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Model pathway diagrams for the representation of mathematical
models

Thomas Koprucki, Michael Kohlhase, Karsten Tabelow, Dennis Müller, Florian Rabe

Abstract

Mathematical models are the foundation of numerical simulation of optoelectronic devices.
We present a concept for a machine-actionable as well as human-understandable representation
of the mathematical knowledge they contain and the domain-specific knowledge they are based
on. We propose to use theory graphs to formalize mathematical models and model pathway
diagrams to visualize them. We illustrate our approach by application to the van Roosbroeck
system describing the carrier transport in semiconductors by drift and diffusion. We introduce an
approach for the block-based composition of models from simpler components.

1 Introduction

The numerical simulation of optoelectronic devices has become a very successful research area in-
volving different disciplines like physics, mathematics and electrical engineering. This is proven by the
availability of mature methods and software, a growing number of publications and a broad range of
applications (Piprek, 2017a). However, there are growing concerns how the quality of the results sub-
mitted for peer-review can be guaranteed. To address this problem in the field of optoelectronic device
simulation, e.g. Piprek (2017b) suggested guidelines for simulation papers that focus on improving the
reproducibility of presented research findings. In more general terms, this can been seen as part of
the ”reproducibility crisis” in science as discussed, e.g., in Stodden et al (2013). In a survey (Baker,
2016), more than 80% of the scientists blame the unavailability of methods and code as a factor for
irreproducible research. The NUSOD 2017 special issue in the journal Optical and Organic Electronics
accounts for this by implementing general quality guidelines1 for its contributions.

In general, numerical simulations of optoelectronic devices are characterized by (possibly huge amounts
of) data and software used for its generation. In order to ensure reproducibility as well as re-usability
of the scientific results appropriate options for their storage and long-term accessibility of the involved
research data are required, e.g. to adopt the above mentioned guidelines.

The numerical data is generally recognized as research data that should be findable, accessible,
interoperable and reusable (FAIR), cf. Wilkinson et al (2016). This stimulated the setup of data repos-
itories and related information services such as DataCite (Brase, 2009), or RADAR (Razum et al,
2014). However, the reproducibility of the scientific results requires the corresponding software to be
available. Hence, software is increasingly recognized as research data by scientific communities and
funding agencies, so information services for mathematical software such as swMath2 (Greuel and
Sperber, 2014) emerge. Accompanying principles for data and software citation are developed, e.g.,
by the FORCE11 initiative3 (Bourne et al, 2012).

1See http://www.nusod.org/2017/conf_oqe.html
2See http://www.swmath.org
3See https://www.force11.org
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The aim of this paper is to discuss a holistic concept for research data in the simulation of optoelec-
tronic devices or more general in mathematical modeling and simulation (MMS) by including mathe-
matical models further addressing the problem of reproducibility. Moreover, we will present represen-
tations for mathematical models that enable their handling as research data and part of the digital
science practice.

2 Mathematical models as research data

Numerical data and the corresponding software alone are not enough to fully characterize the research
data that has been utilized to achieve the scientific results: they can only be correctly interpreted and
used if the corresponding mathematical models are explicitly linked to both. Therefore Koprucki and
Tabelow (2016) and Koprucki et al (2016) proposed to categorize mathematical models as the third
pillar of research data in MMS beside numerical data and software.

However, finding an appropriate representation for models is far less obvious than for numerical data
and software. The current practice is a mixture of mathematical formulae and natural language in sci-
entific publications. This (rigorous, but) informal approach creates ambiguity, potential incompleteness
of the presentation, less reproducibility and often “re-invention of the wheel”.

In particular, this representation is not suited for the creation of a “model repository” in analogy to those
for data and software. To remedy this Kohlhase et al (2017) proposed a new machine-actionable, but
human-understandable representation of mathematical models based on Model Pathway Diagrams
(MPD). MPDs specify the physical quantities that are described in the model as well as the relations
between them (laws, constitutive equations) and informal documentation about them. These speci-
fications are represented in a special machine-readable description language, namely OMDoc/MMT

(Kohlhase, 2006; Rabe and Kohlhase, 2013).

3 Model Pathway Diagrams

Kohlhase et al (2017) introduced MPDs as a diagrammatic representation of mathematical models
that captures their inner (physical) structure. In an MPD the physical quantities are depicted as circles
with their physical notations as labels connected by the physical laws in rectangles labeled with the
respective equations.

As an example, we consider the stationary van Roosbroeck model describing the semi-classical trans-
port of electrons and holes in a self-consistent electric field using a drift-diffusion approximation (Sel-
berherr, 1984). The van Roosbroeck model is the standard model to describe the current flow in
semiconductor devices and is widely employed for the numerical simulation of optoelectronic devices
covering LEDs, lasers and solar cells.

The MPD of a unipolar version of the van Roosbroeck model is shown in Fig. 1, see also Kohlhase
et al (2017). In this MPD we can directly get an overview over the structure of the model. We observe
the (nonlinear) Poisson equation complex on the top and the carrier transport complex at the bottom.
In the Poisson equation we see a sub-MPD for the displacement field describing isotropic materials.

In the context of perturbation theory in quantum field theory the usefulness of diagrammatic represen-
tations, notably Feynman diagrams, for complex physical phenomena is well-established. We hope
that MPDs can similarly provide an easy access to the inner structure of complex mathematical mod-
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Displacement field model

Charge density

Electron density
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Figure 1: Model Pathway Diagram (MPD) of the unipolar van Roosbroeck system using Slotboom
variables. One observes the nonlinear Poisson equation complex on the top (highlighted with blue
color) and the carrier transport complex below. The loop structure of the nonlinear Poisson equation
reflects the self-consistency of the electric field, whereas the transport complex reveals a tree-like
structure. (Material) parameters of the van Roosbroeck model appear as leafs of the MPD such as the
doping profileC , the relative permittivity εr or the electron mobility µn. For simplicity the representation
of the boundary conditions have been omitted as well as some quantities, e.g. the temperature T .

els because their topology elegantly captures important properties of the subsystems. For instance,
the loop of the nonlinear Poisson equation in Fig. 1 reflects the self-consistency of the electric field.

4 Block-based model composition and iterative methods

Complex models can be understood as a coupled system of sub-models. For the van Roosbroeck
system these are for example the Poisson equation for the electrostatic potential and the drift-diffusion
equation describing the carrier transport. In this case the coupling between the sub-models is defined
by two quantities appearing in both: the electrostatic potential Ψ and the charge density represented
by the Slotboom variable u. This property can be used to construct the van Roosbroeck system by a
block-based composition of two sub-models as illustrated by the MPD in Figure 2: the upper part of
the Figure depicts the nonlinear Poisson block, the lower part the drift-diffusion block. In each model
block, the coupling variables are represented as input-output ports. The blocks are now linked by the
identification of the corresponding quantities indicated by ”double bonds”. A flattening of this MPD can
be performed by the elimination of the double bonds which results in the MPD in Figure 1.

Moreover, using the block-based representation one can explain an important concept for the solution
of the fully coupled model, namely the Gummel mapping. There one solves the nonlinear Poisson
equation starting with an initial guess for the density u = u0. The resulting electrostatic potential
Ψ is then inserted into the drift-diffusion equation, from which an updated value for u is calculated.
This cycle is indicated in Figure 2 by red arrows and defines the Gummel mapping G : u → u.
Using G one can consider the solution of the van Roosbroeck system a fixed point problem (Jerome,

DOI 10.20347/WIAS.PREPRINT.2431 Berlin 2017



Th. Koprucki et al. 4
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Figure 2: Block-based composition of the van Roosbroeck system by interlinking the model blocks for
the nonlinear Poisson equation and the drift-diffusion equation. The coupling between model blocks
is represented by ”double bonds” connecting the corresponding input/output ports: the electrostatic
potentials Ψ and the carrier density given by the Slotboom variable u.

1996). This leads to an iterative method for the numerical solution of this fixed point problem, known
as Gummel’s (decoupling) method (Selberherr, 1984). In terms of the corresponding MPD (Figure 2),
the nonlinear Poisson block is then replaced by a linearized version. Our experience has shown that
such visualizations, e.g., of the Gummel mapping, are a valuable tool for the scholarly communication
of the solution strategies of coupled problems.

The block-based composition seems to be well-suited for the representation of complex models like
electro-optical models for lasers coupling carrier transport of electrons and holes with optical fields
or electro-thermal models for self-heating effects in organic LEDs. Furthermore, we expect that multi-
scale modeling and simulation approaches from the atomistic to device level such as considered within
the EU funded project DEEPEN4, can be represented by a hierarchy of interlinked MPD blocks.

Further research will focus on the understanding of numerical schemes and discretizations as MPDs
providing the connection between the continuum formulation of a model (partial differential equations)
on the one hand and the software implementing its solution of the other hand. In particular, we will
study the representation of the finite volume discretization in combination with the Scharfetter-Gummel
scheme for the drift-diffusion equation as a guiding example.

4See http://www.nmp-deepen.eu
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5 Formalization in OMDoc/MMT

MPDs were presented as visual aid for understanding structural properties of models and algorithms
for numerical simulations. Indeed, these properties are directly induced by the structure of the under-
lying mathematical knowledge. This shows that the MPDs represent an inherent quality of the models.

For a formalized representation of mathematical models and their underlying physics, we use the
OMDoc/MMT format (see Kohlhase (2006); Rabe and Kohlhase (2013) for details) that allows spec-
ifying the mathematical vocabulary of models, i.e. the concepts, their properties, and relations. Like
an object-oriented programming language, OMDoc/MMT allows organizing knowledge into small, re-
usable modules, called theories, that inherit functionality from each other. There are various inher-
itance mechanisms between theories available in OMDoc/MMT, the most important for us here are
inclusions, see below. Unlike a programming language, OMDoc/MMT also formalizes conceptual de-
pendencies and properties (e.g., physical laws in our case).

Figure 3: Excerpt from the OMDoc/MMT Formalization (Total Charge Density Law)

As an example Figure 3 shows the OMDoc/MMT code for the formalization of the charge law of the
MPD from Figure 1 in a bipolar version. Please note, that the usual expression for the total charge
density Q(x) = qe ·

(
C(x) + p(x) − n(x)

)
with the electron density n and the hole density p has

been rewritten to Q(x) = qe ·
(
C(x) + zh · ρh(x) + ze · ρe(x)

)
by using generic expressions for the

carrier densities involving densities ρi and charge numbers zi for each species (ze = −1 for electrons
and zh = 1 for holes). The theory ChargeLaw inherits from various other theories:

1 DeviceGeometry defines the spatial domain Ω with x ∈ Ω,
2 SpatialChargeDensity defines the charge density Q(x),
3 DopingProfile defines the doping profile C(x),
4 PhysicalConstants defines the elementary charge qe, and
5 ElectronsAndHoles defines two instances electrons and holes of a theory Species, which de-

fines the charge number z and the density ρ(x).

ChargeLaw

DopingProfile

SpatialChargeDensity

ElectronsAndHoles

These five theories provide the quantities needed to formally state the
charge density law via inclusions. For example, electrons/density x is
the formal expression corresponding to ρe(x) – the value at x of the
density of the instance of Species called electrons. The introduction of a generic carrier Species in the
formalization allows to express that electrons and holes share structural properties and components.
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The theory graph corresponding to the OMDoc/MMT snippet in Figure 3
is shown on the right above omitting the theories DeviceGeometry and
PhysicalConstants. Note that it is structurally equivalent to the corre-
sponding part of the MPD in Figure 1.

We make use of this correspondence in an experimental extension of
TGView (Rupprecht et al, 2017) that generates MPDs automatically from
OMDoc/MMT representations. Figure 4 shows such a generated MPD,
which is – up to layout – equivalent to the manually crafted MPD in Fig-

ure 1. All nodes and edges are clickable and produce interactive HTML5 renderings of the underlying
formalizations. Note that the graph layout in Figure 4 is automatically computed by TGView and can
be hand-tweaked in the system for more intuitive results.

Figure 4: Screenshot of the TGView displaying the van Roosbroeck Theory Graph, cf. Figure 1

The block-based model composition detailed in Section 4 fits very well with that of OMDoc/MMT: MPD
blocks correspond to connected theory-subgraphs and coupling via quantity theories is just multiple
inheritance via inclusions. The added functionality of the OMDoc/MMT formalization is that internal
consistency and coupling constraints that remain implicit in both the MPDs and the published papers
can be checked by the MMT system (Rabe, 2013), which implements OMDoc/MMT.

With this system support, we can handle theory graphs with tens of thousands of theories, which
equates to thousands of model components. Note that due to the modular structure of OMDoc/MMT,
even competing models can co-exist in a single theory graph and thus share structural components.
This suggests that we can formalize and curate more and more MPD graphs, share the underlying
physics and mathematics, use the OMDoc/MMT tools to manage – i.e. develop, check, and display –
them. We started a collection effort for MPDs on MPD Hub5.

We are also extending the MMT system with functionality to directly represent MPD structures for the-
ory graphs containing models and to directly implement MPD-specific structures (e.g., model blocks),
management processes (e.g., block coupling or solution strategies). We anticipate that this will make
the interaction with large MPD graphs much more powerful and intuitive.

5MPD Hub https://github.com/WIAS-BERLIN/MPDHub/wiki/
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6 Conclusion

We presented a diagrammatic representation of mathematical models based on MPDs together with
a formalization based on OMDoc/MMT. MPDs provide a visual tool for understanding the structural
properties of models as well as algorithms for numerical simulations. We discussed the block-based
composition of models from sub-models which seems to be well-suited for the representation of com-
plex multi-physics models or multi-scale models.

The formal representation of mathematical models in OMDoc/MMT as outlined in the Section 5 makes
them machine-actionable. This enables the unique identification, the automatic derivation of relation-
ships between them, and the modular creation of new models from existing ones, and semantic ser-
vices for them. As a first concrete application, we have created a visualization tool that creates inter-
active HTML-based layouts for MPD from OMDoc/MMT formalizations.

Additionally, OMDoc/MMT have a well-established interface to a semantically enhanced Version of
TEX. This can be used to write semantically enhanced articles and papers that directly refer to the
database of mathematical models. From these we can generate interactive HTML documents, which
are interlinked with the MPD formalizations and can be instrumented with semantic services like the
ones above.
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