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Symmetry breaking and strong persistent plasma currents via
resonant destabilization of atoms

Carsten Brée, Michael Hofmann, lhar Babushkin, Ayhan Demircan, Uwe Morgner, Olga G. Kosareva,
Andrei B. Savel'ev, Anton Husakou, Misha lvanov

Abstract

The ionization rate of an atom in a strong optical field can be resonantly enhanced by the pres-
ence of long-living atomic levels (so called Freeman resonances). This process is most prominent
in the multiphoton ionization regime meaning that ionization event takes many optical cycles. Nev-
ertheless, here we show that these resonances can lead to fast subcycle-scale plasma buildup
at the resonant values of the intensity in the pump pulse. The fast buildup can break the cycle-
to-cycle symmetry of the ionization process, resulting in generation of persistent macroscopic
plasma currents which remain after the end of the pulse. This, in turn, gives rise to a broad-
band radiation of unusual spectral structure forming a comb from terahertz (THz) to visible. This
radiation contains fingerprints of the attosecond electronic dynamics in Rydberg states during
ionization.

Dynamics of atomic photoionization is central to many recent advances in optics and in physics in
general, such as attosecond physics and attosecond metrology via high harmonic generation (HHG)
which allowed generation of coherent radiation at frequencies up to many hundreds of eV, dramatically
extending the range where coherent ultrashort pulses are available [1, 2]. lonization-induced dynamics
can also be used to generate frequencies in the opposite — low-frequency — range, namely in the
terahertz (THz) [3, 4, 5, 6, 7]. Radiation at THz frequencies can be generated in filaments via wake
fields (longitudinal plasma oscillations) [8] or via Cherenkov radiation [9]. However, a much more ef-
ficient mechanism is based on the fast step-like tunnel ionization process in strong fields, resulting in
formation of persistent macroscopic currents [3, 4, 5, 6, 7, 10]. For this, one needs to have asymmet-
ric incident waveforms (e.g. using two- or multi- color fields) [4, 5, 10, 11], so that the macroscopic
currents created by the positive field half-cycles are not compensated by the currents created during
the negative half-cycles. As a result, persistent current arises and does not disappear after the end
of the pulse. The step-like nature of tunnel ionization is of critical importance for this method: in the
deep multiphoton regime, as the sub-cycle steps in the ionization dynamics gradually disappear, the
method appears to fail [12].

Here we use the so-called Freeman resonances, arising in the multiphoton regime [13], to create a new
source of such asymmetry. Freeman resonances appear when the excited atomic states are Stark-
shifted by the strong laser field in and out of n-photon resonances. In that case, the population transfer
in the atom is dominated by two major competing mechanisms: resonantly enhanced ionization by
direct electronic transitions from the ground state into the continuum, and population trapping in high-
lying, laser-dressed and strongly distorted states [14]. The latter can be viewed as the extension of
the Kramers-Henneberger concept [15, 16] to the Rydberg manifold [17, 18, 19].

In this letter we show that Freeman resonances produce radiation in a broad frequency range and
point out that this radiation contains information about the ionization dynamics. Namely, we show that
Freeman resonances are able to produce rather short spikes of ionization, with dynamics even on a

DOI 10.20347/WIAS.PREPRINT.2423 Berlin 2017



C. Brée et al. 2

<107 %1010

102 8 18 4 10°
(a) b
71 (b) /\ 16 3 ,
= 10°
— 104 . 6 14 5
5 10 z & 2 o
.;g :g 5 12 E E 10_4
g a4 10E 5! g
c 10° 5 ) E 6
£ £ 8 £ =g a 10
5 8 5 ©
B z 2 6 8 o}
2 g8 s s g 10"
i g ' &
_ -2
0 2 10710
1010 1 0 -3
10 20 30 40 50 0 100 200 0 100 200 0 2 4 6 8
Intensity (TW/cm?) Delay(fs) Delay(fs) (10 %rads™)

Figure 1: (a) lonization rate in dependence of the pump intensity; Peaks in ionization rate are Freeman
resonances. (b) Intensity (red) and the corresponding ionization rate (blue) generated by a long pulse
of the form described in text, with the wavelength 800 nm, duration 240 fs and peak intensity 17
TW/cm?. (c) Macroscopic free electron current; Persistent currents after the field passage are visible.
(d) The spectrum of the corresponding radiation F; given by Eq. (2) for the pulse in (b,c) (blue line)
and in the case of the pulse with the same parameters by the intensity 23 TW/cm? (red line).

sub-cycle level. This sub-cycle dynamics breaks the symmetry of the ionization process, leading to the
generation of a new comb-like structure in a broad frequency range from THz to visible. The comb-like
structure is a result of interference from different ionization events. The same multi-event structure
contains signatures of the electron dynamics “half-way” to the continuum, in particular, of “frustrated
tunneling” [19].

First, we will develop an “adiabatic” approach to the problem, which allows to describe the underly-
ing physics qualitatively. Next, we confirm our model with the direct solution of the time-dependent
Schrédinger equation.

In the adiabatic regime, we consider the ionization dynamics in a long pulse with a slowly varying
envelope. To develop the adiabatic approach, we first find the ionization rate using the non-Hermitian
Floquet framework for monochromatic optical fields in the multiphoton regime [20, 21]. That is, we
assume a strictly periodic field £ = FEj cos(wyt) with wy = 0.057 a.u. Then, we search for the
Floquet resonances in the eigenvalue problem (H — i0;)Y(x,t) = €,y (x,t) where H describes
the system Hamiltonian, ¢, is the complex quasi-energy such that the Floquet eigenfunctions ¥ =
e~ i€eq)) are quasi-periodic in time: W (x,t + T') = e T W(x,t), T = 27 /wy. The ionization rate is

determined by the inverse lifetime of the resonances I', = —2 Im ¢, [22]. For simplicity, we consider
here 1-dimensional evolution with the Hamiltonian
He= 20, - — —iA@)d 1
= g0~ ey ()0, 1)

where A(x) is the vector potential corresponding to the electric field /() of the pump pulse. A soft-
core potential with a = V/2 was used, allowing to reproduce the ionization energy of atomic hydrogen
(I, = 13.6 eV) [21].

Separating the time scales of the slow envelope and the fast carrier oscillation allows us to apply the
adiabatic theorem of quantum mechanics [23], which implies that at each instant of time, the atom
remains in the Floquet resonance which is adiabatically connected to the ground state. Also, in this
approximation, the population of intermediate levels is negligible and the ionization yield is completely
determined by the imaginary part of the Floquet quasienergy. Numerically, the Floquet eigenproblem
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was solved by discretizing it in a sufficiently large numerical box (we used 200 au), which supports the
relevant resonant states.

Dependence of the ionization rate I'y[/] of the grond-state resonance on the intensity / is shown in
Fig. 1(a), exhibiting several narrow resonances. In Fig. 1(b) we show the pulse of the shape F(t) =
Eysin (wot) sin (wt/T)* with T = 27 /wy being the pulse duration and E, the peak field strength
(red line in Fig. 1(b) shows the pulse envelope). The corresponding ionization rate is shown in Fig. 1(b)
by a blue curve. One can see that when the intensity of the pulse, which changes in time, passes the
resonant intensity (e.g. around 15 TW/cm?), sharp spikes in the ionization rate take place, which
correspond to the Freeman resonances. The corresponding plasma current is shown in Fig. 1(c) and
is obtained from the Drude model without damping via 0;J (t) = p(t)E(t), with a plasma density p
governed by a rate equation 0;p = T',[I(¢)](po — p). The current contains fast oscillations reflecting
electron dynamics at the frequency wg, but the important point is that after the pulse the current does
not return to zero as would have happened if the resonances were not present.

It is also known that the change of the macroscopic free current J due to ionization can produce
radiation (Brunel harmonics) [24, 25, 5, 10, 26, 12]. More specifically, if we assume that plasma arises
in a small spatial spot, the corresponding field at the observer point will be governed by the expression:

dJ(t d>P(t
By = 20 - EPO.

where g is an constant depending on the observation point. We also introduced formally the corre-
sponding polarization P as P(t) = [ J(t')dt'.

As mentioned above, ionization creates harmonics of the pump field only in the case if the ionization
takes place on the sub-cycle timescale. If the ionization event is much slower than the optical cycle
(typically associated with the multiphoton ionization regime), the nonlinearity is “too slow” to create
harmonics [12]. From Eq. (2) it follows that if a persistent current arises (that is, if J(t = oo) # 0),
there must be a slow component in J which rises on the time scale of the pulse duration. This leads
also to the presence of a slow component of £/(t), i.e., a Oth harmonic in E¢(w) = F[E(t)], where
F|-] is the Fourier transform. To obtain such persistent currents, certain type of symmetry breaking
is necessary: otherwise, the number of electrons going in one direction is exactly the same as the
number going in the opposite direction. In the tunnel ionization regime, if the field shape is asymmetric
(for example two-color pulses or single-cycle ones), the temporal asymmetry of the field waveforms
leads to spatial asymmetry of the current and thus to the generation of macroscopic persistent currents
as well as the generation of 0-th harmonic of the pump.

Here, as we observe in Fig. 1(c), the mechanism leading to persistent currents should be closely re-
lated to the Freeman resonances. As explained above, this current should also generate low-frequency
radiation. By plotting E's(w) defined by Eq. (2) in Fig. 1(d) we see that indeed low-frequency compo-
nents arise. Remarkably, the spectrum contains not only well defined harmonics of the pump, but also
a comb of other harmonics in the broad range up to w ~ 5 fs~!, which corresponds to the visible
range. The comb line-to-line distance corresponds to the inverse distance in time between the ioniza-
tion peaks in Fig. 1(b). The main peak coincides with the central frequency wy of the exciting pulse
and corresponds to the movement of free electrons. In addition, the same picture is shown in Fig. 1(d)
(red line) for the intensity of 23 TW/cm?. In this case, the Freeman resonances are not excited and the
resulting radiation at low frequencies is several orders of magnitude smaller.

The figure which demonstrates the dependence of the corresponding comb on the pulse intensity
is presented in Fig. 2(a,c). One can clearly see the connection between the excitation of Freeman
resonances and the generation of a broadband spectrum. Both the broadband spectrum and the
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Figure 2: The generated radiation and its spectrum in dependence on the pulse intensity for the pa-
rameters of the Fig. 1, assuming the adiabatic procedure as well as the direct solution of the full
Schrédinger equation. (a,b) lonization rate according to the Floquet model (red curves) and the low
frequency component of | E; (cu)|2 (blue curves) for the case of adiabatic theory (a) and by direct so-
lution of the Schrédinger equation (b). (c,d) Corresponding spectra in dependence of intensity for the
adiabatic theory (c) and by direct solution of the Schrédinger equation (d).

presence of low frequency harmonics indicate that electron ionization dynamics contains the sub-
cycle time-scale component, even though we are in the multiphoton ionization regime of the Keldysh
parameter v = wy \/E /Eq > 1. The Freeman resonances are so sharp, as a function of the laser
intensity, that even the slowly-varying field intensity (in our adiabatic picture) passes these resonance
very quickly, in less than an optical cycle. This breaks the symmetry and leads to formation of persistent
currents.

Formally, as we approach the single-cycle timescale, the adiabatic approximation can no longer be
used. Yet, we shall now see that the adiabatic model does offer correct qualitative insight into the
exact dynamics. To this end, we now switch to the direct solution of the full time-dependent Schrédinger
equation

i0ip(x,t) = Hy(z,1) (3)

with the same Hamiltonian Eqg. (1). The comparison for the pulse duration 240 fs, as a function of
the pulse peak intensity, is shown in Fig. 2. The spectra generated by pulses with different intensities
(and same duration) are shown both for the adiabatic approach [Fig. 2(c)] and for the exact simula-
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Figure 3: Comparison of the solution of full Schrédinger equation with the adiabatic procedure. (a)
lonization rate calculated using Floquet theory vs. time for a pulse with the intensity 45 TW/cm? and
pulse duration 425.6 fs. (b,c) The XFROG diagram of the radiation £(t) calculated according Eq. (2)
(colorscale) and the corresponding dipole moment P(t) (black line) according to the adiabatic theory
and for TDSE calculation. Vertical black lines indicate the “center” of the first resonance and the point
in time symmetric in respect to the pulse center.

tion [Fig. 2(d)]. The low-frequency part of the radiation is shown for both cases in Fig. 2(a,b) (blue
lines). Red lines in Fig. 2(a,b) show the ionization rate according to the Floquet theory). One can see
that, although the dynamics has some differences, it also has much in common. For instance, in the
adiabatic case, the Freeman resonance at around 15 TW/cm? plays an obviously important role. The
influence of this peak is also visible in the case of the Schrédinger equation, even though it is much
less pronounced. On the other hand, the peak at around 30 TW/cm? plays significant role in the latter
case.

In general, the figures Fig. 2(c) and Fig. 2(d) are quite different. The situation changes when we con-
sider longer pulses. The result of more detailed comparison for longer pulses with the duration of 425.6
fs is shown in Fig. 3. We observe in Fig. 3(b,c) XFROG traces of E; according to Eq. (2) for the adi-
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Figure 4: XFROG diagram for TDSE for 2-bound-states-atom with the potential given by Eq. (4). Black
lines are put at arbitrary points symmetric in respect to the center of the exciting pulse.

abatic and TDSE approaches respectively. Fig. 3a shows the ionization rate according to the Floquet
theory, while the black solid lines in Fig. 3(b,c) depict the time dependence of the polarization P. The
resonances seen in the adiabatic case are now clearly visible in the TDSE calculation, showing that
the agreement between the adiabatic model and the TDSE improves with increasing pulse duration.
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Figure 5: Dependence of the atomic polarization P on the carrier-envelope phase (CEP) in the adia-
batic model (a) and for the direct solution of the time-dependent Schrédinger equation (b) for the CEP
0 = 0 (blue lines) and @ = 7 /2 (red lines).

One important point to mention in the solution of the TDSE in Fig. 3 is the remarkable asymmetry with
respect to the pulse intensity maximum (see black vertical lines in Fig. 3), indicating temporal points
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symmetric with respect to the pulse maximum. This is obviously not the case for the adiabatic model.
This can be explained by the fact that the first ionization event in the pulse does not only increase the
number of the free electrons, but also increases population of the intermediate states of the system.
The second ionization event “probes” this population. In this way, a kind of a pump-probe sequence
takes place, where the role of the pump is played by the first ionization event and the role of the
probe by the second ionization event. What is probed in this case is the population of highly excited
bound states of the atom. To support this conclusion, we plotted in Fig. 4 the XFROG for an artificial
short-range potential, which has the same ionization energy but contains only two bound states. The
potential has the form:

exp (—21°/g10)

Vdx? + a?

with constants 0 = 3, d = 0.35 and a = 1.549 (all constants in atomic units). Under these pa-
rameters, the second bound state lies around -0.2 au and close to the second bound state of the
initial potential Eq. (1). One can see from Fig. 4 that the dynamics in the present case is much more
symmetric (except for the feature at 450 - 500 fs, which is caused by plasma losses due to absorb-
ing boundary). That is, we can conclude that the asymmetry of the XFROG in Fig. 3 results from the
dynamics of the population trapped in high-lying bound states.

V=

(4)
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Figure 6: Dependence of the low frequency radiation component ~ cu2J(w)2 on the pulse duration

and intensity (note the logarithmic scale of the colorbar).

Finally, to provide additional evidence for the sub-cycle time scale of the dynamics, we consider the
dependence of the effect on the carrier envelope phase (CEP) of the pump pulse. The dynamics
of the polarization P is shown in Fig. 5 for two different CEP phases, both for the adiabatic theory
and for the Schrodinger equation. By observing the slope of P (since J = 0, P) one can see that
the residual current is strongly CEP dependent, supporting the short-scale dynamics of the process.
The same effect is visible in the Schrddinger equation simulations (Fig. 5). Thus, the effect observed
here lies exactly in the transition regime between the adiabatic and non-adiabatic evolution. If we
further increase the pulse duration, the slope of the intensity inside the pulse and thus the width of the
resonance will also increase. As the Freeman resonance width becomes larger than the optical pulse
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cycle, the transient currents and corresponding radiation should disappear. This is indeed the case,
as illustrated in Fig. 6.

In conclusion, we have demonstrated that Freeman resonances lead to spatial symmetry breaking
in the generation of free currents of the liberated electrons. This, in turn, leads to generation of new
frequencies in a broad spectral range, similar to Brunel radiation. In particular, it provides a new source
of radiation at THz frequencies and a broad comb-like spectrum from THz to the visible range. The
line-to-line distance of the comb can be controlled by the pulse duration. Even more importantly, this
comb-like structure as well as detailed consideration of the corresponding correlation traces show that
the radiation described here contains the fingerprints of electron transition to the continuum enhanced
due to the presence of intermediate resonant states, which can be used to get the information about
electron dynamics in conjunction with other established approaches [27, 28, 29].
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