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1 Introduction 

In the present paper we consider the singular integral equation 

1 1 

_!_ j J(y) dy + m(x) j f(y)lnlx - YI dy 
7r x-y 7r 

.-1 -1 
1 1 

+:; j k(x, y)f(y) dy = g(x), -1 < x < 1, 
(1.1) 
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where m, k and g are given functions, f is an unknown solution, and the first integral 
has to be interpreted in the Cauchy principal value sense. Equation (1.1) arises from the 
two-dimensional oscillating airfoil in a wind tunnel with subsonic flow (see, for example, 
[4]), has applications in diffraction theory and two-dimensional elasticity theory (see, for 
example, [16], [21]). 
The analy:tical as well as the numerical solutions of Equation (1.1) have been studied by 
many authors [1]-[3], [6]-[9], [10]-[16], [18]-[21], [23]-[27], [29], [30], [32]. (Some of these 
papers only deal with the case m = 0.) Schleiff [29] solved Equation (1.1) for k = 0 
and m, f E ..C~, where ..C~ means the space of square integrable functions on the interval 
(-1,1) with the Chebyshev weight g(x) · (1-x2 ) 112 . Using those results, he constructed a 
Fredholm integral equation of the second kind equivalent to Equation (1.1). In the present 
paper we extend Schleiff's results to the cases of spaces ..C~ and of weighted Sobolev-type 
spaces with weights w(x) = (1 - x)a(l + x)f3, where lal = 1!31 = 1/2 (Section 3). These 
solvability results then give rise to establlshing a numerical procedure for which stability 
and error estimates in a scale of Sobolev-type norms as well as in weighted uniform norms 
will be proved (Section 4). 

2 Preliminaries 

Throughout this paper let ..\be the Lebesgue measure in the open interval n = (-1, 1). 
Those functions on n which coincide outside a Lebesgue null set will be identified as usual. 

Define functions g and a on n by 

g(x) = (1- x2 ) 112 and a(x) = (1- x)-112 (1 + x) 1l 2 , x En. (2.1) 

Let w always stand for any of the functions w = g, 1/ g, a or 1/a. Let 7r-1w..\ denote 
the indefinite integral of the function 7r-1w with respect to ,,\. As in [2], let ..C~ denote 
the space ..C2 (7r-1w..\) of complex-valued square integrable functions with respect to the 
measure 7r-1w..\. Then ..C~ becomes a Hilbert space with inner product 

1 

(f lg)w = 7f-l j fgw d,,\, f, g E .C! · 
-1 

The associated norm on .C~ is denoted by II · llw· The following relationships are then 
clear: 
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(i) .Ci;e C £2(A) C .C~; 
(ii) .Ci; e C .c; C .C~ ; and 
(iii) .Ci; e C .Ci;u C .C~ · 

Furthermore we have 

Let f E .C1 (A). Then the Cauchy principal value 

Hf(x) = .!_ lim (x/-e+ /1

) J(y) dy 
7r e-HO X - y 

-1 x+e 

(2.2) 

exists for A-almost every x E n and the resulting function H f is A-measurable (see [5, 
Theorem 8.1.5], for example). So we have a linear operator H from the space .C1(A) into 
the space of all A-measurable functions. The following lemma is a special case of the 
Khvedelidze theorem, which can be found in [15, Theorem 1.2] or [24, Theorem II.3.1], 
for example. 

Lemma 2.1 Let w = g, 1/g, O" or 1/0". Then H(.C!) C .C! and the restriction Hw of H 
to the Hilbert space .C! is a continuous linear operator from .C! into itself. Furthermore, 
(1/w)H(wf) E .C! for every f E .C!. 

A continuous linear operator S from a Banach space X into X is called a N aether (Fred-
holm) operator if its range 1?.-(S) = S(X) is closed and if both the dimension of its null 
space N(S) = s-1 ( {O}) and the co-dimension of 'R.(S) in X are finite. The index ind (S) 
of such an operator S is defined as 

ind (S) := dimN(S) - codim 'R.(S). 

Lemma 2.2 The following statements hold. 
(i) The operator He : .C~ --t .C~ is a surjection with null space 

N(He) = {c/g: c Ea'}, 

and 
H;1

( {g}) = -(1/ g)H(rw) + N(He), g E .C~ · 
In particular, ind (He) = 1. 

(ii) The operator H1;e : .Ci;e --t .Ci;e is an injection with range 

R(H1;e) = {g E .Ci;e : (gjl)i;e = 0}, 

and 
HI;~g = -gH(g/ g), g E 'R.(H1;e). 

In particular, ind (H1;e) = -1. 

(iii) Let w = O" or 1/0". Then the operator Hw : .C! --t .C! is a bijective isometry, and 

H;;;1g = -(1/w)H(wg), g E .C!. 

In particular, ind (Hw) = 0. 

2 



Proof. Statement (i) follows from the fact that the restriction of H to the Banach space 
.C(A), 1 < r < 4/3 (cf. (2.2)) has the same property as He (see [17, Theorem 13.9] or 
[26, Proposition 2.4], for example). 

Statement (ii) can be proved as in the case of the restriction of H to the Banach space 
.C(A), 2 < r < oo, (see [17, Theorem 13.9] or [26, Proposition 2.6], for example). 

Statement (iii) has been shown in [30, p.149] for the case when w =a. The case w = 1/a 
can be proved similarly. 0 
Let s 2:: 0. We shall define a linear subspace .C~, s of .C~ as in [2, §2]. Let 

un(x) = (21!2 sin[(n+1) arccosxJ) / sin(arccosx), x En, 

for each n = 0, 1, 2, .... Namely, 2-1/ 2un, n = 0, 1, 2, ... , are the Chebyshev polynomials of 
the second kind. Then { un}~=O is a complete orthonormal sequence in the Hilbert space 
.C~. Now let .C~,s denote the linear subspace of .C~ consisting of those functions f on n 
such that 

00 

n=O 

The vector space .C~, s becomes a Hilbert space with the inner product given by 

00 

(flg)e,s = L(l + n)28 (flun)e(glun)e, f, g E .C!,s · 
n=O 

The associated norm on .C~, s will be denoted by II · II e, s . Clearly the Hilbert space .C~, s is 
continuously embedded into .C~. It is worth noting that the definition of .C~, s is dependent 
on { un}~=o so that another complete orthonormal sequence in .C~ may define a different 
linear subspace of .C~ . 

Let t0 = 1 and let tn(x) = 21/ 2 cos(n arccos x) for every x E n and every n = 1, 2, .... So 
t 0 ~ 2-1/ 2t 1 , 2-1/ 2t 2 , ... , are the Chebyshev polynomials of the first kind. Moreover, let 

( ) 
cos[(n + 2-1) arccosx] 

Pn x = cos ( 2-1 arccos x) d ( ) 
sin [ ( n + 2-1) arccos x] 

an qn x = . ( ) sm 2-1 arccos x 

for every x En and every n = 0, 1, 2, .... The so-defined functions Pn and qn, n = 0, 1, 2, ... , 
are Chebyshev polynomials of the third and fourth kind respectively. 

Ifs 2:: 0 and if w = 1/ g, a or 1/a, then we define the Hilbert space .C~,s with inner roduct 
(·I· )w,s by using {tn}~=O' {Pn}~=O or {qn}~=O respectively, as .C~,s. 
Observe that { un}~=O , { tn}~=0 , {Pn}~=O and { qn}~=O are unique complete orthonormal 
sequences of polynomials, with positive leading coefficients, having the property: 

deg Un= deg tn =deg Pn =deg qn = n, n = 0, 1, 2, ... , 

in the Hilbert spaces .C~, .Ci/e' .c; and .Ci;O' respectively. 
Given a distribution v on n, its derivative in the distribution sense will be denoted by 
Dv. According to [2, pp.196-197], the space .C~,s can be expressed as follows. 
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Lemma 2.3 Let w = g, 1/ e, a or 1/a. Lets be a positive integer. Then a function f E 
.C! belongs to .C! s if and only if ei Di f is again an element of .C! for every j = 1, 2, ... , s. 
Furthermore, the' norm II · llw,s on .C!,s is equivalent to the norm: 

f >--+ (~ llei Di !II!) 
112 

' f E .C!, •. 

Definition 2.1 Let w = e, 1/ e, a or 1/ a. Lets > 0. Define 

(1/w).C~/w,s = { ~f: f E£~/w,s} (C .C!) · 
Equip the vector space (1/w).Ci;w,s with the norm so that the linear map f r-+ (1/w)f, 
f E .Ci;w,s, from .Ci;w,s onto (1/w).Ci;w,s becomes an isometry; in particular, (1/w).Ci;w,s 
is then a Banach space because so is .Ci;w, s • 

The Banach space (1/w).Ci;w,s is continuously embedded into .C! and 

Hw((l/w).Ci;w,s) C .C!,s S > 0. (2.3) 

This inclusion has been shown in [2, Lemma 4.1]. Its proof is based on the following result 
which is a special case of [33, (25)]. 

Lemma 2.4 The following identities hold. 

· (i) H(eun) = tn+l, n = 0, 1, 2, ... . · 
(ii) H(to/ e) = 0 and H(tn/ e) = -un-1, n = 1, 2, .... 
(iii) H(apn) = -qn, n = 0, 1, 2, ... . 
(iv) H(qn/a) = Pn, n = 0, 1, 2, ... . 

If w = e, 1/ g, a or 1/a and s > 0, then let 

Hw,s: (1/w).Cf;w,s-+ .C!,s (2.4) 

denote the restriction of Hw to (1/w).Ci;w,s; see (2.~). The following lemma has essentially 
been given in [2, Lemma 4.2 (ii)] and its proof is clear in view of Lemma 2.4. 

Lemma 2.5 Lets> 0. Let w = e, 1/ e, a or 1/a. Then the linear operator Hw,s given 
by (2.4) enjoys the same property as Hw : .C! -+ .C! in Lemma 2.2. 

Let AC(O) denote the space of complex-valued, continuous functions f on n for which 
there is an absolutely continuous function g on the closed interval [-1) 1] such that f (x) = 
g(x) for every x E 0. 

Let w = g, 1/ g, a or 1/a. Let f E .C!. By (2.2), the function Lf defined by 

1 

(L/)(x) = ?r-
1 j f(y)lnly - xl dy, x E 0, 
-1 

belongs to AC(n) and D(Lf) = H f; see [17, §13], for example. In particular, Lf E .C! 
because AC(O) c .C!. 
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Lemma 2.6 The following identities hold. 
(i) L(to/ g) -(ln2)to = -(2-1/2ln2)u0 ; 

L(tif g) - -t1 == ~2-1u1; and 
L(tn/ g) -tn/n == 2-1(un-2 - Un)/n, n == 2, 3, .... 

(ii) L(guo) -2-1[( v'2ln2)t0 - t2/2]; and 
L(gun) -2-1[tn/n - tn+2/(n + 2)], n == 1, 2, .... 

(iii) L(apo) (2-1 - ln2)qo - 2-1q1; and 
L(apn) - 2-1[qn_if n - qn/n(n + 1) - qn+i/(n + 1)], n = 1, 2, .... 

(iv) L(qo/a) - (2-1 - ln2)Po + 2-1p1; and 
L(qn/a) - -2-1[pn-i/n + Pn/n(n + 1) - Pn+i/(n + 1)], n == 1, 2, .... 

Proof. Statement (i) can be found in [28, Corollary, p.138], for instance. Statement (ii) 
follows from (i) because {]Uo == ( v'2to - t2)/(2e) and f2Un == (tn - tn+2)/(2g) for every 
n == 1, 2, .... Statements (iii) has been given in [1, Corollary 3.3] and (iv) can be proved 
similarly. · o 
Let Lw : .C~ -+ .C~ denote the linear operator which assigns Lf to each function f E .C~, 
when w == g, 1/ g, a or 1/ a. By [29, Satz 2] the operator Le is continuous. For the 
remaining cases: w == 1/ g, a, 1/ a, the continuity of Lw follows from the closed graph 
theorem because Lw C .C~. 

Proposition 2.1 Let s 2: 0. Let w == {], 1/ {], O" or l/a. Then Lw maps the subspace 
(1/w).Ci;w,s of .C~,s into .C!,s+l and the linear map Lw,s : (l/w).Ci;w,s-+ .C~,s+l which 
assigns Lwf to each f E (l/w).Ci;w,s is continuous. 

Proof. In view of Definition 2.1, the statement is a direct consequence of the following 
inequalities: 

(i) 
(ii) 
(iii) 
(iv) 

llL(f I g) II~, s+i 
llL(ef) lli;e, s+i 
llL(f /a)jl;,s+l 
jjL( O" !) lli;u, s+l 

< (5/2)jjflli;eJs' f E .Ci;e,s; 
< (3(1+328)/2)llfll~,s' f E .C~,s;. 
< 2(1+22_s+l)jjflli;u,s, f E .Ci;u,s; and 
< 2(1+228+1)jjfjl;,s' J E .c;,s · 

A routine calculation based on Lemma 2.6 will derive those inequalities. D 

Remark 2.1 In the case when w ==a, the statement of Proposition 2.1 has been given in 
[2, Lemma 5.1 (iv)], without stating constants as above. 

Remark 2.2 Let s 2: 0. The restriction of Le to (1/ g).Ci;e, s defines a continuous linear 
operator with values in .Ci; e. s+l . In fact, 

llL(f I e)lli;e,s+l::; 4llflli;e,s' f E .Ci;e,s. 

3 The unperturbed generalized airfoil equation 

Let n == ( -1, 1). Let w stand for any of the functions {], 1 I{], ()" and 1 I()" on n as in Section . 
2. The main aim of this section is to solve, in .C~, the singular integral equation 

(3.1) 

5 



for a given g E .C~, when m E .C~. 

In the case when w = e, the integral equation (3.1) has already been solved by M. Schleiff 
[29]. We shall deduce the remaining cases from his result, by using the fact that .C~ c .C~. 
Let m E .C~. The Volterra operator Von .C~ is defined by 

x 

(V f)(x) =If dA' x En' 
-1 

for every f E .C~. Then V(.C~) c AC(O). Define a linear operator Mg : .C~ --t .C~ by 

Muf = f + m (VJ+ rr-1 J /(y)(-rr/2 + arcsiny) dy) 

for every f E .C~. Furthermore, define functions a and b on 0 by 

1 

a(x) = exp[-(Vm)(x)] and b(x) = j a/ ed>.. 
x 

(3.2) 

for every x En respectively. It is clear that Mg is continuous. Moreover, Mg is invertible. 

Lemma 3.1 ([29, pp.83-84]). The linear operator Mg : .C~ --+ .C~ is a surjective isomor-
phism and its inverse is of the form 

for every g E .C~. In particular, 

We are now ready to present Schleiff's result in [29], which shows that the operator 
He+ mLg behaves like Hg (see Lemma 2.2). 

Proposition 3 .1 Let m E .C~ . Then the linear operator Hg + mL g : .C~ --+ .C~ is a 
continuous surjection such that its null space N(Hg + mLg) is spanned by the function <I> 
defined by 

<I>= [1 - (ln2)H(eM;1m)](l/ e). (3.3) 

Moreover, 

(3.4) 

for every g E .C~. In particular, 
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The proof of the following lemma is clear and its proof will be omitted. 

Lemma 3.2 Let w = 1/ {], a or l/ g. Then .C! is invariant under Mg and the restriction 
Mw of Mg to .C! defines an isomorphism from the Banach space .C! onto .C! . 

We now concentrate on the case when w =a. The equalities 

1 

H;1h = -(l/a)H(ah) = -(1/ e)H(eh) + (1/ g)7r-1 j ahd.\, h E .c;, (3.5) 
-1 

hold in the Banach space .c;. In fact, the first equality in (3.5) has already been given in 
Lemma 2.2 (iii). The second equality follows easily from the fact that 

-a(y)/a(x) + e(y)/ e(x) = (x - y)a(y)/ e(x) (3.6) 

for all x, y E 0. By (3.5), we have 

1 1 1 

j H;1hd.\ = - j (l/a)H(ah) d.\= j ahd.\, h E .c;, (3.7) 
-1 -1 -1 

because 
1 J (l/ e)H(eh) d.\= o (3.8) 

-1 

which is a consequence of the Parseval identity ( cf. [24, Theorem II.4.4]) and the fact 
that H(l/e) = 0 (cf. [34, p.174]). From (3.5) and (3.7) it follows that 

1 

H; 1h - (1/ f2)7r-l J H;1h d.\= -(1/ e)H(eh)' h E .c;. (3.9) 
-1 

Lemma 3.3 Let m E .c;. The function <P E .C~ defined by (3.3) belongs to the space .c; 
if and only if 

1 

7r = (ln2) j H;1 A1;1rn d.\, (3.10) 
-1 

in which case <P = (ln2)H;1 M;;1m and N(Hu + mLu) =span { <P }. 

Proof. By (3.9) applied to h = M;1m, we have 

<I> = (1/ u) ( 1 - 7r-
1(ln2) l H;1 M;1m dA) + (ln2)H;1 M;1m. 

The statement now follows from the facts that 

(3.11) 
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and that 

D 
The index of the operator Hu+ mLu is the same as that of Hu as shown in the following 
theorem. 

Theorem 3.1 Let m be a non-zero function belonging to the space ..c;. Then the following 
statements on the continuous linear operator Hu+ mLu : ..c;-+ ..c; hold. 

(i) Suppose that (3.10) holds. Then 

N(Hu + mLu) =span {H;1 M;1m}. 

Furthermore, a function g E ..c; belongs to the range R(Hu + mLu) if and only if 

1 

J H- 1M-1gdA = 0 
u u ' (3.12) 

-1 

in which case 

(ii) Suppose that (3.10) does not hold. Then Hu + mLu is a bijection and for a given 
"'2 g E Lu, 

(3.13) 

where c9 is the constant defined by 

(3.14) 

Proof. Recall that ~ is the function given by (3.3) which spans N(He + mLe); see 
Proposition 3.1. If g E ..c; and c E CC, then we have 

_!H(glvr;1g) + c~ = _!H [g(M; 1g + (cln2)M;1m)] + :_ 
{2 {2 {2 

= H;1 M;1 [g + (c!n2)m] + ~ [c ( 1 -
1
:

2 j H;1 M;1mdA) (3.15) 

-~ j
1 

H-1M-1gdA] 7T' u u 
-1 

by applying (3.9) to h = M;1(g + c(ln2)m). Moreover, observe that 
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(i) Given g E .c; and c E CC, it follows from (3.10) and (3.15) that 

-(1/ g)H(eM;1g) + c~ = H;1M;;1(g + c(ln2)m) 
1 

-(1/ f2)7r-l I H;1 M;1g dA 
-1 

(3.17) 

as elements of .C~. Hence (3.11) implies that that the left-hand side of (3.17) belongs to 
.c; if and only if (3.12) hold. Accordingly, given g E .c;, it follows from (3.4), (3.16) and 
(3.17) that 

(3.18) 

if and only if (3.12) holds. Therefore the second half of statement (i) has been established. 
The first half of (i) has already been given in Lemma 3.3. 

(ii) By Lemma 3.3, the operator H(j+mL(j is injective. To show its surjectivity, let g E .c;. 
The left-hand side of (3.15) is an element of .c; if and only if c equals the constant c9 
given by (3.14); we have used (3.7). It then follows from (3.4) and (3.16) that HO"+ mL(j 
is surjective and that (3.13) holds. 0 

Remark 3.1 Let m be a non-zero function belonging to .Ci;(j. Then statements (i) and 
(ii) of Theorem 3.1 hold with replacement of the subscript a by the subscript 1/a. The 
proof will be almost the same if we replace a by 1 /a. The only exceptional relationships 
to be modified are (3.5), (3.6) and (3. 7). The modified versions are as follows: · 

1 

H!;~h = -a H(h/ a) = -(1/ g)H(gh) - (1/ g)7r-
1 j h/ a dA, h E .Ci;O"; (3.5*) 
-1 

-a(x)/a(y) + g(y)/ g(x) = (y - x)/(g(x)a(y)), x, y E !1; (3.6*) 
1 1 1 

- j H!;~hdA = - j aH(h/a) dA = - j h/adA, h E .Ci;O". (3.7*) 
-1 -1 -1 

Now we shall consider the case when w = 1/ g. Of course we need to apply Proposition 
3.1. For our proof, (3.5) will be replaced by 

-eH(h/ e) = -(1/ e) [H(eh) - 1T-
1 j xh/ ed>. - 1T-

1x l h/ ed>.] , h E .c~/e, (3.5**) 

where x denotes the identity function on n. Define continuous linear functionals a and 
{3 on the Banach space .Ci; e by 

1 1 

(a, h) = 7r-1 j (Ml;~h)/ gdA and ({3, h) = 7r-
1 j (xMt;~h)/ gdA 

-1 -1 

for every h E .Ci; e , respectively. Then the function ~ given by (3.3) has the form 

~ = -(ln2)gH[(Ml;~m)/ g] - (1 - (ln2)({3, m)](l/ g) - (ln2)(a, m)(x/ g). 
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Since eH[ ( MI;~m) / e] E .Ci; e , the function <.P belongs to .Ci; e if and only if 

1 - (ln2)(B, m) = 0 = (a, m) (3.19) 

because neither 1/ e nor x/ e is an element of .Ci;e. Now, if g E .Ci;e and c E CC, then 

-(1/ e)H(eM;1g) + c<.P = -eH[(l/ e)Ml;~(g + c(ln2)m)] 
+[c - ((3, g + c(ln2)m)](l/ e) - (a, g + c(ln2)m)(x/ e). 

With the above observations, the proof of the following theorem is straightforward and 
we shall leave the details with the reader. 

Theorem 3.2 Let m be a non-zero function in the Banach space .Ci;e. Then the following 
statements on the continuous linear operator H1;e + mL11e : .Ci;e -t .Ci;e hold. 
(i) Suppose that (3.19) holds. Then H1;e + mL1;e has one-dimensional null space: 

N(H11e + mL1;e) =span {eH[(MI;~m)/ e]}. 

A function g E .Ci;e belongs to R(H1;e + mL1;e) if and only if (a, g) = 0 = ((3, g), in 
which case 

(H1;e + mL1;e)-1( {g}) = -eH[(MI;~g)/ e] + N(H11e + mL1;e) 

so that codim R(H11e + mL1;e) = 2 . 
. (ii) Suppose that (3.19) does not hold. Then H1;e+mL1;e is injective and its range consists 
of those functions g E .Ci; e such that 

(1- (ln2)((3, m))(a, g) + (ln2)(a, m)((3, g) = 0. 

For such a function g, 

(H11e + mL1;e)-1g = -eH[(l/ e)Ml;~(g + c9 (ln2)m)], 

where c9 .is the constant determined by the two identities: 

c9 (ln2) (a, m) + (a, g) = 0 = c9 ( 1 - (ln2) ((3, m)) - ((3, g) . 

From the above theorem we can see that 

for all m E .Ci;e. 
Finally we shall show that Hu, s + mLu, s has the same properties as Hu + mLu for every 
s > 0, when m is smooth. Our arguments can easily be adapted to the remaining cases: 
w = e, 1/ e, 1/ a; so we shall not discuss them here. 
Let us fix a positive number s and let r be the smallest positive integer such that r 2:: s. 
The Hilbert space £! s is an intermediate space between .c; r-l and .c; r. In fact, let A 

' ' ' be the linear operator in the Hilbert space .C!,r-l, with domain 7J(A) = .C!,r, defined by 
00 

AJ = 2:(1 + nY(flPn)uPn, f E 7J(A) · 
n=O 
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Then the operator A is self-adjoint, positive and unbounded in .c;,r-l. Moreover, if 
0 < e < 1, then the intermediate space [.c;,r-1 '.c;,r]o is defined as the domain of the 
linear operator A 1-0 in .c; r-l . Of course, A 1-0 has the form 

' 
00 

A1
-

0(f) = l:(l + nY(l-O)UIPn)uPn' f E '.D(A)' 
n=O 

(see [22, §2.l in Chapter l]). Hence, [.c;,r-l, .C!,r]o = .c;,r(l-O)' 0 < (} < 1. In particular, 

(.C;,r-1 '.c;,rh-s/r = .c;,s · (3.20) 

By c; ( [-1, 1]) we denote the space of all r times differentiable functions u : n -+ <C such 
that rl Dku has continuous extention to the closed interval [-1, 1] for each k = 0, 1, ... , r. 
Furthermore, define a norm on c;([-1, 1]) by 

r 

llullc~ := l: llr/ Dkulloo, u E c;([-1, 1]), 
k=O 

where II · 11 00 denotes the uniform norm. Given m E c;([-1, 1]), let 

m.c;,8 =· {mf: f E .c;,8}, 

which is a linear subspace of ..C!,r-l for every 8 E [r - 1, r]. 

Lemma 3 .4 Let m E c; ([-1, 1]). Then the fallowing statements hold. 

(i) Let 8 = r - 1 or r. Then m.c;, 8 C .c;,8 and the .c;,rvalued linear operator: 

f 1-'t mf, 

is continuous. Moreover, 

llmfllu,8 ::; canst· llmllc~ llf llu,8 · 

(ii) It follows that m.C!,s C .C!,s and the .C!, 8 -valued linear operator: 

fr-+ mf, 

is continuous. 

Proof. Statement (i) follows from Lemma 2.3 together with Leibnitz's formula. Statement 
(ii) is a consequence of the interpolation theorem (22, Theorem 5.1, Chapter 1] because 
of (i) a.nd (3.19). o 

Lemma 3.5 The Hilbert space .c; 8 is invariant under the Volterra operator V (see (3.2)) 
and the restriction of V to .C!, s is' a continuous linear operator from .c;, 8 into .c;, s+l . 

Proof is analogous to that of Lemma 3.4 (ii) because of (3.20). D 
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Corollary 3.1 Let,m E C~([-1, l]). The restriction Mu,s of Mu to .c;,s is an isomor-
phism onto .c; s . 

' 

Proof follows from Lemmas 3.4 and 3.5 .. D 
Let m E C~([-1, l]). It then follows from Proposition 2.1 and Lemma 3.4 that mLu,s can 
be regarded as a continuous linear operator from (1/ o-).Ci;u, 8 ( C .c;, 8 ) into .c;, 8 because 
.C~, s+l is continuously embedded into .c;, s . We are now ready to .Present the main result 
which follows immediately from Theorem 3.1 in view of Corollary 3.1. 

Theorem 3.3 Lets > 0. Let r be the smallest positive integer such that r 2:: s. f?uppose 
that m E C~([-1, 1]) is a non-zero function. Then the linear operator Hu,s + mLu,s : 
(1/o-).Ci;u,s -+ .c;,s is continuous, and statements (i) and (ii) of Theorem 3.1 hold with 
replacement of the subscript a by the subscripts a, s. 

4 A numerical procedure 

The results of Section 3 allow us to consider a numerical procedure for solving singular 
integral equations of the form 

(Hw + mLw + K)J = g ( 4.1) 

where g E .C! and m E .C! are given functions and K is a given compact linear integral 
operator acting in .C! . 
Fix a positive integer n. Let w = g, 1/ g, a or 1/ a and let hn be one of the corresponding 
polynomials Un, tn, Pn or qn, respectively. Let Yn,i, i = 1, ... , n, be the zeros of hn, which 
are known to be distinict and belong to the open interval ( -1, 1). Define the Lagrangian 
fundamental polynomials l'!/: i, i = 1, 2, ... , n, by 

' 

l;:',;(Y) = ( hn~~ ( ) =ft y-yn,j , YE (-1, 1) · 
Y - Yn,i n Yn,i j=l Yn,i - Yn,j 

#i 

For an arbitrary continuous function u : (-1, 1) -+<I, the Lagrangian interpolation pro-
jector L~ is defined by 

n 

L~ : U r+ L u(Yn,i)l~,i · 
i=l 

Assume that the operator K has the form 

1 1 
Ku(x) =; j k(x,y)u(y)dy, x E (-1, 1), u E .C!. 

-1 

It is well known that K is a compact operator in .C! if the kernel function k satisfies the 
condition 

1 1 

j j lk(x, y)l 2w(x)/w(y) dydx < oo. 
-1-1 
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In the sequel we make the following assumptions about the smoothness of k. Assume that 
k(-, y) E .C~,s uniformly with respect toy E (-1, 1), and k(x, ·) E .Ci;w,r uniformly with 
respect to x E (-1, 1), with some positive real numbers s and r to be specified later; in 
other words, there are constants C1 and C2 (independent of both x and y) such that 

Ilk(·, Y)llw,s:::; C1 and llk(x, ·)111/w,r:::; C2 (4.2) 

for all x, y E (-1, 1). Under the above conditions, the operator K : £ 2 ~ .C2 t is w w, 
continuous for all t:::; s and compact for all t < s (see, for example, [2, Lemma 4.2]). 

)n what follows we shall denote by II · lli;w,s the norm on the Banach space Ei;w,s .-
(l/w).Ci;w,s (see Definition 2.1); that is, 

llvlli;w,s = llwvll1/w,s, 

Suppose that s > ~ and r > ~ . Introduce the operator Kn by 

1 1 
Knu(x) = ;: j [L~; k(x, y)]u(y) dy, x E (-1, 1), 

-1 

for all u E .C~. The subscript y of L~(:; indicates that the interpolation is realized with 
respect to the variable y. Given x E (-1, 1), the function k(x, ·) E .Ci;w,r is continuous 
on (-1, 1) by [2, Theorem 2.5] because r > ~, and hence we can define Knu(x) for each 
u E .C!. The so-defined function Knu on (-1, 1) is continuous again by [2, Theorem 2.5] 
applied to k(-, y) E .C!,s with s > ~. 
Let n = 1, 2, .... Let IIn denote the space of all polynomials. of degree less than n with 
complex coefficients. Let g E .C~,s. We shall seek an approximate solution fn E Ei;w,s of 
Equation ( 4.1). In other words, fn is a solution to the equation 

fn - }:_H(wL~M~1L~Knfn) = _}:_H(wL~M~1g). (4.3) 
1U W 

It follows from Lemma 2.4 that fn is necessarily of the form fn = vn/w for some Vn E IIn 
and that ( 4.3) is a fully discretized linear algebraic system relative to the coefficients of 
the unknown polynomial Vn. 
Let us consider the case when w =g. Introduce the subspace .C~,o of all functions u E .C~ 
satisfying 

1 j ud.A = 0. 
-1 . 

The range of the operator Kn defined by 

- ·- 1H( LeM-1LeK ) Knu .- - {! n e n nU , 
{! 

u E .C~, 

is contained in .C~,o because of (3.8). Moreover, it follows from Proposition 3.1 and. (3.8) 
that the operator He+ mLe restricted to .C~,o is a bijection from .C~,o onto .C~. Thus 
the index of the operator He+ mLe + K : .C~,o ~ .C~ is 0 because K is compact. So if 
He + mLe + K happens to be injective on .C~,o, then it becomes a bijection on .C~,o. For 
each t E [O, s) let 

r2,0 ·- r2,0 n r2,0 1-.,1/e,t·-1-.,1/e,t 1-.,e · 
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Theorem 4.1 Let w = f2· Assume that the kernel k of compact operator Kon .C~ satisfies 
( 4.2) with s > 1 and r ;::: s + ! . Let d denote the smallest positive integer such that d 2:: s 
and let m E c!([-1, l]). Suppose that the homogeneous equation (4.1) possesses only the 
trivial solution in .C~,o, that is, (He+ mLe + K}-1( {O}) n .C~,o = {O}, and that a function 
g E .C~, s is given. Assume that 0 :::; t < s. 
Then the singular integral equation ( 4.1) has a unique solution f in iii~, s • Moreover, for 
all sufficiently large n E IN, the system ( 4.3) is uniquely solvable in i.ii0e, t and the solution 
fn E i.i/0e, t is of the form f n = Vn/ f2 for some Vn E IIn and satisfies the error estimate 

llfn - flli;e,t:::; Const· nt-sllYlle,s · (4.4) 

Proof. In this proof the symbol c stands for a positive constant (not always the same) 
which is independent of n E JN. The identity operators on the various Hilbert spaces to 
be considered are denoted by I. 

Step I. Let 0 :::; 8:::; s. The restriction of He,o + mLe,o to i.ii~,o is denoted also by He,o + 
mLe,o for simplicity. Since m E c; ([-1, 1]) and d 2:: s 2:: 8, the operator He,o + mLe,o is 
an isomorphism from i.i;0e,o onto .C~,o, which can be proved as Theorem 3.3. 

Step IL We shallshow that (4.1) has a unique solution f E £i;0e,s. The natural embedding 
Z : £i1 e, s -+ .C~ is compact because from [2, Conclusion 2.3] the natural embedding from 
.Ci;e,s into .Ci;e is compact. Since K: .C~-+ .C~,s is continuous by the assumption (4.2), 
the map K Z is compact, and hence its restriction to i.ii0e, s is an .C~, s -valued compact 
operator. 

Now, 
ind(He,s + mLe,s + K) = ind(He,s + mLe,s) = 0. 

The operator 
-2 0 2 

He,s + mLe,s + K: .C1/e,s-+ .Ce,s' 
which is injective by assumption, is ·a surjective isomorphism. That is, ( 4.1) has a unique 
solution f in i.ii0e, s and 

llflli;e,s :::; ll(He,s + mLe,s + K)-1
11 · llYlle,s · (4.5) 

Step IIL In Steps III and IV, we shall establish that the operator 
- -2 0 -2 0 

I - Kn : .C1/e, t-+ .C1ie, t 

is invertible, which will imply that ( 4.3) has a unique solution in i.ii0e, t . 

When 0 :::; 8 :::; s, let Me,o denote the restriction of Me to .C~,o ; then Me,o : .C~,o -+ .C~,o 
is a surjective isomorphism, which can be proved as Mu, 0 in Corollary 3.1 by using the 
assumption: m E c;([-1, 1]) and d 2:: s 2:: 8. Applying Lemma 2.4, define an operator 
A: .C~,t-+ .t.:~,t by 

Av := (1/ e)H(gv) , v E .C~, t. 
-2 0 -2 0 .. . 

Let W : .C1j e, t -+ .C1j e, t be the operator given by 

Wu:= AM;}Ku, 
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We claim that the operator I - W is a surjective isomorphism on .Ci;0e, t. In fact, He, t + 
mLe, t is an isomorphism from .Ci/0e, t onto .C~, t by Step I. Since K : .C~ -+ .C~, t is compact 
by the assumption (4.2), the operator He,t + mLe,t + K is an isomorphims from .Ci;0e,t 
onto .C~, t, which can be proved as in the second half of Step II. Now the identity 

He,t + mLe,t + K = (He,t + mLe,t)(I - W) 

on .C~;~ establishes our claim. 

The operator I - Kn= (I - W) + (W - Kn) becomes invertible for a large n E IN once 
we show that 

(4.6) 
-2 0 for every u. E .C1/ e, t and n E IN. We shall then have 

(4.7) 

provided II (I - w)-1 11 · II W - Kn 11 < 1. This is a consequence of the usual Neumann series 
argument. 

Step IV. The aim of this step is to prove ( 4.6). To this end fix a function u E .Ci/0e, t and a 
positive integer n. Let J : C1; e, t -+ .C~ be the natural injection. Define a linear operator 
Dn : .C~ -+ .C~, t by 

Dnh = (M;1 K - L~M;1L~Kn)h' h E .C!. 

Using the operator A given in Step III we have 

Leth , Ju.' Then 

(4.8) 

In view of the assumption: r 2:: s + ~ > s > ~, apply [2, Lemma 4.4] to obtain that, if 
0 ::; 8 ::; s, then 

(4.9) 

Letting 8 = t in ( 4.9) we have 

llM;~(K - L~Kn)hlle,t::; cnt--sllM~rn · llhlle. (4.10) 

On the other hand, from [2, Theorem 3.4] which requires the assumption ( 4.2) and s > ~, 
it follows that 

(4.11) 

From ( 4.9) with 8 = s, we derive 
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This together with ( 4.11) gives 

ll(I--'- L~)(M;! - I)L~Knhlls,t:::; cnt-sllM;! - Ill· llhlle. (4.12) 

It then follows from (4.8), (4.10) and (4.12) that 

( 4.13) 

Therefore we have 

ll(W - Kn)ull~;e,t:::; llAll · llDnlulle,t:::; cnt-sllAll(llM;;ii + llM;! - Ill)llJll · llulli;e,t, 

which implies ( 4.6). 

Step V. Since ( 4.6) holds for every n E JN, there is an N E IN such that J -- Kn is 
invertible wherever n?. N, as observed in Step III. Let b = supn>N ll(I - Kn)-111 which 
is finite by (4.6) and (4.7). Fix a positive integer n satisfying n ?.-N. Let 

fn :=-(I - kn)-1 [~H(eL~M;,!g)l 

which is the unique solution of ( 4.3). As noted before, fn = vn/ {! for some Vn E IIn by 
applying Lemma 2.4. It is easy to see that 

- 1( 1 1 - ) In - f = (I - Kn)- --gH(eL~M;sg) - (I - Kn)! 

= (I - Knt1A[(I - L~)M;!g- Dnlf]. 

By (4.11) we have 

. ll(I - L~)M;!Blle,t:::; cnt-sllM;!Blle,s:::; cnt-sllM;!ll · llglle,s. (4.14) 

Substituting Jf for h in (4.13) gives that llDnlflle,t:::; cnt-sllJflle. It then follows from 
( 4.5) that 

From (4.14) and (4.15) we finally obtain 

11/n - flli;e,t :::; II(! - Kn)-1
11 · llAll(ll(J - L~)M;!Bile,t + llDnJflie,t) 

:::; bllAll(cnt-sllBlle,s) 

wherever n ?. N. Thus we have established the error estimate ( 4.4). D 

Remark 4.1 ([29, Section 4]). The homogeneous equation (4.1) has a unique solution 
f E .C~ satisfying 

1 j f d).. =?TC 
-1 

with given C E IR if k and m fulfil the estimate 

(4.16) 
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where 

and 

1 1 

7r2 B2 j j lk(x, y)l2(1 - y2)-1f2(1 - x2)1/2 dydx 
-1 -1 

a= [ sup a(x)] · [ inf a(x)]-l 
-l<x<l -l<x<l 

If (4.16) is fulfilled then the general solution f E .C~ of (4.1) satisfies the estimate 

where 

llfll~ :::; [1 - (1 + afallmlle)Bt2[(l + afallmlle)llglle 
+ICl(allmlleln2 + (1+afa1lmlle}llhlle)J2 +7rlCl2 

1 1 
h(x) = ; j k(x, y)(l - y2)-112 , dy. 

-1 

By taking into account Theorems 3.1 (ii) and 3.3, the following assertion can be proved 
in a similar way to Theorem 4.1. 

Theorem 4.2 Let w =a. Suppose that (3.10) does not hold and the homogeneous equa-
tion ( 4.1) possesses only the trivial solution in .c;. Further, besides the assumptions ( 4.2) 
with s > ~ and r > s + ~ suppose that d is the smallest integer satisfying d 2:: s and that 
m E cg([_:_l, l]). Assume that a function g E .c;_,s is given and 0:::; t < s. 

Then (4.1) has a unique solution f in (1/a).Ci;a,s. Moreover,for all sufficiently large 
n E JN, the system (4.3) is uniquely solvable in (1/a).Ci;a,t such that the solution fn is of 
the form vn/ a for some Vn E IIn and the error estimate 

llfn - fll~;u,t:::; Const· nt-sllgllu,s 

holds. 

Note that if t > ~ then the following estimates hold: 

sup 1/ g(x)lu(x)I :::; const · llull1;e,t if u E .C~/e,t 
-l<x<l 

( 4.17) 

and 

sup ./l"=Xlv(x) I :::; const · llvlli;u, t if v E .Ci;a, t, 
-l<x<l 

( 4.18) 

(see [25, Theorem 7) and [7, Equation (35)]). Thus the estimates of Theorems 4.1 and 4.2 
imply error estimates with respect to weighted uniform norms. More precisely, 

sup lfn(x) - f(x)I :::; const · nt-sllglle,s ( 4.19) 
-l<x<l 
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for all t E ( 2-1, s) under the assumptions of Theorem 4.1, and 

for all t E (2-1 , s) provided the conditions of Theorem 4.2 are satisfied. 

Indeed, assuming t E (2-1 , s) we obtain from (4.18) that 

( 4.20) 

sup Vf"=Xo-(x)lfn(x) - f(x)I ::; const · llo-(fn - f)ll1;u,t (4.21) 
-l<x<l 

= const · llJ n - f ll~;u, t · 

Thus (4.20) follows from (4.21) and Theorem 4.2. Similarly, (4.19) follows from (4.17) 
together with ( 4.4). 

Remark that ( 4.3) can be considered as an alternative numerical scheme to the well known 
collocation method where an approximate solution fn of Equation ( 4.1) is sought in the 
form fn = vn/w, where the unknown polynomial Vn E 11n is determined by the equation 

(4.22) 

For the method ( 4.22) the error estimates of Theorems 4.1 and 4.2 hold, too (see [2] for 
the case of constant m; form E c;([-1, 1]), the proof is similar to that of Theorem 4.1). 
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