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The Bouchaud–Anderson model with double-exponential
potential

Stephen Muirhead, Richard Pymar, Renato Soares dos Santos

ABSTRACT. The Bouchaud-Anderson model (BAM) is a generalisation of the parabolic Anderson model
(PAM) in which the driving simple random walk is replaced by a random walk in an inhomogeneous
trapping landscape; the BAM reduces to the PAM in the case of constant traps. In this paper we study
the BAM with double-exponential potential. We prove the complete localisation of the model whenever
the distribution of the traps is unbounded. This may be contrasted with the case of constant traps (i.e.
the PAM), for which it is known that complete localisation fails. This shows that the presence of an
inhomogeneous trapping landscape may cause a system of branching particles to exhibit qualitatively
distinct concentration behaviour.

1. INTRODUCTION

The Bouchaud-Anderson model (BAM) is the Cauchy problem on the lattice Zd

∂u(t, z)

∂t
= (∆σ−1 + ξ)u(t, z), (t, z) ∈ (0,∞)× Zd,(1)

u(0, z) = 1{0}(z), z ∈ Zd,

where ξ = (ξ(z))z∈Zd is a collection of random variables known as the potential field, σ = (σ(z))z∈Zd
is a collection of strictly-positive random variables known as the trapping landscape, ∆ is the discrete
Laplacian defined by (∆f)(z) =

∑
|y−z|=1(2d)−1(f(y) − f(z)) (where | · | denotes the `1-norm),

and ∆σ−1f = ∆(σ−1f). The potential field and trapping landscape are taken i.i.d. in space and
independent of each other; we denote by P their joint law and by E the corresponding expectation.

The BAM was introduced in [19] as a combination of two well-known models: the parabolic Anderson
model (PAM), to which it reduces when σ ≡ 1, and the Bouchaud trap model (BTM), which is the
continuous-time Markov chain on Zd with transition rates

wz→y :=

{
(2dσ(z))−1 if |y − z| = 1,

0, otherwise,
(2)

i.e., with generator (∆σ−1)T . Indeed, under mild conditions on ξ, σ, the Cauchy problem (1) admits a
unique non-negative solution given by the Feynman-Kac representation

u(t, z) = E0

[
exp

{∫ t

0

ξ(Xs)ds)

}
1{Xt = z}

]
,(3)

where (Xs)s≥0 is the BTM and Ez denotes its law started at z ∈ Zd. Another interpretation for u(t, z)
is as the expected number of particles at the space-time point (t, z) in a system of branching particles
starting from a single particle at the origin and evolving through:

DOI 10.20347/WIAS.PREPRINT.2433 Berlin 2017



S. Muirhead, R. Pymar and R.S. dos Santos 2

� Branching: A particle at site z branches at rate ξ(z)+ or is removed at rate ξ(z)−;
� Trapping: Each particle moves as an independent BTM.

This system has connections to applications such as population dynamics and chemical kinetics. For
more information, we refer the reader to [8, 14] (PAM) and [1, 4] (BTM).

Like the PAM, the BAM exhibits complex intermittency phenomena, meaning that the model may de-
velop pronounced spatial inhomogeneities over time. The strength of this effect depends naturally on
the tails of ξ(0) and σ(0). In the most extreme cases, intermittency manifests as complete localisation,
in which there exists a Zd-valued process Zt such that

lim
t→∞

u(t, Zt)

U(t)
= 1 in probability,

where U(t) :=
∑

z∈Zd u(t, z) denotes the total mass of the solution. In less extreme cases, a larger
number of sites may be needed; see Section 1.1 for further discussion.

In [19], the BAM was studied in the case of Weibull random environments, i.e. when

P(ξ(0) > x) ≈ e−x
γ

and P(σ(0) > x) ≈ e−x
µ

, γ, µ ∈ (0,∞).(4)

One of the main results of [19] is that the BAM completely localises throughout this regime. This is not
very surprising, as complete localisation of the corresponding PAM was already known, and it is natural
to expect that the presence of traps strengthens concentration.

In the present paper, we examine the BAM with double-exponential potential, i.e. when

P(ξ(0) > x) ≈ exp{−ex/%}, % ∈ (0,∞).

Our interest in this case comes from the fact that complete localisation fails in the corresponding PAM
[3, 10]. By contrast, here we show that, as soon as σ(0) has infinite essential supremum and positive
essential infimum, the BAM completely localises, i.e., the presence of the trapping landscape qualita-
tively affects the intermittent behaviour of the solution. While seemingly surprising, this can be seen as
a manifestation of the criticality of double-exponential tails for intermittency in the PAM, cf. Section 1.1.

As in [19], we additionally provide information about the structure of ξ and σ around the localisation site
Zt. To motivate these results, consider the following interpretation of the branching system described
above: each particle is an individual, branching is seen as reproduction, removal as death, and move-
ment as mutation within a space of phenotypes. In this context, ξ(z)+ is interpreted as fitness and σ(z)
as stability of the phenotype z. Similar models were introduced (and analysed, mostly through simula-
tions) in [5], with the conclusion that, under general conditions, the population should concentrate on
phenotypes that are both atypically fit and atypically stable. This prediction, which we call the “fit and
stable hypothesis”, was first considered rigorously in [19] for the BAM, where it is shown to hold in many
cases, but not always. Here we confirm the prediction under our assumptions, showing in particular that
both ξ(Zt) and σ(Zt) tend to infinity (in probability) as t → ∞. More detailed information is available
for particular choices of trap distribution.

1.1. Localisation in the PAM and BAM. Intermittent phenomena in the PAM have been the object of
extensive study for many years. Earlier approaches [8] characterized intermittency in terms of moments
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of the total mass U(t), and much effort was devoted to the asymptotic analysis of its moments as
well as its almost sure behaviour [2, 9, 12, 13]. In this literature, a heuristic geometric description of
intermittency emerged according to which the solution should concentrate in a relatively small number
of “islands” of slowly growing radius in which the potential field approaches a certain optimal shape. In
particular, the double-exponential family was identified as critical: for heavier tails, the islands consist of
single points, whereas for lighter tails their radius grows to infinity.

The geometric description of intermittency was first rigorously established for double-exponential tails
in [10], where an explicit family of islands was provided whose number grows slower than any power
of t. Since then, the geometric approach was very successful for heavier-tailed potentials, e.g. Pareto
[15, 17], Weibull [6, 16, 23], stretched-double-exponential [18], which were all shown to completely
localise. More recently, it has been shown in [3] that, in the double-exponential case, even though there
is no complete localisation, most of the solution is supported in a single island of bounded radius.
Corresponding mass concentration results for lighter tails are expected to be harder, and are still open.

Even within the complete localisation universality class of the PAM, different shades of localisation can
be distinguished. Most emphatically this relates to how neighbouring values of the potential interact
in determining the position of the localisation site Zt. In the case of potentials with sub-Gaussian tail
decay, one can determine Zt by maximising a time-dependent functional Ψt(z), z ∈ Zd, that depends
on the potential field only through its value at the site z. In other words there is no interaction between
neighbouring values of the potential. As a consequence, the sites neighbouring Zt all have typical
potential values. The situation is very different in the case of potentials with super-Gaussian tail decay,

P(ξ(0) > x) = e−x
γ

, γ ≥ 3,

where the localisation site Zt must be identified via a functional that depends on the values of the
potential inside balls of radius

ρξ := b(γ − 1)/2c ∨ 0

around each site; the value ρξ is known as the radius of influence of the model. In contrast to the
previous case, potential values within this distance of Zt are atypical, and in particular are much larger
than their typical values.

The study of localisation in the BAM was initiated in [19], which analysed the Weibull case in which (4)
holds. As mentioned above, the main result of [19] was that complete localisation occurs throughout this
regime. Further, it is shown in [19] that the BAM exhibits subtly distinct complete localisation behaviour
depending on the choice of Weibull parameters (γ, µ), as characterized by the radii of influence. More
specifically, in order to identify the localisation site, the potential field and trapping landscape must
interact in balls of radius

ρξ :=

⌊
γ − 1

2

µ

µ+ 1

⌋
∨ 0 and ρσ :=

⌊
γ − 1

2

µ

µ+ 1
+

1

2

⌋
∨ 0

respectively. As a result, [19] proved two interesting and unexpected addendums to the “fit and stable
hypothesis” in the Weibull case. First, in the case γ < 1, the strict version of the hypothesis actually
fails (at least asymptotically); instead the trap value at the localisation site converges in law to its typical
distribution. This can be understood as meaning that, if γ < 1, the benefits of a high branching rate
outweighs any additional benefit gained from a deep trap. Second, the “fit and stable” profile of the
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localisation site may extend, in certain circumstances, to sites neighbouring the localisation site, but
with an interesting twist. Specifically, if ρξ ≥ 1 then sites neighbouring the localisation site will also be
atypically fit, but if ρσ ≥ 1 the sites neighbouring the localisation site will also be atypically unstable (so
as to more quickly jump back to the localisation site).

To complete this section, we mention recent work [20, 21, 22] that establishes the complete localisation
of the branching system mentioned above with Pareto potentials and σ ≡ 1 (i.e., corresponding to
the PAM). Although the particle system lacks many of the appealing (and simplifying) features of the
BAM, it might be hoped that the techniques developed in these papers could apply also in the case of
inhomogeneous trapping landscapes.

1.2. Our results. We now present formally our main results. They consist of four theorems: the first two
apply to a general class of potential and trap distributions (as described next), and establish complete
localisation of the model, a weak limit for the localisation site Zt as well as some qualitative properties
of ξ, σ around Zt. The last two concern a specific class of traps that leads to finite radii of influence,
namely: log-Weibull. In this case, we obtain the detailed profile of ξ, σ around Zt and prove a form of
optimality of the radii of influence.

1.2.1. Assumptions. We make the following general assumptions throughout the paper:

(A.1) There exists a % > 0 such that the function

F (r) := ln(− lnP(ξ(0) > r)), r > essinf ξ(0)

is eventually differentiable as r →∞, and moreover satisfies

lim
r→∞

F ′(r) =
1

%
.

(A.2) The trap distribution σ(0) is unbounded, i.e.,

esssupσ(0) =∞.

Condition (A.1) is the same as [3, Assumption 2.1], and slightly stronger than [9, Condition (F)]. It
ensures that the tail of ξ(0) lies in the vicinity of a double-exponential distribution, and guarantees a
certain amount of regularity in addition to bounds on the tail decay. This condition holds, for instance,
in the case of exact double-exponential tail decay

P(ξ(0) > x) = exp{−ex/%}, x ∈ R.

To avoid certain technicalities, we also make the following ellipticity assumption:

(E) The trap distribution σ(0) is bounded away from zero, i.e.

δσ := essinf σ(0) > 0.

Assumption (E) prevents pathological behaviour caused by excessively “quick sites”, and is used ex-
tensively throughout the proof. This condition can likely be weakened, although we lack a firm under-
standing of the extent to which this would be possible.
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Finally, we only consider d ≥ 2. This avoids possible screening effects of deep traps and very negative
potential values (cf. [2]), and is used only to bound from below the total mass of the solution. Note
that we do not, as has been standard in the analysis of localisation in the PAM, impose any lower
tail restriction on ξ(0), relying instead on percolation arguments. To our knowledge, our approach is
novel and could be used to remove lower-tail assumptions that have appeared in previous work (e.g. [3,
Assumption 2.2]). Although we do not show it, in the case d = 1 our arguments go through as long as
σ(0) and ξ(0) decay sufficiently quickly at infinity and negative infinity respectively (along with some
regularity in this decay); see e.g. conditions (c) and (d) in [19, Assumption 1.6], and [3, Assumption 2.2].

1.2.2. General results. Our first result establishes the complete localisation of the model. As in [3,
19], the localisation site may be defined as the maximiser of a certain time-dependent functional Ψt

(described in detail in Section 2), allowing in particular the identification of its limiting distribution. Here
and in the sequel we make use of the abbreviations ln2 t := ln ln(t∨ e) and ln3 t := ln ln ln(t∨ ee).

Theorem 1.1 (Complete localisation). There exists a Zd-valued process Zt such that

lim
t→∞

u(t, Zt)∑
z∈Zd u(t, z)

= 1 in probability.(5)

Moreover, as t→∞,

d

%

(ln t) ln3 t

t
Zt ⇒ Z∞ in law,(6)

whereZ∞ is a random vector in Rd with i.i.d. coordinates, each having Laplace distribution with location
0 and scale 1 (i.e., with density x 7→ 1

2
e−|x| with respect to Lebesgue measure).

Our second result describes the local profile of ξ and σ near Zt, in particular showing that the lo-
calisation site has an atypically large potential value and trap depth; this confirms the “fit and stable
hypothesis” in our setting. Recall (A.1) and define, for t > 0,

(7) at := inf{u > 1: eF (u) ≥ d ln t} ∧ 1,

where by convention inf ∅ =∞. Using assumption (A.1), it is straightforward to show that

lim
t→∞

at/ ln2 t = %.

In the sequel, we say that a sequence of random variables (Xt)t≥0 “asymptotically stochastically dom-
inates” another random variable Y if, for each x ∈ R,

lim inf
t→∞

P(Xt > x) ≥ P(Y > x),

and say that (Xt)t≥0 “is asymptotically stochastically dominated” by Y if, for each x ∈ R,

lim sup
t→∞

P(Xt > x) ≤ P(Y > x).

Theorem 1.2 (Local profile of the random environments). There exists a process Zt satisfying (5)–(6)
such that, as t→∞, the following hold:
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1 (Potential at localisation site)

|ξ(Zt)− at| → 0 in probability;

2 (Potential at neighbouring sites) For each y ∈ Zd \ {0}, the sequence (ξ(Zt + y))t≥0 asymp-
totically stochastically dominates ξ(0), and

ξ(Zt)− ξ(Zt + y)→∞ in probability;

3 (Trap at localisation site)
σ(Zt)→∞ in probability;

4 (Traps at neighbouring sites) For each y ∈ Zd \ {0}, the sequence (σ(Zt + y))t≥0 is asymp-
totically stochastically dominated by σ(0).

We note that the asymptotic stochastic domination in items (2) and (4) is not necessarily strict; indeed,
the discrepancy between ξ(Zt + y) and ξ(0) (respectively σ(Zt + y) and σ(0)), will vanish in the
limit if y lies outside the radius of influence of the potential field (respectively trapping landscape), see
Theorem 1.5 below. We also mention that, similarly as in [3, 19], ageing results for both the solution of
(1) and the localisation site could be obtained; in the interest of brevity, we do not pursue this here.

In light of Theorem 1.1, one may ask whether a similar phenomenon arises for potentials with lighter
tails. For such potentials, the PAM has even weaker concentration, so we do not expect all unbounded
trap distributions to induce complete localisation. Instead, we suspect that this happens when the trap
distribution has sufficiently heavy tails, at least as long as the potential is unbounded; see Section 1.5
for heuristic justification of this.

1.2.3. Refined results for special cases of trap distribution. Theorems 1.1 and 1.2 are the limit of our
results in full generality, but we can get more refined results by specifying exactly the trap distribution.
For simplicity, we restrict our attention to the case in which the trapping landscape has a log-Weibull
upper-tail decay:

(LW) There exists a µ > 1 such that

− lnP(σ(0) > x) = (ln x)µ, x ≥ 1.

To make certain computations easier, we will also replace assumption (A.1) with the condition that the
potential distribution is exactly double-exponential:

(DE) There exists a % > 0 such that

P(ξ(0) > x) = exp{−ex/%}, x ∈ R.

Under assumptions (LW) and (DE) we give exact values for the radii of influence of the model as well
as a more detailed description of the local profile of the random environments.

We first make the concept of radii of influence more precise. For r ≥ 0 and z ∈ Zd, let

Br(z) := {x ∈ Zd : |x− z| ≤ r}
denote the `1-ball with radius r around z. In the sequel we abbreviate Br := Br(0).
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Definition 1.3. Fix k1, k2 ∈ N and let ψt : Zd → R be a family of random functionals indexed by
t > 0 such that, for each z ∈ Zd and t > 0, ψt(z) is measurable with respect to ξ, σ. We say that
ψt is (k1, k2)-local if, for any t > 0 and any z ∈ Zd, the random variable ψt(z) depends on ξ only
through its values inside Bk1(z), and on σ only through its values inside Bk2(z).

For ψ : Zd → R, we write

(8) arg maxψ :=

{
z ∈ Zd : ψ(z) = sup

x∈Zd
ψ(x)

}
.

Define the radii of influence

(9) ρξ := b(µ− 1)/2c and ρσ := bµ/2c.

Theorem 1.4 (Radii of influence). Assume that (LW) and (DE) hold, and let Zt be the process from
Theorems 1.1 and 1.2. There exists a (ρξ, ρσ)-local functional ψt such that

lim
t→∞

P (arg maxψt = {Zt}) = 1.(10)

On the other hand, if k1 < ρξ or k2 < ρσ then no (k1, k2)-local functional satisfies (10).

In order to describe the local profile of ξ and σ, we introduce the ‘interface cases’

Iξ :=

{
µ > 1 :

µ− 1

2
= ρξ

}
= 2N + 1 and Iσ :=

{
µ > 1 :

µ

2
= ρσ

}
= 2N

at which the radii of influence are discontinuous, and the corresponding ‘interface sites’

Fξ :=

{
y ∈ Zd : |y| = ρξ, if µ ∈ Iξ,
∅, otherwise,

and Fσ :=

{
y ∈ Zd : |y| = ρσ, if µ ∈ Iσ ,
∅, otherwise,

i.e., the inner boundary of Bρξ or Bρσ in the interface cases, or empty otherwise.

In the interface cases, certain weak limits arise which we describe next. For y ∈ Zd, denote by n(y)
the number of shortest nearest-neighbour paths in Zd from the origin to y, and set

(11) c̄(y) :=
µn(y)2

(2d%δσ)2|y|−1
.

Let νyξ , νyσ denote probability laws on R with densities proportional to ec̄(y)x/%fξ(x), ec̄(y)δσ/xfσ(x)
respectively, where fξ, fσ are the densities of ξ(0) and σ(0).

Theorem 1.5 (Local profile of the random environments). Assume (LW) and (DE). Then there exists a
process Zt satisfying (5)–(6) and such that, as t→∞, the following hold:

1 (Local profile of the potential field)
1.1 (Potential within radius of influence) For each y ∈ Bρξ \ ({0} ∪ Fξ),

ξ(Zt + y)− %(µ− 1− 2|y|) ln3 t→ % ln c̄(y) in probability,

whereas for each y ∈ Fξ, ξ(Zt + y)⇒ νyξ in law;

DOI 10.20347/WIAS.PREPRINT.2433 Berlin 2017



S. Muirhead, R. Pymar and R.S. dos Santos 8

1.2 (Potential outside radius of influence) For each y ∈ Zd \Bρξ ,

ξ(Zt + y)⇒ ξ(0) in law;

2 (Local profile of the trapping landscape)
2.1 (Trap at localisation site)

µ%(ln2 t)
µ−1

d ln t
σ(Zt)→ 1 in probability;

2.2 (Traps within radius of influence) For each y ∈ Bρσ \ ({0} ∪ Fσ),

σ(Zt + y)→ essinf σ(0) in probability,

whereas for each y ∈ Fσ, σ(Zt + y)⇒ νyσ in law;
2.3 (Traps outside radius of influence) For each y ∈ Zd \Bρσ ,

σ(Zt + y)⇒ σ(0) in law.

Observe both that νyξ stochastically dominates ξ(0) and νyσ is stochastically dominated by σ(0), and
so Theorem 1.5 is consistent with our general result in Theorem 1.2.

Although we do not prove it, similar results hold for other special cases of trap distribution. For example,
in the Pareto case in which there exists µ > d such that,

P(σ(0) > x) = x−µ, x > 1,

the radii of influence are ρξ = ρσ = 0, and the trap at the localisation site satisfies
µ%

d ln t
σ(Zt)⇒ ν̄σ in law,

where ν̄σ is a random variable on R with density proportional to e−µ/xfσ(x). On the other hand, in the
Weibull case in which there exists µ > 0 such that

− lnP(σ(0) > x) = (x− 1)µ, x > 1,

the radii of influence grow with t and satisfy
ρξ

ln2 t/ ln3 t
→ µ

2(µ+ 1)
and

ρσ
ln2 t/ ln3 t

→ µ

2(µ+ 1)
,

and the trap at the localisation site satisfies( µ%

d ln t

)1/(µ+1)

σ(Zt)→ 1 in probability.

1.3. Overview of the remainder of the paper. The rest of the paper is organised as follows. After
setting up some notation, we describe next in Section 1.5 some heuristic ideas motivating our results.
Technical statements start in Section 2, where we provide a comprehensive overview of the proofs of
Theorems 1.1, 1.2 and 1.4 based on intermediate propositions that are proved in subsequent sections.
The main mathematical tools of the paper are developed in Section 3 (properties of the random envi-
ronments and spectral theory for the BAM), Section 4 (a point process approach) and Section 5 (a path
expansion technique). These tools are then applied in Section 6 to obtain the bulk of the proofs related
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to our main results. Finally, Section 7 treats the special case of log-Weibull tails, finishing the proof of
Theorem 1.5; a version of Laplace’s method used therein is discussed in Appendix A.

1.4. Notation and terminology. The set of positive integers is denoted by N, and N0 := N ∪ {0}.
We denote by |B| the cardinality of a set B. For a real-valued function f and a positive function g,
we write f = O(g) to denote lim supt→∞ |f(t)|/g(t) ≤ C for some constant C ∈ (0,∞), and we
write f(t) ∼ ag(t) to mean that limt→∞ f(t)/g(t) = a, a ∈ R \ {0}. When the latter limit holds
with a = 0, we write f = o(g) or alternatively |f | � g or g � |f |. By O(·) and o(·) we will always
mean deterministic bounds, in the sense that, if we write for example Y = o(g) for a t-dependent
random variable Y , we mean that |Y | ≤ |f | where f is a deterministic function and f = o(g) (and
analogously for O(·)).

We say that a t-dependent event occurs “with high probability” if its probability tends to 1 as t → ∞,
and we say that it occurs “eventually almost surely” if there exists a (random) t0 ∈ [0,∞] that is a.s.
finite and such that the event occurs for all t ≥ t0.

1.5. Heuristics. We now present heuristics to justify why the BAM with double-exponential potential
exhibits complete localisation for any unbounded trap distribution, whereas complete localisation fails
for the equivalent PAM (i.e. the case of constant traps).

Analogously to in the PAM (cf. [3, 9, 10]), we expect the total mass U(t) to be asymptotic to etλDt ,
where λDt is the principal Dirichlet eigenvalue of the Bouchaud-Anderson operator in a box Dt of
radius roughly t. Furthermore, we expect the solution u(t, x) to concentrate inside a boxBRt(z) ⊂ Dt

of relatively small radius Rt (but possibly still growing with t), whose Dirichlet principal eigenvalue is
almost that of Dt; this is of course difficult to prove, but may be used as an ansatz to obtain a lower
bound for U(t) (see Lemma 3.3).

Now, using [19, Lemma 3.2] and some basic extreme value analysis, we obtain

(12) λDt ≥ max
z∈Dt
{ξ(z)− σ−1(z)} = at + o(1)

for large t, where at is the leading order of ξ inside Dt as given by (7), and the o(1) error comes from
the fact that σ(0) is unbounded. On the other hand, by Lemma 3.6 below,

(13) max
x∈BRt (z)

ξ(x) ≥ λBRt (z) = at + o(1)

where the last equality holds if λBRt (z) = λDt + o(1). Since the high peaks of ξ in Dt (i.e., those
within o(1) of at) are separated by a distance more than Rt from each other, and indeed even from
any x where ξ(x) > at − c for some c > 0 (see Proposition 2.1), we obtain by [19, Proposition 3.3]
that the principal eigenfunction in BRt(z) is sharply peaked. Together with [19, Proposition 3.14], this
is enough to deduce that u(t, x) completely localises.

In the case of the PAM, the analogous inequality to (12) is

λDt ≥ max
z∈Dt

ξ(z)− 1,
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i.e., a constant below the leading order at; in fact,

λDt = at − χ+ o(1)

for a strictly positive constant χ (cf. [9, Theorem 2.16]). This indicates that potential values inside the
optimising microbox BRt(z) are within a constant of the maximum, and indeed it can be shown that
the shifted potential approaches a set of minimisers to a certain variational problem (cf. [7, 10]). In
particular, the solution does not completely localise.

Note that the value of σ on the maximiser of (12) above goes to infinity with t, motivating our result in
part (3) of Theorem 1.2. Also note that, when the tail of ξ(0) is lighter than double-exponential, (13) is
not enough to conclude separation of high peaks; indeed, some explicit decay in o(1) would be required,
translating (via (12)) into a condition on the tail of σ(0). This suggests that complete localisation might
still hold for lighter tails of ξ(0), as long as the tails of σ(0) are taken heavy enough.

2. OVERVIEW OF THE PROOF

In this section we provide a thorough overview of the proof of our results, showing how they follow
from key intermediate statements. More precisely, we give here the proof of Theorems 1.1, 1.2 and 1.4
conditionally on several propositions that are stated below and proved in the remainder of the paper.
The proof of Theorem 1.4 will additionally depend on Theorem 1.5, whose proof is also deferred to later
sections. Our strategy closely follows that implemented in [19], with additional input from the techniques
developed in [3].

2.1. The localisation site. We begin by defining the localisation site Zt. For this we need a collection
of relevant scales. For each L > 0 recall the scale aL in (7) and observe that

(14) P (ξ(0) > aL) = L−d

when L is large, as ξ(0) has an eventually continuous tail by assumption. By [9, Corollary 2.7],

lim
L→∞

max
z∈BL

ξ(z)− aL = 0 almost surely.(15)

It is straightforward to show using (A.1) that, if ln kL ∼ lnL, then akL = aL + o(1) as L→∞.

Define for η > 0 and L > 0 the set ΠL,η of high exceedances of the potential field

(16) ΠL,η := {x ∈ BL : ξ(x) > aL − η} .

By (15), ΠL,η 6= ∅ for large L. Moreover, this set has useful separation properties, summarised in the
following result (whose proof is deferred to Section 3 below).

Proposition 2.1 (Separation properties of the high exceedances). For each c > 0, there exists an
η > 0 such that, for any sequence mL → ∞ satisfying lnmL � lnL, eventually almost surely as
L→∞,

(17) z ∈ ΠL,η ⇒ ξ(x) < aL − c ∀x ∈ BmL(z) \ {z}.
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We shall need a macroscopic scale

(18) Lt := t ln2 t,

as well as a mesoscopic scale RL →∞, that we take to be non-decreasing and satisfying

(19) (lnL)β � RL � (lnL)α as L→∞ for some 0 < β < α < 1/d.

The macroscopic scale Lt is used to define an a priori macrobox BLt in which the solution u(t, z) is
contained with minimal loss of mass; see Lemma 2.8 below. The mesoscopic scaleRLt gives an upper
bound on the scale within which the random environments interact to determine the localisation site; in
other words, it is an upper bound on the radii of influence.

Observe that the scale in which the separation properties hold in Proposition 2.1 is much larger than the
mesoscopic scale RL. Recalling the parameter δσ from (E), we draw the following important corollary.

Corollary 2.2. There exists a δ ∈ (0, δ−1
σ ) such that, eventually almost surely as L→∞,

(20) z ∈ ΠL,δ ⇒ ξ(x) < aL − 4δ−1
σ ∀x ∈ B2RL(z) \ {z},

and hence also
BRL(y) ∩BRL(z) = ∅ for all distinct y, z ∈ ΠL,δ.

We fix henceforth δ as in the statement of Corollary 2.2. The localisation site Zt is defined as follows.
For z ∈ Zd and r > 0, let λr(z) be the principal eigenvalue of the Bouchaud-Anderson operator

∆σ−1 + ξ

in Br(z) with zero Dirichlet boundary conditions. Define the penalisation functional

(21) Ψt(z) :=

{
λRLt (z)− ln3 t

t
|z| if z ∈ ΠLt,δ,

−∞ if z ∈ Zd \ ΠL,δ.

Note that arg max Ψt ⊂ ΠLt,δ. Setting

(22) Ψ(1)

t := max
z∈ΠLt,δ

Ψt(z),

we define the localisation site Zt uniquely by requiring

(23) Zt ∈ arg max Ψt, Zt � z ∀ z ∈ arg max Ψt,

where� denotes the usual lexicographical order of Zd. We point out that the specific choice of δ in the
definition is of minor relevance and does not affect the asymptotic properties of Zt, and so we suppress
the dependence on δ in the notation.

2.2. Properties of the penalisation functional and the localising site. We next characterise the
top order statistics of the penalisation functional Ψt, in particular ensuring that a sufficient gap exists
between Ψ(1)

t and the second largest value Ψ(2)

t , defined as

Ψ(2)

t := max
z∈ΠLt,δ\{Zt}

Ψt(z).

We also define the corresponding second maximiser Z(2)

t by requiring

Z(2)

t ∈ arg max(2)Ψt :=
{
z ∈ ΠLt,δ \ {Zt} : Ψt(z) = Ψ(2)

t

}
, Z(2)

t � z ∀ z ∈ arg max(2)Ψt.
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Introduce the scales

(24) dt := %/(d ln t) and rt := tdt/ ln3 t,

which denote, respectively, the scale of the gaps in top order statistics of Ψt, and the scale of the
distance from the origin to the localisation site. Our description of the top order statistics is contained in
the following proposition, whose proof is undertaken in Section 4.

Proposition 2.3. There exists a scale At > 0 satisfying limt→∞ |At − at| = 0 such that the random
vector

(25)

(
Zt
rt
,
Z(2)

t

rt
,
Ψ(1)

t − Art
drt

,
Ψ(2)

t − Art
drt

)
converges in distribution as t→∞ to a random vector in (Rd)2 × R2 with distribution

(26) 1{ψ1>ψ2}e
−(|z1|+|z2|+ψ1+ψ2+2de−ψ2)dz1 ⊗ dz2 ⊗ dψ1 ⊗ dψ2.

The proof of Proposition 2.3 uses point process machinery, similarly as the corresponding results in
[3, 19]. A crucial observation is that, by Corollary 2.2, the random variables (λRL(z))z∈ΠL are essen-
tially i.i.d., allowing us to couple the points (z,Ψt(z))z∈ΠLt

to a linear transformation of i.i.d. random
variables (cf. Lemma 4.5). As a result, we may understand the top order statistics of Ψt by analysing
the tail of the single random variable λRLt (0).

From Proposition 2.3 and drt ∼ dt, we draw the following immediate corollary.

Corollary 2.4. For any ft → 0 and gt →∞, the event{
rtft < |Zt| < rtgt, Ψ(1)

t −Ψ(2)

t > dtft, Ψ(2)

t > Art − dtgt
}

holds with high probability as t→∞.

Note that, since dt = o(1), the error dtgt in the event above can be chosen to be o(1).

To draw a further important consequence of Proposition 2.3, we emphasise the crucial fact that At =
at + o(1), which will allow us to deduce that the trap at Zt must be large. To see why, recall from [19,
Proposition 3.7]) that λr(z) has the path expansion, for each y ∈ Br(z),

λr(z) = ξ(y)− σ−1(y) + σ−1(y)
∑
k≥2

∑
p∈Γk(y,y)
pi 6=y, 0<i<k
Set(p)⊆Br(z)

∏
0<i<k

1

2d

1

1 + σ(pi)(λr(z)− ξ(pi))
,(27)

where Γk(x, y) := {p = (p0, . . . , pk) : p0 = x, pk = y, |pi − pi−1| = 1 ∀ 1 ≤ i ≤ k} denotes
the set of nearest-neighbour paths in Zd of length k running from x to y, and Set(p) := {p0, . . . , pk}.
Recall also the following a priori bounds on λr(z) (see Lemma 3.6 below):

(28) max
y∈Br(z)

ξ(y)− δ−1
σ ≤ max

y∈Br(z)
ξ(y)− σ−1(y) ≤ λr(z) ≤ max

y∈Br(z)
ξ(y),

where the first inequality comes from Assumption (E). Combining the lower bound with Corollary 2.2,
we see that, almost surely as L→∞, each z ∈ ΠL,δ satisfies

(29) λRL(z)− max
y∈BL(z)\{z}

(y) > (aL − 2δ−1
σ )− (aL − 4δ−1

σ ) = 2δ−1
σ > 0,
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where we used δ < δ−1
σ . Now apply (29) to the path expansion (27) (with y = z), use Assumption (E)

and note that |Γk(y, y)| ≤ (2d)k−1 to obtain, eventually almost surely,

(30) z ∈ ΠL,δ ⇒ λRL(z) ≤ ξ(z)− 1

2
σ−1(z).

Combining (30) with, successively, the definition of Ψt, Corollary 2.4, the bound on the maximum po-
tential in (15) and the fact that Art = aLt + o(1), we deduce that

1

2
σ−1(Zt) < ξ(Zt)− λRLt (Zt) ≤ ξ(Zt)−Ψ(1)

t < max
z∈BLt

ξ(z)− Art + o(1) = o(1)

with high probability, and so indeed σ(Zt) → ∞. Along with Proposition 2.1, this guarantees that the
site Zt has the local profile specified in Theorem 1.2, as follows.

Corollary 2.5. For any ε > 0 and sequence mt → ∞ satisfying lnmt � lnLt, the following hold
with high probability as t→∞:

|ξ(Zt)− at| < ε, σ(Zt) > ε−1 and min
y∈Bmt (Zt)\{Zt}

|ξ(Zt)− ξ(y)| > ε−1.

Proof. This follows from the previous discussion together with Proposition 2.1 and the fact that, by (30)
and Corollary 2.4, ξ(Zt) > aLt + o(1) with high probability. �

The remaining statements needed for the proof of Theorem 1.2 are gathered in the following.

Proposition 2.6. For all y ∈ Zd \ {0}, ξ(Zt + y) asymptotically stochastically dominates ξ(0) and
σ(Zt + y) is asymptotically stochastically dominated by σ(0).

Proposition 2.6 will be proved in Section 4.4.2. The crucial observation is that, by (27), λr(z) is increas-
ing in each ξ(x), and is (locally) decreasing in σ(x) whenever λr(z) > ξ(x).

2.3. Path decompositions and eliminating negligible paths. The next step is to decompose the
Feynman-Kac representation of the solution (3) and show that only a small portion of the path-space of
X makes a non-negligible contribution. To be more precise, we show that the dominant portion of the
solution comes from paths which, by time t, (i) hit the site Zt, and (ii) do not exit a certain ball Dt that
tightly contains Zt.

To define the ball Dt, we need to introduce an auxiliary scale ht → 0 satisfying

ht � max
{

1/ ln at, F̄σ(exp{h2
t ln at}), Fξ(−ath2

t )
}

(31)

where F̄σ(x) := P(σ(0) ≥ x) and Fξ(x) := P(ξ(0) ≤ x). The existence of such a scale is
guaranteed since the right-hand side of (31) is increasing in ht and tends to zero when ht ≡ 1. The
origin of (31) will becoming apparent in the sequel; for now we note that whereas the first condition is
common in the analysis of the PAM (see e.g. [23]), the latter two conditions arise out of the percolation
arguments we use to eliminate screening effects due to heavy traps and large negative potentials
respectively (see the proof of Proposition 2.9).

We now define the random ball
Dt := B|Zt|(1+ht),
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and observe that Dt ⊆ BLt with high probability by Corollary 2.4. We further define, for Λ ⊆ Zd, the
hitting time

τΛ := inf{s > 0 : Xs ∈ Λ}.
If Λ = {z}, we write τz := τ{z}. The main result in this step is the following.

Lemma 2.7. As t→∞,

1

U(t)
E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt ≤ t < τDc

t
}
]
→ 1 in probability.

To elucidate how Lemma 2.7 is obtained, we will give here its proof conditionally on two intermediate
propositions. These will be proved in Section 6 using spectral bounds from Section 3.2, the analysis
of the top order statistics of (slight generalisations of) Ψt (cf. Proposition 4.1), and the path expansion
analysis of Section 5.

First we note that, as a consequence of (E), we may readily restrict to paths staying within the macrobox
BLt , as is shown by the following lemma.

Lemma 2.8. As t→∞,

E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τBc

Lt
≤ t}

]
→ 0 almost surely.

Proof. Using Assumption (E), the proof follows as in [3, Proposition 4.7]. �

To prove negligibility of paths, we need to establish a good lower bound on the total mass; this relies on
percolation properties, and is the only place in the proof that uses d ≥ 2.

Proposition 2.9. With high probability as t→∞,

lnU(t) > tΨ(1)

t + o(tdtht).

Next we obtain an upper bound on the contribution to the solution from certain sets of paths, to be
compared with the lower bound above. This step is rather involved, and draws heavily on the path
expansion techniques developed in Section 5.

Proposition 2.10. For any scale gt →∞, with high probability as t→∞,

lnE0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt ∧ τDc

t
> t}

]
< tΨ(2)

t + o(rtgt)

and

lnE0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τDc

t
≤ t < τBc

Lt
}
]
< max{tΨ(2)

t , tΨ
(1)

t − ht|Zt| ln3 t}+ o(rtgt).

Propositions 2.9–2.10 will be proved respectively in Sections 6.1–6.2 below. Together with Lemma 2.8
and Corollary 2.4, they allow us to eliminate the negligible paths as follows.
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Proof of Lemma 2.7. Combining Lemma 2.8 and Propositions 2.9–2.10 yields that there exists an ft →
0 such that, for any gt →∞, with high probability,

ln
1

U(t)
E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt > t or τDc

t
≤ t}

]
< max{t(Ψ(2)

t −Ψ(1)

t ),−ht|Zt| ln3 t,−tΨ(1)

t }+ o(tdthtft) + o(rtgt)(32)

where we also used the fact that Dt ⊆ BLt . By Corollary 2.4 and since Art ∼ % ln2 t, for any f̄t → 0,
with high probability (32) is at most

max{−tdtft,−tdthtf̄t,−1
2
%t ln2 t}+ o(tdthtft) + o(rtgt).

Choosing f̄t and gt to satisfy f̄t � ft and f̄tht � gt/ ln3 t, the result follows; such a choice is possible
by the first condition on ht in (31). �

2.4. Localisation of the non-negligible portion of the proof. We have now reduced the problem to
the study of the Feynman-Kac representation of the solution (3) restricted to paths which hit Zt and
stay within the ball Dt. The final step is to prove the following.

Lemma 2.11. As t→∞,

1

U(t)

∑
z∈Dt\{Zt}

E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt ≤ t < τDc

t
}1{Xt = z}

]
→ 0 in probability.

Our strategy to prove the above is to compare the solution with the principal Dirichlet eigenfunction of
the Bouchaud-Anderson operator in Dt; let φDt denote this eigenfunction, which we take non-negative
and normalised in `2. We have the following comparison lemma.

Lemma 2.12. For each z ∈ Dt,

1

U(t)
E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt ≤ t < τDc

t
}1{Xt = z}

]
≤
σ(Zt)‖σ−

1
2φDt‖2

`2

(φDt(Zt))
3

φDt(z).

Proof. This is a direct application of Lemma 3.5 below; it is similar in spirit to the equivalent comparison
lemma in the PAM stated, for instance, in [10, Theorem 4.1]. �

We next exploit the Feynman-Kac representation for φDt (see [19, Proposition 3.3]):

φDt(z) = φDt(Zt)
σ(z)

σ(Zt)
Ez
[
exp

{∫ τZt

0

(ξ(Xs)− λDt) ds

}
1{τZt < τDc

t
}
]
,(33)

where λDt denotes the principal Dirichlet eigenvalue of the Bouchaud-Anderson operator in Dt, cor-
responding to φDt . This representation is amenable to the path expansion analysis in Section 5. Here
the restriction to paths in Dt is crucial, since it ensures that λRLt (z) is maximised at z = Zt with high
probability; this is necessary for the path expansion to be applicable. This analysis yields the following
result, whose proof is given in Section 6.3.
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Proposition 2.13. As t→∞,

σ(Zt)
∑

z∈Dt\{Zt}

φDt(z)→ 0 in probability.

We may now complete the proof of Lemma 2.11.

Proof of Lemma 2.11. Fix ε > 0 and choose ε̄ > 0 such that ε̄δ−1
σ /(1− ε̄δ−1

σ )3 < ε. By Proposition
2.13, Assumption (E), and ‖φDt‖`1 ≥ ‖φDt‖2

`2 = 1, with high probability,

σ(Zt)
∑

z∈Dt\{Zt}

φDt(z) < ε̄, implying φDt(Zt) > 1− ε̄δ−1
σ .(34)

By Lemma 2.12 and since ‖σ− 1
2φDt‖2

`2 ≤ δ−1
σ by (E) again, we get

1

U(t)

∑
z∈Dt\{Zt}

E0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τZt ≤ t ≤ τDc

t
}1{Xt = z}

]
<

ε̄δ−1
σ

(1− ε̄δ−1
σ )3

< ε

with high probability, as required. �

To finish this section, we complete the proof of Theorems 1.1 and 1.2 subject to the auxiliary results
that remain to be proved, namely Propositions 2.1, 2.3, 2.6, 2.9, 2.10 and 2.13.

Proof of Theorem 1.1. Follows from the Feynman-Kac formula (3) and Lemmas 2.7, 2.11. �

Proof of Theorem 1.2. Follows from Theorem 1.1, Proposition 2.6 and Corollary 2.5. �

2.5. The log-Weibull case. We now give a brief overview of the proof of our refined results in the
log-Weibull case. We begin with a decorrelation result for local functionals.

Proposition 2.14. Fix k1, k2 ∈ N and let ψt : Zd → R be a (k1, k2)-local functional as in Defini-
tion 1.3. Define a point Zψ

t ∈ ΠLt,δ uniquely by requiring

(35) ψt(Z
ψ
t ) = max

z∈ΠLt,δ
ψt(z) and Zψ

t � z ∀ z ∈ ΠLt,δ such that ψt(z) = ψt(Z
ψ
t ).

Then, for any y1, y2 ∈ Zd with |y1| > k1, |y2| > k2, the pair (ξ(Zψ
t + y1), σ(Zψ

t + y2)) converges in
distribution to (ξ(0), σ(0)) as t→∞.

Proposition 2.14 will be proved in Section 4.4.2 by means of a coupling argument, using the separation
properties of Corollary 2.2.

Recall now the radii of influence ρξ, ρσ from (9). We define next a (ρξ, ρσ)-local functional satisfying
(10). For z ∈ Zd and r2 ≥ r1 > 0, let λr1,r2(z) be the principal eigenvalue of

∆σ−1 + ξ1Br1 (z)

DOI 10.20347/WIAS.PREPRINT.2433 Berlin 2017



The BAM with DE potential 17

in Br2(z) with zero Dirichlet boundary conditions. Define the (ρξ, ρσ)-local functional

Ψ
ρξ,ρσ
t (z) :=

{
λρξ,ρσ(z)− ln3 t

t
|z| if z ∈ ΠLt,δ,

−∞ if z ∈ Zd \ ΠLt,δ.

Our next result shows that its arg max equals the singleton {Zt} with high probability.

Proposition 2.15. As t→∞, P(arg max Ψ
ρξ,ρσ
t = {Zt})→ 1.

The proof of Proposition 2.15 is given in Section 7, together with the proof of Theorem 1.5. This is
achieved by refining the method of Section 4 below, in particular reducing the problem to an analysis of
the upper tail of the random variable λρξ,ρσ(0) and determining the shape of the local profile of ξ and
σ that dominates if λρξ,ρσ(0) is conditioned to be large. This analysis is fairly technical, and we defer
the details to Section 7.

It remains to complete the proof of Theorem 1.4 subject to Theorem 1.5 and to Propositions 2.1, 2.14
and 2.15.

Proof of Theorem 1.4. One direction is immediate from Theorem 1.1 and Proposition 2.15. For the
converse, suppose that k1 < ρξ and that there exists a (k1, k2)-local functional ψt satisfying (10) (the
case k2 < ρσ is similar). Take Zψ

t as in Proposition 2.14. Since, by Corollary 2.5, Zt ∈ ΠLt,δ with high
probability,

lim
t→∞

P
(
Zψ
t = Zt

)
= 1.

Fixing now y ∈ Zd with |y| = ρξ ≥ 1, we obtain a contradiction between Proposition 2.14 and
Theorem 1.5, as the first implies that ξ(Zt + y) converges in law to ξ(0), while the second implies
convergence either to∞ or a random variable different from ξ(0). �

3. PRELIMINARY RESULTS

In this section we state preliminary results, first establishing the separation properties of the potential
in Proposition 2.1, and then recalling elements of the general theory of Bouchaud-Anderson operators
and applying this general theory to our setting.

3.1. Proof of Proposition 2.1. Fix %̃ ∈ (0, %) and c̃ > c, and let η > 0 be such that

η < η̃ := %̃ exp {−c̃/%̃} .
Since e−x > 1− x for x > 0, we have

(36) 1− e−η̃/%̃ − e−c̃/%̃ < 0.

Define the event

AL := {∃x ∈ BL, y ∈ BmL(x) \ {x} : ξ(x) > aL − η̃, ξ(y) > aL − c̃} .
Using (A.1), it is straightforward to show that, for any u > 0 and all large enough L,

P (ξ(0) > aL − u) < L−de−u/%̃ ,
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so that, using (36), lnmL � lnL and a union bound, we obtain P (AL) < L−c0 for some c0 > 0.
Hence, by the Borel-Cantelli lemma,

(37) P (A2n occurs for infinitely many n) = 0.

Now, for L > 1, let n ∈ N be such that 2n−1 < L ≤ 2n. Since limL→∞ |a2L − aL| = 0, when
L is large enough we have aL − η > a2n − η̃ and aL − c > a2n − c̃. Since BL ⊆ B2n and
BmL(x) ⊆ Bm2n

(x), (17) follows from (37).

3.2. General properties of Bouchaud-Anderson operators. Here we recall elements of the gen-
eral theory of Bouchaud-Anderson operators that hold for arbitrary deterministic potential fields ξ and
trapping landscapes σ; this theory was developed in [19]. We have already introduced some of these
elements in Lemma 2.12 and in (27), (28) and (33).

We first introduce some path notation. Recall the definition, for sites y, z ∈ Zd and an integer k, of
the set Γk(y, z) = {p = (p0, . . . , pk) : p0 = y, pk = z, |pi − pi−1| = 1∀ 1 ≤ i ≤ k} of nearest-
neighbour paths starting at y and ending at z in k steps. Similarly, denote

Γk(y) :=
⋃
z∈Zd

Γk(y, z) , Γ(y, z) :=
⋃
k∈N0

Γk(y, z)

Γ(y) :=
⋃
k∈N0

Γk(y) , Γk :=
⋃
y∈Zd

Γk(y) , Γ :=
⋃
y∈Zd

Γ(y).

For a path p ∈ Γk(y, z), denote |p| := k. For a nearest neighbour continuous-time random walk
X , let p(Xt) ∈ Γ(X0) denote the geometric path associated with the trajectory of {Xs}s≤t and let
pk(X) ∈ Γk(X0) denote the geometric path associated with the random walk {Xs}s≥0 up to and
including its kth jump. Let Tk denote the kth jump time of X .

Our first lemma gives a path-wise evaluation of the Feynman-Kac formula (3).

Lemma 3.1 (Path-wise evaluation; see [19, Lemma 3.4]). For any k ∈ N0, p ∈ Γk and γ >
max0≤i≤k−1 ξ(pi),

(38) Ep0

[
exp

{∫ Tk

0

(ξ(Xs)− γ) ds

}
1{pk(X) = p}

]
=

k−1∏
i=0

1

2d

1

1 + σ(pi)(γ − ξ(pi))
.

We next give an upper bound on the contribution to the Feynman-Kac formula (3) from the portion of a
path starting from a site z up until its exit from the ball Br(z). Recall that λr(z) is the principal Dirichlet
eigenvalue of ∆σ−1 + ξ in Br(z).

Lemma 3.2 (Cluster expansion; see [19, Lemma 3.13]). For each z ∈ Zd, r > 0 and γ > λr(z),

(39) Ez
[
exp

{∫ τBc
r(z)

0

(ξ(Xs)− γ) ds

}]
≤ 1 +

maxy∈Br(y){σ−1(y)} |Br|
γ − λr(z)

.

To state the next collection of results, denote by φz,r the `2-normalised principal Dirichlet eigenfunction
of ∆σ−1 + ξ in Br(z), corresponding to the eigenvalue λr(z).
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Lemma 3.3 (Lower bound on the solution; see [19, Corollary 3.11]). For each z ∈ Zd and r, t > 0,

(40) Ez
[{∫ t

0

(ξ(Xs)− λr(z)) ds

}
1{τBc

r(z) > t,Xt = z}
]
≥ σ(z)−1φz,r(z)2

‖σ−1/2φz,r‖2
`2
.

Lemma 3.4 (Upper bound on total mass of the solution; see [19, Lemma 3.12]). For each z ∈ Zd and
r, t > 0,

(41) Ez
[
exp

{∫ t

0

(ξ(Xs)− λr(z)) ds

}
1{τBc

r(z) > t}
]
≤ ‖φz,r‖`

1

φz,r(z)
.

Lemma 3.5 (Solution-to-eigenfunction comparison lemma; see [19, Proposition 3.14]). For each z ∈
Zd, r, t > 0, and x, y ∈ Br(z),

Ez
[
exp

{∫ t
0
ξ(Xs) ds

}
1{τx ≤ t < τBc

r(z)}1{Xt = y}
]

Ez
[
exp

{∫ t
0
ξ(Xs) ds

}
1{τBc

r(z) > t}
] ≤

σ(x)‖σ− 1
2φz,r‖2

`2

(φz,r(x))3
φz,r(y).

Proof. This is a special case of [19, Proposition 3.14]. Note that the statement therein contains a typo:
the σ(y) in the numerator of the right-hand side should be replaced by σ(x). �

We close this section by giving a priori bounds on the principal eigenvalue.

Lemma 3.6 (A priori bounds on the principal eigenvalue; see [19, Lemma 3.2]). For each z ∈ Zd and
r > 0,

max
y∈Br(z)

ξ(y)− σ(y)−1 ≤ λr(z) ≤ max
y∈Br(z)

ξ(y).

Proof. The lower bound is in [19, Lemma 3.2]. The upper bound is a slight improvement on its equivalent
in [19, Lemma 3.2] and is easy to prove: by the sub-additivity of principal eigenvalues, the difference
λr(z) − maxy∈Br(z) ξ(y) is bounded above by the principal Dirichlet eigenvalue of the Bouchaud
operator ∆σ−1, which is zero. �

3.3. Applications of the general theory to our setting. We now apply the general theory developed
in the previous section to our setting, in particular assuming (A.1) and (E). We begin by using the path-
wise evaluation in Lemma 3.1 to state a bound on the Feynman-Kac formula in terms of the number of
visits to sites of ‘moderate’ potential.

For p ∈ Γ, L ∈ N and ε > 0, let

(42) ML,ε
p :=

∣∣{x ∈ {p0, . . . , p|p|−1} : ξ(x) ≤ (1− ε)aL}
∣∣

denote the number of moderately low points of Set(p) (excluding possibly the last point), with the
interpretation that ML,ε

p = 0 if |p| = 0.

Lemma 3.7. For each δ, ε > 0, there exists a c > 1 such that, eventually asL→∞, all γ > aL−δ/2,
k ∈ N0, and all p ∈ Γk with pi /∈ ΠL,δ for 0 ≤ i ≤ k − 1 satisfy

(σ(p0) ∨ 1)Ep0

[
exp

{∫ Tk

0

(ξ(Xs)− γ) ds

}
1{pk(X) = p}

]
< c

( qδ
2d

)k
e(c−ln3 L)ML,ε

p ,
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where qδ := (1 + δδσ/2)−1 (with δσ as in (E)).

Proof. This follows from Lemma 3.1 as in the proof of [3, Lemma 6.4]. �

We also use the path-wise evaluation in Lemma 3.1 to prove that, for sufficiently small η > 0, the
principal Dirichlet eigenvectors in balls of small radius around z ∈ ΠL,η are highly localised, even when
weighted by the trap σ(z).

Lemma 3.8. For each ε > 0, there exists an η > 0 such that, for any sequence mL ∈ N satisfying
lnmL � lnL, eventually almost surely as L→∞,

z ∈ ΠL,η ⇒ σ(z)

∑
y∈BmL (z)\{z} φz,mL(y)

φz,mL(z)
< ε.

Proof. Recall the Feynman-Kac formula for the principal eigenvector ([19, Proposition 3.3])

φz,r(y) = φz,r(z)
σ(y)

σ(z)
Ey
[
exp

{∫ τz

0

(ξ(Xs)− λr(z)) ds

}
1{τz ≤ τBc

r(z)}
]
.(43)

By Proposition 2.1 and Lemma 3.6, for each c > 0 there exists an η > 0 small enough such that,
eventually almost surely as L→∞, z ∈ ΠL,η implies

λmL(z)− max
y∈BmL (z)\{z}

ξ(y) > (aL − 2δ−1
σ )− (aL − c) = c− 2δ−1

σ .

Applying the path-wise evaluation in Lemma 3.1, we obtain, for any y 6= z,

σ(z)
φz,mL(y)

φz,mL(z)
<
∑
k≥1

(
1

2d

)k ∑
p∈Γk(y,z)
pi 6=z, 0<i<k

Set(p)⊆BmL (z)

1

c− δ−1
σ

(
1

1 + δσ(c− 2δ−1
σ )

)k−1

,

where the first factor inside the second sum corresponds to i = 0 (note p0 = y). Taking c > 0 large
enough and summing over y ∈ BRL(z) \ {z} yields the result. �

Combining Lemma 3.8 with Lemmas 3.3 and 3.4 respectively, we may use Assumption (E) and the fact
that ‖φz,r‖`∞ ≤ 1 to obtain the following consequences.

Corollary 3.9. For each ε > 0 there exists an η > 0 such that, eventually almost surely as L → ∞,
if z ∈ ΠL,η then

1− ε < inf
t≥0

Ez
[
exp

{∫ t

0

(ξ(Xs)− λRL(z)) ds

}
1{Xt = z}1{τBc

RL
(z) > t}

]
≤ sup

t≥0
Ez
[
exp

{∫ t

0

(ξ(Xs)− λRL(z)) ds

}
1{τBc

RL
(z) > t}

]
< 1 + ε.
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4. PROPERTIES OF THE TOP ORDER STATISTICS OF THE PENALISATION FUNCTIONAL

In this section we study the top order statistics of the penalisation functional. Our main result, Proposi-
tion 4.1 below, is a generalisation of Proposition 2.3 and is proved in Sections 4.1–4.3. Further applica-
tions of the tools developed therein are given in Section 4.4.1, where we show the existence of certain
“good paths” from the origin to the localisation site Zt, and in Section 4.4.2, where we give the proofs
of Propositions 2.6 and 2.14.

We introduce generalisations of the penalisation functional by defining, for each c ∈ R,

(44) Ψt,c(z) := λRLt (z)− (ln3 t− c)+ |z|
t
, z ∈ ΠLt,δ.

Analogously to (23), recursively set, for k ≥ 1,

(45)
Ψ(k)

t,c := max
{

Ψt,c(z) : z ∈ ΠLt,δ \ {Z
(1)

t,c , . . . , Z
(k−1)

t,c }
}
,

arg max(k)Ψt,c :=
{
z ∈ ΠLt,δ \ {Z

(1)

t,c , . . . , Z
(k−1)

t,c } : Ψt(z) = Ψ(k)

t,c

}
,

and define Z(k)

t,c by requiring

(46) Z(k)

t,c ∈ arg max(k)Ψt, Z(k)

t,c � z ∀ z ∈ arg max(k)Ψt,c.

Recall the definitions of at, dt and rt in (14) and (24). The following is the main result of the section,
and contains Proposition 2.3 as a special case.

Proposition 4.1. There exists a scale At > 0 satisfying limt→∞ |At − at| = 0 such that, for each
c ∈ R and k ∈ N, the random vector(

Z(1)

t,c

rt
, . . . ,

Z(k)

t,c

rt
,
Ψ(1)

t,c − Art
drt

, . . . ,
Ψ(k)

t,c − Art
drt

)
converges in distribution as t→∞ to a random vector in (Rd)k × Rk with distribution

(47) 1{ψ1>···>ψk}e
−(|z1|+···+|zk|+ψ1+···ψk+2de−ψk)

k∏
i=1

dzi ⊗ dψi.

We deduce the following corollary, proven in the same way as in [19, Proposition 5.8].

Corollary 4.2. For each c > 0, with high probability as t→∞,

Zt = Z(1)

t,c and Z(2)

t = Z(2)

t,c .

The following three subsections are dedicated to establishing Proposition 4.1. The crux of the proof is
to show that, after proper rescaling and as t→∞, the point set

(z, λRLt (z))z∈ΠLt,δ

converges to (the support of) a Poisson point process, and moreover this convergence takes place with
respect to a topology that is fine enough to conclude, by continuity, the convergence of certain relevant
functionals of the point set.
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4.1. Point process machinery. We begin by describing the set-up in which the point process conver-
gence takes place. Since the functionals we are ultimately interested in are not continuous with respect
to the usual vague topology of point measures in R × Rd, we embed R × Rd in a locally-compact
Polish space E such that, for any θ > 0, η ∈ R, the set

(48) Hθ
η :=

{
(λ, z) ∈ R× Rd : λ > η +

|z|
θ

}
is relatively compact in E and, for any compact K ⊆ E, there exists θ > 0, η ∈ R such that
K ∩ R× Rd ⊂ Hθ

η. For a suitable choice of E, we refer the reader to [3, Appendix B].

Note that a Poisson point process in R × Rd with intensity measure e−λdλ ⊗ dz may be extended to
E. Let Mp = Mp(E) denote the set of point measures (i.e., integer-valued Radon measures) in E,
equipped with the topology of vague convergence.

Define a scale L∗t > 0 such that, for all large enough t, L∗rt = Lt, and abbreviate R∗t := RL∗t
. Note

that, as t→∞,

L∗t ∼
d

%
t(ln t)(ln2 t) ln3 t,

and thus also aL∗t = at + o(1). For a scale At > 0, define the point measure

(49) Pt :=
∑

z∈ΠL∗t ,δ

δ( zt ,Yt(z))
where Yt(z) :=

λR∗t (z)− At
dt

.

The following is the key result of this section.

Lemma 4.3. There exists a scale At > 0 satisfying limt→∞ |At− at| = 0 such that the point process
Pt defined in (49) converges in distribution, as t→∞, with respect to the vague topology of Mp to a
Poisson point process supported in R× Rd with intensity e−λdz ⊗ dλ.

From Lemma 4.3, Proposition 4.1 follows using standard arguments, as we show next.

Proof of Proposition 4.1. We will use the setup of [3, Section 7.2]. We claim that, in their notation (cf.
equations (7.33)–(7.38) therein), we may write, for any 1 ≤ i ≤ k,

(50)

(
Ψ(i)

t,c − Art
drt

,
λR∗t (Z

(i)

t,c)− Art
drt

,
Z(i)

t,c

rt

)
= Φ(i)

ϑt
(Prt)(1), ϑt(z) := z

dt
drt

(ln3 t− c)+

ln3 t
,

with high probability as t → ∞. Indeed, this follows from the definition of L∗t and the fact that, by
Lemma 4.3, we may assume that |arg max(i)Ψt,c| = 1, and thus our definition (44)-(46) coincides
with the one in [3]. Now, by [3, Lemma 7.6] and Lemma 4.3 above, the left-hand side of (50) converges
in distribution as t → ∞ to Φ(i)(P∞)(1), where P∞ is a Poisson point process in R × Rd with
intensity e−λdλ ⊗ dz; this follows from the almost sure continuity of Φ(i)(P∞)(θ) at θ = 1 and e.g.
the Skorohod representation theorem. The density (47) may be then computed as in the proof of [23,
Proposition 3.2]. �
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We turn now to the proof of Lemma 4.3, which is achieved by comparing Pt to an auxiliary process P̂t
involving ‘truncated eigenvalues’, whose convergence is easier to establish.

To that end, let (ξz, σz)z∈Zd be an i.i.d. collection of random fields and trapping landscapes, with
(ξz, σz) distributed as (ξ, σ) for each z ∈ Zd. Fix a truncation level

(51) c∗ := 4δ−1
σ

and define, for each L > 0, a version of ξz that is truncated outside z at the level aL − c∗:

(52) ξ̂zL(x) :=

{
ξz(x) ∨ (aL − c∗ + δ−1

σ ), if x = z,
ξz(x) ∧ (aL − c∗), otherwise.

Note that this truncation mirrors the separation properties in Corollary 2.2. By analogy to ΠL,δ, define

Π̂L,δ := {z ∈ BL : ξz(z) > aL − δ}. Let the truncated eigenvalue λ̂(L)
r (z) denote the principal

Dirichlet eigenvalue of the operator ∆(σz)−1 + ξ̂zL in the ball Br(z), and define, for At > 0, the point
measure

(53) P̂t :=
∑
z∈Zd

δ( zt ,Ŷt(z))
where Ŷt(z) :=

λ̂
(L∗t )

R∗t
(z)− At
dt

.

The following two lemmas will be used to deduce the convergence of Pt from that of P̂t.

Lemma 4.4 (Convergenge of truncated eigenvalues). The statement of Lemma 4.3 holds for P̂t in
place of Pt.

For the next lemma, we recall the definition of the principal eigenvalue λr1,r2(z) of the operator ∆σ−1+
ξ1Br1 (z) with zero Dirichlet boundary conditions in Br2(z), where r2 ≥ r1 > 0 and z ∈ Zd. We

denote by λ̂(L)
r1,r2

(z) the corresponding truncated eigenvalue, i.e., the principal Dirichlet eigenvalue of

∆(σz)−1 + ξ̂zL1Br1 (z) in Br2(z).

Lemma 4.5 (Coupling with i.i.d. fields). There exists a coupling P̃L of (ξ, σ) and (ξz, σz)z∈Zd such
that ΠL,δ = Π̂L,δ P̃L-a.s. and, with P̃L-probability tending to one as L→∞,

(54) (ξ(x), σ(x)) = (ξz(x), σz(x)) = (ξ̂zL(x), σz(x)) ∀ z ∈ ΠL,δ, x ∈ BRL(z)

and

(55) λr1,r2(z) = λ̂(L)

r1,r2
(z) ∀ z ∈ ΠL,δ, 1 ≤ r1 ≤ r2 ≤ RL.

The proofs of Lemmas 4.4 and 4.5 will be given respectively in Sections 4.2 and 4.3 below. For now,
we finish the proof of Lemma 4.3.

Proof of Lemma 4.3. By Lemma 4.5, Pt equals with high probability the point process

P̃t :=
∑

z∈ΠL∗t ,δ

δ( zt ,Ŷt(z))
.
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On the other hand, note that, by Lemma 3.6 and since Art = art + o(1) = aL∗t + o(1) as t→∞, for
any θ > 0, η ∈ R and all large enough t,

z /∈ ΠL∗t ,δ
⇒

(
Ŷt(z),

z

t

)
/∈ Hθ

η,

and thus P̃t and P̂t coincide in Hθ
η. Since any compact K ⊂ E has K ∩ R × Rd ⊂ Hθ

η for some
θ > 0, η ∈ R, this is enough to conclude convergence of Laplace functionals. �

4.2. Convergence of truncated eigenvalues. It is straightforward to obtain from Assumption (A.1)
that

(56) lim
t→∞

tdP (ξ(0) > at + sdt) = e−s ∀ s ∈ R,

and for each ε > 0, as t→∞ eventually (cf. [3, Lemma A.1])

tdP (ξ(0) > at + sdt) < e−(1−ε)s ∀ s ≥ 0.

Our goal is to obtain similar statements for the truncated eigenvalues. Recall the definition of L∗t , R
∗
t

in Section 4.1 as well as the truncated potentials (52) and truncated eigenvalues λ̂(L)
r (z), z ∈ Zd.

Abbreviate λ̂∗t := λ̂
(L∗t )

R∗t
(0). Our result reads as follows.

Proposition 4.6. There exists a scale At > 0 satisfying limt→∞ |At − at| = 0 such that

(57) lim
t→∞

tdP(λ̂∗t > At + sdt) = e−s ∀ s ∈ R,

and the convergence is uniform over s in bounded intervals of R. Additionally, for each ε > 0, as
t→∞ eventually

(58) tdP(λ̂∗t > At + sdt) ≤ e−(1−ε)s ∀ s ≥ 0.

Proof. Abbreviate σ := σ0, ξ := ξ0 and ξ̂t := ξ̂(0)

L∗t
. We first show how to define At. Applying a path

expansion as in (27) (see [19, Proposition 3.7]), we may write

(59) λ̂∗t = ξ(0)− σ−1(0) + σ−1(0)Qt(λ̂
∗
t ),

where

Qt(A) :=
∑
k≥2

∑
p∈Γk(0,0)

pi 6=0∀ 0<i<k
Set(p)⊂BR∗t

∏
0<i<k

1

2d

1

1 + σ(pi)(A− ξ̂t(pi))
.

Recall the definition of the truncation level c∗ in (51). As in the proof of (30), this implies that, for large
t, Qt(A) ≤ 1/2 uniformly on A ≥ at − δ and the realisation of ξ, σ.

Since λ̂∗t is a strictly increasing function of ξ(0) over ξ(0) > aL − 3δ−1
σ , (59) implies

λ̂∗t > A if and only if ξ(0) > A+
1−Qt(A)

σ(0)
whenever A ≥ at − δ.
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Thus we may write, using the independence of ξ, σ, for any measurable I ⊂ (0,∞),

(60) P
(
λ̂∗t > A, σ(0) ∈ I

)
=

∫
I

P

(
ξ(0) > A+

1−Qt(A)

u

)
P(σ(0) ∈ du).

Using this together with (56) and Assumption (A.2), we obtain, for any ε ∈ (0, δ),

(61) P
(
λ̂∗t > at − ε

)
≥ P(σ(0) > 4/ε)P(ξ(0) > at − ε/2)� t−d

and, since Qt(at) < 1, P(λ̂∗t > at) ≤ t−d by (14). Now note that, since ξ(0) has an eventually
continuous tail and is independent of Qt(A), (60) is a continuous function of A and converges to 0 as
A→∞. Thus we may define At to be the smallest positive number satisfying

(62) P
(
λ̂∗t > At

)
= t−d,

which by the previous discussion necessarily satisfies At ≤ at, limt→∞ at − At = 0.

We next argue that, for any scale `t →∞ satisfying `−1
t � dt ∨ |at − At| and any M > 0,

(63) lim
t→∞

td sup
s≥−M

P(λ̂∗t > At + sdt, σ(0) < `t) = 0.

To see this, note that, since Qt(At + sdt) ≤ 1/2 for t large uniformly over s ≥ −M ,∫
[0,`t)

P

(
ξ(0) > At +

1−Qt(At + sdt)

u
+ sdt

)
P(σ(0) ∈ du)

≤ P(σ < `t)P
(
ξ(0) > at + dt{(4`tdt)−1 −M}

)
= o(t−d)(64)

by (56) and our choice of `t. This proves (63).

We may now show (57). Recall first Assumption (A.1) and put G(r) := eF (r). Using (A.1), it is straight-
forward to verify that, for any function δt > 0, δt → 0,

(65) lim
t→∞

sup
u∈[at−δt,at+δt]

∣∣∣∣G(u)

G(at)
− 1

∣∣∣∣ = 0.

Set xt,u,s := At + sdt + (1−Qt(At + sdt))/u. By the independence properties of ξ, σ,

P (ξ(0) > xt,u,s | (ξ(x), σ(x))x 6=0)

P (ξ(0) > xt,u,0 | (ξ(x), σ(x))x 6=0)
= exp {− [G(xt,u,s)−G(xt,u,0)]} .

By the mean-value theorem, there exists θt,u,s ∈ [xt,u,0 ∧ xt,u,s, xt,u,0 ∨ xt,u,s] such that

(66) G(xt,u,s)−G(xt,u,0) =
(xt,u,s − xt,u,0)

dt

G(θt,u,s)

G(at)
%F ′(θt,u,s).

Now note that, when u ≥ `t and s ∈ [−M,M ], θt,u,s ∈ [at − δt, at + δt] where δt := |at − At| +
`−1
t +Mdt, and thus by (65) and Assumption (A.1),

G(θt,u,s)

G(at)
%F ′(θt,u,s) = 1 + o(1)
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with o(1) uniform over s ∈ [−M,M ] and the realisation of ξ, σ. Moreover, noting that d
dAQt(A) is

uniformly bounded over A > at − δ, we obtain

(xt,u,s − xt,u,0)

dt
= s(1 + o(1))

where o(1) is again uniform over s ∈ [−M,M ] and ξ, σ. Hence∫
[`t,∞)

P (ξ(0) > xt,u,s)P(σ(0) ∈ du)

=

∫
[`t,∞)

E [P (ξ(0) > xt,u,s | (ξ(x), σ(x))x 6=0)]P(σ(0) ∈ du)

= e−s(1+o(1))

∫ ∞
`t

P (ξ(0) > xt,u,0)P(σ(0) ∈ du) =
(
e−s + o(1)

)
t−d(67)

with o(1) uniform over s ∈ [−M,M ], and the last equality holds by (62) and (64) with s = 0. Now
(57) follows from (60), (63) and (67).

To show (58), note that, for large t and any s ≥ 0, Qt(At + sdt) ≤ Qt(At) < 1, and thus the
numbers θt,u,s, xt,u,s in (66) satisfy θt,u,s ≥ At and xt,u,s ≥ xt,u,0 + sdt for any u > 0. Since G is
non-decreasing,

G(xt,u,s)−G(xt,u,0) ≥ s
G(At)

G(at)
% inf
θ≥At

F ′(θ) ≥ s(1− ε)

for all t large enough by (A.1) and (65). Reasoning as for (67), we obtain

td
∫

P (ξ(0) > xt,u,s)P(σ(0) ∈ du) ≤ e−(1−ε)s,

which together with (60) implies (58). �

Proposition 4.6 has the following useful consequence.

Corollary 4.7. For any θ ∈ (0,∞) and η ∈ R,

(68) lim sup
t→∞

E
[
P̂t(Hθ

η)
]
<∞.

Proof. Using (58) we may write, for t large enough,

E
[
P̂t(Hθ

η)
]

=
∑
z∈Zd

P

(
λ̂∗t > At +

(
|z|
tθ

+ η

)
dt

)
≤ #{z ∈ Zd : |z| ≤ 2|η|θt}P

(
λ̂∗t > At + ηdt

)
+

∑
|z|>2|η|θt

t−de−
1
4
|z|
θt ,

which by (57) converges as t→∞ to

c1e−η + c2

∫
|x|>2|η|

e−
|x|
4 dx <∞

where c1, c2 are positive constants depending on d and θ. This finishes the proof. �
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We may now complete the proof of Lemma 4.4.

Proof of Lemma 4.4. This follows from [3, Lemma 7.4] with N̂t ≡ 0. Indeed, conditions (7.16)–(7.17)
therein may be verified using respectively (57) and (58) above. �

4.3. Coupling of truncated potentials. Let (ξz, σz)z∈Zd be i.i.d. with each (ξz, σz) distributed as
(ξ, σ). For L > 0, we introduce the following random elements, independent from each other and from
(ξz, σz)z∈Zd :

(69)
• A random field ξ≤L = (ξ≤L (x))x∈Zd that is i.i.d. in x,

with each ξ≤L (x) distributed as ξ(0) conditioned on ξ(0) /∈ ΠL,δ.
• Two random fields (ξ̃, σ̃) distributed as (ξ, σ).

Proof of Lemma 4.5. Let P̃L denote the joint law of (ξz, σz)z∈Zd and the random elements listed in
(69) above, and set Π̂L,δ := {z ∈ BL : ξz(z) > aL − δ}. For z ∈ Π̂L,δ, we define

rz := max
{
r ∈ {0, . . . , dRLe} : (Br(z) \ {z}) ∩ Π̂L,δ = ∅

and ξz(x) ≤ aL − δ ∀x ∈ BL ∩ (Br(z) \ {z})
}
.

Then we set

(70) (ξ(x), σ(x)) :=


(ξz(x), σz(x) if x ∈ Brz(z) for some z ∈ Π̂L,δ,

(ξ≤(x), σ̃(x)) if x ∈ BL \
(⋃

z∈Π̂L,δ
Brz(z)

)
,

(ξ̃(x), σ̃(x)) if x ∈ Bc
L ∩

⋂
z∈Π̂L,δ

Bc
rz(z).

To check that the pair (ξ, σ) has the right distribution, note that Π̂L,δ is distributed as ΠL,δ, and the

conditional law of (70) given Π̂L,δ, (rz)z∈Π̂L,δ
does not depend on (rz)z∈Π̂L,δ

and is equal to the correct

conditional law. Hence P̃L is indeed a coupling. It is clear by construction that ΠL,δ = Π̂L,δ almost
surely. Now note that, also by construction, the first equality in (54) holds as soon as rz = dRLe
for all z ∈ ΠL,δ, which can be shown to hold with high probability by the same calculation as for
Proposition 2.1 (note that the proposition itself does not apply directly). Since by Corollary 2.2 we may
assume that ξz(x) = ξ̂zL(x) for all z ∈ ΠL,δ and x ∈ BRL(z), the second inequality in (54) as well as
(55) follow. �

4.4. Applications of the analysis. To close the section, we develop some applications of the set-up
and results from the previous subsections, and in particular exploit the coupling in Lemma 4.5. A first
observation is the following.

Lemma 4.8. For any L ∈ N, r > 0 and z, y ∈ Zd, y 6= z, the eigenvalue λ̂(L)
r (z) is a non-decreasing

function of ξz(y) and a non-increasing function of σz(y).

Proof. The eigenvalue λ̂(L)
r (z) admits path expansions as in (27) with σ, ξ replaced by σz, ξ̂zL. From

this expression we immediately deduce that λ̂(L)
r (z) is non-decreasing in ξ̂zL(y) and hence also in
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ξz(y), as the former is non-decreasing in the latter. To see that λ̂(L)
r (z) is non-increasing in σz(y), note

additionally that, by Lemma 3.6, (A.1) and (52), λ̂(L)
r (z) ≥ ξ̂zL(y). �

4.4.1. Existence of good paths. Here we use percolation estimates from [19] to prove the existence of
good paths from the origin to the localisation site Zt. These are nearest-neighbour paths in Zd with
length comparable to |Zt| and along which neither the traps are too large nor the potential too negative.
The existence of such paths will be key in obtaining a lower bound on the total mass of the solution,
see the proof of Proposition 2.9 in Section 6.1 below.

Recall the scale ht → 0 in (31) and define

(71) sξt := ath
2
t , sσt := exp{h2

t ln at}.

Note that sξt , s
σ
t →∞ as t→∞. We also fix an additional scale h?t > 0 such that

(72) ht � h?t � max
{
F̄σ(sσt ), Fξ(−sξt )

}
.

Recall the path notation from Section 3.2 and set, for z ∈ Zd,

(73) Γ?t (z) :=
{
p ∈ Γ(0, z) : |p| ≤ |z|(1 + h?t ), ξ(pi) > −s

ξ
t , σ(pi) < sσt , 0 ≤ i ≤ |p| − 1

}
.

We call p ∈ Γ?t (z) a good path from 0 to z. The main result of the section is the following.

Proposition 4.9. Γ?t (Zt) 6= ∅ with high probability as t→∞.

In order to prove Proposition 4.9, we first recall the setup of [19, Section 4.2.2]. Fix d ≥ 2, q ∈ (0, 1)
and consider site percolation in Zd with parameter 1− q, i.e., sites v ∈ Zd are declared independently
open with probability 1 − q or closed with probability q. For u, v ∈ Zd, we denote by d∞(u, v) the
chemical distance between u and v, i.e.,

(74) d∞(u, v) := inf {|p| : p ∈ Γ(u, v), pi is open for all 0 ≤ i ≤ |p|} ,

where inf ∅ =∞ by convention. We will use the following result.

Lemma 4.10 (cf. [19, Lemma 4.10]). For any q 7→ cq > 0 such that limq→0 cq/q =∞,

lim
q→0

sup
v∈Zd\{0}

P
(
d∞(0, v)

|v|
> 1 + cq

)
= 0.

We note that the uniformity over v in the above statement is not claimed in [19, Lemma 4.10] but follows
promptly from its proof. We are now ready to give the proof of Proposition 4.9.

Proof of Proposition 4.9. Fix ε > 0. We first show how to restrict Zt to a subset of Zd with useful
properties. To that end, pick using Corollary 2.4 a constant Cε ∈ (1,∞) such that

P
(
|Zt| > Cεrt, |Zt| < C−1

ε rt or Ψt(Zt) < Art − Cεdt
)
< ε/2 for all large enough t.
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Next, we introduce truncated local eigenvalues similarly as in Sections 4.1–4.2 but without i.i.d. copies
of the fields. Recall c∗ = 4δ−1

σ and define, for z ∈ Zd and L ∈ N, a truncated version of ξ around z
(compare with (52)):

(75) ξ̃zL(y) :=

{
ξ(z) ∨ (aL − c∗ + δ−1

σ ) if y = z,
ξ(y) ∧ (aL − c∗) otherwise.

We denote by λ̃∗t (z) the principal Dirichlet eigenvalue of ∆σ−1 + ξ̃zL∗t in the box BR∗t
(z). By Corol-

lary 2.2, λ̃∗t (z) = λR∗t (z) for all z ∈ ΠL∗t
with high probability. In particular, we see that, for large t, Zt

belongs with probability larger than 1− ε to the set

(76) Z (ε)

t :=
{
z ∈ Zd : 0 < |z| ≤ Cεrt, λ̃

∗
rt(z) > Art + (|z|/rt − 2Cε)drt

}
,

where we also used dt ∼ drt . Note that, for each fixed z ∈ Zd, λ̃∗t (z) has the same distribution as the
truncated eigenvalue λ̂∗t (z) := λ̂

(L∗t )

R∗t
(z) from Sections 4.1–4.2.

Consider now site percolation on Zd where we declare:

v is open if and only if ξ(v) > −sξt and σ(v) < sσt .

The percolation parameter is 1− qt where

qt := P
(
ξ(0) ≤ −sξt or σ(0) ≥ sσt

)
� h?t

by (72). Thus we may apply Lemma 4.10 with cqt = h?t .

Denote by d(t)
∞ the associated chemical distance. We also define a modified version:

ḋ(t)

∞(u, v) := inf {|p| : p ∈ Γ(u, v), pi is open for all 0 ≤ i ≤ |p| − 1} .

Note that ḋ(t)
∞(u, v) ≤ d(t)

∞(u, v). The advantage of working with ḋ(t)
∞ is that, for fixed z ∈ Zd, ḋ(t)

∞(0, z)
is independent of ξ(z), σ(z). Moreover, it is non-decreasing in σ(y) and non-increasing in ξ(y) for
y 6= z, and

Γ?t (z) 6= ∅ if and only if ḋ(t)

∞(0, z) ≤ |z|(1 + h?t ).

On the other hand, λ̃∗t (z) is non-decreasing in ξ(y) and non-increasing in σ(y) for y 6= z, as is verified
exactly as for Lemma 4.8. Applying the FKG (or Harris) inequality (see e.g. [11, Theorem 2.4]) to the
conditional law given ξ(z), σ(z), we see that ḋ(t)

∞(0, z) and λ̃∗t (z) are negatively associated, implying
(recall (48) and (53))

P
(
ḋ(t)

∞(0, Zt) > |Zt|(1 + h?t )
)
≤ ε+

∑
0<|z|≤Cεrt

P
(
z ∈ Z (ε)

t , ḋ
(t)

∞(0, z) > |z|(1 + h?t )
)

≤ ε+ sup
z∈Zd\{0}

P (d(t)

∞(0, z) > |z|(1 + h?t ))E
[
P̂rt(H1

−2Cε)
]
,

where the first inequality follows since Zt ∈ Z (ε)

t with probability at least 1− ε, and for the second we
use that λ̃∗t (z) and λ̂∗t (z) have the same distribution. To finish the proof, take the lim sup as t → ∞
in the above, invoke Corollary 4.7 and Lemma 4.10, and then let ε→ 0. �
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4.4.2. Proof of Propositions 2.6 and 2.14. We next exploit the coupling in Lemma 4.5 to prove Propo-
sitions 2.6 and 2.14, starting with the first.

Proof of Proposition 2.6. Abbreviate λ̂t(z) := λ̂(Lt)

RLt
(z) and define an auxiliary functional

(77) Ψ̂t(z) := λ̂t(z)− ln3 t

t
|z|, z ∈ ΠLt,δ.

Let Ψ̂(1)

t , Ẑt be defined analogously to (22)–(23). By Lemma 4.5, Zt = Ẑt with high probability.

Fix y 6= 0 and let t be large enough such that |y| < RLt . Reasoning as in the proof of Lemma 4.8,
we see that λ̂t(z) is non-decreasing in ξ̂zLt(z + y). Moreover, since ξz are i.i.d., the event {z = Ẑt} is

also non-decreasing in ξ̂zLt(z+y). As non-decreasing functions of a real random variable are positively
correlated, we deduce that

(78)
P̃Lt

(
z = Ẑt, ξ̂

z
Lt(z + y) ≥ u

∣∣∣ (ξ̂y)y 6=z, (ξz(x))x 6=z+y, (σ
z)z∈Zd

)
≥ P̃Lt

(
z = Ẑt

∣∣∣ (ξx)x 6=z, (ξz(x))x 6=z+y, (σ
z)z∈Zd

)
P̃Lt (ξ(0) ∧ (aLt − δ) ≥ u) .

Integrating over the remaining random variables and summing over z ∈ Zd, we obtain

(79) P̃Lt

(
ξ̂ẐtLt (Ẑt + y) ≥ u

)
≥ P̃Lt (ξ(0) ∧ (aLt − δ) ≥ u) ,

and since, by Lemma 4.5,

(80) P (ξ(Zt + y) ≥ u) = P̃Lt

(
ξ(Ẑt + y) ≥ u

)
+ o(1) = P̃Lt

(
ξ̂ẐtLt (Ẑt + y) ≥ u

)
+ o(1),

the result for ξ(Zt + y) follows. The proof for σ(Zt + y) is analogous. �

Proof of Proposition 2.14. For each z, ψt(z) can be seen as a function of ξ, σ; we denote by ψ̂t(z) the

same function applied to ξz, σz. Let Ẑt be defined via (35) with ψt substituted by ψ̂t. By Lemma 4.5,
Zψ
t = Ẑt with high probability. Fix y1, y2 ∈ Zd with |y1| > k1, |y2| > k2 and two measurable bounded

functions f1, f2. Note that, for each z ∈ Zd, the event {z = Ẑt} depends on ξz, σz only through
their values in Bk1(z), Bk2(z) respectively; in particular, it is independent of (ξz(z+ y1), σz(z+ y2)).
Therefore, using Lemma 4.5 we may write

E [f1(ξ(Zt + y1))f2(σ(Zt + y2))] = o(1) +
∑
z∈Zd

E
[
f1(ξz(z + y1))f2(σz(z + y2))1{z=Ẑt}

]
= o(1) + E [f1(ξ(0))]E [f2(σ(0))]

as t→∞, implying the result. �
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5. PATH EXPANSIONS

In this section, we present a method based on [3, 19] to bound the contribution to the Feynman-Kac
formula of certain classes of paths. This will be an important ingredient in the proofs of Propositions 2.10
and 2.13.

Recall the scale RL in (19) and the path notation from Section 3.2. For a path p ∈ Γk, let

ΛL(p) := max{λRL(y) : y ∈ Set(p) ∩ ΠL,δ},

with the convention max∅ = −∞. We also set, for z ∈ ΠL,δ,

Λ
(z)
L (p) := max{λRL(y) : y ∈ Set(p) ∩ ΠL,δ \ {z}}.

The goal of this section is to prove the following result.

Proposition 5.1. There exists a constant c ∈ (0,∞) such that the following two items hold eventually
almost surely as L→∞ for all x ∈ BL:

(i) For allN ⊂ Γ(x) satisfying Set(p) ⊂ BL and Set(p)∩Bc
lnL(x) 6= ∅ for all p ∈ N , and every

choice of (γp, zp) ∈ R× Zd satisfying

γp >
(
ΛL(p) + e−RL

)
∨ (aL − 1

2
δ) and zp ∈ Set(p) for all p ∈ N ,

we have, for all t ≥ 0,

lnEx

[
exp

{∫ t

0

ξ(Xs) ds

}
1{p(Xt) ∈ N}

]
< sup

p∈N
{tγp − (ln3 L− c)|zp − x|} .

(ii) For any z ∈ ΠL,δ, any N ⊂ Γ(x, z) satisfying pi 6= z for all i < |p|, Set(p) ⊂ BL and
Set(p) ∩Bc

lnL(x) 6= ∅ for all p ∈ N , and every choice of (γ, zp) ∈ R× Zd satisfying

γ >

(
sup
p∈N

Λ
(z)
L (p) + e−RL

)
∨ (aL − 1

2
δ) and zp ∈ Set(p) for all p ∈ N ,

we have

Ex

[
exp

{∫ τz

0

(ξ(Xs)− γ) ds

}
1{p(Xτz) ∈ N}

]
< σ(x)−1 exp

{
−(ln3 L− c) inf

p∈N
|zp − x|

}
.

5.1. Proof of Proposition 5.1. The proof of is based on Lemma 5.2 below. In order to state it, we
define an equivalence relation over paths depending on the structure of their visits to ΠL,δ. Recall that
DL,δ denotes the RL-neighbourhood of ΠL,δ. Let the operation ◦ denote path concatenation, in other
words, for p, p′ ∈ Γ such that p|p| = p′0, let

p ◦ p′ := (p0, . . . , p|p|, p
′
1, . . . , p

′
|p′|).

Now observe that, when Set(p) ∩ ΠL,δ 6= ∅, there is a unique decomposition

p = p̌(1) ◦ p̂(1) ◦ · · · ◦ p̌(mp) ◦ p̂(mp) ◦ p̄,
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where mp ∈ N,

p̌(1) ∈ Γ(Zd,ΠL,δ) and p̌(1)

i /∈ ΠL,δ, 0 ≤ i < |p̌(1)|,
p̌(k) ∈ Γ(Dc

L,δ,ΠL,δ) and p̌(k)

i /∈ ΠL,δ, 0 ≤ i < |p̌(k)|, 2 ≤ k ≤ mp,

p̂(k) ∈ Γ(ΠL,δ, D
c
L,δ) and p̂(k)

i ∈ DL,δ, 0 ≤ i < |p̂(k)|, 1 ≤ k ≤ mp − 1,

p̂(mp) ∈ Γ(ΠL,δ,Zd) and p̂
(mp)

i ∈ DL,δ, 0 ≤ i < |p̂(mp)|,
and

p̄ ∈ Γ(Dc
L,δ,Zd), p̄i /∈ ΠL,δ ∀ i ≥ 0 if p̂(mp) ∈ Γ(ΠL,δ, D

c
L,δ),

p̄0 ∈ DL,δ, |p̄| = 0 otherwise.

Note that p̌(1), p̂(mp) and p̄ can have zero length.

For ε > 0, recall the definition of ML,ε
p in (42). Whenever Set(p) ∩ ΠL,δ 6= ∅, we define

np :=

mp∑
i=1

|p̌(i)|+ |p̄| and kL,εp :=

mp∑
i=1

ML,ε

p̌(i) +ML,ε
p̄ .(81)

When Set(p) ∩ ΠL,δ = ∅, we set mp := 0, np := |p|, kL,εp := ML,ε
p , and ΛL(p) := −∞.

We now introduce an equivalence relation on Γ: p, p′ ∈ Γ are said to be equivalent, written p′ ∼ p, if
mp = mp′ , p̌′(i) = p̌(i) for all i = 1, . . . ,mp and p̄′ = p̄ if p̄0 ∈ Dc

L,δ. Note that np, kL,εp and ΛL(p)
depend only on the equivalence class of p.

In order to state our key lemma, we define, for n,m ∈ N0,

Γ(n,m) := {p ∈ Γ: np = n,mp = m}.

Lemma 5.2. For each δ, ε > 0, there exists c > 1 such that the following holds a.s. eventually as
L→∞. For all n,m ∈ N0 and p ∈ Γ(n,m) with Set(p) ⊂ BL:

(i) If γ > ΛL(p) ∨ (aL − 1
2
δ), then, for all t ≥ 0,

Ep0

[
e
∫ t
0 (ξ(Xs)−γ)ds

1{p(Xt)∼p}

]
< cm+1(Rd

L)1{m>0}

(
1 +

cRd
L

γ − ΛL(p)

)m ( qδ
2d

)n
e(c−ln3 L)kL,εp ,

where qδ = (1 + δδσ/2)−1 (with δσ as in Assumption (E)).

(ii) If, for z ∈ ΠL,δ, γ > Λ
(z)
L (p) ∨ (aL − 1

2
δ), then

Ep0

[
e
∫ τz
0 (ξ(Xs)−γ)ds

1{p(Xτz )∼p}

]
<

cm+1

σ(p0) ∨ 1

(
1 +

cRd
L

γ − Λ(z)

L (p)

)m ( qδ
2d

)n
e(c−ln3 L)kL,εp .

As anticipated, Lemma 5.2 allows us to give the:

Proof of Proposition 5.1. Using Lemma 5.2, the proof is as in [3, Proposition 6.1]. Observe that Propo-
sition 5.1 only applies to paths that exit balls of radius lnL; this ensures that a reasonable number of
sites of ‘moderately low’ potential are hit by the path. �

To end the section, we prove Lemma 5.2 with an argument similar as for [3, Lemma 6.5].
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Proof of Lemma 5.2. We will give the proof of item (ii); for this we need the conclusions of Lemmas 3.2
and 3.7. Item (i) follows analogously, but also requires Corollary 3.9; see the proof of [3, Lemma 6.5].

In the following, we abbreviate Iba := e
∫ b
a (ξ(Xs)−γ)ds, and we fix c > 1 as in Lemma 3.7; we may and

will assume c > δ−1
σ (cf. Assumption (E)).

We proceed by induction on m. Assume m = 1. Set ` := |p̌(1)|, y := p̌(1)

` ∈ ΠL,δ. Note that, since
we may assume z = p̄|p̄| (otherwise the integral will be zero), the case p̄0 /∈ DL,δ is not possible;
therefore, p̄0 ∈ DL,δ, and in particular |p̄| = 0. By Corollary 2.2, we may further assume z = y and
T` = τz. Hence, by Lemma 3.7,

(σ(p0) ∨ 1)Ep0

[
Iτz0 1{p(Xτz )∼p}

]
≤ (σ(p0) ∨ 1)Ep0

[
IT`0 1{p`(X)=p̌(1)}

]
< c

( qδ
2d

)`
e

(c−ln3 L)ML,ε

p̌(1) ,

finishing the case m = 1.

Assume now by induction that the statement is proven for some m ≥ 1, and let p ∈ Γ(m+1,n).
Define p′ := p̌(2) ◦ p̂(2) ◦ · · · ◦ p̌(m+1) ◦ p̂(m+1) ◦ p̄. Then p′ ∈ Γ(m,n′) where n = |p̌(1)| + n′, and
kL,εp = kL,εp′ +ML,ε

p̌(1) . Setting ` := |p̌(1)|, x := p̌(2)

0 and S := inf{s > T` : Xs /∈ DL,δ}, we get

Ep0

[
Iτz0 1{p(Xτz )∼p}

]
≤ Ep0

[
IS0 1{p`(X)=p̌(1),S<τz}

]
Ex

[
Iτz0 1{p(Xτz )∼p′}

]
.(82)

On the other hand, set y := p̌(1)

` ∈ ΠL,δ; we may assume that y 6= z since otherwise (82) is zero.
Then, by Lemma 3.7, Lemma 3.2 and Assumption (E),

(σ(p0) ∨ 1)Ep0

[
IS0 1{p`(X)=p̌(1)}

]
= (σ(p0) ∨ 1)Ep0

[
IT`0 1{p`(X)=p̌(1)}

]
Ey

[
I
τBc
RL

(y)

0

]
< c

( qδ
2d

)`
e

(c−ln3 L)ML,ε

p̌(1)

(
1 +

cRd
L

γ − Λ(z)

L (p)

)
.(83)

Now the induction step follows from (82)–(83) and the induction hypothesis. The case m = 0 follows
from Lemma 3.7. �

6. NEGLIGIBLE PATHS AND EIGENFUNCTION LOCALISATION

In this section we complete the proofs Proposition 2.9 (lower bound on the total mass), Proposition 2.10
(negligible paths), and Proposition 2.13 (localisation of the principal eigenfunction).

Before we begin, we note that Corollary 2.5 and aLt = at + o(1) imply that, for any η > 0,

(84) Zt ∈ ΠLt,η

holds with high probability as t→∞. This will be crucial to apply Lemma 3.8 up to an arbitrary level of
precision, which ultimately drives the complete localisation. Recall also that

(85) λRLt (Zt) = at + o(1) = % ln2 t(1 + o(1))

with high probability by Corollary 2.4.

DOI 10.20347/WIAS.PREPRINT.2433 Berlin 2017



S. Muirhead, R. Pymar and R.S. dos Santos 34

6.1. Lower bound on the total mass. As a first step to establish Proposition 2.9, we give next a con-
sequence of the percolation estimates of Section 4.4.1, which will allow us to streamline the approach
compared to [19]. Recall the definition of Γ?t (z) from (73).

Lemma 6.1. For any t > 0, z ∈ Zd \ {0}, p ∈ Γ?t (z), and 0 < r < 1
2
|p|sσt ,

(86) E0

[
e
∫ τz
0 ξ(Xs)ds

1{τz≤r}

]
≥ exp

{
−rsξt − |p| ln

(
4d|p|sσt
r

)}
.

Proof. The proof is similar as for [3, Lemma 8.1]. By requiring the random walk X to follow the path p
until hitting z and using that ξ(pi) ≥ −sξt , we obtain

E0

[
e
∫ τz
0 ξ(Xs)ds

1{τz≤r}

]
≥ (2d)−|p|e−rs

ξ
tP

|p|−1∑
i=0

σ(pi)Ei ≤ r

 ,

where (Ei)i∈N0 are i.i.d. Exp(1) random variables. The probability above is at least

P
(
Ei ≤

r

|p|sσt
∀ 0 ≤ i ≤ |p| − 1

)
≥
(

2|p|sσt
r

)−|p|
where we used σ(pi) < sσt and 1− e−x ≥ 1

2
x for x ∈ (0, 1

2
). This proves (86). �

Proof of Proposition 2.9. To ease notation, abbreviate τ := τZt and λt := λRLt (Zt). Using the
Feynman-Kac formula (3) and the strong Markov property, we may write, for r ∈ (0, t),

U(t) ≥ E0

[
e
∫ t
0 ξ(Xs)ds

1{τ≤r}

]
= E0

[
e
∫ τ
0 ξ(Xs)ds

1{τ≤r}uZt (t− τ, Zt)
]
.(87)

To choose r, we use Proposition 4.9 to pick a path p ∈ Γ?t (Zt) and set

(88) r :=
4d|p|
λt

.

Note that r � t by (85), Proposition 4.9 and Corollary 2.4, so we may indeed take r in (87). Moreover,
eventually r < 1

2
|p|sσt , so we may apply Lemma 6.1. On the other hand, (84) and Corollary 3.9 yield

that, with high probability,

lnuZt(s, Zt) > sλt + o(1) for all s > 0.

Collecting these facts we deduce

lnU(t) ≥ (t− r)λt − rsξt − |p| ln
(

4d|p|sσt
r

)
+ o(1),

which after using r = 4d|p|/λt, the definitions of sξt , s
σ
t and 1

2
at ≤ λt ≤ 2% ln2 t becomes

(89) lnU(t) ≥ tλt − |p| ln3 t− |p|
{

ln(2%) + 4d(1 + 2h2
t ) + h2

t ln at
}

+ o(1).

By Proposition 4.9 and Corollary 2.4 (recall h?t � ht),

|p| ln3 t ≤ |Zt|(1 + h?t ) ln3 t = |Zt| ln3 t+ o(tdtht),

and we may check that the third term in (89) is also o(tdtht). This completes the proof. �
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6.2. Negligible paths. We prove Proposition 2.10 by applying the machinery in Section 5. In order to
do so, we first eliminate paths that fail to exit the ball BlnLt . The following is an easy consequence of
the almost sure bound on the maximum of ξ inside balls, stated in (15).

Lemma 6.2. Eventually almost surely as t→∞,

lnE0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τBc

lnLt
> t}

]
< 2%t ln3 t.

Proof of Proposition 2.10. We begin by proving the first statement. For p ∈ Γ(0), we define a choice
of p → zp by setting zp = 0 if Set(p) ∩ ΠLt,δ = ∅, and otherwise taking zp to be a maximizer of
z 7→ λRLt (z) over z ∈ Set(p) ∩ ΠLt,δ (chosen according to some fixed, deterministic rule). Applying
the first statement of Proposition 5.1 with the settings

N := {p ∈ Γ(0) : Set(p) ⊆ BLt \ {Zt}, Set(p) ∩Bc
lnLt 6= ∅}

and our choice of zp, we deduce that there exists a c > 0 such that

lnE0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τBc

lnLt
< t < τZt ∧ τBc

Lt
}
]

<
(

max
z∈ΠLt,δ\{Zt}

(
tλRLt (z)− (ln3 Lt − c)|z|

)
+ te−RLt

)
∨ t(aLt − δ)

<
(
tΨ(2)

t,c + te−RLt
)
∨ t(aLt − δ)(90)

Observe that we have chosen Lt and RL in (18) and (19) so that te−RLt � rt. Moreover, for any
ft → 0 and gt →∞, |Z(2)

t,c | < rt
√
gt and Ψ(2)

t,c > at − ft with high probability by Corollaries 2.4 and
4.2. Hence (90) is in turn bounded above by tΨ(2)

t + crt
√
gt + o(rt), which together with Lemma 6.2

proves the result.

For the second statement, we again apply item (i) of Proposition 5.1, this time with

N := {p ∈ Γ(0) : Set(p) ⊆ BLt , Set(p) ∩Dc
t 6= ∅}.

This is justified by Corollary 2.4: it implies that, with high probability, Dt ⊆ BLt , and thus N 6= ∅;
moreover, |Zt| > lnLt, so all p ∈ N satisfy Set(p) ∩ Bc

lnLt
6= ∅. Choose zp as before except if this

sets zp to be Zt, in which case choose zp ∈ Set(p) arbitrarily satisfying |zp| > |Zt|(1 + ht). We then
similarly obtain

lnE0

[
exp

{∫ t

0

ξ(Xs) ds

}
1{τDc

t
∨ τBc

lnLt
≤ t < τBc

Lt
}
]

<
(
tΨ(2)

t ∨
(
tΨ(1)

t − |Zt|ht ln3 Lt
))

+ o(rtgt)

with high probability, finishing the proof. �

6.3. Localisation of the principal eigenfunction. Similarly as in Section 6.2, we apply the machinery
of Section 5 to the Feynman-Kac representation of the principal eigenfunction φDt(Zt) in (33). This
time we aim to use the second statement of Proposition 5.1; the following lemma ensures that this is
applicable in our setting.

DOI 10.20347/WIAS.PREPRINT.2433 Berlin 2017



S. Muirhead, R. Pymar and R.S. dos Santos 36

Lemma 6.3. For any ft → 0, with high probability as t→∞,

λRLt (Zt) > max
z∈Dt∩ΠLt,δ\{Zt}

λRLt (z) + dtft.

Proof. The proof is similar to Lemma 7.1 of [19], and uses the fact that ht → 0. �

Proof of Proposition 2.13. We wish to apply Proposition 5.1 to paths p ∈ Γ(z, Zt) for some z 6= Zt.
To that end, we must first exclude paths that fail to exit the ball BlnLt(z), which is only possible when
z ∈ BlnLt(Zt) and Set(p) ⊂ B2 lnLt(Zt). Recall from Section 3.2 the notation φz,r for the principal
eigenfunction inBr(z) corresponding to the eigenvalue λr(z), and consider the Feynman-Kac formula
(33), (43). SetmL := 2 lnL. By Corollary 2.4, with high probabilityBmLt

(z) ⊂ Dt for z ∈ BlnLt(Zt),
and thus λDt ≥ λmLt (z) ∨ λRLt (Zt) by eigenvalue monotonicity (see [19, Lemma 3.1]). With these
observations we obtain

σ(Zt)
φDt(y)

φDt(Zt)
≤ σ(Zt)

φZt,mLt (y)

φZt,mLt (Zt)
1BmLt

(Zt)(y)

+ σ(y)Ey
[
exp

{∫ τZt

0

(ξ(Xs)− λRLt (Zt)) ds

}
1{τBc

lnLt
(y) ≤ τZt < τDc

t
}
]
.(91)

In light of (84), Lemma 3.8 implies

(92) lim
t→∞

σ(Zt)
∑

y∈BmLt (Zt)\{Zt}

φZt,mLt (y)

φZt,mLt (Zt)
= 0 in probability.

For the term in (91), we may apply item (ii) of Proposition 5.1 with the settings

N := {p ∈ Γ(y, Zt) : pi 6= Zt ∀ i < |p|, Set(p) ⊆ Dt, Set(p) ∩BlnLt(y)c 6= ∅},
γ := λRLt (Zt) and zp := Zt, which is valid by Lemma 6.3 and since e−RLt = o(dt) by (18) and (19).
We deduce that there exists a c > 0 such that, with high probability as t→∞,

σ(y)Ey
[
exp

{∫ τZt

0

(ξ(Xs)− λRLt (Zt)) ds

}
1{τBc

lnLt
(Zt) ≤ τZt < τDc

t
}
]
< e−(ln3 Lt−c)|y−Zt|.

Summing over y ∈ Dt \ {Zt} and combining with (92) yields the result. �

7. THE SPECIAL CASE OF LOG-WEIBULL TRAPS

In this section we study the special case of log-Weibull traps, completing the proof of Proposition 2.15
and Theorem 1.5 under Assumptions (LW) and (DE). Note that, in this case, δσ = essinf σ(0) = 1,
but we prefer to keep δσ to show how the formulae depend on it.

Recall the definition of R∗t in Section 4.1. We use the machinery developed in Section 4, which allows
us to reduce the problem to studying the upper tail of (a truncated version of) the single random variable
λR∗t (0). In particular, we wish to observe the local profile of the random environments conditionally on
λR∗t (0) being large.
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To define the appropriate local profile, we begin with some notation. Recall the radii of influence ρξ and
ρσ and the interface sites Fξ and Fσ. Recall also the constants c̄(y), y ∈ Zd from (11). In order to
separately keep track of the interface cases for ξ and σ, we set

c̄σ(y) :=

{
c̄(y) if y ∈ Fσ,
0 otherwise,

c̄ξ(y) :=

{
c̄(y) if y ∈ Fξ,
0 otherwise.

For each y ∈ Zd, define scales

qξ,t(y) :=

{
% ln c̄(y) + %(µ− 1− 2|y|) ln3 t if y ∈ (Bρξ \ {0}) \ Fξ,
0 otherwise,

qσ,t :=
1

µ

d

%

ln t

(ln2 t)µ−1
.

For an integer m ≥ ρσ and scales ft → 0, gt →∞, define the rectangles

Eξ :=
∏

y∈(Bρξ\({0})\Fξ

(−ft, ft) ×
∏

y∈(Bm\Bρξ )∪Fξ

(−gt, gt) ,

Eσ := (1− ft, 1 + ft) ×
∏

y∈(Bρσ\({0})\Fσ

(δσ, δσ + ft) ×
∏

y∈(Bm\Bρσ )∪Fσ

(δσ + ft, gt) ,

as well as their transformed versions

Sξ :=
∏

y∈(Bρξ\({0})\Fξ

(qξ,t(y)− ft, qξ,t(y) + ft) ×
∏

y∈(Bm\Bρξ )∪Fξ

(−gt, gt) ,

and

Sσ := qσ,t(1− ft, 1 + ft) ×
∏

y∈(Bρσ\{0})\Fσ

(δσ, δσ + ft) ×
∏

y∈(Bm\Bρσ )∪Fσ

(δσ + ft, gt) .

Define the event where ξ and σ have the local profile described by Sξ and Sσ:

(93) Smt :=
{
{ξ(y)}y∈Bm\{0} ∈ Sξ, {σ(y)}y∈Bm ∈ Sσ

}
.

Recall the truncated principal eigenvalue λ̂∗t and the scale At from Proposition 4.6. Let

At(s) := {λ̂∗t > At + sdt}, s ∈ R.
The main result we need is the following, which builds on the analysis of Proposition 4.6.

Proposition 7.1. There exists a constant κ = κ(µ) ∈ (0, 1
2
) satisfying the following. Fix scales

ft, gt > 0 such that gt → ∞, ft → 0 and ft � (ln2 t)
−κ as t → ∞. Then, for each m ≥ ρσ and

uniformly over s in bounded intervals of R,

(94) lim
t→∞

P(Smt |At(s)) = 1.

Moreover, denote by νyξ and νyσ the probability measures on R with densities proportional respectively

to ec̄ξ(y)x/%fξ(x) and ec̄σ(y)δσ/xfσ(x), where fξ, fσ are the density functions of ξ(0), σ(0). Fix a Borel
set I ⊂ R. Then, for any y ∈ (Bm \Bρξ) ∪ Fξ,

(95) lim
t→∞

∣∣∣P(ξ(y) ∈ I
∣∣∣At(s))− νyξ (I)

∣∣∣ = 0
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and, for any y ∈ (Bm \Bρσ) ∪ Fσ,

(96) lim
t→∞

∣∣∣P(σ(y) ∈ I
∣∣∣At(s))− νyσ(I)

∣∣∣ = 0,

where in both cases the convergence is uniform over s in bounded intervals of R.

An explicit bound for the constant κ above is given in the proof, see (105) below; in fact, separate error
bounds are possible for σ(y) and ξ(y) depending on |y|. Also note that, if y /∈ Fξ, then c̄ξ(y) = 0
and νyξ equals the law of ξ(0) (analogously for σ).

Before proving Proposition 7.1, we show how it implies Theorem 1.5 and Proposition 2.15. We start
with an intermediate result. For z ∈ Zd, define

(97) Smt (z) :=
{
{ξ(y)}y∈Bm(z)\{z} ∈ Sξ, {σ(y)}y∈Bm(z) ∈ Sσ

}
,

i.e., Smt (z) is the translation by z of the event Smt in (93). Our next lemma shows that the local profile
defined by Sξ, Sσ is with high probability seen from the point of view of Zt.

Lemma 7.2. For each m ≥ ρσ,

(98) lim
t→∞

P
(
Smrt (Zt)

)
= 1.

Proof. Fix ε > 0. Reasoning as in the first part of the proof of Proposition 4.9, we obtain Cε ∈ (0,∞)
such that, with probability larger than 1− ε, Zt belongs to the set

Z (ε)

t :=
{
z ∈ Zd : |z| ≤ Cεrt, λ̂

∗
rt(z) > Art + s(ε)

t,zdrt

}
, s(ε)

t,z := (|z|/rt − 2Cε).

On the other hand, since |s(ε)

t,z| ≤ 2Cε when |z| ≤ Cεrt, we get (recall (48) and (53))

P
(
Smrt (Zt)

c, Zt ∈ Z (ε)

t

)
≤

∑
|z|≤Cεrt

P
(
Smrt (z)c, z ∈ Z (ε)

t

)
≤ sup
|z|≤Cεrt

P
(
(Smrt )

c
∣∣Art(s(ε)

t,z)
)
E
[
P̂rt(H1

−2Cε)
]
−→
t→∞

0

by Proposition 7.1 and Corollary 4.7. This implies lim supt→∞P
(
Smrt (Zt)

c
)
≤ ε, and since ε is

arbitrary, (98) follows. �

We finish next the proofs of Theorem 1.5 and Proposition 2.15, starting with the first.

Proof Theorem 1.5. In light of Lemma 7.2, it only remains to prove the statements about weak conver-
gence of ξ(Zt + y) and σ(Zt + y) in the cases y ∈ Bc

ρξ
∪ Fξ and y ∈ Bc

ρσ ∪ Fσ, respectively.

Recall from the proof of Proposition 2.6 the abbreviation λ̂t = λ̂
(Lt)
RLt

= λ̂∗rt , the functional Ψ̂t in (77),

its maximizer Ẑt and the fact that Zt = Ẑt with high probability. By Lemma 4.5 and Corollary 2.5, it is
enough to prove the statements for ξẐt(Ẑt + y) and σẐt(Ẑt + y). Here we will only prove the first, as
the second follows analogously. Fix y ∈ Bc

ρξ
∪ Fξ.
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For z ∈ Zd, let

Tt(z) := d−1
rt

(
max
x 6=z

Ψ̂t(x)− Art +
|z|
rt
dt

)
.

Fix ε > 0. By Proposition 4.1, there exists Cε ∈ (0,∞) such that, when t is large, Ẑt belongs with
probability larger than 1− ε to the set

Z(ε)
t :=

{
z ∈ Zd : |z| ≤ Cεrt, |Tt(z)| ≤ 2Cε

}
.

Moreover, for any 0 < a < b <∞ and z ∈ Zd,

(99)

P
(
ξz(z + y) ∈ (a, b], Ẑt = z, z ∈ Z(ε)

t

)
=P

(
ξz(z + y) ∈ (a, b], λ̂∗rt(z) > Art + Tt(z)drt , |Tt(z)| ≤ 2Cε

)
=

∫ 2Cε

−2Cε

P (ξ(y) ∈ (a, b] | Art(u))P (Art(u))P (Tt(z) ∈ du) ,

where the last equality holds by the independence between Tt(z) and (ξz, σz) and the translation
invariance of the latter. By Proposition 7.1 (with m ≥ |y|), (99) equals

νyξ (a, b)(1 + o(1))P
(
Ẑt = z, z ∈ Z(ε)

t

)
where o(1) is uniform in z. Summing over z we obtain

νyξ (a, b)(1− ε) ≤ lim inf
t→∞

P
(
ξẐt(Ẑt + y) ∈ (a, b]

)
≤ lim sup

t→∞
P
(
ξẐt(Ẑt + y) ∈ (a, b]

)
≤ νyξ (a, b) + ε,

and since ε is arbitrary, the conclusion follows. �

Proof of Proposition 2.15. This proof is similar to the proof of Corollary 5.11 in [19]. Recall the definition
of λρξ,ρσ(z) from Section 2.5 and note that the monotonicity properties of the principal eigenvalue with
respect to the domain and to the potential (see [19, Lemma 3.1]) imply that λRLt (z) ≥ λρξ,ρσ(z). We
now claim that, for some εt → 0,

λRLt (Zt)− λρξ,ρσ(Zt) < drtεt with high probability as t→∞.(100)

The first step to showing this claim is to replace the eigenvalues by their truncated equivalents. Indeed,
Lemma 4.5 and Corollary 2.5 imply that, with high probability as t→∞,

λRLt (Zt) = λ̂
(Lt)
RLt

(Zt) and λρξ,ρσ(Zt) = λ̂(Lt)
ρξ,ρσ

(Zt).

Therefore it suffices to show that, with high probability as t→∞,

λ̂
(Lt)
RLt

(Zt)− λ̂(Lt)
ρξ,ρσ

(Zt) < drtεt.(101)

We now appeal to the eigenvalue path expansion (27). Specifically, we write

λ̂
(Lt)
RLt

(Zt)− λ̂(Lt)
ρξ,ρσ

(Zt) = T1 + T2 + T3(102)
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where, abbreviating, σt = σZt , ξt = ξ̂ZtLt (with ξ̂zL as in (52)) and ξ̄t = ξt1Bρξ (Zt),

T1 =
1

σt(Zt)

∑
k≥2

∑
p∈Γk(Zt,Zt)
pi 6=Zt ∀ 0<i<k

Set(p)⊆Bρσ (Zt)

{ ∏
0<i<k

1

2d

1

1 + σt(pi)(λ̂
(Lt)
RLt

(Zt)− ξt(pi))
(103)

−
∏

0<i<k

1

2d

1

1 + σt(pi)(λ̂
(Lt)
RLt

(Zt)− ξ̄t(pi))

}
,

T2 =
1

σt(Zt)

∑
k≥2

∑
p∈Γk(Zt,Zt)
pi 6=Zt ∀ 0<i<k
Set⊆Bρσ (Zt)

{ ∏
0<i<k

1

2d

1

1 + σt(pi)(λ̂
(Lt)
RLt

(Zt)− ξ̄t(pi))

−
∏

0<i<k

1

2d

1

1 + σt(pi)(λ̂
(Lt)
ρξ,ρσ(Zt)− ξ̄t(pi))

}
,

and

T3 =
1

σt(Zt)

∑
k≥2ρσ+2

∑
p∈Γk(Zt,Zt)
pi 6=Zt ∀ 0<i<k

Set(p)⊆BRLt (Zt)

Set(p)∩(BRLt
(Zt)\Bρσ (Zt)) 6=∅

∏
0<i<k

1

2d

1

1 + σt(pi)(λ̂
(Lt)
RLt

(Zt)− ξt(pi))
.

We deal with T1 initially. Applying Lemma 7.2 with m = ρσ + 1 together with Lemma 4.5 and Corol-
lary 2.4, we conclude that the following hold with high probability as t→∞: for all x ∈ Bm(Zt)\{Zt},
δσ < σt(x) < 2δσ and ξt(x) < c1 ln3 t for some constant c1 ∈ (0,∞); for all x ∈ Bm(Zt)\Bρξ(Zt),

ξt(x) < gt < c1 ln3 t; σt(Zt) ≥ 1
2
qσ,t; and λ̂(Lt)

RLt
(Zt) > aLt − δ > c2 ln2 t for some constant

c2 ∈ (0,∞) and δ as in Corollary 2.2. Noting that any path giving a non-zero contribution to T1 must
exit Bρξ(Zt) and then return to Zt, we may restrict the sum in (103) to k ≥ 2ρξ + 2, obtaining

T1 ≤
c3

qσ,t
gt(c2 ln2 t− c1 ln3 t)

−2ρξ−2 <
c4

qσ,t
gt(ln2 t)

−2ρξ−2 = c5gt
(ln2 t)

µ−1−2ρξ−2

ln t

for some constants c3, c4, c5 ∈ (0,∞), where the last equality holds by the definition of qσ,t. Finally
note that the definition of ρξ implies that µ− 1− 2ρξ − 2 < 0, and indeed this is the smallest integer
for which this is true. We deduce that the above is smaller than drtεt eventually for some εt → 0.
For T2, it is clear by similar arguments that, with high probability, it is bounded in absolute value by
o(λ̂

(Lt)
RLt

(Zt)− λ̂(Lt)
ρξ,ρσ(Zt)).
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For T3, we additionally use the fact that ξt(x) ≤ aLt − c∗ for all x ∈ BRLt
(Zt) \ {Zt}, as defined in

(52). Then we can upper-bound T3 by

c6

qσ,t

(
(c2 ln2 t− c1 ln3 t)

−2ρσ−1
)
<

c7

qσ,t
(ln2 t)

−2ρσ−1 = c8
(ln2 t)

µ−1−2ρσ−1

ln t

for constants c6, c7, c8 ∈ (0,∞). The definition of ρσ implies that µ−1−2ρσ−1 < 0, and indeed this
is the smallest integer for which this is true. We deduce that the above is smaller than drtεt eventually
for some εt → 0, finishing the proof of (100).

To complete the proof, note that, by (100) and Corollary 2.4, with high probability as t→∞ and for all
z 6= Zt,

Ψ
ρξ,ρσ
t (Zt) > Ψt(Zt)− drtεt > Ψt(z) ≥ Ψ

ρξ,ρσ
t (z),

where the last inequality follows by monotonicity of the principal eigenvalue. �

We finish this section by completing the proof of Proposition 7.1, which relies on the analysis already
developed in Proposition 4.6.

Proof of Proposition 7.1. Define κ0 = κ̃0 := 1
2
{(µ− 1) ∧ 1} and, recursively for n ≥ 1,

(104) κn :=
κn−1

2
∧ (µ− 2n)+

2
, κ̃n :=

κn
2
∧ (µ− 2n− 1)+

2
.

We then pick κ ∈ (0, 1/2) satisfying

(105) κ < min {κn : κn > 0} ∧min {κ̃n : κ̃n > 0} .
Fix m ≥ ρσ and scales ft, gt as in the statement. We may assume m ≥ ρσ + 1 and gt � ln3 t.

Define a field
ϕ ∈ E := RBR∗t

\{0} × (0,∞)× (δσ,∞)
BR∗t
\{0}

with projections ϕξ and ϕσ onto the first |BR∗t
|− 1 and last |BR∗t

| components respectively, the middle
set corresponding to ϕσ(0). We write ϕ̇y := (ϕξ(x), ϕσ(x))x 6=y. Define also a truncated version ϕ̂ξ
of ϕξ by the equation

ϕ̂ξ(y) + qξ,t(y) =
(
ϕξ(y) + qξ,t(y)

)
∧
(
aLt − c∗

)
, y ∈ BR∗t

\ {0},

where c∗ = 4δ−1
σ as in (51), i.e., ϕ̂ξ is a shifted version of a field truncated as in (52). Note that ϕ̂ξ

depends on t, but we suppress this from the notation.

Recall the scale At from Proposition 4.6 and the function Qt(A) defined in its proof. We define a
function Q̃t(A, ϕ̇0) similar to Qt(A) but with the shifted field:

Q̃t(A, ϕ̇0) :=
∑
k≥2

∑
p∈Γk(0,0)

pi 6=0∀ 0<i<k
Set(p)⊂BR∗t

∏
0<i<k

1

2d

1

1 + ϕσ(pi)
(
A− ϕ̂ξ(pi)− qξ,t(pi)

) ,
where ϕ is the field as above and A ≥ at − δ (with δ as in Corollary 2.2). As mentioned in the proof of
Proposition 4.6, Q̃t(A, ϕ̇0) ≤ 1/2 uniformly on ϕ̇0 and A ≥ at − δ.
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In the following, we abbreviate ξ := ξ0, σ := σ0 as in the proof of Proposition 4.6.

We introduce transformed versions of the potential and trapping landscape:

ξ̃t(y) = ξ(y)− qξ,t(y), y ∈ BR∗t
\ {0} and σ̃t(y) =

{
σ(y)
qσ,t

if y = 0,

σ(y) otherwise.

Proceeding as in the proof of Proposition 4.6, we may write, for any measurable B ⊂ E ,

(106)

P
(

(ξ̃t, σ̃t) ∈ B,At(s)
)

=

∫
B

exp

{
−G

(
At + sdt +

1− Q̃t(At + sdt, ϕ̇0)

qσ,tϕσ(0)

)}
P
(

(ξ̃t, σ̃t) ∈ dϕ
)
,

where G(r) = − lnP(ξ(0) > r) = er/%.

Before we proceed, we will first need to restrict our integrals to an a priori subset R ⊂ E where we
can better control the exponent in (106). To that end, recall from the proof of Proposition 4.6 that, fixing
`t →∞ such that `−1

t � dt ∨ |at − At|, we have, for any M > 0,

lim
t→∞

td sup
s≥−M

P(At(s), σ(0) ≤ `t) = 0.

Reasoning as in (61), we can bound

(107) 0 ≤ at − At ≤ (1 + o(1))dt(ln2 t)
µ as t→∞,

so we may take `t := ln t/(ln2 t)
µ+1. Moreover, since ξ(0) ≥ λ̂∗t , (107) implies, for any ε > 0,

lim
t→∞

td sup
s≥−M

P (At(s), ξ(y) > (1 + ε)%µ ln3 t for some y ∈ Bm \ {0}) = 0;

on the other hand, by Lemma 4.8, λ̂∗t and ξ(y) are positively associated for any y ∈ Zd, thus

lim
t→∞

td sup
s≥−M

P (At(s), ξ(y) < −gt for some y ∈ Bm \ {0}) = 0

as well. Thus we may restrict to the subset

(108) R :=
∏

y∈Bm\{0}

(
− gt, 2%µ ln3 t− qξ,t(y)

)
× RBR∗t

\Bm × (`tq
−1
σ,t ,∞)× (δσ,∞)

BR∗t
\{0}

,

where the first |Bm| − 1 coordinates correspond to (ϕξ(y))y∈Bm\{0} and the interval (`tq
−1
σ,t ,∞)

corresponds to ϕσ(0). Note that, onR, ϕ̂ξ(y) = ϕξ(y) for all y ∈ Bm \ {0}.

An important consequence is as follows: since σ(0) > `t when (ξ̃t, σ̃t) ∈ R, we may reason as in the
proof of Proposition 4.6 to see that, for any measurable B ⊂ R,

(109) P
(

(ξ̃t, σ̃t) ∈ B,At(s)
)

= e−s(1+o(1))P
(

(ξ̃t, σ̃t) ∈ B,At(0)
)

as t→∞

uniformly over s in bounded sets, and thus it is enough to consider s = 0. Another important fact to
note is that, since we assume m ≥ 1, Q̃t(At, ϕ̇0) = O((ln2 t)

−1) uniformly over ϕ ∈ R.
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We show next that the integral (106) with s = 0 and B = R is asymptotically concentrated in the set
Eξ×Eσ; this will be done by applications of the Laplace method as stated in Proposition A.1 (see also
Remark A.2).

We begin by analysing the coordinate ϕσ(0). We first observe that, uniformly over ϕ ∈ R,

G

(
At +

1− Q̃t(At, ϕ̇0)

qσ,tϕσ(0)

)
= eAt/% +

eAt/%

%qσ,t

(
1− Q̃t(At, ϕ̇0)

ϕσ(0)
+O

(
qσ,t
`2
t

))
,

= eAt/% + µ(ln2 t)
µ−1

(
1− Q̃t(At, ϕ̇0)

ϕσ(0)
+O

(
(ln2 t)

µ+3

ln t

))
,(110)

= eAt/% + µ(ln2 t)
µ−1 1

ϕσ(0)

(
1 +O

(
1

ln2 t

))
,

where we used ex = 1 + x + O(x2) as x → 0, the definitions of at, qσ,t, `t and (107). Write
R = St ×

(
`tq
−1
σ,t ,∞

)
where St corresponds to the projection of R onto the coordinates ϕ̇0. Note

that σ̃t(0) has a density with respect to Lebesgue measure given by

(111) fσ̃t(0)(x) =
µ

x
exp

{
− ln(qσ,tx)µ + (µ− 1) ln2(qσ,tx)

}
.

Setting χt := eAt/% + (ln qσ,t)
µ − (µ− 1) ln2 qσ,t, define ht,ϕ̇0(x) by the equation

(112) −G

(
At +

1− Q̃t(At, ϕ̇0)

qσ,t(1 + x)

)
+ ln

(
x

µ
fσ̃t(0)(x)

)
+ χt = µ(ln2 t)

µ−1ht,ϕ̇0(x)

for x > `tq
−1
σ,t , and ht,ϕ̇0(x) := −∞ otherwise. Set also h(x) := −(1/x + lnx). Using (110), (111)

and the definition of qσ,t, we may verify that, for any ζ ∈ (0, 1),

sup
x:|x−1|≤ζ

sup
ϕ̇0∈St

∣∣∣ht,ϕ̇0(x)− h(x)
∣∣∣ = O

(
1

ln2 t

)
.

Moreover, for all ε ∈ (0, 1),

lim sup
t→∞

sup
ϕ̇0∈St

sup
x>0

(ht,ϕ̇0(x)− (1− ε)h(x)) ≤ 0,

as can be verified separately for x ≥ 1 and x ∈ (`tq
−1
σ,t , 1): in the first case, use (1 + u)µ ≥ 1 + µu

(recall µ > 1) and ln(1 + u) ≤ u for all u ≥ 0; in the second case, use

ln qσ,t
µ

[
1−

(
ln(qσ,tx)

ln qσ,t

)µ]
≤ 1

x
− 1.
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We thus verify the conditions of Proposition A.1 with I = (0,∞), x0 = 1, f(x) = µ/x, vt =
µ(ln2 t)

µ−1 and ℵ = ϕ̇0, obtaining with the help of (106)

P
(

(ξ̃t, σ̃t) ∈ R,At(0)
)

=

∫
St

e−χt
{∫
I

eµ(ln2 t)µ−1ht,ϕ̇0
(x)dx

}
P
(

(ξ̃t(z), σ̃t(z))z 6=0 ∈ dϕ̇0

)
∼
∫
St

e−χt
{∫ δt

−δt
eµ(ln2 t)µ−1ht,ϕ̇0

(x)dx

}
P
(

(ξ̃t(z), σ̃t(z))z 6=0 ∈ dϕ̇0

)
= P

(
(ξ̃t(z), σ̃t(z))z 6=0 ∈ St, σ̃t(0) ∈ (−δt, δt),At(0)

)
for any δt → 0 satisfying δ2

t � (ln2 t)
−(µ−1)∧1. At this point, we fix f̃ (0)

t := gt(ln2 t)
− (µ−1)∧1

2 and
recursively define

f̃ (n)

t :=

{
gt

√
f̃ (n−1)

t ∨ {(ln3 t)(ln2 t)−(µ−2n)} if µ > 2n,

1 otherwise.

Note that, by the definition of κ, ft ≥ f̃ (n)

t whenever µ > 2n. We work henceforth in the subspaceR′
obtained by intersectingR with the set where ϕσ(0) ∈ (1− f̃ (0)

t , 1 + f̃ (0)

t ).

Consider now y ∈ Bm \ {0}. Split Q̃t(At, ϕ̇0) into paths that do or do not touch y, i.e.,

Q̃t(At, ϕ̇0) = Tt(ϕ̇y) + Q̃y
t

where

Q̃y
t :=

∑
k≥2|y|

∑
p∈Γk(0,0)

pi 6=0∀ 0<i<k
y∈Set(p)⊂BR∗t

∏
0<i<k

1

2d

{
1 + ϕσ(pi)

(
At − ϕξ(pi)− qξ,t(pi)

)}−1

.

Let us analyse the variables ϕσ(y), y ∈ Bm \ ({0}. We will show inductively on |y| that, if y ∈
Bρσ \ ({0} ∪ Fσ), then we may restrict to ϕσ(y) ∈ (δσ, δσ + f̃ (|y|)

t ). Assuming first |y| = 1, we may
write, uniformly onR′,
Q̃y
t

ϕσ(0)
= (2d% ln2 t)

−1 1

ϕσ(0)ϕσ(y)

(
1 +O

(
ln3 t

ln2 t

))
= (2d% ln2 t)

−1 1

ϕσ(y)

(
1 +O

(
f̃ (0)

t

))
,

where the leading term comes from the single path of length 2; to obtain the order of the error term in
the first equality, use (107) and ϕξ(y) + qξ,t(y) = O(ln3 t). Setting

T̃t(ϕ̇y) := eAt/% + µ(ln2 t)
µ−1

{
1− Tt(ϕ̇y)
ϕσ(0)

}
,

denoting ℵ := (ϕ̇y, ϕξ(y)) and defining ht,ℵ by the equation

(113) −G

(
At +

1− Q̃t(At, ϕ̇0)

qσ,tϕσ(0)

)
+ T̃t(ϕ̇y) = (ln2 t)

µ−2ht,ℵ(ϕσ(y)),

we can use (106), (110) and µ > 2 to verify the conditions of Proposition A.1 with h(x) = µ(2d%x)−1,
x0 = δσ, f = fσ and vt = (ln2 t)

µ−2, concluding that we may restrict to ϕσ(y) ∈ (δσ, δσ + f̃ (1)

t );
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indeed, (f̃ (1)

t )2 � f̃ (0)

t ∨ {(ln3 t)(ln2 t)
−(µ−2)} (note that f(x) ∼ (x − δσ)µ−1 as x ↓ δσ). Assume

by induction that the latter has been proved for some n ≥ 1 and all y ∈ Bρσ \ ({0} ∪ Fσ) with
|y| = n, and let y ∈ Bρσ \ ({0} ∪ Fσ) with |y| = n + 1. Reasoning as before, we may write, using
ϕσ(z) ∈ (δσ, δσ + f̃ (n)

t ) for all 0 < |z| < |y|,

(114)
Q̃y
t

ϕσ(0)
=

n(y)2

(2d% ln2 t)2|y|−1δ
2|y|−2
σ

1

ϕσ(y)

(
1 +O

(
f̃ (n)

t

))
,

where the leading term comes from paths with length 2|y|. Defining now ht,ℵ as in (113) but with 2
substituted by 2|y|, we can as before use µ > 2|y| to apply Proposition A.1 and conclude that we
may restrict to ϕσ(y) ∈ (δσ, δσ + f̃ (n+1)

t ), finishing the induction step. We may thus further restrict to
the subset R′′ ⊂ R′ obtained by intersecting R′ with the set where ϕσ(y) ∈ (δσ, δσ + f̃ (|y|)

t ) for all
y ∈ (Bρσ \ {0}) \ Fσ.

For ϕσ(y), y ∈ Fσ, we obtain a similar decomposition as in (113) but with an exponent equal to zero on
ln2 t; moreover, the function ht,ℵ(ϕσ(y)) converges to c̄(y)δσ/ϕσ(y) uniformly over ϕ ∈ R′′, implying
that, for all measurable I ⊂ R,

(115)

P
(

(ξ̃t, σ̃t) ∈ R′′, σ(y) ∈ I,At(0)
)

∼
∫
I

ec̄σ(y)δσ/xfσ(x)dx

∫
S′′σ(y)

e−T̃t(ϕ̇y)P
(
ξ̃t(y) ∈ dϕξ(y), (ξ̃t(z), σ̃t(z))z 6=y ∈ dϕ̇y

)
,

where S′′σ(y) is the projection ofR′′ on the coordinates other than ϕσ(y). For ϕσ(y), |y| > ρσ, (114)
holds with “≤” in place of “=”, yielding a decomposition as in (113) but with (ln2 t)

µ−2ht,ℵ substituted
by a function converging to zero uniformly over ϕ ∈ R′′. Hence (115) still holds (note that c̄σ(y) = 0
in this case). This finishes the proof of (96); in particular, we may restrict to ϕσ(y) ∈ (δσ + ft, gt),
y ∈ (Bm \Bρσ) ∪ Fσ.

Finally, consider ϕξ(y), y ∈ Bm \ {0}, starting with y ∈ (Bρξ \ {0}) \ Fξ. First we note that

At − qξ,t(y)

1 + ϕσ(y)
(
At − qξ,t(y)− ϕξ(y)

) =
1

ϕσ(y)
+
ϕξ(y)− δ−1

σ

δσ% ln2 t

(
1 +O

(
f̃ (|y|)
t

))
,

where we used the concentration of ϕσ(y), (107) and ϕξ(y) + qξ,t(y) = O(ln3 t). Defining

Q̂y
t (ϕ̇y) :=

∑
p∈Γ2|y|(0,0)

pi 6=0∀ 0<i<2|y|
y∈Set(p)⊂BR∗t

∏
0<i<2|y|
pi 6=y

1

2d

{
1 + ϕσ(pi)

(
At − ϕξ(pi)− qξ,t(pi)

)}−1

and noting that

Q̃y
t =

Q̂y
t (ϕ̇y)

1 + ϕσ(y)
(
At − qξ,t(y)− ϕξ(y)

) +O
(
(ln2 t)

−2|y|−1
)
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where the “O(·)” comes from paths with length greater than 2|y|, we obtain

Q̃y
t

ϕt(0)
− Q̂y

t (ϕ̇y)

ϕσ(0)ϕσ(y)(At − qξ,t(y))
=

n(y)2(ϕξ(y)− δ−1
σ )

(2dδσ)2|y|−1(% ln2 t)2|y|

(
1 +O

(
f̃ (|y|)
t

))
=
c̄(y)(ϕξ(y)− δ−1

σ )

µ%(ln2 t)2|y|

(
1 +O

(
f̃ (|y|)
t

))
.

Consider the density of ξ̃t(y)

fξ̃t(y)(x) =
ex/%

%
exp

{
qξ,t(y)− (ln2 t)

µ−1−2|y|c̄(y)eϕξ(y)/%
}
.

Setting ℵ := (ϕ̇y, ϕσ(y)),

T̂t(ℵ) := T̃t(ϕ̇y)−
Q̂y
t (ϕ̇y)

ϕσ(0)ϕσ(y)(At − qξ,t(y))

and solving for ht,ℵ in

(116)

−G

(
At +

1− Q̃t(At, ϕ̇0)

qσ,tϕσ(0)

)
+ ln fξ̃t(y)(ϕξ(y)) + T̂t(ℵ)

=
ϕξ(y)

%
+ ln(1/%) + qξ,t(y) + (ln2 t)

µ−1−2|y|ht,ℵ(ϕξ(y)),

we apply once more Proposition A.1 with h(x) = c̄(y)[(x − δ−1
σ )/% − ex/%], x0 = 0 and f(x) =

ex/%/%, concluding ϕξ(y) ∈ (−ft, ft) since f 2
t � f̃ (|y|)

t ∨ (ln2 t)
−µ+1+2|y|.

For y ∈ (Bm \ Bρξ) ∪ Fξ, solve (116) without ln fξ̃t(y) or the first three terms after the equality; note
that µ − 1 − 2|y| = 0 if y ∈ Fξ and is negative otherwise. In the first case, ht,ℵ(ϕξ(y)) converges
to c̄(y)(ϕξ(y) − δ−1

σ )/% uniformly over ϕ ∈ R′′, as follows from the error bounds above, our choice
of f̃ (n)

t and ϕξ(y) = O(ln3 t); in the second case, (ln2 t)
µ−1−2|y|ht,ℵ(ϕξ(y)) converges uniformly to

zero. Thus, for any measurable I ⊂ R,

P
(

(ξ̃t, σ̃t) ∈ R′′, ξ(y) ∈ I,At(0)
)

∼
∫
I

ec̄ξ(y)x/%fξ(x)dx

∫
S′′ξ (y)

e−T̃t(ϕ̇y)P
(
σ̃t(y) ∈ dϕσ(y), (ξ̃t(z), σ̃t(z))z 6=y ∈ dϕ̇y

)
,

where S′′ξ (y) is the projection of R′′ onto the coordinates other than ϕξ(y). Now (95) follows, and so
we may restrict to ϕξ(y) ∈ (−gt, gt), y ∈ (Bm \Bρξ) ∪ Fξ. This concludes the proof. �

.
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APPENDIX A. LAPLACE’S METHOD

The standard version of Laplace’s method states that, if a real-valued C2-function h has a unique
maximum at x0 and satisfies some additional conditions, then the integral

∫
R eth(x) dx is asymptotically

concentrated, as t→∞, on the region (x0 − δt, x0 + δt) for any δt � t−1/2. Our goal in this section
is to prove a generalisation of this result with the function h substituted by a collection ht,ℵ, indexed by
t > 0 and ℵ in an abstract index set St, that, as t→∞ and uniformly over ℵ, “looks like” h in a sense
made precise next.

Proposition A.1. For an interval I ⊂ R with non-empty interior, let h, f : I → R be measurable
functions satisfying:

(i) There exists a unique x0 ∈ I such that h(x0) = maxx∈I h(x);
(ii) For all ζ > 0, there exists η ∈ (0,∞) such that supx∈I : |x−x0|≥ζ h(x) ≤ h(x0)− η;
(iii) There exist ζ, c, c ∈ (0,∞) such that, for all x ∈ [x0 − ζ, x0 + ζ] ∩ I ,

−c(x− x0)2

2
≤ h(x)− h(x0) ≤ −c(x− x0)2

2
;

(iv) f is non-negative and there exists ζ > 0 such that

sup
x∈I : |x−x0|≤ζ

f(x) <∞

and

εf (u) :=

∣∣∣∣ln{ inf
x∈I : |x−x0|∈[u,ζ]

f(x)

}∣∣∣∣� u−2 as u ↓ 0;

(v)
∫
I eh(x)f(x)dx <∞.

Suppose that, for each t > 0, there exists an index set St and, for each ℵ ∈ St, a measurable function
ht,ℵ : I → R ∪ {−∞} satisfying:

(vi) εt := supx∈I : |x−x0|≤ζ supℵ∈St |ht,ℵ(x)− h(x)| → 0 as t→∞;
(vii) For all δ, η > 0 ∈ (0, 1), there exists c ∈ (1− δ, 1 + δ) such that

lim sup
t→∞

sup
ℵ∈St

sup
x∈I : |x−x0|>ζ

(ht,ℵ(x)− ch(x)) ≤ η.

Then, for any scales vt →∞, δt > 0 satisfying δ2
t � εt ∨

(
εf (v

−1/2
t ) + 1

)
vt
−1,

(117)

∫
(x0−δt,x0+δt)∩I

evtht,ℵ(x)f(x) dx ∼
∫
I

evtht,ℵ(x)f(x) dx uniformly over ℵ ∈ St

as t→∞, where by convention e−∞ := 0.

Remark A.2. If h satisfies items (i)–(ii) and can be extended to I ∪ (x0− δ, x0 + δ) for some δ > 0
in a such a way that it is twice differentiable in (x0 − δ, x0 + δ) and h′′(x0) < 0, then it also satisfies
item (iii).
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Proof of Proposition A.1. Fix vt, δt as in the statement and ζ as in assumptions (iii)–(iv). By assump-
tions (iii) and (vi), for all ℵ ∈ St and all x ∈ I with |x− x0| ≤ ζ ,

ht,ℵ(x) ≥ h(x)− εt ≥ h(x0)− εt − 1
2
c(x− x0)2.

Letting ε̄t := εf (v
−1/2
t )/vt, we see that, for all large enough t and some constant K0 ∈ (0,∞),

(118)

∫
(x0−δt,x0+δt)∩I

evtht,ℵ(x)f(x)dx ≥ evt(h(x0)−εt−ε̄t)
√
vtc

∫ δt
√
vtc

√
c

e−
x2

2 dx ≥ K0
evt(h(x0)−εt)
√
vt

,

where we used assumption (iv), δt � v
−1/2
t and that I contains either (x0 + v

−1/2
t , x0 + δt) or

(x0 − δt, x0 − v−1/2
t ). On the other hand, by assumptions (iii) and (vi) again,

ht,ℵ(x) ≤ h(x0) + εt − 1
2
c(x− x0)2

for all x ∈ I ∩ [x0 − ζ, x0 + ζ] and all ℵ ∈ St, and thus by assumption (iv)

(119)

∫
I∩{|x−x0|∈[δt,ζ]}

evtht,ℵ(x)f(x)dx ≤

(
sup

x∈I : |x−x0|≤ζ
f(x)

)
evt(h(x0)+εt)

√
vtc

2

∫ ∞
δt
√
vtc

e−x
2/2dx

≤ K1
evt[h(x0)+εt−cδ2

t /2]

vtδt

for a constant K1 ∈ (0,∞). Take now η > 0 as in assumption (ii) and fix δ ∈ (0, 1/2) such that
δ|h(x0)| < η/8. By assumption (vii), there exists a c ∈ (1− δ, 1 + δ) such that

sup
ℵ∈St

sup
x∈I : |x−x0|>ζ

(ht,ℵ(x)− ch(x)) ≤ η/4 < 1
2
cη

for all large enough t, and thus, by assumptions (ii) and (v),

(120)

∫
I∩{|x−x0|>ζ}

evtht,ℵ(x)f(x)dx ≤ e
vtcη

2 e(cvt−1)(h(x0)−η)

∫
I

eh(x)f(x)dx

≤ K2evt(h(x0)−η/8)

for some constant K2 ∈ (0,∞) . Collecting (118)–(120), we obtain

sup
ℵ∈St

∫
I∩{|x−x0|>δt} evtht,ℵ(x)f(x)dx∫
I∩{|x−x0|≤δt} evtht,ℵ(x)f(x)dx

≤ K1e−
vt
2 (cδ2

t−4εt−4ε̄t)

K0
√
vtδt

+
K2
√
vt

K0

e−
vt
8

(η−8εt−8ε̄t),

which by our assumptions converges to 0 as t→∞. �

REFERENCES
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