the matrix of the second moments 

M(t) = E6.19,a(t)6.J,0 (t) 

satisfies the following deterministic system 

dM q 
dt = Bo(t)M + MB;[(t) + l:Br(t)MB;(t) 

r=l 

Consequently, (H) implies 

g(2) = lim ,!. ln(trM(t)) 
t-too t 

If g(2) < 0 then.-\* < 0 and if in addition the equation (5.30) has a root then 1* > 2. 
If A* < 0 and g(2) > 0 then 0 < 1* < 2. 

6. THE ARNOLD-KHASMINSKII THEOREM AND STABILITY INDEX FOR ORBIT 

The following theorem is an analogue of the Arnold-Khasminskii theorem (see The-
orem 2.4). 

Theorem 6.1. Let the linearized orthogonal system (5.1 )-(5.2) for the system ( 4.2) 
be such that the hypothesis (H) is fulfilled. Assume that the stability index 1* of (5.1)-
(5.2) does not vanish, 1* i= 0. 

Then 
1. Case 1* > 0 : There exists a sufficiently small p > 0 and positive constants c1 , c2 

such that for all x: 18(~)1 < p the solution Xx(t) of (4.2) satisfies the inequalities 

c1(l8(x)l/p)'Y• ::;_P{sup l8(Xx(t))I > p}::; c2(l8(x)I/ p)"t (6.1) 
t~O 

2. Case 1* < 0 : There exists a sufficiently small p > 0 , positive constants c3 , c4 
and a constant 0 <a< 1 such that for any Po E (0, ap) and all x: Po< j8(x)I < ap 

c3(l8(x) I/ Por1· ::; P{ inf l8(Xx(t) )I <Po} ::; c4(l8(x) I/ Por1· (6.2) 
0$t<'T . 

Here T := inf{t: l8(Xx(t))I > p}. 

Proof. Let f(iJ, .-\) E C2(D). Let 

1J = iJ(Xx(t)), 8 . 8(Xx(t)), r = r(Xx(t)) = 8(Xx(t))/l8(Xx(t))I 

Clearly (iJ(Xx(t)), r(Xx(t))) ED. In view of (4.14) it is not difficult to evaluate 
q 

df(Xx(t)) = bo(iJ(Xx(t)), r(Xx(t)))dt + L(br(iJ(Xx(t)), r(Xx(t)))dwr(t)+ 
r=l 

q 

O(j8(Xx(t))l)dt + L O(l8(Xx(t))l)dwr(t) 
r=l 
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Further, analogously to (5.14), (5.15) and due to (4.15) and (5.16) we get 

df(?J, r)l8IP = A(p)f(fi, r) · l81Pdt+ 

I)~{ (19, r), b,(19, r)) · !Wdw,(t) + !(19, r) · p :t(B,(19)r, r) · !Wdw,(t)+ 
r=l r=l · 

q 

O(l8IP+l)dt + L O(lolP+l)dwr(t) 
r=l 

(6.3) 

Case 1. Let 1* > 0 be the stability index for (5.1)-(5.2) and h7 • (79, >..), h7 •+c(79, >..) 
be strictly positive solutions of the equations 

A(!*)h7 • = 0, A(!*+ c)h7 •+c = g(!* + c)h7 •+c 
where 0 < c < 1 and g(!* + c) > 0. 

Introduce the following function 

(6.4) 

V=t=(x) = h7 .(79(x),o(x)/lo(x)I) · l8(x)l7 * =F h7 ·+c(79(x),o(x)/l8(x)I) · l8(x)l7 •+c(6.5) 
Due to (6.3) and (6.4) 

dV=t=(Xx(t)) = =Fg(!*. + c)h7 •+c(79, r) · l8l7*+cdt+ 

~ ah7 • • ~ • ( L....,.( 8).-( 73, f), br(fi, r)) · 1817 dwr(t) + h7 • (79, r) · 1* Ll(Br(fi)r, r) · 181 7 dwr t)+ 
r=l r=l 

q 

O(l8l'Y*+l)dt + 2:: O(l8l'Y*+c)dwr(t) (6.6) 
r=l 

Let the eigenfunctions h7 • and h7 •+c have already been chosen. It is clear from (6.5) 
and (6.6) that there exists a sufficiently small p > 0 such that V_(x) > 0 for all x with 
0 < l8(x)I < p and v_(Xx(t /\ Tx,p)) is a supermartingale where 

Tx,p: = inf{t: l8(Xx(t))1 > p} 
Hence there exist positive constants a1 and a2 such that the following inequalities 

hold: 

and therefore 

P{sup l8(Xx(t))I > p} = lim P{ sup l8(Xx(s))I > p} ~ al (l8(x)l/p)7* (6.7) 
. t~O t-oo O~s~t a2 

As V+(x) > 0 (see (6.5)) and V+(Xx(t/\Tx,p)) is a submartingale for sufficiently small 
p (see (6.6)) we have 

a318(x)l7 * ~ V+(x) ~ EV+(Xx(Tx,c: /\ Tx,p)) ~ a4p'Y* P{sup l8(Xx(t))I > p} + ase7 • 
t>O (6.8) 

where a3, a4, a5 are some positive constants which do not depend one, e < l8(x)I < p 
and 

Tx,c:: = inf{t: j8(Xx(t))I < e} 
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Relations (6.7) and (6.8) give (6.1) provided p is smallest from (6.7) and (6.8). Case 
1 is proved. 

Case 2. Let 1* < 0. Then there exists a sufficiently small c, 0 < c < 1, such that 
g(!* + c) < 0 in (6.4). Now V+(Xx(t /\ Tx,p)) is a supermartingale for sufficiently small 
p and for x with 0 < J8(x)I < p. We have for some positive a1 , a2 and for x with 
Po < I 8 ( x) I < P : 

ail8(x)l7 * ~ V+(x) ~ EV+(Xx(t /\ Tx,p)) ~ a2pf P{ inf l8(Xx(t))I <Po} (6.9) 
o::;t::;rx,p 

Relation (6.9) implies the second part of (6.2). 
Further V_ (Xx(t /\ Tx,p)) is a submartingale for sufficiently small p and there exist 

positive constants aa, a4, as such that for all x with Po< j8(x)I < p: 

aal8(x)l7 * ~ V_(x) ~ EV_(Xx(Tx,po /\ Tx,p)) ~ a4p'J* P{0<~~!, j8(Xx(t))I <Po}+ asp7 * 
- - x,p 

where aa, a4, as do not depend on Po and p. 
If Po< l8(x)I < ap then 

a4Pri* P{ inf l8(Xx(t))I <Po} ~ aal8(x)l7 • - asp7* ~ 
o::;t::;rx,p 

(6.10) 

If 0 <a< 1 is such that ~a3a'Y' - a5 > 0 then (6.10) implies the first part of (6.2). 
Theorem 6.1 is proved. 

Th~ root 1* is called stability index of the orbit M of the system (4.2). 

7. STABILITY OF ORBITS ON THE PLANE 

Clearly A(t) is deterministic in two-dimensional case (n = 2) : 

A 1 ( t) = =F a6 ( e ( t)) A 2 ( t) = ± a5 ( e ( t)) 
I ao ( e ( t)) I ' I ao ( e ( t)) I 

It is possible to evaluate directly that (5.10) can be rewritten for n = 2 in the 
following form 

1 ' 
dl~(t)IP = (pQ(8) + 2p2 R(8)) · l~(t)jPdt+ 

q 

p I: Cr(8) · l~(t)IPdwr(t), l~(O)I = 1 (7.1) 
r=l 

where 

with 
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[ 
aa; (e(tJ)) aa; (e(tJ)) l 

Ar (~a) = 8x2
1 8x2 _ 

v aar (~(fi)) aa~ (~(fi)) 'r - 0, 1, ... , q 
8x1 8x2 

and 

R(fi) = t c~(fi) , Q(fi) =AT (fi)Ao(fi),X.(19) - ~R(fi) 
r=l 

All the functions A(fJ), Ar(tJ) and so on are T-periodic. 
The semigroup Tt(P) is defined on the space of continuous T-periodic functions: 

'I'tJy)f(fi) = f(fi + t)El~(t)IP = f(fi + t) exp {l (pQ(s) + ~p2 R(s))ds} (7.2) 

and its generator A(p) has a form 

A(p)f(fi) = :~ (fi) + (pQ(fi) + ~p2 R(fi))f(fi) 

From the equation 

we obtain an eigenfunction 

I { -a 1 } hp(tJ) =exp g(p)tJ - lo (pQ(s) + 2:p2 R(s))ds 

where the eigenvalue g(p) is equal to 

g(p) = 2~ f R(s)ds · p2 + ~ laT Q(s)ds · p 

It is possible to prove that 

[T Q(s)ds = [T tr~(s)ds lo lo · 
Therefore 

A*= g'(O) = ~ f trAo(s)ds 

and if J[ R(s)ds f 0, J{tr~(s)ds f 0 then the stability index is equal to 

(7.3) 

1* = -2. J[ Q(s)ds (7.4) 
J[ R(s)ds 

So all the characteristics in two-dimensional case can be evaluated in explicit form. 
In connection with the contents of Section 5 we can note that as is obvious from the 

formula (7.2), any operator 1t(p), 0::::; t < oo, -oo < p < oo, is noncompact and, for 
instance, f<:>r tk = kT, k = 0, 1, ... ,the operator Ttk(p) is not irreducible. We note also 
that the spectrum a-(A(p)) consists of the eigenvalues g(p)+21rik/T, k = 0, ±1, ±2, .... 

Example 7 .1. Consider the Van der Pol equation with a multiple noise written in 
the form of the Ito system 

dX 1 = X 2dt, dX2 = -X1dt + eX2(1 - X12 )dt + a-(X1 , X 2 )dw(t) (7.5) 
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It is known that an asymptotically stable orbit x = e(t) for the deterministic Van 
der Pol equation for small e > 0 differs little from a circle of radius 2 : 

e1 = 2 cost + 0( e), e2 = 2 sin t + 0 ( c:), T = 27r + 0( e) 
Suppose 

a(x1,x2
) = av'i(x1 -e1(~(x1 ,x2)) + f3J'€(x2 -e2(~(x1,x2 )) (7.6) 

where a, {3 are some constants and e(1/J(x1,x2 ) = (e1(~(x1,x2 ), e2(1/J(x1,x2)) is the 
nearest to (x1, x2 ) point on the orbit x = e(t). 

One can evaluate for the system (7.5) 

--\(fi) = [ c~s fi + O(e) ] 
smfi + O(c:) ' 

Further 

and since 
~ 1 . ~ 1 axi (e(fi)) = -2 sm fi + O(e), ax2 (e(fi)) = '2 cosfi + O(c:), 1/J(e(fi)) _.: fi 

we have 

A 1 ( '!9) = y'e( a cos '!9 + .B sin '!9) [ cos '!9 + O O( ea/2) sin '!9 +°o( ea/2) ] , 

c1 ( fi) = AT ( fi)A1 ( fi).A( fi) = y/€( a sin fi cos fi + {3 sin2 fi) + O(c:312) , 

Q('!9) =AT ('!9)Ao('!9)A('!9) - ~R(fi) = 

-3c sin2 2fi + e sin2 fi - ~(a sin fi cos fi + {3 sin2 fi) 2 + O(e2
) 

From here 

foT R(s)ds = : e(a2 + 3,82) + O(e2), foT Q(s)ds = -27fe - ;e(a2 + 3,82) + O(e2) 

and the stability index is equal to 

7* = 1 + 2 163.132 + O(e) a+ < 

Now consider the Stratonovich stochastic differential system 

dX 1 = X 2dt, dX2 = -X1dt + eX2(1 - X 12 )dt + a(X1 , X 2) o dw(t) (7.7) 
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with the same CJ as in (7.6). The corresponding Ito system is 

dX1 = X 2dt, dX 2 = -X1dt + c:X2 (1 - X 12 )dt+ 

(7.8) 

Let us mark all the corresponding values for the system (7.7) by means of bar as 
opposed to (7.5). We have 

:X(fi) = ,,\('19) 

Ao('!?) =Ao('!?)+~ [ fJ<r (~('!?)) ~ fJ<r (~('!?)) fJ<r (~('!?)) ~ fJ<r (~('!?)) ] = 
8x1 8x2 8x2 8x2 

Now 

f Q(s)ds = -21Te + O(e2
) 

and 

-* 16 0( ) 
I = a2 + 3132 + c: 

So the Van der Pol equation possesses good stability properties with respect to both 
the noise iri the sense of Ito and the noise in the sense of Stratonovich. 

8. STABILITY OF ORBITS WITH NONVANISHING DIFFUSION 

Let an orbit 

M : x = ~ ( '19), 0 ~ 'l9 < T 

be an invariant manifold for the system (4.2). Let ( ('19) f. 0, 0 .~ 1J < T. In contrast 
to. Section 4 we do not suppose that this orbit is a phase trajectory for ( 4.1) and we 
do not suppose (4.3), i.e., it may be a diffusion not only in a neighborhood of the orbit 
but also on the very orbit. 

In a neighborhood ofM we can introduce new variables 8 = x-~(fi(x)) and 'l9 = fi(x). 
The dimension of ( 'l9, 8) is equal to d + 1 but due to the restriction 

(8, ( ('19)) = 0 (8.1) 
the number of free variables is equal to d. 

We have 

d(X - ~('!9(X))) = a0(X)dt + t a.(X)dw.(t) - ( ('!9(X)) t ::; (X)dX;-
r=l i=l · 
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1 ~ II 8{) 8{) I 82{) i • 2 .~ (e (iJ(X)) 8xi (X) 8xi (X) + e (iJ(X)) 8xi8xi (X))dX dX1 = 
t,J=l 

q 

bo(X)dt + 2: br(X)dwr(t) (8.2) 
r=l 

where 

I ~ 8{) · 
bo(x) = ao(x) - e (iJ(x)) {;;;! 8xi (x)a~(x)-

(8.3) 

(8.4) 

If X(O) EM then X(t) EM for all t > 0 as Mis the invariant manifold for (4.2). 
Therefore X(t) = e(iJ(X(t))) and in view of (8.2) the following lemma is natural. 

Lemma 8.1. Let the orbit M be an invariant manifold for the system (4.2). Then 
the coefficients bi ( x), i = 0, 1, ... , q, vanish on the orbit, i. e., 

bo(e(iJ)) = o, o ~ iJ < T 

br(e('l9)) = o, o ~ iJ < T, r = 1, ... ,q 

(8.5) 

(8.6) 

Proof. Let us make use of the Stroock-Varadhan support theorem. If X(O) = e('l9) 
then X ( t) due to Corollary 3. 2 also belongs to M for all t 2:: 0 and, consequently, X' ( 0) 
is collinear to { ( iJ), i.e., the following vector 

is collinear toe' (iJ) under any w;(o). 
From here it follows (if we put w;(o) = 0, r = 1, ... , q) 

ao(~(19)) - ~ ~ ~: (~(19))ar(~(19)) = ( (19) · (ao(~~~{l)~ (l9)) 

1 { (iJ) ~ Bar , 
21e' ( iJ) 12 . ~( 8x (e( iJ))ar(e( iJ))' e ( {))) (8.7) 

and 

(8.8) 

From the following identity with respect to x 

(x - e(iJ(x)),{ (iJ(x))) = 0 
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we have 
.I 

&a ei ( f) ( x)) 
8xi(x) = 1e'(rJ(x))l2-(x-e(rJ(x)),C(rJ(x))) 'i= l, ... ,d (8.9) 

and, consequently, 

(8.10) 

Differentiating (8.9) with respect to xi and setting x = e(rJ) in obtained expression 
we find 

.I .I 
1 i' /' i'' . / 3ei ( tJ)e1 ( rJ) , II 

le'(rJ)l4 · (e (rJ)e (rJ) +e (rJ)e (rJ)- le'(i9)l2 (e (rJ),e (rJ))) (8.n) 

The relations (8.8), (8.10) and (8.4) imply (8.6). 
Let us prove (8.5). The equality (8.8) gives 

II 1 I I II 

(ar(e(tJ)),e (rJ)) = l((rJ)l2 · (ar(e(tJ)),e (rJ)) · (e (rJ),e (rJ)) (8.12) 

Now we obtain from (8.3), (8.10), (8.11), and (8.12) 

bo(S( fi)) = ao(S( fi)) - ( ( fi) · (ao(~~~{ # ( fi)) -1/;( fi) 

where 

( 
·1// 1 ~ I 2 

~ tJ) = 2e (rJ) · le'(rJ)l4 • ~(ar(e(rJ)),e (rJ)) -

~s' (fi) · (( ~:~(;;·l~fi)) · ~(a,(S(fi)), s' (11))2 

Using (8'. 7) we get rid of a0 

(8.13) 

Let us substitute ar according to (8.8) in the two first terms of (8.13): 
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After differentiating (8.8) with respect to{} we obtain 

8ar(e(v>))(('a) = ((1J). (ar(e(1J)),((1J)) +((1J). (ar(e(1J)),((1J)) + 
ax le' (19)1 2 · le' (1J)l2 

( (1J) (8ar '( I ( (1J) . I I II 

le'(1J)l2 · ax (e('l9))e 1J),e (1J))- 21((1J)l4 · (ar(e(1J)),e (1J)) · (e (1J),e (1J)) 

Substituting this expression in the first term of (8.14) we find 

( ( )) 1 ( ( 1J) ( ( ( I ( II bo e {} = 21e'(1J)l4. are 1J)),e (1J)). ar(e(1J)),e (1J))-

1 ( ( 1J) ( ( I 2 ( I II 

2 I ( ( 1J) I 6 • ar e ( 1J)) , e { 1J)) · e ( 1J) , e ( 1J)) 

Finally, due to (8.12) we obtain (8.5). Lemma 8.1 is proved. 

Introduce matrices 
8bi 

Br('l9) = {-8 ~ (e(1J))}, r = 0, 1, ... , q xJ 

Due to Lemma 8.1 the system (8.2) can be rewritten in the form 
q 

d8(X) = Bo(1J(X))8(X)dt + E Br(1J(X))8(X)dwr(t)+ 
r=l 

q 

O(l8(X)l2)dt + E O(l8(X)l2)dwr(t) (8.15) 
r=l 

It is not difficult to obtain from (8.10), (8.11) and (8.12) 
q 

d1J(.X) = ao(1J(X))dt + E ar('l9(X))dwr(t)+ 
r=l 

q 

O(l8(X)l)dt + L: O(l8(X)l)dwr(t) (8.16) 
r=l 

where 

(ar(e(1J)), ( (1J)) 
ar(1J) = l((1J)l2 , r = 1, ... , q 

(1J) = (ao(e(1J)), ( (1J)) _ 1 (( (1J), ( (1J)) . ~ 2(1J) 
ao 1e'(1J)l2 2 l((1J)l2 ~ar 

Consider the following system with respect to variables .6. and 8 (8 is a cyclical 
variable) 

q 

d.6. = Bo(8).6.dt + E Br(8).6.dwr(t) (8.17) 
r=l 
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q 

d8 = ao(8)dt + L ar(8)dwr(t) (8.18) 
r=l 

We note that all the coefficients of the system (8.17)-(8.18) are T-periodic functions. 
The following lemma is an analogue of Lemma 4.1. 

Lemma 8.2. Let ~(t), 8(t) be a solution of the system (8.17)-(8.18) such that 
(~(O), ( (8(0))) = 0. Then for all t ~ 0 

(~(t),((8(t))) = 0 (8.19) 

Proof. In view of (8.15) and (8.16) let us write down the following system with 
respect to 8 and i9 : 

q q 

d8 = Bo(i9)8dt + L Br(i9)8dwr(t) + O(l8"1 2)dt + L O(j8"j2)dwr(t) (8.20) 
r=l r=l 

q q 

di9 = ao(i9)dt + L ar(i9)dwr(t) + O(lbl)dt + L O(lbl)dwr(t) (8.21) 
r=l r=l 

Let 8(0), lb(O)I ~ r, and i9(0) are such that 

(8(o),((i9(o))) = o 
Then the solution of the system (8.20), (8.21) has the form 

b(t) = 8(Xx(t)), fi(t) = fi(Xx(t)) 
where x is defined uniquely from 

i9 = iJ(x), 8 = x - e(i9) 
Hence 

(S(t),((J(t))) = o, t ~ o (8.22) 

Due to the Stroock-Varadhan theorem it is not difficult to obtain that (8.22) is 
fulfilled for 

b(t) = 8(0) + r B0 (i9(s))8(s)ds - ]:_ t rt (B;(i9(s))8(s) + ar(J(s))B~(i9(s))8(s))ds+ 
Jo 2 r=l Jo 

~ £ B.(fi(s))S(s)W;(s)ds + £ O(IS(s)l2)ds + ~ £ O(l8(s)l2)W;(s)ds (8.23) 

J(t) = J(o) + rt ao(i9(s))ds - .!. t rt a~(i9(s))ar(J(s))ds+ 
Jo 2 r=l Jo 

q rt rt q rt 
~lo a.(fi(s))W;(s)ds +lo O(IS(s)l)ds +~lo O(IS(s)l)W;(s)ds (8.24) 

where Wr(s), r = 1, ... , q, are arbitrary smooth functions. 
Let us put 8(0) = a8, a> 0, '!9(0) = f) and find a derivative of (8(t),((i9(t))) with 

respect tot at t = 0. If we divide this derivative by a and tum a to zero we obtain 
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some expression what is equal to zero under all the mentioned Wr ( s). Thereby we can 
prove the following relations 

II 1~ I ( 8, e ( fi)) · ( ao ( fi) - 2 LI ar ( fi) ar ( fi)) = 0 
r=l 

(8.25) 

(Br(fi)8,{(fi)) + (8,((fi))ar(fi) = 0, r = l, ... ,q (8.26) 

for any (8, fi) if only (8, ( (fi)) = 0. 
In other words, the relations (8.25), (8.26) take place for every 0 ::=; fi < T and for 

any 8 if only (8,((fi)) = 0. This implies the existence of scalars ko(fi), ki(fi), ... ,kr(fi) 
such that the following identities with respect to fi, 0 :::; fi < T, are fulfilled: 

(B;[ (19) - ~ t((B;(19W + a,(19)(B~(19W)){ (19)+ 
r=l 

B~ (fi){ (fi) + ar(fi)( (fi) = kr(fi){ (fi), r = 1, ... , q 
Let us check now according to Corollary 3.2 that the manifold 

s = { ( 8, fi) : ( 8, { ( fi)) = 0 } 
is invariant. For the system (8.17), (8.18) we have 

Sit0 ((8, 19), t) = { (.6.(t), 8(t)) : .6.(t) = 8+ l Bo(8(s)).6.(s)ds-

1 q rt 1 q ft I 2 ~lo B;(e(s))~{s)ds - 2 ~lo ar(8(s))Br(8(s))~(s)ds+ 

~ l B,(e(s)).6.(s)w;(s)ds, 8(t) = 19 + l a 0 (8(s))ds-. 

~ ~ t a~(8(s))ar(8(s))ds + ~ l ar(8(s))w;(s)ds, W, E W} 

From (8.29) 

~(.6.(t),{ (e(t))) = (Bo(8(t)).6.(t) - ~ t B;(e(t)).6.(t), { (e(t)))-
dt r=l 

( ~ t ar(8(t))B~(8(t))~(t) + t Br(8(t))~(t)W;(t), { (8(t)))+ 
2 r=l r=l 

(8.27) 

(8.28) 

(8.29) 

1 q q 
(~(t), ( (8(t))) · (a0 (8(t)) - 2 I: a~(8(t))ar(8(t)) +I: ar(8(t))W;(t))(8.30) 

r=l r=l 
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From equalities (8.27), (8.28) we have 

d I I q I I 

dt(~(t),e (8(t))) = ko(8(t)) · (~(t),e (8(t))) + {;kr(8(t))Wr(t) · (~(t), e (8(t))) 

Since (~(O), ( (8(0))) = (c5, ( (!9)) = 0 we obtain from here 

(~(t), e' (8(t))) = 0, t ~ 0 

and, consequently, (~(t), 8(t)) ES. Lemma 8.2 is proved. 

Now it is not difficult to carry over the results of Section 5 and Section 6 to considered 
case. At first we write the Khasminskii system in accord the formulas (5.5)-(5.8) and 
an equation for l~(t) IP in accord the formulas (5.10)-(5.12). Then we introduce a 
semigroup of operators Tt(p) on C(D) by (5.13) where 

D ={(79,.X): (.X, ((79)) =0, (.X,.X) = 1} 

Finally·we obtain the formula (5.17) where A(p) has a different form in comparison 
with (5.16): 

We remark that bo, br depend on 79, .X here (see formulas (5.5)-(5.8)) unlike bo, br 
in (8.2)-(8.4) which depend on x. But this does not lead to a confusion. 

Theorems 5.1, 5.2, 5.3 and 6.1 can be formulated without any essential alterations 
now. We note that in the case of a non-degenerate noise of the Khasminskii system 
in the manifold D (in contrast to Section 5 such a case is possible here) any operator 
Tt(P), t > 0, is irreducible and compact as in [4]. 

Example 8.1. Consider for simplicity a particular case of the system (3.3) in the 
sense of Stratonovich 

q 

dX = ao(X)dt + L ar(X)ao(X) 0 dwr(t) 
r=l 

or, equivalently, in the sense of Ito 
. 1 q 

dX = ao(X)dt + 2 L ar(X)(ar(X)Ao(X) + ao(X)a~T (X))ao(X)dt+ 
r=l 

q 

L ar(X)ao(X)dwr(t) (8.31) 
r=l 

where a~T (x) is a vector-row with the elements 88a~ (x) , i = 1, ... , d, and Ao(x) is a xi 
8 i 

matrix with elements aa~ ( x) ' i, j = 1, ... 'd. x1 

30 



The system. of. linear approximation ~ for orthogonal .displacement X - e(iJ(X)) 
from the manifold M (a linearized orthogonal system) has the following form 

d~ = ((1+/3)B0 +2aAoB0 - a~)~dt+ 

4a(Aoao, ao)((Ao + A;i)ao, ~) l:i4dt - 2a(Aoao, Ao~) 
1

::i 2 dt+ 

q 

L: arBo~dwr(t) (8.32) 
r=l · 

where Ao= Ao(e(e)), Bo= Bo(8) (see the formula (4.17)), 
1 q ' 1 q 

a= a(8) = 2 La~, /3 = /3(8) = 2 L ar(a~, ao) (8.33) 
r=l r=l 

and ao, O'.r, r = 1, ... , q, and all their derivatives in (8.32), (8.33) are evaluated at e(e). 
The equation for cyclical variable 8 has a form 

q 

de= {1+13(e))dt + L: ar(e(e))dwr(t) (8.34) 
r=l 

The derivation of the system (8.32), (8.34) involves a lot of calculations. We mention 
here the most important of them only. We have 

ae~(x)) = ao(((fi(x)))88{). (x) xi xi 

82e( i9(x)) . 8iJ 8iJ 82 iJ · 
8 '8 . = Ao(e(iJ(x)))ao(e(iJ(x)))-8 . (x)-8 . (x) + ao(e(iJ(x))) 8 '8 . (x) 
~~ ~ ~ ~~ 

Therefore 

d(X - e(iJ(X))) = dX - ao(e(1J(X))) t 8~ (X)dXi-
i=l x 

_! t (Ao(e(iJ(X)))ao(e(iJ(X))) 88~ (X) 88~ (X) + ao(e(fi(X))) a 
8
;
2
:; (X))dX;dX; 

2 i,i=l ' x x x x (8.35) 

Further 

where 

(Ao(e( fi(x l l )ao(e(fi(x) )))iat;{e( fi(x)) l - aMe( fi(x))) . ~(x) 
cp2(x) 

cp(x) = lao(e( iJ(x))) 12 
- (Ao(e( iJ(x)) )ao(e( iJ(x))), x - e( iJ(x))) 
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a
8'P. (x) = 3(Ao(~( '!?(x)) )ao(~( fi(x)) ), ao(~( '!?(x)))) afi(~(t\x))) 
~ ~x 

(Ao(e( iJ(x)) )ao(e( iJ(x))) )i-

-ag(e( iJ(x) )(x·- e( iJ(x)) )ma~(e( iJ(x)) (8.37) 

Substituting (8.36) and (8.37) in (8.35) and linearizing it with respect to X-e(iJ(X)) 
we obtain the system (8.32). The equation (8.34) is obtained from the equality 

d'!?(X) = t 8'19; (X)dX; + _!:. t ~'!?; (X))dX;dX; 
i=l ax 2 i,i=l ax 8x 

by throwing small components. 

9. STABILITY INDEX FOR MANY-DIMENSIONAL INVARIANT MANIFOLDS 

Let M be a k-dimensional sufficiently smooth compact invariant manifold for the 
system ( 1.1), 1 < k < d. Conceptually, this case slightly differs from the case of orbit 
considered in the previous sections. Therefore we only outline the main ideas. 

Let some piece Mo of the manifold M be defined, for instance, by the following 
equations in the parametric form 

xi = ei( fjl' ... 'iJk) ' i = 1, ... , d 
or, briefly, 

We suppose the system of tangent vectors 

ae ae 
8{)1 ( iJ) ' ... ' 8iJk ( iJ) 

to be linearly independent. Let x belong to sufficiently small neighborhood of M 0 • Then 
the projection e(iJ(x)) of x on Mis uniquely defined. The functions iJ1(x), ... , iJk(x) 
can be found from the following relations 

ae (x - e(iJ(x)), 8iJm (iJ(x))) = 0, m = 1, ... , k (9.1) 

Differentiating ( 9 .1) with respect to xi, i = 1, ... , d, we obtain a system of k equations 
8iJm 

for -
8 

. ( x), m = 1, ... , k, whence one can find them owing to the linear independence xi 
of the tangent vectors and to the smallness of x - e(iJ(x)). After that we find the 

derivatives· :
2

.~m . ( x), i, j = 1, ... , d; m = 1, ... , k. Next it becomes possible to evaluate xi xJ 
q 

d8(X) = d(X -e(iJ(X))) = b0 (X)dt + Z:br(X)dwr(t) · (9.2) 
r=l 

and 
q 

diJ(X) = co(iJ(X))dt + Ecr(iJ(X))dwr(t)+ 
r=l 
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q 

O(l8(X) l)dt + L O(l8(X) l)dwr(t) (9.3) 
r=l 

Lemma 8.1 also holds here: 

bi(e('a)) = o, i = o, 1, ... , q 
Therefore we are able to linearize the system (9.2) and to obtain from (9.2) and (9.3) 
the following ( d + k )-dimensional system 

q 

d~ = Bo(8)~dt + L Br(8)~dwr(t) 
r=l 

q 

d8 = ao(8)dt + Lar(8)dwr(t) 
r=l 

An analogue of Lemma 8. 2 is valid for this system: 

ae 
(~(t), BtJm (8(t))) = 0, m = 1, ... , k, t 2:: 0 

if only 

ae 
(~(O), BtJm (8(0))) = 0, m = 1, ... , k 

Just as above the system (9.4) implies the Khasminskii system 
q 

dA = bo(8,A)dt + Lbr(8,A)dwr(t) 
r=l 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

where the coefficients bi(iJ, .A), i = 0, 1, ... , q, have the same expression as in the formulas 
(5.7), (5.8) (of course, the variable 1J is k-dimensional here). We remind again that 
bo, br in (9.8) depend on iJ, A unlike bo, br in (9.2) which depend on x. But this does 
not lead to a confusion. 

Due to (9.6) the following (d - 1)-dimensional compact manifold 

ae D = {(iJ, .A) : (.A, .A)= 1, (.A, BtJm (iJ)) = 0, m = 1, ... , k} 

is invariant for the system (9.5), (9.8). Under each fixed{) the manifold D gives a unit 
sphere· sd-k-l of the dimension d-k-1 and, consequently, Dis a torus which is equal 
to the product Mx sd-k-1. 

Then we can write the equation for l~(t)IP, introduce the semigroup Tt(p) on C(D), 
define A(p) and so on as in Section 8 up to the form of a majority of the formulas. 
We should only have in mind that the parameter {) is k-dimensional now and, in 
connection with that, to introduce the corresponding modifications. As a result we 
can obtain a Khasminskii-type theorem, an Arnold-Oeljeklaus-Pardoux-type theorem 
and a Baxendale-type theorem for a linearized orthogonal system in the case of a k-
dimensional invariant manifold. Finally an Arnold-Khasminskii-type theorem can be 
obtained and thereby a stability index of a k-dimensional invariant manifold can be 
introduced. 

Consider specifically the case k = d - 1. Let an invariant manifold M of the system 
(1.1) be defined by the equation 

F(x) = F(x1, ... , xd) = 0 (9.9) 
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Let p(x) be the projection of the point x on M (of course, x belongs to a sufficiently 
small neighborhood of M). Clearly 

F(p(x)) = 0 (9.10) 

8F 
8(x) = x - p(x) = k(p(x)) ax (p(x)) (9.11) 

where k (p( x)) is a scalar. 
The scalar k (p( x)) and the coordinates of the vector p( x) can be found from the 

system (9.10)-(9.11) consisting of d + 1 equations. 
The equation for~ has the following form 

q 

d~ = Bo(p(X))fl.dt + 2:: Br(p(X))fl.dwr(t) (9.12) 
r=1 

where X EM is the solution of the system (1.1) (and, consequently, p(X) = X) 
We do not write the system (9.8) for A because A is uniquely defined by p(X) : 

8F 
A= ~ = ± a;(p(X)) 

l~I 18F (p(X))I 
8x 

(9.13) 

In view of (9.13) the equation for l~IP can be written with some coefficients depend-
ing only on X E M : 

q 

dl~IP = Qo(p(X))jfl.jPdt + L Qr(p(X))jfl.jPdwr(t) 
r=1 

Therefore we can define a semigroup Tt(p) on C(M) by the following way 

Tt(P)f(x1
, ... ,xd) = Ef(Xx(t))l~IP, x EM 

Example 9.1. Stability index of the unit sphere for the Khasminskii system. 
,,\ 

Consider the Khasminskii system· (2.1)-(2.2) in Rd. Here p(,,\) = f\j' and we have 

A ·1 1 
d(A - jAj) = (1 - jAj )AoAdt - (1 - IAl3 )(AoA, A)Adt-

1 1 q . . . 1 q 

2(1- IAl3 ) ~(ArA, ArA)Adt - (1- IAl3 ) ~(ArA,A)ArAdt+ 

3 1 q 

2(1- IAl5) ~(ArA,A)2Adt+ 

1 q 1 q 

(1 - jAj) ~ ArAdwr(t) - (1 - IAl3 ) ~(ArA, A)Adwr(t) 

Linearizing this system with respect to A- l~I we obtain 

3 q q 

d~ = Ao~dt - 3(AoA, A)~dt - - L(ArA, ArA)~dt - 3 L(ArA, A)Ar~dt+ 
2 r=l r=1 
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15 q q 
2 2:(ArA,A)2~dt + L(Ar~ - 3(ArA,A))~dwr(t) 

r=l r=l 

where A is a solution of the system (2.1) on the unit sphere, i.e., jA(t)j = 1. 
Let us evaluate 

1 q q 
dl~lp = -2p( (AoA, A) + 2 L(ArA, ArA) - L(ArA, A)2) j~jPdt+ 

r=l r=l 

1 q q 
2(2p)2 2::(ArA, A)2 1~1Pdt - 2p L(ArA, A)l~IPdwr(t) = 

r=l r=l 

1 q 

(qQ(A) + 2q2R(A))l~IPdt + q L(ArA,A)l~IPdwr(t) 
r=l 

(9.14) 

where Q, Rare correspondingly from (2.5), (2.7) and q = -2p. 
Comparing (9.14) with (2.6) we obtain the following 

Theorem 9.1. Assume (2.3}. Let 

(p) 1. ln EIXx(t) IP go =Im-----
. t---+oo t 

be the moment function for the equation ( 1. 2) and let 

( ) 1
. ln Ej~(t) IP 

g p = Im 
t---+oo t 

be the moment function for the invariant unit sphere of the Khasminskii system {2.1} 
connected with the system (1.2). Then 

g(p) = go(-2p) 

In particular, if I~ is the stability index for the system (1.2) then the stability index 
1* of the unit sphere for the corresponding Khasminskii system is equal to 

* 1 * I = --10 2 
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