
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Efficient coupling of inhomogeneous current spreading and

dynamic electro-optical models for broad-area edge-emitting

semiconductor devices

Mindaugas Radziunas1, Anissa Zeghuzi2, Jürgen Fuhrmann1, Thomas Koprucki1,

Hans-Jürgen Wünsche1,2, Hans Wenzel2, Uwe Bandelow1

submitted: September 4, 2017

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: mindaugas.radziunas@wias-berlin.de

juergen.fuhrmann@wias-berlin.de
thomas.koprucki@wias-berlin.de
hans-juergen.wuensche@wias-berlin.de
uwe.bandelow@wias-berlin.de

2 Ferdinand-Braun-Institut,
Leibniz Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Str. 4
12489 Berlin
Germany
E-Mail: anissa.zeghuzi@fbh-berlin.de

hans.wenzel@fbh-berlin.de

No. 2421

Berlin 2017

2010 Mathematics Subject Classification. 65Z05 78A60 65Y20 78M25 78M12 65N80.

2010 Physics and Astronomy Classification Scheme. 42.55.Px 02.30.Jr 02.60.Lj 02.60.Gf.

Key words and phrases. Broad area lasers, modeling, traveling wave, inhomogeneous current spreading, Laplace prob-
lem, separation of variables, finite volumes, effective implementation .

This work is supported by the German Federal Ministry of Education and Research contract 13N14005 as part of the
EffiLAS/HotLas project.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Efficient coupling of inhomogeneous current spreading and
dynamic electro-optical models for broad-area edge-emitting

semiconductor devices
Mindaugas Radziunas, Anissa Zeghuzi, Jürgen Fuhrmann, Thomas Koprucki, Hans-Jürgen

Wünsche, Hans Wenzel, Uwe Bandelow

Abstract

We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edge-
emitting semiconductor lasers by a model for inhomogeneous current spreading from the contact
to the active zone of the laser. To speedup the performance of the device simulations, we suggest
and discuss several approximations of the inhomogeneous current density in the active zone.

1 Introduction

High-power edge-emitting broad-area semiconductor lasers (BALs) [Fig. 1(a)] are important light sour-
ces due to their numerous applications [1]. Accurate modeling and simulation of BALs is critical for
improving their performance or for the evaluation of novel design concepts [2].

In this work we discuss an efficient implementation of a spatially resolved current spreading model
defined in the vertical–lateral domain, see Fig. 1(c), into a dynamic electro-optical solver [3] acting in
the longitudinal–lateral plane, see panel (b) of the same figure. Our most general approach relies on
precalculation of the current spreading problem for all possible conditions in advance using a finite vol-
ume (FV) based numerical scheme. The current density distribution entering the electro-optical solver
is mainly determined by the product of the precomputed matrixMAZ and the dynamically changing
discrete quasi-Fermi potential in the active zone (AZ). Once the considered current spreading prob-
lem satisfies some additional requirements, we can also exploit a semi-discrete separation of variables
(SV) based method. It allows a precalculation of the smaller matrixM−1

I used later for definition of the
(dynamically changing) current flux in a finite distance from the AZ, whereas the current distribution in
the AZ itself is estimated afterwards using discrete fast Fourier transform techniques.

Due to the large dimension of the above mentioned matrices, the multiple matrix-vector multiplications
become the main reason of the slow-down of the simulations of the extended model. To speedup the
calculations, we consider different approximations of the full numerical inhomogeneous current density
in the AZ. The efficiency and the precision of these approximations are illustrated by several numerical
examples.

Our paper is organized as follows. In Section 2 we briefly introduce the traveling wave model used in
our electro-optical solver and the Laplace problem used to model the inhomogeneous current spread-
ing in the p-doped part of the BAL. Section 3 gives an overview of two numerical methods used to solve
the current spreading problem. The illustration of the differences between the old piecewise-constant
and the new inhomogeneously broadened injected current models is given in Section 4. Section 5
discusses the efficiency of the coupling of both models. Here, different methods for speeding up the
calculations are presented, and corresponding numerical performance results are shown.
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Figure 1: Schematic representation of an edge-emitting broad-area laser (a), its active zone described
by the traveling wave model (b), and the transverse cross-section, where the current flow equations are
solved (c). Vertical dashed lines and bullets in (c) represent the semidiscretization of the transversal
domain in the separation of variables based method and corresponding mesh points at the upper-lower
domain interface.

2 Mathematical modeling

2.1 Electro-optical model

Nonlinear dynamics in BALs schematically represented in Fig. 1(a) is modeled by means of a 2(space)
+ 1(time) dimensional traveling wave (TW) model [4]. According to this model we account only for
the optical field and carrier dynamics within the thin active zone of the laser along the lateral and
longitudinal coordinates x and z, whereas the influence of the vertical device structure (y-coordinate)
is represented by a set of effective model parameters. In the computational domain shown in Fig. 1(b)
we distinguish different areas according to the positions of the contacts, trenches, or unbiased regions.
The spatio-temporal dynamics of the slowly varying complex amplitudes of the counter-propagating
optical fields, E+(x, z, t) and E−(x, z, t), is governed by the TW equations[

ng

c0
∂t ± ∂z + i

2n̄k0
∂2
x

]
E±=−iβE±−iκE∓+F±sp, (1)

where the relative propagation factor β(N,E, ω) depends on the local carrier density N(x, z, t) and
includes a frequency ω dependent model for material gain dispersion, can take into account nonlinear
gain compression, two-photon absorption, and the impact of heating on the gain and the refractive
index. At the laser facets, z = 0 and z = L, the optical fields satisfy reflection conditions,

E+(x, 0, t) = r0E
−(x, 0, t), E−(x, L, t) = rLE

+(x, L, t).

At the lateral borders of the (broad enough) computational domain periodic conditions are imposed.
The evolution of the carrier density N(x, z, t) in the active zone is governed by the diffusive carrier
rate equation

∂tN=∂x(D∂xN)+ j(x,z,t)
ed
−Rsp(N)−Rst(N,E, ω). (2)

In our previous works, the effective lateral diffusion coefficient D was assumed to be constant, and
the injection current density j(x, z, t) was set constant region-wise. For a more detailed description of
the model equations and parameters, see [4, 5]. The TW model (1), (2) is efficiently integrated [6] by
the parallel distributed-memory based electro-optical solver BALaser [3] developed at the Weierstrass
Institute in Berlin.
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2.2 Current spreading model

A proper description of injection and diffusion in the active zone of BALs, however, requires an ad-
equate consideration of the current flow through the p-doped part of the device from the electrical
contact towards the active zone. Since the length of the device is much larger than its width, we re-
strict our considerations to the study of the current flow within the transverse cross-section of the
p-doped part of the device, see Fig. 1(c). Within each of these 2-D domains Ω at appropriate positions
z0 and each time t0, we have to solve the Laplace problem

∇x,y · (σ(x, y)∇x,yϕ(x, y)) = 0, (x, y) ∈ Ω,
ϕ|Γc = U, ϕ|Γaz = ϕAZ(N(x, z0, t0)), ∂nϕ|Γ\(Γaz∪Γc) = 0,
ϕ|(x,y)∈Γ+

i
= ϕ|(x,y)∈Γ−

i
, σ∂nϕ|(x,y)∈Γ+

i
= −σ∂nϕ|(x,y)∈Γ−

i

(3)

for the quasi-Fermi potentialϕ(x, y), where the piecewise constant function σ(x, y) is the conductivity
of materials within Ω. Γ is the full outer boundary of the domain Ω, Γc and Γaz are upper (contact-side)
and lower (active zone-side) parts of this boundary determined by y = H and y = 0, respectively,
whereas Γ+

i and Γ−i are different sides of the internal boundaries Γi between materials with different
conductivity. U and ϕAZ are the voltage at the contact and the Fermi voltage function defined ac-
cording to the Joyce-Dixon approximation [7] of the inverse Fermi integral, respectively. The injected
current density entering the carrier rate eqn. (2) is defined by j(x, z0, t0) = −σ(x, 0)∂yϕ(x, 0).
Finally, the carrier diffusion factor in the same equation can be replaced by the carrier dependent
expression, D = D(N, ∂NϕAZ) [8].

3 Solution of the Laplace problem

To solve the Laplace problem defined above, we apply two different approaches.

The first semianalytic approach relies on the uniform discretization of the domain Ω along the x axis
and substitution of the lateral derivatives ∂x in Eq. (3) by their finite difference analogs. Namely, the
coordinate x is replaced by the discrete set {xj : xj = (j + 0.5)h}Nx

j=0 where h = W/Nx is the
discretization step, x = 0 and x = W are the left and right outer sides of the domain Ω, see Fig. 1(c).
All x-dependent functions f(x) are substituted by the column vectors ~fh with the components fh,j =
f(xj). For a simple rectangular domain Ω and constant σ we apply the method of separation of
variables which implies

~ϕh(y) =
∑Nx−1

k=0 µk(y)~ψ
(k)
h , where

1
h2

(
ψ

(k)
h,j+1 − 2ψ

(k)
h,j + ψ

(k)
h,j−1

)
+ λkψ

(k)
h,j = 0, ∂2

yµk(y) = λkµk(y).

Due to homogeneous Neumann boundary conditions at the left and right sides of the domain, all
vectors ~ψ(k)

h and factors λk can be defined as

ψ
(k)
h,j = cos

(
kπxj
Nxh

)
, λk =

4

h2
sin2

(
kπ

2Nx

)
, 0 ≤ k, j < Nx.

Moreover, all these vectors ~ψ(k)
h , 0 ≤ k < Nx, form an orthogonal basis of the corresponding grid

function space, whereas µk(y) can be interpreted as the Fourier coefficients of the vector function
~ϕh(y). To locate the values of µk(y) or ∂yµk(y) at the upper and lower parts of the domain, we use the
discrete cosine transform (DCT) with respect to the upper and lower x-dependent boundary functions.
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After solving the ordinary differential equations for µk(y), we apply the DCT again for reconstruction
of the quasi-Fermi potential ϕ(xj, y) and current flow σ∂yϕ(xj, y).

The same method can be easily generalized for the rectangular domains with a conductivity σ that is
uniformly constant in x and piecewise constant in y (such that for all x we have σ(x, y) = σ(y)).
In this case, each interface of two materials Γi is determined by the fixed vertical coordinate y = yi,
whereas the corresponding continuity conditions at Γi in Eq. (3) can be replaced by 2Nx relations

ϕh,j(y
−
i ) = ϕh,j(y

+
i ), σ(y−i )∂yϕh,j(y

−
i ) = σ(y+)∂yϕh,j(y

+
i ), 0 ≤ j < Nx.

For similar conductivities and more realistic domains consisting of the (single) lower and (one or sev-
eral) upper subdomains joined at the interface height y = yI , see Fig. 1(c), the SV method can be
applied separately within each of these subdomains. The boundary conditions of these subproblems at
this interface are determined by the discrete flux vector ~κh = σ(y−I )∂y~ϕh(y−I ), which is a representa-
tion of the flux function at the mesh points (xj, yI) [bullets in Fig. 1(c)]. ~κh hasNu

x < Nx components
corresponding to the unknown flux function values at the internal mesh points of the whole domain
Ω, see empty bullets in Fig. 1(c). The remaining Nx − Nu

x mesh points (xj, yI) (full bullets in the
same figure) belong to the boundary Γ of the domain Ω. Due to the Neumann boundary conditions,
the corresponding components of ~κh are vanishing. The main challenge of the SV approach is finding
Nu

x -dimensional vector ~κuh determined by all unknown components of the larger flux vector ~κh so that
~κuh and ~κh could be used for reconstruction of ~ϕh(y) in the whole domain. By exploiting continuation
conditions (3) at the interface yI , we can derive a linear system of Nu

x equations

MI~κ
u
h = ~νuh ⇒ ~κuh =M−1

I ~νuh , (4)

where theNu
x -dimensional vector ~νuh depends on U and ~ϕh,AZ , whereas the (Nu

x ×Nu
x )-dimensional

matrixMI depends only on σ(y) and, therefore, can be constructed and inverted in a preprocessing
step.

Once the considered domain Ω or the conductivity function σ(x, y) are more complex, for the solution
of the Laplace problem (3) or, more precisely, for the location of the current distribution vector~jh at the
AZ as a function J of the actual boundary conditions U and ~ϕAZ,h, ~jh = J (U, ~ϕAZ,h), we use the
method based on a full finite volume discretization of the whole domain. For the numerical solution of
this problem, we apply the software toolkit pdelib [9] developed at the Weierstrass Institute in Berlin. In
order to avoid solving the whole Laplace problem at each z0 and new time instant t0, we precalculate
the current distribution vectors~jh for Nx + 1 different pairs (U, ~ϕAZ,h). Namely, we find

~j0
h = J (1,~0), ~jsh = J (0, ~δs−1

h ), 0 < s ≤ Nx, δsh,l =
{

1 for l = s
0 otherwise

.

Due to linearity of the problem (3), the required current distribution is given by

~jh =MAZ ~ϕAZ,h + U~j0
h, where dim(MAZ) = (Nx ×Nx), MAZ,sl = jsh,l. (5)

4 Examples

To test the numerical approaches, we apply them to single-stripe and multi-stripe BALs. The single-
stripe BAL has a 90µm broad electrical contact. The multi-stripe BAL consists of five 10µm-broad
contacts with 10µm separation between them. Typical calculated quasi-Fermi potentials for these two
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lasers are shown in Figs. 2(a) and (b), respectively. Panels (c) and (d) of the same figure show the dis-
tributions of the considered boundary function ϕAZ(N(x, z0, t0)) and corresponding carrier density
N(x, z0, t0). Black dashed-dotted and solid curves in panels (e) and (f) represent the spatially dis-
tributed carrier diffusion factor and the current density j(x) obtained by solving numerically the current
spreading model (3). Red dashed lines in the same figure show our old piecewise constant injection
approach. Note also, that in our previous modeling the total injection current I =

∫∫
j(x, z)dxdz

served as a control parameter. Now the voltage U takes this role.
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Figure 2: Current spreading in two laser devices. (a)
and (b): Fermi potential ϕ(x, y) within the domain
Ω calculated at z0 = 3 mm for U = 1.564V and
N(x), ϕAZ(N) which are indicated in the panels
(c) and (d), respectively. (e) and (f): corresponding
lateral distribution of the effective carrier diffusion D
(dash-dotted) and current density j(x) according to
different modeling approaches.
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Figure 3: Simulated longitudinal distributions
of the normalized intensity and photon num-
ber (a) and of the cumulative in x current
per length according to the solution of the
full current spreading model and its Joyce
approximation (b). Device geometry and pa-
rameters are the same as used in the left part
of Fig. 2.

Whereas the comparison of the old and new models for current density j(x) in Fig. 2(e) reveal only
small differences, these differences become much more pronounced in the stripe array laser, see
Fig. 2(f). In contrast to the old piecewise constant model, the active zone regions just below the gaps
between the adjacent contact stripes remain positively pumped. Thus, this advanced modeling of the
inhomogeneous current spreading is more realistic when simulating broad area laser devices with
structured electrical contacts [10].

Another example revealing possible importance of the inhomogeneous current spreading is presented
in Fig. 3. Here we show longitudinal distributions of the (cumulative in x) field intensity, carrier num-
ber [panel (a)], and injected current [black curve in panel (b)] in typical 4 mm-long broad area laser
already considered in Fig. 2(a), (c), and (e). Due to the strongly asymmetric facet coatings (power
reflectivities |r0|2 = 0.95 and |rL|2 = 0.01), the field, and, consequently, carrier distributions are
nearly monotonous along the longitudinal coordinate z, see panel (a) of Fig. 3. Differences ofN imply
also differences of ϕAZ(N) and, consequently, of the cumulative in x current density, which in our
example shows up to 5% variation, see Fig. 3(b).
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5 Efficient implementation

An efficient implementation of the full (2D or even 3D) current spreading model into the electro-optical
solver is related to several technical difficulties. The biggest challenge is overcoming a significant
slowdown of computations, while the Laplace problem should, in general, be solved at each time
instant t0 and longitudinal position z0. Since for the resolution of our TW model at each (z0, t0) we
use ∼Nx log(Nx) arithmetic operations, the estimation of j(x) at the Nx points should require a
similar or smaller number of operations.

A precomputation of M−1
I in (4) with the following recovery of the Nu

x -dimensional vector ~κuh and
Nx-dimensional vector ~jh allows avoiding the solution of the full Laplace problem at each (z0, t0).
Whereas for the construction of ~νuh and ~jh one can exploit the FFT algorithm (∼Nx log(Nx) opera-
tions), the matrix-vector product in Eq. (4) in general requires ∼(Nu

x )2 operations which for Nu
x∼Nx

computationally can be rather expensive. Similarly, one can exploit the linearity of the problem (3) and
use the precomputed matrixMAZ and formula (5). In this case, one avoids additional FFTs but per-
forms even more (∼(Nx)2) expensive matrix-vector multiplication. Fortunately, the essential elements
of the matricesMAZ and, especially,M−1

I are located around the center diagonal. Our tests have
shown, that we can get a sufficient precision of j(xh) once using “cleaned” matricesMε obtained by
deleting all matrix elements that by modulus are below some threshold θε =ε ·max(|Mij|). Typically,
depending on ε, such cleaned matrices have only 10-40 non-vanishing diagonals, allowing to avoid
the curse of an expensive matrix-vector multiplication.

Another computationally much cheaper approach requiring only ∼Nx operations exploits the Joyce
approximation of the solution of Eq. (3) [8]. According to this method, j(x) is proportional to U −
ϕAZ(x) just below the electrical contact, and to ∂2

xϕAZ(x) outside the contact, see thick green curves
in Figs. 2(c), (d) and 3(b). Since the main weakness of this approach is at the edges of the contact,
it can be useful when the contact is broad, but fails to provide reliable results when structuring of the
electrical contacts on a few micrometer scale is applied.

The semianalytic SV method with the additional cleaning of the matrixM−1
I and the Joyce approx-

imation method as well as the laterally distributed carrier diffusion model were implemented into the
electro-optical solver BALaser [3]. Test simulations of the extended TW model (1), (2) over one ns
on a multi-core computer (HP BL460c Gen9 2xXeon Fourteen-Core 2600MHz with 256 GB RAM)
at the Weierstrass Institute using ten processes have shown the following performance results. The
simulations of the BAL using the old model with the piecewise constant j and constant D took 541 s.
After inclusion of the distributed D, the simulation time was 556 s. After an additional inclusion of
the Joyce approximation of j, this time was 568 s. The usage of a more precise j obtained by solv-
ing the Laplace problem with the matrix cleaning threshold of 10−3 and 10−7 was slowing down the
simulations to 634 s and 639 s, respectively.

6 Conclusions

We have presented the inhomogeneous current spreading model, gave a short overview of the sep-
aration of variables based numerical method, and discussed several strategies of an efficient imple-
mentation of this model into the existing electro-optical solver. We have found, that this model can
be especially important when studying lasers with structured electrical contacts. The efficiency of our
model implementation was confirmed by numerical tests, which have shown only a moderate ∼17%
reduction of the calculation speed.
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