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ABSTRACT. A lot of works has been devoted to stability analysis of a stationary
point for linear and non-linear systems of stochastic differential equations. Here we
consider the stability of an invariant compact manifold of a non-linear system. To
this end we derive a linearized system for orthogonal displacements of a solution from
the manifold. For this system, we introduce notions of Lyapunov exponents, moment
Lyapunov exponents, and stability index. The stability index controls the asymptotic
behavior of solutions of the input system in a neighborhood of the manifold. Most
extensively we study these problems in the case when the invariant manifold is an
orbit.

1. INTRODUCTION

Cons1der an autonomous system of stochastic differential equations in the sense of
Ito

‘ . |
dX = ao(X)dt + ) a.(X)dw.(t) , (1.1)
r=1
where X is a d-dimensional vector, a.(z), 7 = 0,1,...,q, are d-dimensional vector
functions, and wr(t), 7 = 1,...,q, are independent standard Wiener processes on a
probability space (Q, F, P). ‘
Let the origin be a stationary point for the system (1.1), i.e.,

a:(0) =0, r=0,1,....

The linearized system for (1.1) has a form

q .
dX = AoXdt + Y A-Xdw,(t) (L2
r=1
dat
where A, = {a¥} is a d x d-matrix with the elements o} = pw +=(0), 4,5 =1,...,d.

In the deterministic case, the solutions Xw(t), Xz(0) = z, of the nonlinear system
and the solutions of the linearized one usually have many common features in their
asymptotic behavior if z is sufficiently small. The stochastic case is far intricate, and
a great many asymptotic characteristics for (1.2) do not reflect the behavior of the
solutions of (1.1). For example, such an important charactenstlc for the system (1.2)
as the moment Lyapunov exponent -

.1 ‘ |
o) = Jim T BIX.()P 13

is usually positive for sufficiently large p > 0 even for stable systems because of large
deviations. At the same time, a situation is possible for the system (1.1) when all
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its trajectories X;(t) for |z| < v, 7 > 0 is some number, 0 < ¢ < oo, are uniformly
bounded. In this case the limit in (1.3) for the system (1.1) is always non-positive.

Recently Arnold and Khasminskii have proved a theorem in which they have indi-
cated a characteristic that precisely relates (1.1) and (1.2) in the sense of asymptotic
behavior of solutions. The characteristic is called stability index in [3].

Let M be an invariant manifold for (1.1), i.e., z € M implies X,(t) € M, t > 0.
The manifold M is supposed to be not a stationary point. In the present paper we
investigate the asymptotic behavior of the distance p(X,(t),M) for z ¢ M. Instead
of (1.2), we derive a linearized system for orthogonal displacemients of the solution
from the manifold (briefly linearized orthogonal system). Then we introduce the no-
tions of Lyapunov exponent, moment Lyapunov exponents, and stability index for the
linearized orthogonal system. They are analogous to the known ones for the system
(1.2). Finally we prove an analogue of the Arnold-Khasminskii theorem and thereby
introduce the concept of stability index for invariant manifolds of the system (1.1).

In Section 2 we review some well-known results (the Khasminskii theorem [13], the
Arnold-Oeljeklaus-Pardoux theorem [4], and the Baxendale theorem [6]) for the system
(1.2) and the Arnold-Khasminskii theorem for the system (1.1). In Section 3 we give
some auxiliary consequences of the Stroock-Varadhan support theorem. Most exten-
sively we study the stability problems in the case when M is an orbit in R%. Sections
4-7 are devoted to the orbital stability provided that the orbit is a phase trajectory of
a deterministic system and, besides that, the system noise vanishes on the trajectory.
The orbital stability with diffusion on the very trajectory is considered in Section 8.
And finally, the stability index for general invariant manifolds is studied in Section 9.

2. PRELIMINARY

A large literature has been devoted to studying asymptotic properties of the linear
autonomous stochastic system (1.'2). Various characteristics of the asymptotic behavior
of its solutions such as Lyapunov exponents, moment Lyapunov exponents, stability
index, rotation numbers, and some others are derived and studied in [13], [14], [1]-[6]
(see also references therein).

The first results related to Lyapunov exponents for the system (1.2) are due to
Khasminskii [13], [14]. Adopting some ideas of Furstenberg [9], Khasminskii uses the
new coordinates

z
A=—, p=Inlz|, 2#0,
||

shows that the projection of X onto the unit sphere S¢1, i.e., the process

X
A,\(t) = m

is also a Markov diffusion process, and introduces a system for A. The Khasminskii
system has the following form

dA = ho(A)dt + gqj he(A)duw, () (2.1)

r=1

where the vector ﬁelds he(A), r  = 0,1,...,q, on S%1 are equal to

ho(A) = Aoh — (Aoh, A)A — -;—Zq:(A,/\, ANA =S (AN N AN + % (AN A)A

r=1 r=1 r=1



‘ . he(A) = A A= (AX AN r=1,..,q & (2.2)
In what follows we shall suppose the Lie algebra condition to be fulfilled:
dim LA(hy, ..., hg) =d —1 for all A € $41 (2.3)

where LA denotes the Lie algebra generated by the given vector fields. For many things
some weaker conditions would be sufficient but in order to av01d some complications
we impose (2.3). '

In [13], [14] the following theorem is proved

Theorem 2.1 (Khasmlnsku) Under the condition (2.3) the process A is ergodic,
there exists an invariant measure p()\), and, for any z # 0, there e:msts the limit (which
does not depend on x )

: .1 , .
P-a.s. lim n In IXm(t)|= }LIg ?E In | X, ()] = " Q(A)dp(A) == A (2.4)

where
q

Q) = (A0, + 23 (41,40 ~ T (AN (2:5)

r—-l r=1

The limit A* is called Lyapunov exponent of the system (1.2).

The next essential step in studying asymptotic properties of the solutions of (1.2)
was connected with introducing the concept of moment Lyapunov exponents (the idea,
used for another object of study, goes back to Molchanov [17]). First results here are
due to Arnold [1] for the real noise case and to Arnold, Oeljeklaus and Pardoux [4] for
‘the white noise case. :

Ito’s formula gives for every p € R

dXOF = @A) +5 P R(A)X (D)Pdt +pZ(A A, M) X () Pdw-(t)  (2.6)

r=1

where Q(\) is from (2.5), and

q
R(Y) = 3 (AN | (27)
r=1
Let X(0) = A, |A| = 1. For any p € R, a strongly contmuous semigroup Ti(p) of
positive operators on C(S%°!) can be 1ntroduced

T.(0)f () = BEf(M@)IXB)F, f e C(S™) (2:8)

Let L(p) be a generator of the semigroup T;(p). Under Lie algebra condition (2.3),
any operator Ty(p), t > 0, —oco < p < 00, is compact and irreducible (even strongly
positive). We recall that a positive operator T in C(S* ') is called irreducible if {0}
and C(Sd—l) are the only T-invariant closed ideals and T is called strongly positive if
Tf(A) >0, AeS%! forany f >0, f # 0. The generalized Perron-Frobenius theorem
ensures for each p € R the existence of a strictly positive eigenfunction for T;(p) (and,
consequently, for L(p)) corresponding to the principal eigenvalue. Some properties of
the function g(p) and a connection between g(p) and L(p) are given in [4].



Theorem 2.2 (Arnold—Oeljekiaus Pardoux). Under Lie algebra condition (2.3) the
limit g(p) in (1.3) ezists for any p € R and is independent of z, x # 0. The limit g(p)
is a convez analytic function of p € R, g(0) =0, g(p)/p is increasing, and

9(p) _ .
g(0) = hm P A (2.9)

Further, the moment Lyapunov exponent g(p) is an eigenvalue for L(p) with a strictly
positive eigenfunction ep(X) :

L(p)ep(A) = g(Plep(N), ep(A) >0, A € 87 (2.10)

The ezgenvalue 9(p) is simple and g(p) strictly dominates the real part of any other
point of the spectrum of L(p).

Let us note that if the matrix Ag in (1.2) is replaced by Ag+ al, where o is a scalar
and I is the identity matrix, then g(p) is replaced by g(p) + ap, and the new Lyapunov
exponent is equal to A* 4+ a. Therefore in many cases we can restrict ourselves to the
case A* < 0. If A* < 0 then the trivial solution of the system (1.2) is a.s. asymptotically
stable. It is well known (see, for instance, [14]) and follows from (2.9) that in this case
g(p) < 0 for all sufficiently small p, i.e., the solution X = 0 of (1.2) is p-stable for
such p. It is shown in [4] that g(p) — oo for p — oo unless there exists a non-singular
matrix G such that GA,G™1, r = 1,...,q, are skew-symmetric matrices. If g(p) — oo
for p — oo then the equation ;

g(p) =0 | O (211)

has a unique positive root *. It is clear that the solution X = 0 of (1.2) is p-stable for
0 < p < ¥* and p-unstable for p > ~*.

The concept of moment Lyapunov exponent was further developed by many other au-
~ thors and especially by Baxendale. In particular Baxendale shows in [6] that the root v*
of (2.11) is connected with the asymptotic behavior of the probability P{sup;»o | Xz (t)| >
(5} |z|/6 — 0, if v* < 0 and of the probability P{infs>0|X5(¢)| < 6}, |z|/6 — oo, if
¥* > 0.

Theorem 2.3 (Baxendale). Assume (2.3). If A\* < 0 and the equation (2.11) has a
positive root v* > 0 then there exists K > 1 such that for all § > 0 and for all x with
|z| < 6

=al/6)” < Plowp ()i > 6} < K(alfoy” (212

If X* > 0 and the equation (2.11) has a negative root v* < 0 then there exists K >1
such that for all § > 0 and for all z with |z| > 6

=(l/6)" < Pligg |X.(0)] < 6} < K(lal/6)" (2.13)

Thus, Baxendale has established that the probability with which a solution of the
linear system (1.2) exceeds a threshold is controlled by the number ¥*. Arnold and
Khasminskii call this number stability index. Their main result in 3] consists in proving
that the estimates (2.12)-(2.13) remain true for the nonlinear system as well. :



Theorem 2.4. (Arnold-Khasminskii). Let the system of linear approzimation (1.2)
for the system (1.1) be such that the condition (2.3) is fulfilled. Assume that the stability
indez v* for (1.2) does not vanish, v* # 0. Then ,

Case v* > 0 : There ezists a sufficiently small p > 0 and positive constants ai, as
such that for any 6 € (0, p) and all |z| < & the solution X,(t) of (1.1) satisfies the
inequalities

x(jal/9)" < Plsup IXa(8)] > 6} < ol /5)” (2149

Case v* < 0: There ezists a sufficiently small p > 0, positive constants as, a4, and
a constant 0 < o < 1 such that for any 6 € (0, ap) and all |z| < & the solution X,(t)
of (1.1) satisfies the inequalities

alele) < Pt GOl <S<alel/s” (219
Here 7 :=1inf{t : |X(t)| > p}.

Remark 2.1. As a matter of fact Arnold and Khasminskii have proved a more
general theorem. They consider the situation when a nonlinear system is close to a
homogeneous one in a neighborhood of the origin. The point is that the theory of
moment Lyapunov exponents can be carried over to stochastic systems with positive
homogeneous coefficients of degree one. For such systems, the stability index can also
be introduced and the estimates (2 12)-(2.13) can be established (see [3] and references
therein).

3. INVARIANT MANIFOLDS OF A DIFFUSION PROCESS

A set S C R is said to be invariant for (1.1) if z € S implies X,;(t) € S, t > 0. One
can to find out whether the set S is invariant by the Stroock-Varadhan support theorem
(see, for instance, [12]). This theorem has a more simple formulation for equations in
the sense of Stratonovich

dX = ao(X)dt + i a-(X) o dw,(t) (3.1)

r=1

Suppose ag(z) to have bounded continuous first order derivatives and a,(z), r =
1,...,q, to have bounded continuous second order derivatives in R%. Let C be a space
of d-dimensional continuous functions on [0, 00) with the topology of the uniform con-
vergence on finite closed intervals. Introduce Sg:(z) C C:

Seun(z) = {X(t), 0<t<oo: X({)=z+ [ * ao(X (s))ds+

Z/ a,(X(s))W (s)ds W, GW}

r=1
where W,(s), r = 1,...,q, are arbitrary smooth functions, W is a set of functions with
continuous derivative on [0, o). :

~ Theorem 3.1 (Stroock-Varadhan support theorem). Let z € R?, X;(t) be a solution
of the system (3.1), P, be its distribution, S(P,) be the support of P (z e., the smallest
~ closed set of C with measure equal to 1). Then '

S(P,) = 85, (@) (2

()]



We shall use the following simple consequence of this theorem.

, Corollary 3.1. Let S C R? be a closed set. If fér any x € S every point of any
trajectory from Sg¢(z) belongs to S (what we shall write shortly: Ssi-(x;t) C S) then
S is invariant for (3.1).

Using the well known connection between stochastic equations in the sense of Ito and
of Stratonovich one can formulate the Stroock-Varadhan’s theorem for the Ito system
(1.1). We restrict ourselves to the following consequence:

Corollary 3.2. Let S C R¢ be a closed set and

S11o(3 1) = {X(t) X@)=2+ [ * ao(X (8))ds — %2: / t %‘Z (X (s))ar(X (s))ds+

Zf a-(X (8))W,(s)ds, W, GW}

r=1

If Sro(z;t) C S for every z € S then S is invariant for (1.1).

Remark 3.1. Let Sg;.(z;t) C S (respectively Sp,(z;t) C S) be fulfilled. Then
Corollary 3.1 (respectively Corollary 3.2) is valid if ag(z) has bounded continuous
first order derivatives and a,(z), r = 1,...,¢, have bounded continuous second order
derivatives in some neighborhood of S. ' :

Example 3.1. Consider the Khasminskii system (2.1) in R®. The set S1t,(A) has a
form .

Sro(N) = {At), 0<t<oo: At) =X+

/0 “(Aoh — (Aoh, M)A — %i APA + -;- S(AZA, A)A)ds+
r=1 - r=1 ’

2_:1/ (AA — (AA, M)A )st}

For A(t) from Sp;,(\) we have

di-(AA) (42
——— = = —(1 - (A,4))(2(A0A, A) - ;(A,A,A))—

21— (4,4) (44 W, AO) =

From here it eas11y follows that the unit sphere S4~1 = {\: (}, /\) = 1} is an invariant
manifold for (2.1). It is clear also that the sets {A : A = 0}, {A: 0 < (}, /\) < 1},
{A: (A, A) > 1} are invariant ones for (2.1).



Example 3.2. Let z = £(t) be a T-periodic solution of the deterministic system

dx
— = ao(X)

and M be the phase trajectory of this solution (ag({(t)) # 0, 0 < ¢t < T). Consider
the following system in the sense of Stratonovich

X = (cio(X)ao(X) + bo(X))dt + i(a,(X)ao(X) +0,(X)) odw,(t)  (3.3)

r=1

where b.(z) =0,r=0,1,...,q,ifz € M ie., b.(£(t)) =0, 0<t < T, and ar(x) are
scalars, ap(z) # 0ifz e M.
Usmg Corollary 3.1 it is not difficult to prove that M is an invariant manifold for

(3-3).

Example 3.3. Let a k-dimensional sufficiently smooth manifold M C R¢ defined
by equations

mi(z!,...,z2) =0, i=1,...d—k ‘ (3.4)

be an invariant manifold for (1.1).

Thus, the system (1.1) defines a diffusion process P(t) on the manifold M. Let us
find a formula for a generator of the process P(t).

For certainty, let the system (3.4) be resolvable with respect to z**1, ..., z¢ in some
piece Mg of M :

rt = (2, ...,2"), i=k+1,..,d
We have in My : | o
dXi = a:‘)(Xla ...,-Xky (ka+1(X1a ey Xk)) eeey (Pd(Xli ’Xk))dt_*.

q
S ai(XY, L X OM(XE LX), Lot (X L X)) du (8),

r=1
i=1,kk+1,..d (3.5)

Due to Ito’s formula

k 9p™ .
de— dt+ atdw,(t) + alaldt, m=k+1,....d

where the arguments are the same as in (3 5)
Comparing the last d — k equalities from (3.5) with (3. 6) we obtain for the points
from Mj
k

op™ 4 Ey d/.1 ko k4171 k de1 k
d =z, ...,z%a(z, ..., 2", " (@, 20), e 00 (B s 2)) =

=1 a.'L'Z
am™(z, ..., 2F, o (2, .., 2F), o, (2, 3F)), m=k 41, d (3.7)
and (with the same arguments as in (3.7)) |

k 3(,0’" 1 k 82 q ; i
- _a = 1 .d 3.8
;63;"' Zamzaijaa ao,m k+ , ( )

zyl




Let g € C*(M) and let g have compact support. The function g can be expressed in
My in terms of z!, ..., z*. There exists (and not unique) a function §(z!,...,z%) which
is C2%-function with compact support and which is an extension of g :

g(z!, ..., z") = g(z*, ..., 2%, (2, ..., 2F), ..., (2, ..., 2F)) (3.9)

Let us denote the generator for the process P(t) by L and for the process X (t) by
L. We have for P € M, (see the first k equalities from (3.5), and then (3.9), (3.7), and

(3 8))
, 8g 8%g

Lg(P) = Lg(a:l,...,m’f) g =+ 5‘:1;_:1&" v i
gaa;"f,. +m§+1§fg : %‘E;” |
% g::lgaiai 376;%; 2(;1 Bma’;;cm . (?9(‘2: miﬂ Ba:a";xﬂ ' 8827)-'_

;06 1 & . ’
Z 00 3 + - Z Z a, rax"'aa}? = g(ml, . k,(,0k+1( ..,a:k)’,..,(Pd(wl’,..,wk))

z J=1r=1
i.e., we prove a formula

Lg(P)=Lg(P), PeM (3.10)

4. THE LINEARIZED SYSTEM FOR ORTHOGONAL DISPLACEMENT

Consider the system of deterministic differential equations
dX = ap(X)dt (4.1)

We suppose z = £(t) to be a T-periodic solution of the system (4.1), ao(£(t)) # 0
for every 0 < ¢ < T . Let M be the phase trajectory (orbit) of this solution. Results
on orbital stability related to the first Lyapunov method see, for example, in [11], [18]
- and results related to the second Lyapunov method see in [151 A method of orbital
Lyapunov functions has been proposed in [15] for deterministic systems (4.1) and it
has been extended in [16] to stochastic systems of the form

q
dX = ap(X)dt + ) ar(X)dw,(t) (4.2)
) r=1
It is assumed that
a-(£(t))=0,0<t<T, r=1,...,q ‘ (4.3)

and consequently z = £(t) remains a T-periodic solution for the system (4.2) as well.

Some sufficient conditions for mean square orbital stability have been obtained in [16]
provided that there is a sufficiently small neighborhood of orbit M which is invariant
for the system (4.2). ‘



We suppose U to be a tubular neighborhood (a toroidal tube) of the orbit M such
that for any point £ € U one can uniquely find a quantity ¥(z), 0 < ¥(z) < T for
which £(9(x)) is the point on the trajectory M that is nearest to z. It is clear that the
vector

5(a) = 5 — (@)

is a displacement from the orbit normal to the vector ag(£(9¥(z))), i.e.,

J ;
(@ =& (3(x))) - ap(§(I(z))) =0 (4.4)
i=1
We‘suppose also that all the functions a.(x), r = 0,1,...,q, € U, are sufficiently
smooth. Since we are interested in the local behavior of solutions of the system (4.2)
close to M and M is a compact, without any loss we can consider the coefficients a,(z)
to have uniformly bounded derivatives in Rd Let |6(z)] < r where 7 is sufficiently
small.
leferentlatmg (4.4) with respect to z* and taking into account the equality

£'(8(2)) = ao(§(9(=)))

we obtain
SHE2() ~ Il O G+

a . oY ‘

;(w’ =& (9(2))) - (Ao(£(9(2)))a0(§(9(2))))" - 55 (x) =0
where Ao(:c) is a matrix with the elements a (a;) % (:1;), i,j=1,..,4d.

From here '
_ a(§(3(=)))
e 9

where |

¢(z) = laoE@@))I = (Ao¢(¥(@)))ao(E(F(2))), = — £(I(2)))
Using Ito’s formula for §(X) we find

d5*(X) = af(X X)dt + Za (X)dw,(t)-

r=1

BEWX)) ¢ ] o
ST 2 (E000)) - (@b(X)de + 3 (X (1)~

(Ao 0N anlGCON = 3 aEICONHEIX)) Y- 0K~
1, 4. 9% a i(
an(f ”2-1 eyl (X) ;a (X)a? (X)dt (4.6)

9



In view of (4.3)
0, (E((X)) =0, X €U
and we have

a;(X) = (A-(£(9(X)))8(X))* + O(I6(X) ) (4.7)

where A,(z) is the matrix with the elements a¥/(z) = J=1,..,d.

Here and below all the O are uniform with respect to 0 <9 < T and |6(z)| < r.
Consequently

q

> an(X (|5(X )

r=1

and (4.6) can be rewritten as

48%(0X) = s @ (X)p(X) = aBERX)) - 3 ab(EO0X)ah (X))ot

i(af(x) ao(ﬁ(ﬂ(x))) Zz—EXa(;(E(Q?(X)))a’;(X) )d’w,-(t) + O(|5(X)|2)dt (48)

We have (see expression for cp(o:)) '

r=1

ag(X)p(X) — ag((O(X Zao(é(ﬂX) ))ap(X) =

=1

 a§(X) - ao(€BCONP — aS(E@X))) - 3 a(E(P(X)))ab(X)-

i=1

ag(X) - (Ao(£(I(X)))ao(€(3(X))), X — £(9(X))) =
(a5(X) — a5 (§(9(X)))) - lao(§W(X)))I*~

o ((9(X))) - D ap(E(B(X))) - (ap(X) — ap(§(W(X))))—

ag(X) - (Ao(€(9(X)))ao(¢(9(X))), §(X)) (4.9)
But '
ap(X) — ag(§(9(X))) = (Ao(€(I(X)))6(X))* + O(I8(X)I?) (4.10)
and ¢(X) is representable in the form
P(X) = lao(€(I(X)))I* + O(I6(X)1) (4.11)

From (4.9)—(4.11) we obtain the following expression for the drift coefficient in (4.8):

=1

arl)m'axxom — a(E(9(X))) - 3 a(€(3(X)))ad(X)) + O(I6(X)P) =

10



e (Ao(€(9(X)))6(X), ao(§(W(X)))) k(. _

(AolE(8(X)))ao(€B(X))), 6(X)
[aolEOCXN) P

The diffusion coeflicients can be obtained analogously due to (4.7):

a(E(9(X))) - T, ah(E(3(X)))ai (X) )
o(X) | = (A(€0CONS(0)*~

ag(€(9(X))) + O(I6(X)?) (4.12)

a7 (X) -
- (AEB0)SX), aole X)) o
Now we can write the system for §(X) in the following form

aoag (Ao + Ag )
|aol?

d8(X) = (Ao — ) - 6(X)dt+

Eq:(A« - aoaglz )8(X)dw, (t) + O(|6(X)[*)dt + Xq: O(I6(X)")dw,(t)  (4.14)

r=1 l r=1

where ag and Ag, k = 0,1, ..., g, have the quantity {(J(X (t))) as their argument.
It is not difficult to obtain

q
d9(X (£)) = dt + O(|6(X)|)dt + 3 O(16(X)|)dw.(t) (4.15)
r=1
as well. o
The relations (4.14), (4.15) can be considered as stochastic differential equations for
the process (9(X),6(X)) in view of a replacement X = £(¥(X)) + 6(X). The process
(9(X),5(X)) belongs to a d- dimensional manifold since ag (£(9(X)))6(X) = 0.

 Let us introduce a linear system of stochastic differential equations with periodic

- coefficients (a linearized orthogonal system for orbit)

dA = By(t)Adt + Z B, (t)Adw,(t) (4.16)
where | e
T 4 T )
Bo(t) = Ao(£(t)) — ao(£(¢))ag (ﬁ(t))(Ao(ﬁ(i)) +Ao (é(t)))’ @)
| | | |ao(£(2)) ,
_ _aE®)afEENAE®) _, .

Let us note that £(t) can be defined for all ¢ as a T-periodic function.

Lemma 4.1. If A(to) is orthogonal to ag(£(s + to)) for some s, 0 < s < o0, to >
0, then A(t) is orthogonal to ag(£(s +t)) for allt > to, i.e.,

i=1

((s+t Zaog(s+t)) A’()—O t>tp (419

11



Proof. The proof consists in simple checking the identity

A3 ab((s 1)) - M) =0, ¢ 2 o

=1

Remark 4.1. The following form ,
ar(z) = o (|6(2)]), r=1,...,q (4.20)

is fairly natural for the diffusion coefficients.

In (4.20) the functions a¥(p) of the scalar argument p > 0 are supposed to be suffi-
ciently smooth, c,(0) = 0. But the derivatives 8|6(z)|/8z* do not exist for z belonging
to the phase trajectory M, and the same is true for the derivatives dc, (|6(z)|)/ 8z if

o (0) # 0. Therefore, A., r =1,...,q, do not exist and one cannot use (4.7).

Instead of (4.13) we can‘write in the case (4.20)

. a§(E(W(X))) - =L, a(EWX))ai(X) _
a’r(X) QD(X) -

. 19(X)))) 16(X)
ok - 16(X A aE(£(9(X))) + O(I6(X)[?
where the d-dimensional vector o, is equal to .(0). ~

Let us write down an analogue of the linearized orthogonal system in the case (4.20):

dA = By(t)Adt + |A| z be (£)dws (£) (4.21)

r=1"

where the matrix Bo(t) is the same as in (4.17) and the vector b.(t) is equal to

bo(t) = o — S99 ey 4.22

1‘( ) kr |a0(§(t))[2 0( (t)) r 1 4 ( )
It is not difficult to verify that Lemma 4.1 is true for the system (4.21) as well.
The system (4.21) is not linear but it is homogeneous of degree one. In the case of
stationary point it is known that the theory of moment Lyapunov exponent can be
carried over to such systems (see [3] and references therein). In the case of orbit the
‘same can be done (the concept of moment Lyapunov exponent for the system (4.16) is
given in the next section).

Remark 4.2. The behavior of §(X) has also been considered in the deterministic
theory of orbital stability. For instance, in [18] a new coordinate system is introduced
in every hyperplane passing through a point (s), 0 < s < T, orthogonally to the
~orbit. The point £(s) is taken as an origin and d — 1 mutually orthogonal axis are
drawn in the hyperplane through £ (s) : Og(a)yl, veey Og(s)yd"l. Directions of the vectors
- Oge)y, i =1,...,d — 1, are supposed to be some continuously differentiable functions
of s. The old coordinates 1, ...,z% are expressed in terms of new ones s,%!,...,5%"! by
formulas:

=Y by(s)y’ +&(s), i=1,...,d
j=1

where the T-periodic functions b;;(s) depend on the choice of the axis Ogg)y!, ...,
Og(sy*~2. After that a system of d — 1 differential equations for y',...,3%"" can be

12



derived and linearized. The linearized system is a linear system with periodic coeffi-
cients. This system is used in studying orbital stability (see [18]). A disadvantage of
such an approach consists in the linearized system being dependent on the choice of
the coordinate axis what leads to the non-constructiveness of the system. At the same
time the system (4.16) has an explicit form. True, its dimension is equal to d and we
have to use (4.19). But this does not lead to any serious complications (see the next
section).

Remark 4.3. Another system exploited in the deterministic theory of orbital sta-
bility is a system of the first approximation in a neighborhood of the orbit M. Such a
system for (4.2) has evidently the following form

dX = Ao(¢(t)) X dt + zq: A (£(1) Xdw, (t) (4.23)

r=1

It should be noted that due to (4.3) X (t) = ao(£(t)) is a solut1on of (4.23). Mention
also the following connection (what can be checked by direct evaluations) between
solutions of the systems (4.16) and (4.23): if X (t) is any solution of the system (4.23)
then ,

v (X0, an(E(t +9)))

At) = X(t) PEEDI ao(é(t + 5)) (4.24)
is a solution of the system (4. 16) for any s, 0 < s < 0o, and the relation (4.19) is
satisfied. Clearly A(t) from (4.24) is the projection of X (t) on the hyperplane that is
orthogonal to the orbit at the point £( + s).

In the author’s opinion, it is the linearized orthogonal system (4.16) that to a con-
siderable extent corresponds to stability problems of invariant manifolds (even in the
deterministic case). However some questions (for instance, the behavior of a phase of
a perturbed motion) require in addition the system of the first approximation.

Remark 4.4. Consider the Stratonovich system (3.1). As before we suppose that
z = £(t) is a T-periodic solution of the system (4.1) and that (4 3) is fulfilled. The
linearized orthogonal system in this case is

dA = By(t)Adt + ZB (t)A o dw,(t)

r=1

with the same matrices By(t) and B,(t) as in (4.17) and in (4.18).

5. MOMENT LYAPUNOV EXPONENTS AND STABILITY INDEX FOR A LINEARIZED
ORTHOGONAL SYSTEM

Due. to the T-periodicity of By(t), k = 0,1,...,q, the system (4.16) reduces to the
following autonomous system

dA = By(©)Adt +\i B.(©)Adw,(t) )
dO = dt, ©(0) =¥ | | (5.2)

where © is considered to be a cyclical variable.

13



Let A(0) # 0 and

d | :
- ah(E()) - A(0) =0 (69
=
Introduce | ,
A
A=— 54
N (5.4)
and consider the process (©,A).
The Khasminskii system has now the following form
q ,
dA = bp(©,A)dt + > b.(0, A)dw,(t) , (5.5)
r=1
do =dt, ©(0) = (5.6)
The vectors bo(19 A) and b.(9, A) are equal to
bo(9,A) = BoA — (BoA, A)A—
: ,
-;—ZB/\B/\)\ ZB)\)\B/\+ X:B)\)\)2 (5.7)
. r=1 r=]1 1““1
b-(9,)) = Br/\ —(BAMA, T=1,...,q (5.8)

where By = Bi(9), k=0,1,...,q.
Clearly due to (5.3) and (5.4) we have (see Lemma 4.1)
o (€60 +1)AE) =0, AT(A®) =1 (59)

i.e., (©,A) is a Markov process on the (d — 1)-dimensional compact manifold D which
is defined in the space of d + 1 variables 99, A!, ..., A% by the following equations -

D ={(#,)): ad((@)A =0, ATA=1}
The manifold D is invariant for the (d+ 1) dimensional process defined by the system -

(5.5)—(5.8).
Ito’s formula gives for every —oo < p < 00

dA@)P = (pR(6,A) + 5 P R(O, )| APt +pZ(B A A)lﬁ(t)lpdwr(t)(5 10)

r=1
where
q

Q. = (Bol@A N + 3 (BN BN - BNV (511)

r—-l r=1

q

R(®,3) = Y (B.(5)\, 3 (5.12)

r=1

Let A(0) = A, ATA = 1. The following formula defines a strongly continuous semi-
group of positive operators on C(D) :

Tip)f(9,2) = Ef(©g(t), Ao a())|Asn(®)F, (9,A) €D, f € C(D)  (5.13)

This fact can be proved by direct checking the definition of a strongly continuous
semigroup. '
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Our most urgent goal is to find a generator A(p) for the semigroup T;(p).
- Let D C U C R*" where U is an open set and U is compact (U is the closure of
U). Let f be an C?-extension of f € C*(D) and let f vanish beyond U.
We have

o F(©s(t),Ap () = fv(@g(t)’; Asa(t), >0, (9,)) €D (5.14)
Ito’s formula gives ‘
df (919(0,Ao,x(t)ﬂAb,A(t)lp = df(©s(t), Ao (1))l As (B[P =
af d q BZf ; »
(379 bo) +3 Z Z 5/\13/\1 brb}?') IA,\(t)i dt+

1—1 r=1

Pz(gi: r) - (Brhoa, Aon) - [Boa(t)Pdt + f - (pQ + .%sz) [ Doa)Pdt+

r=1

z:(%, be) - | Ao (t)Pdwn(t) + F - pf;(B,.A,A) JAsa@)Pdw,(t)  (5.15)

r=1

From (5.13), (5.14) and (5.15) it follows
T(p)f(3,2) — F(9,A) = Ef(@,,(t),A,;,A(t))|A,9,A(t)|P —f9, %) =

t 8f f ; |
13/0(513 8/\,bo)+ 5 Zaxaxb 2 [Box(s)ds+

1,j=1r=1
/ pz  (BrAsgp, As) - |Aoa(s )lpds+E/ F- (pQ+— 2R) - |As(s)Pds
and, consequently, '
f af 1 &2 62f
A(p)f(ﬁ )‘) aAabO) ,,Z:”X_; 3/\‘3)\7
af < 1,
pZ(a/\, 2) - (BeAA) + - (pQ + 5P R), (¥,\) €D (5.16)

Formula (5.15) can be rewritten in the form

df (©s(t), Ao (t)|Aar(t)P = A(R)F(©a(t), Aoa()) - [Ava (1) Pdt+

Z(gj;’b) 8P dun(t) + -2 (BrAan, Aa)- Ao (t) Pdus(2)  (5.17)

r=1 r=1

It should be noted that due to the cyclicity of © any operator Ti(p), t > 0, —oco <
p < 00, is neither compact no irreducible (see, for instance, Section 7 below) in contrast
to the operator (2.8). But the whole semigroup (5.13) can be irreducible. We recall
that a positive semigroup T3(p) in C(D) is called irreducible if {0} and C(D) are the
only invariant closed ideals for all T3(p), t > 0.
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A simple sufficient condition of the irreducibility consists in ,
dim L(by (9, A), ..., bg(9,A)) =d — 2 for any (9,)) € D (5.18)

where L denotes the linear hull spanned by the given vector fields.
It follows due to [10], [8] that the spectrum o(A(p)) of the generator A(p) of the
positive semigroup T;(p) is not empty and

s(A(p)) = sup{Rep : p € o(A(p))} =

max{s € R : p € 0(A(p))}, —00 < s(A(p)) < 00

Moreover the resolvent R(u, A(p)) is strongly positive for p > s(A(p)) because Ty(p) is
irreducible, and

R, A@)F(9,3) = [ e Tir)£(5, Nt (519)

Let us show that under some natural assumption the resolvent R(, A(p)) is compact.
To this end consider the following system

dA = bo(©, A)dt + pi(B,(@)A, A)b,(©, A)dt + ij 5.(0, A)dw, (t), A(0) =
= = (5.20)

- dO =dt, ©(0) =9, (9,)) €D (5.21)

instead of (5.5)—(5.6). It is not difficult to verify that (5.9) is true for the system (5.20)—
(5.21) as well and that the manifold D is invariant for the process (©,A) defined
by this system. Due to Girsanov’s theorem the semigroup (5.13) has the following
representation (see the analogous transformation in [4]) ,

T(p)f(9,%) = Ef(©s(t), Aoa (1))

exp { / (Q(Os(3), Aox(s)) +1 2R(@,9(3),A,9,,\(s)))ds}\ )

where f € C(D), (4,)) €D, and @g(t) As(t) is the solution of (5.20)—(5.21).

Let P(t, (9, ), (d8xd])) be the transition probability function of the Markov process
(©,A). Here d is an element of the length on the orbit M, and d is an element of
the area on the sphere ATA=1. Suppose that :

P(t, (9,)), (dB x dX)) = 6(t +9,dd)p(t, (I, A), A)dA (5.23)
where , o
o[ 1, t+9edd
5t +9,d8) = { 0, t+9 ¢ dd

and the density p(t, (9, )\),5\) over A is continuous with respect to ¢, 9, A, X under
t > to for any to > 0.
Then

)03 = [ 10+ 0)plt,0, D, (5,), D

where | , . \
2 Tt o1y %
0(t,9,3) = exp { [[(0Q( +5,3) + 57RO + 5, V))ds |
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and

Rp, A(p))f(9,A) =

o TN exp (0 = D} o(t = 9,9, X)p(t — 9, (9,0), Ntk (5.24)

Now it is not difficult to prove directly that under sufficiently large i > 0 the repre-
sentation (5.24) implies the compactness of the operator R(u, A(p)). Due to Hilbert’s
resolvent equality the resolvent R(u,A(p)) is compact for any p € p(A(p)) where
p(A(p)) is the resolvent set of A(p).

Apparently, the assumption (5.23) is fulfilled not only under the condition (5.18) but
also under some weaker one, for instance, under the condition (just as in [4] and [6])

- dim LA(b1(9, A), ..., b4(9, X)) =d — 2 for any (¥4,)) € D

which is analogous to (2.3).
Now we formulate a basic hypothesis which is supposed to hold below in a lot of
statements.

Hypothesis (H). For each p € R the positive semigroup Ty(p) is irreducible and its
resolvent is compact.

Let us show that the hypothesis (H) ensures the existence of a strictly positive
eigenfunction hy(,A) of A(p) corresponding to an eigenvalue g(p) :

| ARG, =g@h(2,) (5.25)

‘The eigenvalue g(p) is real and simple. But in contrast to [4] the real part of any
other point of the spectrum of A(p) is not always strictly less than g(p). It can be equal
to g(p), i.e., g(p) is more or equal to the real part of any other pomt of the spectrum

of A(p).
Indeed, let p > S(A(p)) The relation

o(R(p, A(p)) = (1 — o(A(P)) ™"

implies (1 — s(A(p)))~* € o(R(, A(p))) because s(A(p)) € o(A(p)). Since R(u, A(p))
is compact and strongly positive, the number (1 —s(A(p))) ™! is a simple isolated eigen-
value of R(u, A(p)) which exceeds a module of any other eigenvalue of R(, A(p)). More-
over there exists a unique h, € C(D) with h,(9,1) > 0 for all (9,)) € D, ||h,|| = 1,
and a unique positive measure v, over D with ||1|| = 1 such that they are corre-
spondingly an eigenfunction of the operator R(u, A(p)) and an eigendistribution of
the conjugate operator R*(u, A(p)). Denoting s(A(p)) by g(p) we get (5.25) and the
equality ' ‘

A (p)vp =g(P)w (5.26)

Further, as (12 — s(A(p))) ™" is a pole of the resolvent of the operator R(u, A(p)), the
number s(A(p)) = g(p) is a pole of R(u, A(p)) (see [10]). In such a case the generalized
Perron-Frobenius theorem [10] (see also [8]) sets besides (5.25) and (5.26) that all the
points from o(A(p)) with real part g(p) are g(p) +ick, k = 0,%1,£2,..., for some
o > 0, and they are all 51mp1e isolated eigenvalues of A(p) Thus the above-mentloned
assertion is justified.

We underline that the noted above distinction from [4] is not any obstacle for carrying
over the theory of moment Lyapunov exponents to the system (5.1)—(5.2).
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Now we are ready to formulate a number of theorems relating to stability properties
of the system (5.1)—(5.2). These theorems are analogous to the correcpondlng ones
from [14], [4], and [6] and their proofs are not adduced here.

The following theorem is an analogue of the Khasminskii theorem (see Theorem 2.1).

Theorem 5.1. Assume (H). Then the process (©,A) on D is ergodic, there ezists
an invariant measure (9, A) and, for any 9,6 # 0 with ag (£(9))é = 0, there ezists the
limit (which does not depend on 9,6)

P-as. lim ;mmﬂ,&(tn = lim -t-Eln[Ag,g(t)[ = / Q(I, \)du(d,A) : = \*(5.27)

The limit A\* is called Lyapunov exponent of the system (5.1)-(5.2).

The following theorem is an analogue of the Arnold-OeIJeklaus-Pardoux theorem (see
Theorem 2.2).

Theorem 5.2. Assume (H). Then for all 9,6 # 0 with ag (5(19))6 = 0 the limit
(which is called the p™™-moment Lyapunov e:cponent for (5.1)-(5.2))

Jim —lnElA@ s(0)P = g(p) (5 28)

exists for any p € R and is zndependent of (9,6). The limit g(p) is a convex analytzc
function of p € R, g(p)/p is increasing, g(0) = 0 and ¢'(0) =

Further, the moment Lyapunov exponent g(p) s an ezgen'value for A(p) with a strictly
posztwe eigenfunction hpy(¥, X) :

A)hy(9,2) = g(0)hy(9,3), hpw,x) >0, (9,)) €D (5.29)
The eigenvalue g(p) is simple and g(p) is more or equal to the real part of any other
point of the spectrum of A(p).

These results can be applied (as in the case of a stationary point) to study the
behavior of P{sup,sq|As,(t)| > p}, |6] K p, for asymptotically stable systems (A* <
0) and of P{infi>0[As,(t)| < p}, 16| > p, for unstable systems (A* > 0) (of course it
is supposed that ag (£(9))6 = 0).

‘The following theorem is an analogue of the Baxendale theorem (see Theorem 2.3).

Theorem 5.3. Assume (H). If ¢'(0) = A\* < 0 and the equation

g(p) =0 (5.30)

has a root fy > 0 then there ezists K > 1 such that for all p > 0 and for all 0 with
6l<p and af (£(9))6 = 0

-—-—(lél/p)” < P{sup [Bas(t)] > p} < K(I6l/p)" (5.31)

If g'(0) = A* > 0 and the equatzon (5.30) has a root v* < O then there exists K > 1
such that for all p > 0 and for all § with |6|>p and ag (£(9))6 =0

L8Y/e)" < Plinf|8as(0) < £} < K(81/o)" (5.52)
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The root 7* is called stability index of the linearized orthogonal system (5.1)—(5.2).

Exaxnple 5.1. Clearly from (4.16), the matrix of the second moments
M(t) = EDo,s(t) A 4(2)
satisfies the following deterministic system

dM £
= = Bo(t)M + MBJ (t) + 3 B.() MB] (2)

;T=1

M(0) =687, ag (£(9))6 =0
Consequently, (H) implies

9(2) = Jlim —ln(trM (t)

If g(2) < 0 then XA* < 0 and if in addition the equatlon (5.30) has a root then v* > 2.
If \* <0 and g(2) >0 then 0 < * < 2.

6. THE ARNOLD-KHASMINSKII THEOREM AND STABILITY INDEX FOR ORBIT

The following theorem is an analogue of the Arnold-Khasminskii theorem (see The-
orem 2.4).

- Theorem 6.1. Let the linearized orthogonal system (5.1)—(5.2) for the system (4.2)
be such that the hypotheszs (H) is fulfilled. Assume that the stability indez v* of (5.1)-
(5.2) does not vanish, v* # 0.

Then

1. Case «v* > 0: There exists a sufficiently small p > 0 and positive constants c1, co
such that for all z : |6(z)| < p the solution X,(t) of (4.2) satisfies the inequalities

cx(16@)l/p)" < PLaup (0] > 0} < ca(E(0)1 /)" (6.1

2. Case v* < 0 : There ezists a sufficiently small p > 0 | positive constants cs, cy
and a constant 0 < o < 1 such that for any po € (0,ap) and all z : py < |6(z)| < ap

c3(|6(z)/p0)"" < P{ mf 160X (t))l < po} < ca(|6()]/po)" (6.2)
Here 7 := inf{t : |6(X,(t))] > p}.

Proof. Let f(¥,)) € C*(D). Let

¥ =9(Xa(t), 6=06(Xs(t)), T =T(Xa(t)) = 6(Xa(t))/16(Xa(2))]
Clearly ( (Xz(t)),T(Xz(t))) € D. In view of (4.14) it is not difficult to evaluate

AT(X, (1)) = bo(O(Xa(t)), T(Xa (t)))dt + z:(br (O(Xa(8)), T (o (8)) (1) +

O(I6(X=(®)D) dt+ZO(I5 (£)))dw(2)

r=1
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Further, analogously to (5.14), (5 15) and due to (4.15) and (5.16) we get
0 TIP = A0 5Pt

52 (9,17),b0(0,T)) - 8P (8) + £(6,T) 3 (B(O)T.T) - ePdus )+

r=1

O(6F)dt + ioualp“)dwr(t) (63)

r=1

Case 1. Let v* > 0 be the stability index for (5. 1) (5.2) and Ay« (3, A), hoyeye(F, A)
be strictly positive solutions of the equations

A(Y)hy =0, A(Y" + )hyrie = g(7" + )y (6.4)

where 0 < ¢ < 1 and g(v* +¢) > 0.
Introduce the following function

Ve (@) = hyr (9(2), 6()/16()]) - [6(@)|" F hoese(8(2), 8(2)/18(2)]) - 18(2)]""*(6.5)
Due to (6.3) and (6.4) |
AVi(Xa(t)) = Fg(7" + Q) hyese(9,T) - |8] +dt+

X;(ag/\ (8,1),6:(3,T)) - [8]" duw,(t) + hos (9,T) - 7" é(BT(ﬁ)F’I‘) |67 dw, () +
o6 )it + SO0 Ydut) 69

- Let the eigenfunctions A, and A« have already been chosen. It is clear from (6.5)
and (6.6) that there exists a sufficiently small p > 0 such that V_(z) > 0 for all z with
- 0< |6(z)| < p and V_(Xz(t A 7zp)) is a supermartingale where

o e = ifft: (K0 > 0)
Hence there exist positive constants a; and ay such that the following inequalities
hold: '

a ()" 2 V-(2) 2 BV- (Xa(t A Ts,p)) 2 azp” P{ sup |6(Xa(s))] > p}

and therefore
P{sup|6(Xa(t))| > p} = lim P{ sup |6(Xa(s))| > p} < — (|5( I/e)™  (87)
>0 % “0<s<t
As Vi (z) > 0 (see (6.5)) and V4. (X;(t ATy )p)) is a submartingale for sufficiently small
p (see (6.6)) we have : '

al6(@)" < Vi(®) < BVi (X (rae A ) < a0 Plsup |6(Xa(t))] > o} + (6 ;

where a3, a4, a5 are some positive constants which do not depend on ¢, £ < |§(z)| < p
and

Tae =inf{t: [6(X,(t))| < e}
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Relations (6.7) and (6.8) give (6. 1) prov1ded p is smallest from (6.7) and (6.8). Case
1 is proved.

Case 2. Let v* < 0. Then there exists a sufficiently small ¢, 0 < ¢ < 1, such that
g(v*+¢) <0in (6.4). Now Vi(X,;(t A7;,)) is a supermartingale for sufficiently small
p and for z with 0 < [6(z)] < p. We have for some positive a;, a; and for z with

po < |6(z)] <p:
a16(z)|"” > Vi(z) > BV (X (tA Tmp)) > ap g‘P{0<itr<1£ 16(Xs(t))| < po} (6.9)
Relation (6.9) implies the second part of (6.2).

Further V_(X,(t A 75,,)) is a submartingale for sufficiently small p and there exist
positive constants as, a4, as such that for all z with po < [6(z)| < p:

ul6@I7 < V-(0) < BV (XalTao A ap) < aaf P{, it 16(Xa(t))] < po} + asp™
. where ag, a4, as do not depend on pg and p.
If po < |6(z)| < ap then '
aud P{, jnf_[80G0)] < p} 2 aald(@)[” — asp™ 2
1 ’Y‘ 1 ,yt ’_Yt ‘
5al8(@)[" + saslap|” —asp | (6.10)

If 0 < o < 1 is such that %aga”’ — a5 > 0 then (6. 10) implies the first part of (6 2).

Theorem 6.1 is proved.

The root * is called stability index of the orbit M of the system (4.2).

7. STABILITY OF ORBITS ON THE PLANE

Clearly A(t) is deterministic in two-dimensional case (n = 2) :

174\ 00(5()) 2 ao(f(t))
A“*‘l(«m|A“) T2 E0)]

It is possible to evaluate directly that (5.10) can be rewritten for n = 2 in the
following form :

dmw?=@m@+%?M®YMﬁWﬁ+

Zc, O)Pdw.(t), |AQ]=1 (71)

Wheré , ‘
e (8) = \T(9) A (I)N(3)
with

1 [-aeo)]
““‘w%@w»d~%@wn]
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)
A(¥) = 3a1 Ty ,7=0,1,....q
% c0) Zm(e(0))
and '
2; 2(9) = AT () Ao (9)A(9) — —R(ﬁ)

All the functions A(9), A-(9) and so on are T—periodic.
The semigroup T;(p) is defined on the space of continuous T-periodic functions:

Tp)f(9) = £+ DEIAOF = 10+ oxp { [ (6Q(s) + 57°R(s)ds}  (72)

and its generator A(p) has a form

AT (9) = () + (4Q() + 3P R (9)
From the equation

A(p)hy(9) = Q(P)hp(ﬁ)

we obtain an eigenfunction

10(9) = o {9 /(p@(s L)

where the eigenvalue g(p) is equal to

T 1 (T
N e— ¥ . 2 — .
| op) =5 [ Blo)s o'+ [ Qs)ds-p (73)
It is possible to prove that

/T Q(s)ds = /T trAy(s)ds
Jo 0 »
Therefore

=4'(0) = / trAg(s)ds
and if fj R(s)ds # 0, f§ trAg(s)ds # 0 then the stability index is equal to

T
Jo R(s)ds
So all the characteristics in two-dimensional case can be evaluated in explicit form.
In connection with the contents of Section 5 we can note that as is obvious from the
formula (7.2), any operator Ti(p), 0 <t < 00, —00 < p < 00, is noncompact and, for
instance, for £y = kT, k = 0,1, ..., the operator T, (p) is not irreducible. We note also
that the spectrum U(A(p)) consists of the eigenvalues g(p)+2mik /T, k =0,%1, £2,.

Example 7.1. Consider the Van der Pol equation with a multlple noise Wntten in
the form of the Ito system

dX' = X2, dX? = —X1dt+eX?(1 Xl Jdt + o(XY, X2)dw(t)  (7.5)
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It is known that an asymptotically stable orbit & = £(¢t) for the deterministic Van
der Pol equation for small € > 0 differs little from a circle of radius 2 :

¢ = 2cost + O(e), € =2sint+0(€), T =27+ O(e)
Suppose , |
o(z',2%) = e/e(a’ - €' (Y(a',2%) + BvE(a® - £ (Y(',2%)) (7.6)

where o, B are some constants and £(y(z!,2?) = (£1(y (2!, z?), E(Y(z',2?)) is the
nearest to (z',2?) point on the orbit z = £(t).
One can evaluate for the system (7.5)

o=[59108 ]

0 1
Ao(F) = [ —1—4esin 20+ 0(e?) (1 —4cos®V) + O(e?) } ’

Further »

. 0 6
Ai(9) = { do do ]
- 5;1'(5(19)) @(5(19))

and since '

8'1,& 1 ¢ —
8:31( (¥) = -3 smt‘/’ + O(e), P 2({(19)) = -cosﬂ +O0(e), ¥(£(W)) =9

we have

41(9) = ve(acosd + fsind) [ cos ¥ +00(e3/2) sin?d +OO(63/2) ] )
c1(9) = AT (9) A1 (I)A(F) = Ve(asinF cos 9 + Bsin? 9) + O(*?) |

R(9) = A(¥) = ey(a sind cosd + Bsin®9)? + O(?) ,
Q) = N(9) Ao(O)N) — R() =

—3¢sin? 29 + esin® Y — g(a sind cosd + Bsin®9)? + O(?)

From ‘he’re |
T T B T - .

/0 R(s)ds = Ze(a2 +38%) + 0(e?), /0 Q(s)ds = —2me — gzs(oz2 + 36%) + O(e?)

and the stability index is equal to

16
a? + 32

v =1+ +O(8)

Now consider the Stratonovich stochastic differential system
CdX= X2%t, dX?=—X'dt+eX?(1— XV)dt +o(X1, X2) odw(t)  (7.7)
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- with the same ¢ as in (7.6). The corresponding Ito system is

dX! = X2dt, dX*=—X'dt+eX>(1 - X)dt+

1 0o
2022

Let us mark all the corresponding values for the system (7.7) by means of bar as
opposed to (7.5). We have

(X1, X?) - o(XY, X2)dt + o( XY, X2)dw(t) - (78)

_ 1 | 0 0
Ao(?) = Aol9) + 3 [ ST (E€(6) 2m(E() - om(E() } )

. o 0 0
Ao(9) + g(a cos® + fsind) [ cos¥sind + O(e?) sin®dI + +0(e?) ]
A(8) = Au(9), a(9) = a(9), R(9) = R(¥)

Q(9) = XT(9) Ao (9)A(8) — -;- () = —3esin? 29 + esin® 9 + O(c?)
Now ‘ '

/OTQ(s)ds = —2me + O(¢e?)

and
.16
=
So the Van der Pol equation possesseé good stability properties with respect to both
the noise in the sense of Ito and the noise in the sense of Stratonovich.

+0(e)

8. STABILITY OF ORBITS WITH NONVANISHING DIFFUSION
Let an orbit '

M: z2=¢£00),0<9<T

be an invariant manifold for the system (4.2). Let £ (9) # 0, 0 <9 < T. In contrast
to Section 4 we do not suppose that this orbit is a phase traJectory for (4.1) and we
do not suppose (4.3), i.e., it may be a diffusion not only in a neighborhood of the orbit
but also on the very orblt

In a neighborhood of M we can introduce new variables § = £—£(¥(z)) and ¥ = ¥(z).
The dimension of (4, 6) is equal to d + 1 but due to the restriction 4

(5, (9) =0 | 51)
the number of free variables is equal to d.
We have
4,09 ;
d(X — (WX ))) = ao(X) dt+ZaT(X dw,(t) — € (9 X))ZB - X)aX
r=1 =1
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18 ¢ P9 ot
5 32 (€000 ZH00 2500 + € 00 5T ()X ax -
bo(X)dt + 3" by (X)dw (1) | (8.2)
where
bo(z) = aa(s) — € (9(2)) ; P (@)aifo)-
13 £ 619 D NS g ()
be(c) = a(z) — f(ﬂ(w»z  @ai(e), =1, (5.4

If X(0) € M then X (t) € M for all t > 0 as M is the invariant manifold for (4.2).
Therefore X (t) = £(¥(X(t))) and in view of (8.2) the following lemma is natural.

Lemma 8.1. Let the orbit M be an invariant manifold for the system (4.2). Then
the coefficients b;(z), 1 =0,1,...,q, vanish on the orbit, i.e.,

bo(€(?) =0, 09 < T (8.5)

b(((9) =0,0<9< T, r=1,...,q (8.6)

Proof. Let us make use of the Stroock-Varadhan support theorem. If X (0) 3 (9)
then X (¢) due to Corollary 3.2 also belongs to M for all ¢ > 0 and, consequently, X (0)
is collinear to § (19) i.e., the following vector

X'(0) = aol€(®)) — 5 > o2 6(6)an (E8)) + D an (€AW 0)

r=1 r=1

is collinear to & (%) under any W, (0)
From here it follows (1f we put W (0) =0,r=1,..,9)

L& Bay o (aal€(9),€(9))
ao(§(9)) — r; B ((9))ar(€(9)) = £ () BOE
;é (;9”2 ; 8a, a/r(‘f('ﬂ)) 5(19)) | (8~7)
and
0 (€@) =€) @& OLEDD 58)

1§'(9)[?
From the followmg 1dent1ty with respect to z

(z = €(9(2)),€ (9(2))) =0
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we have

o, & (W) i1
5 ") = EOE@P - @- @ e@@y o 69

and, consequently,

63:‘( (9)) = éi(gi?z ,0<9<T; i=1,..,d (8.10)

Differentiating (8.9) with respect to 27 and setting z = £(¥) in obtained expression
we find

%9
(€)=
Lo e e gy SEE W) o
e € OF @) +8 OF 0) - =zEe— €@, 0) 611

The relations (8.8), (8.10) and (8.4) imply (8.6).
Let us prove (8.5). The equality (8.8) gives

(e, 0) = o @ EONEDN - €OLEE) (12
Now we obtain from (8.3), (8.10), (8.11), and (8.12) |
e @) €@)
bo(£(9)) = ao((9)) — £ (9) - HOE »(d)
where ’
W)= 36'0) 1o W S arl€O).€ ()~
1o (€0),€(9)
3¢ L) S ieon.c o)
Using (8.7) we get rid of ao
b (9) = %il e CO)a600) -
L e ,
SR SN ), £ ) -9 8.13)

Let us substitute a, according to (8.8) in the two first terms of (8.13):

bo(€()) = 3 - 2 (e(o))e (9) - LEODEDD)

275 1€'(9))2
L £(9) aar (a.(£(9)), € (9))
2[ED) ¢ Z £(), f( )) €O — (¥) (8.14)
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After differentiating (8.8) with respect to 9 we obtain

%0 o) — (). HEODEQ) oo (arE(9).E'0)
o SOV =0 gy O T e

-4~

(19) aa" ! € ( ) : ' ’ "
For e (€0NE ), () = 2757 - (@(69), € (9)) - (€1(9),€"(9)

Substituting this expression in the first term of (8.14) we find

bo€(9) = 375 @69, € 0) - (a0, ()~

15() ! 2, 4 "
ST @ EO.E€ @) €©).€ @)

Finally, due to (8.12) we obtain (8.5). Lemma 8.1 is proved.

Introduce matrices

B.0) = 15

Due to Lemma 8.1 the system (8.2) can be rewritten in the form

=0,1,.

d6(X) = Bo(9(X))6(X)dt + Z B, (9(X))8(X )dw,(t)—j—

r=1

O(6(X) Pt + 3 O(8(X) 2)dur 2 .15

r=1

It is not difficult to obtain from (8.10), (8.11) and (8.12)

d9(X) = cp(I(X))dt + f: . (9(X))dw, (£)+

r=1

O(I(X))dt + 3 O(6(X)dun(t)  (816)

r=1
where

(a.(£(9)),£ (@)
HOE

_J%@mew»_l(W)sﬁ) .
w0 ="e@r "z [ E )

ar(9) = r=1,..q

Consider the following system with respect to varlables A and © (© is a cyclical
variable)

dA = By(©)Adt + iB,(@)Adwr(’t) | | (8.17)

r=1
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dO© = op(O)dt + iar(@)dwr(t) - (8.18)

r=1

We note that all the coefficients of the system (8.17)~(8.18) are T-periodic functions.
The following lemma is an analogue of Lemma 4.1.

Lemma 8.2. Let A(t),0(t) be a solution of the system (8. 17)- (8 18) such that
(A(0),€'(©(0))) = 0. Then for allt >0

(A®),€ (@) =0 | (8:19)

Proof. In view of (8.15) and (8.16) let us write down the following system with
respect to 6 and 9 :

d6 = By(9) t+ZB dwr (t) + O(|6)? dt+ZO(|c5| )dw,(t)  (8:20)

r=1 r=1

43 = ao(9)dt + Zq: o (9)dw, (t) + O(18))dt + i O(|6])dw,(¢) (8.21)

r=1 r=1
Let 6(0), 16(0)| < r, and ¥(0) are such that
(6(0),€'(B(0))) =0
Then the solution of the system (8.20), (8.21) has the form
| 8(t) = 8(X=(t)), I(t) = 9(Xa(t))
where z is defined uniquely from
j = 29(1;)) 6= x—f(’g)
Hence
(B(), @) =0, t20 B (8.22)
Due to the Stroock-Varadhan theorem it is not difficult to obtaln that (8.22) is
fulfilled for

5() = 5(0) + [ Bol(s))B(s ds——z / (B2(5(s))3(s) + e (3(s)) BL(5(s))3(s))ds+

/B ((5))5(s)W.(s) ds+/ 0(15(s) )ds+z/ O(I5(s)2)W.(s)ds (8.23)

r=1

+/ ao(9(s))ds — —2/ (s))ar(9(s))ds+

r=1

Z/ ar(ﬂ(s) W.(s) ds+/ O(|8(s)| ds-l—E/ (18(s)|)W. (s)ds (8 24)

r=1

where W,.(s), r=1,..,4q,are arbltrary smooth functlons _ L
Let us put 6(0) = a6 a >0, 9(0) = 9 and find a derivative of ((t),& (z9(t))) with
respect to t at ¢ = 0. I_f we divide this derivative by a and turn « to zero we obtain
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~ some expression what is equal to zero under all the mentioned W,(s). Thereby we can
prove the following relations

q -

(Bo(9)5 — 5 Y (BA)6 + s () BL(5)6) € (9))+

r=1

(6, f () ( - —X;a ﬁ)ar #) =0 (8.25)
(B, (9)8,€ (9)) + (6,€ (ﬂ))a,(z?) =0, r= 1, e (8.26)

~ for any (8,9) if only (6,¢'(9)) = 0.

In other words, the relations (8.25), (8.26) take place for every 0 < 9 < T and for
any 6 if only (6, f (9)) = 0. This implies the existence of scalars ko(?), %1(9), ..., k. (9)
such that the following identities with respect to 9, 0 < ¢ < T, are fulfilled:

1

CHORE ;«Bfw» + ()N T)E 0)+
(o (9 ——za )i (9)E"(8) = ko(9)€'(9) (8.27)
BT 0) + ') = b OE@), 7 = 10 (829

* Let us check now according to Corollary 3.2 that the manifold

| S={(6,9):(6,6(¥)=0}
is invariant. For the system (8.17), (8.18) we have

s,to((a, 9),t) = {(A(t),,@(t)) L A@) =6+ f t Bo(O(s))A(s)ds—

-Z f B(© )A(s)ds——Z / O @(s) (© (s))A(s)ds—i—

Zf B.( (&)W (5)ds, @(t)—ﬂ-l—/ ao(@(s))ds—
%;/ a;(@(s))ar(@ s))dvs-{-g[: ar(Q(s))W;(s)ds, W, E,W} (8.29)
From (8.29) | ‘ ’ ‘
260,600 = (Bu(EENAL) - 3 3= BUOWIA), € (O
YL t)+le OW(0), € (©()+

(8), € ©)-(2(60) - § 3 O)on(B) + OO (NEH)

1‘=1
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From equalities (8.27), (8.28) we have
00,6 (©(0) = k(©(0)  (A(0),€ (B0 + 3 k(EWIW(0)- (A, € (60)

Since (A(0), £'(©(0))) = (6,&£'(¥)) = 0 we obtain from here
(A®),€©1)=0,t20
and, consequently, (A(t),©(t)) € S. Lemma 8.2 is proved.

Now it is not difficult to carry over the results of Section 5 and Section 6 to considered
case. At first we write the Khasminskii system in accord the formulas (5.5)-(5.8) and
“an equation for |A(t)|P in accord the formulas (5.10)—(5.12). Then we introduce a
semigroup of operators T3(p) on C(D) by (5.13) where

D={(#X:(\ @) =0, ()N =1}
Finally'we obtain the formula (5.17) where A(p) has a different form in comparison
with (5.16):
a 18 L& _&F

g £ o .
pZ(g—ﬁ,br) ) (BV')‘7 ’\) +.f ’ (PQ + %p:zR)’ (19: )‘) €D
r=1 i

We remark that by, b depend on ¥, A here (see formulas (5.5)—(5.8)) unlike bg, b,
in (8.2)—(8.4) which depend on z. But this does not lead to a confusion.

Theorems 5.1, 5.2, 5.3 and 6.1 can be formulated without any essential alterations
now. We note that in the case of a non-degenerate noise of the Khasminskii system
in the manifold D (in contrast to Section 5 such a case is possible here) any operator
Ti(p), t > 0, is irreducible and compact as in 4.

Example 8.1. Consider for s1mp11c1ty a partlcular case of the system (3.3) in the
sense of Stratonovich

dX = ao(X)dt +k§q: ar(X)ao(X) o dw,(2)

r=1

or, equivalently, in the sense of Ito

dX = ao(X)dt-l— Ea,. X) (e (X) Ao(X) + ao(X) el (X))ao(X)dt+

1'—1

Z ar(X)ao(X)dw (t) (8.31)

r=1

where o' (z) is a vector-row with the elements %(m) , t=1,..,d, and Ao(z) is a
i daj . ,
matrix with elements —(z) , 4,5 =1,...,d.

oI
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The system of linear approximation A for orthogonal displacement X — £(9(X))
from the manifold M (a linearized orthogonal system) has the following form

40(Aoas, a0) (Ao + A7 )ao, A)——I 34dt — 20(Agag, AoA) I:OPdt-{-
k 1“0
d d d d d 2 i
s a aO k 80’6 aa() 2 AS S At
a;; a B °A @ a;k}:l; 90w 0 T Bk 8:53)( A7+ ad )| N
Z o, BoAdw, (t) (8.32)
r=1
where Ap = Ao(£(0)), Bo = By(©) (see the formula (4.17)),
12 ' ~
o= a(6) = 1302, f=A(6) = £ 3 ar(a a0 (833
7‘—1 r=1
and ag, a,, 7 =1,...,q, and all their derivatives in (8.32), (8. 33) are evaluated at £(©).

The equation for cyclical variable © has a form

40 = (14 AO))dt +3 o (£(8))duw, (t) - (8.34)

r=1

The derivation of the system (8.32), (8.34) involves a lot of calculations. We mention
here the most important of them only. We have

LU — ao(e9(a))) ()

A A ort
PEOED _ 1, ¢(0)an 600 2210) 2 0) + a0 5 0
Therefore
d(X — £(9(X))) = dX — aa((3(X))) ; oo (X)dx~
li Ao(E(B(X)))aal€(8(X))) 2 9 )2 20 () + ao(€(0(X))) g SOaxax:
2 AT ozt (8.35)
~ Further
89, . _ae(d() &9 . _
- Ozt (z) = o(z) ’ Oz0xd (z) =
(AoE(0(=)an(€0())) o ED(a) ~ aHEOE) - 25(z)
£ (8.36)

¥?(z)

where ‘ , -
p(2) = lao(EW(@)))? - (Ao(£((®)))ao (6B (@))), = — £(3(=)))
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22 () = 3o £, a0 HEL._

(Ao(E(9(z)))ao(€(F(x)))) -

33 S (900 + S ) G 9

=1 k=1m=1

a}(((B(2)) (@~ EP@N)TAAEW(=) (8.37)
Substituting (8.36) and (8.37) in (8.35) and linearizing it with respect to X —£(9(X))
we obtain the system (8.32). The equation (8.34) is obtained from the equality

1.3 8% L
Z —(X0dx +5 37 5505 (X))dX'dX?
z—l m 1

by throwing small components.

9. STABILITY INDEX FOR MANY-DIMENSIONAL INVARIANT MANIFOLDS

Let M be a k-dimensional sufficiently smooth compact invariant manifold for the
system (1.1), 1 < k < d. Conceptually, this case slightly differs from the case of orbit
considered in the previous sections. Therefore we only outline the main ideas.
 Let some piece My of the manifold M be defined, for instance, by the following
equations in the parametric form

t =&, ...,9%) ,i=1,...d
or, briefly, ' |

T =¢()
We suppose the system of tangent vectors

¢ /3 '
e (8) 1 ()

to be linearly independent. Let z belong to sufficiently small neighborhood of My. Then
the projection £(¥(z)) of z on M is uniquely defined. The functions ¥*(z),..., %*(z)
can be found from the following relations

(z —£((2)), aﬂmw( z))) =0, m=1,..k (9-1)

leferentlatlng (9 1) with respect to #%, i = 1, ..., d, we obtain a system of k equations

for (:z:) .., k, whence one can find them owing to the linear independence

of the tangent vectors and to the smallness of z — §(J(x)). After that we find the

2,9m

derivatives' (:1:) i,j=1,...,d; m=1,..., k. Next it becomes possible to evaluate

oz
d5(X) = d(X — £((X))) = bo(X dt+2b )dw, (t) (9.2)

r=1

and

d¥(X) = )dt + E ¢ (9(X))dw,(t)+

r=1
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r=1

O(|6(X)[)dt + ijoqa(xmdw,(t) ~ (93)
Lemma 8.1 also holds here: \ ‘ » '

b;(£(9)) =0,i=0,1,....q

Therefore we are able to linearize the system (9.2) and to obtain from (9.2) and (9.3)
the following (d + k)-dimensional system

dA = By(©)Adt + ZB )Adw,(t) (9.4)
: r=1
g
dO = 0p(©)dt + Y _ a(O)dwi(t) (9.5)
r=1

An analogue of Lemma 8.2 i is valid for this system:

(A), 2= o ¢ O®) =0, m=1,..k t>0 (9.6)
if only
(A(0), 3375";(@(0))) =0, m=1,..,k (9.7)
Just as above the system (9.4) implies the Khasminskii sysﬁem
dA = by(©, A)dt + fj b-(©, A)dw,(t) © o (9.8)
r=1 .

where the coefficients b;(d, A), i = 0, 1, ..., g, have the same expression as in the formulas
(5.7), (5 8) (of course, the variable ¥ is k-dimensional here). We remind again that
bo, b, in (9.8) depend on ¥, A unlike &y, b, in (9.2) which depend on z. But this does
not lead to a confusion.

Due to (9.6) the following (d — 1)-dimensional compact manifold

3
" 9gm
is invariant for the system (9.5), (9.8). Under each fixed ¥ the manifold D gives a unit
sphere 451 of the dimension d — k — 1 and, consequently, D is a torus which is equal
to the product Mx S4-F-1,

Then we can write the equation for |A(t)?, introduce the semigroup 7:(p) on C(D),
define A(p) and so on as in Section 8 up to the form of a majority of the formulas.
We should only have in mind that the parameter ¥ is k-dimensional now and, in
connection with that, to introduce the corresponding modifications. As a result we
can obtain a Khasminskii-type theorem, an Arnold-Oeljeklaus-Pardoux-type theorem
and a Baxendale-type theorem for a linearized orthogonal system in the case of a k-
dimensional invariant manifold. Finally an Arnold-Khasminskii-type theorem can be
obtained and thereby a stability index of a k-dlmensmnal invariant manifold can be
introduced. '

D={WN: AN =1 A\5m®)=0,m=1,.k}

Consider specifically the case k =d — 1. Let an invariant manifold M of the system
(1.1) be defined by the equation

F(z) = F(ml, ey @) =0 (9.9)



Let p(z) be the projection of the point z on M (of course, z belongs to a sufficiently
small neighborhood of M). Clearly

F(p(z)) =0 | . (00)

5(x) = o~ pla) = kola) S (pla)) (0.11)

where k(p(z)) is a scalar. |
The scalar k(p(z)) and the coordinates of the vector p(z) can be found from the

system (9.10)—(9.11) consisting of d + 1 equations.
The equation for A has the following form

dA = Bo(p(X))Adt + 3" B, (p(X)) Aduws (2) (9.12)

r=1

where X € M is the solution of the system (1.1) (and, consequently, p(X) = X)
We do not write the system (9.8) for A because A is uniquely defined by p(X) :

oOF |
A= ii——_x(p(X)) (9.13)
A] - R
|55 (P(X))]

In view of (9.13) the equation for |A[? can be written with some coefficients depend-

ingonlyon X € M :

dIAP = Qolp(X))APEE + 3° Q. (p(X)) | APduo, (1)

. r=1
Therefore we can define a semigroup T3(p) on C(M) by the following way

TO)f(E, 5 = BICG)|AP, 7€M

Example 9.1. Sté.bility index of the uhit sphere for the Khasminskii system.
' A
Consider the Khasminskii system (2.1)—(2.2) in R?. Here p(\) = i and we have

A 1 1
d(A - I—A-I) =(1- W)AOAdt -(1- -I-Kl-g)(AoA,A)Adt—k

1‘q

_(1 IAI3)E (AA, A-A)Adt — (‘ IAIs)Z(AA | A) A Adi+
1 & \
_( IAIS);(A,A,A) Ad;+

! Al)ZA,Adw,. 6 -0-7p A|3 Z(AAA)Adw,(t)

r=1

Linearizing this system with respect to A — — we obtain

Al
q q
dA = AgAdt — 3(Agh, A)Adt — %Z(A,A, AN)AdE - 33 (AA, A) A, Adt+

r=1 r=1
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E(A A, A)?Adt + Z(A,A 3(AA, A)) Adw, (t)

r=1 r=1

where A is a solution of the system (2 1) on the unit sphere, i.e., |A(t)| = 1.

Let us evaluate

d|AJP = —2p((Aoh, A) + = Z ATA Acb) - Z(ATA,A)z) |APdt+

r=1 r=1

2p)2z<A¢A AVIAPds 203 (A, A)|A P (1) =

r=1 r=1

(9Q(A) + 3 RIAIAPdE + g3 (AN, R)APdu, () (914

r=1

where Q, R are correspondingly from (2.5), (2.7) and ¢ = —2p.

Comparing (9.14) with (2.6) we obtain the following

Theorem 9.1. Assume (2.3). Let

go(P) ~ lim In E| X, (t)|P

t—oco t

be the moment function for the equation (1.2) and let

be

o) = lim REIAOP

t—oo

the moment function for the invariant unit sphere of the Khasminskii system, (2.1)

connected with the system (1.2). Then

*

9(p) = go(—2p)

In particular, if v is the stability indez for the system (1.2) then the stability index
of the unit sphere for the corresponding Khasminskii system is equal to

*

1.,
= —5’70
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