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Gibbsian representation for point processes
via hyperedge potentials
Benedikt Jahnel , Christof Külske

ABSTRACT. We consider marked point processes on the d-dimensional euclidean space, defined in
terms of a quasilocal specification based on marked Poisson point processes. We investigate the pos-
sibility of constructing uniformly absolutely convergent Hamiltonians in terms of hyperedge potentials
in the sense of Georgii [2]. These potentials are natural generalizations of physical multibody potentials
which are useful in models of stochastic geometry.

1. INTRODUCTION

In this note we study models for not necessarily translation-invariant Poisson point processes (PPP) in
euclidean space Rd with general marks. Such models are the subject in the infinite-volume statistical
mechanics of classical point particles which interact via potentials. They are already very interesting
when there are no marks (or internal states of particles), and only the positions of the colorless point
particles are relevant. Potentials coming from physics are often pair potentials. Take as an example
the famous Lennard-Jones potential. For results on existence of such models in the infinite volume,
see [14,16]. Also more general potentials than pair potentials appear, describing interactions between
finite collections of particles. These are quite relevant in physics as well, see for instance the proof
of a phase transition for a long (but finite) range potential involving 4-body interactions in [13]. For
models from statistical physics with marks, see e.g. the Potts gas in [4]. The famous Widom-Rowlinson
model (WRM) is a specific example for this which is proved to have a phase transition in the infinite
volume [1,5,15].

PPPs also have an interest which is independent from the physical motivation in statistical mechanics
in models of stochastic geometry e.g. [7, 8]. In the development of the fundamentals of an infinite-
volume theory (existence, uniqueness, variational principle, . . . ) also for such systems an important
step was made by [2] in the introduction of the more general notion of a hyperedge potential, see [2].
For such potentials one allows the energetic contribution of a finite subset of particles (hyperedges) to
depend also on the other points in the cloud, but only up to a finite horizon. This relaxation of the strict
locality requirement on the level of potentials incorporates many models from stochastic geometry. In
this note we are aiming for uniformly absolutely convergent representations of abstractly given point
processes as Gibbs fields in terms of such hyperedge potentials.

To compare, let us recall the simpler situation in statistical mechanics on the lattice Zd, or more
generally countable index sets, where the notion of a quasilocal specification is fundamental for the
development of Gibbsian theory in its purest form, see [3]. An uniformly absolutely convergent potential
defines a finite-volume HamiltonianHΛ in a finite volume Λ ⊂ Zd, which depends in a quasilocal way
on the boundary condition outside of Λ.

On the lattice, going from nice potentials to Gibbsian specifications in lattice statistical mechanics is
straightforward, while the opposite is more difficult. However, Kozlov and Sullivan [10, 11, 17] showed
how one may construct potentials with various convergence properties. For systems of point particles
already going from Hamiltonians to measures is more delicate, for the opposite direction partial results
were obtained in [11] where a convergent representation in terms of the (necessarily unique) vacuum
potential was obtained, while uniform absolute convergence could not be provided. It is a main aim of
our paper to show how uniform absolute convergence can indeed be achieved in the class of Georgii’s
hyperedge potentials.
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The paper is organized as follows. Section 2 contains the setup of Gibbs Point Processes. In Section 3
we discuss the notion of hyperedge potentials in the sense [2], and formulate as our main general
result Theorem 3.8, on the uniform absolute convergence of a hyperedge potential. Before doing so,
we put in place Theorem 3.6, on which we will build up later, and Corollary 3.7. These concern the
convergence of the vacuum potential, and its finite-range property under the assumption of the strict
Markov property of the specification. Versions of these statements were obtained for the first time
in [11]. In Section 4 we discuss the two-color WRM under independent spin-flip dynamics, see [9].
This model shows quite interesting Gibbs non-Gibbs transitions, depending on activities and time. We
explain that in the Gibbsian regimes there is always a hyperedge potential which even has a uniform
horizon, and which converges absolutely and uniformly. Finally, the proofs including further comments
are provided in Section 5.

1.1. Acknowledgement. This work is dedicated to the memory of Professor Hans-Otto Georgii.
Benedikt Jahnel thanks the Leibniz program ’Probabilistic methods for mobile ad-hoc networks’ for
the support. Christof Külske thanks the Weierstrass Institute for its hospitality.

2. GIBBS POINT PROCESSES

2.1. Setup. We consider the euclidean space Rd with d ≥ 1 equipped with its Borel-σ-algebra. Let
Ω denote the set of all locally finite subsets of Rd, that is, for ω ∈ Ω we have |ωΛ| = #{ω∩Λ} <∞
for all bounded sets Λ ⊂ Rd. The polish spaceE equipped with its Borel-σ-algebra E will play the role
of a local state space or in the language of point processes the mark space. We write σω ∈ Eω for the
marks of a configuration ω ∈ Ω. The marked configurations ω = (ω, σω) are locally finite subsets of
Rd × E and we denote Ω the set of all such marked configurations with ω ∈ Ω. Conversely we call
ω ∈ Ω the grey configuration of ω ∈ Ω. We equip Ω with the σ-algebra F which is generated by
the counting variables Ω 3 ω 7→ |ω ∩ (Λ×B)| for bounded and measurable Λ b Rd and B ∈ E,
i.e. F = σ

(
{ω : |ωΛ| = n, σωΛ ∈ B} : n ∈ N,Λ b Rd, B ∈ En

)
. Further we denote by ΩΛ the

set of all marked configurations in the measurable set Λ ⊂ Rd and equip it with the corresponding
trace σ-algebra FΛ of F on ΩΛ. We write f ∈ FΛ if f is measurable w.r.t. FΛ and f ∈ F b

Λ if f is
additionally bounded in the supremum norm ‖ · ‖.

2.2. Gibbs point processes for Poisson modifications. In this section we setup Gibbsian point
processes via Poisson specifications along the lines of λ-specifications for models on fixed geometries
as in [3, Chapter 1]. For any Λ ⊂ Rd and ω ∈ Ω we use the short-hand notation ωΛ to indicate
that points in Λc = Rd \ Λ are eliminated. With ωΛω∆ we indicate the configuration which consists
of the union of ωΛ and ω∆ and similar for grey configurations. Let us start by adapting the notion of
pre-modifications from [3, Definition 1.31] to the continuum setting.

Definition 2.1 (Pre-modification). Let h = (hΛ)ΛbRd be a family of measurable functions hΛ :
Ω∗ → [0,∞) with common domain Ω∗ ⊂ Ω. Then h is called a Ω∗-pre-modification if for all
Λ ⊂ ∆ b Rd and ω,ω′ ∈ Ω∗,

h∆(ωΛωΛc)hΛ(ω′ΛωΛc) = hΛ(ωΛωΛc)h∆(ω′ΛωΛc).

As the prime example of a pre-modification consider the Boltzmann weight

hΛ = e−HΛ

where the Hamiltonian HΛ is given by

HΛ(ω) =
∑

ηbω: η∩Λ6=∅

Φ(η,ω).(1)
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Here the potentials Φ(η, ·) : Ω∗ → (−∞,∞] are measurable functions w.r.t. Fη , governing the
interaction of marked particles at locations η. For example consider the Potts Gas [4] with

(2) Φ(η,ω) = δη={x,y}[δσx 6=σyϕ(x− y) + ψ(x− y)]

for some measurable and even functions ϕ,ψ : Rd →]−∞,∞] which includes also the case of the
Widom-Rowlinson model [1,18].

The introduction of the domain Ω∗ of admissible boundary conditions is necessary since in the con-
tinuum setting, due to the possible accumulation of points, even in simple models with infinite-range
interactions, Hamiltonians and hence pre-modifications might not be well defined everywhere. More
precisely, the sum in (1) is only well-defined for boundary conditions ω ∈ Ω∗Λ ⊂ Ω such that∑

ηbω: η∩Λ6=∅

(−Φ(η,ω) ∨ 0) <∞.

Note that Ω∗∆ ⊂ Ω∗Λ for ∆ ⊃ Λ since∑
ηbω: η∩∆ 6=∅

(−Φ(η,ω) ∨ 0) ≥
∑

ηbω: η∩Λ6=∅

(−Φ(η,ω) ∨ 0)

and hence it suffices to consider the common domain Ω∗ = limn↑∞Ω∗Λn where Λn = [n/2, n/2]d

denotes the centered box of length n ∈ N. We will give a proper and more general definition of
potentials in Section 3.

The notion of a pre-modification can be used to describe a large class of specifications.

Definition 2.2 (Specification). A Ω∗-specification is a family of proper probability kernels γ = (γΛ)ΛbRd
where each γΛ(·|ω) is defined for all ω ∈ Ω∗ with γΛ(Ω∗|ω) = 1 and additionally satisfies the fol-
lowing consistency condition. For all measurable Λ ⊂ ∆ b Rd and ω ∈ Ω∗

γ∆(γΛ(dω′|·)|ω) = γ∆(dω′|ω).

Let us denote by P the (maybe non-stationary) marked Poisson point process (PPP) on (Ω,F)
with intensity measure µ(dx, du) = ν(dx)F (du|x). Here ν is a σ-finite measure on Rd which is
equivalent to the Lebesgue measure on Rd and F is a kernel from Rd to the set of σ-finite measures
on (E,E). By PΛ we denote the restriction of P to ΩΛ. For f ∈ F b we will often use the short hand
notation

∫
P (dω)f(ω) = P f . For a given family of density functions ρ = (ρΛ)ΛbRd , defined on a

set of Poisson measure one, probability kernels can be defined via

γρΛ(f |ωΛc) =

∫
PΛ(dωΛ)f(ωΛωΛc)ρΛ(ωΛωΛc).(3)

The following definition labels ρ a Poisson modification if the associated γ is a specification, similar
to [3, Definition 1.27].

Definition 2.3 (Poisson-modification). Let ρ = (ρΛ)ΛbRd be a family of measurable functions ρΛ :
Ω∗ → [0,∞) with common domain Ω∗ ⊂ Ω. Then, ρ is called a Ω∗-Poisson modification if
the family of probability kernels γρ = (γρΛ)ΛbRd given by (3) is a Ω∗-specification. A Ω∗-Poisson
modification is called positive if for all ω ∈ Ω∗ and Λ b Rd we have ρΛ(ω) > 0, it is called vacuum
positive if only ρΛ(ωΛc) > 0 holds.

Note that under the PPP, the empty set in finite volumes with positive Lebesgue measure has positive
mass. Hence, for all ω ∈ Ω∗ also ωΛc ∈ Ω∗ for all Λ ⊂ Rd. As an example note that the Poisson
modification of the WRM is not positive but vacuum positive. For a Ω∗-pre-modification h the normal-
ization ZΛ(ωΛc) =

∫
PΛ(dωΛ)hΛ(ωΛωΛc) is referred to as the partition function. The conditions

on pre-modifications give rise to Poisson modifications. This is the content of the following lemma.

DOI 10.20347/WIAS.PREPRINT.2414 Berlin 2017
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Lemma 2.4. Let h be a Ω∗-pre-modification with

0 < ZΛ(ωΛc) <∞

for all Λ b Rd and ωΛc ∈ Ω∗. Then ρ = (hΛ/ZΛ)ΛbRd is a Ω∗-Poisson-modification if additionally
for all ∆ b Rd and ω ∈ Ω∗ it holds that γρ∆(Ω∗|ω) = 1.

Next we give a definition of Gibbs point processes via the DLR equation similar to the one for classical
Gibbs measures on deterministic spatial graphs see [3].

Definition 2.5 (Gibbs point processes). A random field P is called a Gibbs point process for the
Ω∗-specification γ iff for every Λ b Rd and for any f ∈ F b,

(4)

∫
P(dω)f(ω) =

∫
P(dω)

∫
γΛ(dω′Λ|ω)f(ω′ΛωΛc)

and P(Ω∗) = 1. We denote the set of all such measures G(γ).

Existence of Gibbs point processes and the appearance of phase-transitions of multiple solutions to
the so-called DLR equation (4) have been proved in a number of cases, see for example [1, 2, 4]. In
the next section we present our main result.

3. HYPEREDGE POTENTIALS AND THE REPRESENTATION THEOREM

Let us start by giving a more formal definition of interaction potentials in the continuum. For this let
us denote by Ωf = {ω ∈ Ω : |ω| < ∞} the set of finite configurations in Ω and Ff the trace
σ-algebra of F in Ωf . The product space Ωf × Ω carries the product σ-algebra Ff ⊗ F . With
E ⊂ Ē = {(η,ω) ∈ Ωf ×Ω : η ⊂ ω} we denote a hypergraph structure of Ω as presented in [2]
for models with trivial single-site state-space. For ω ∈ Ω we write E(ω) = {η b ω : (η,ω) ∈ E}.
Based on the hypergraph structure we now define hyperedge potentials.

Definition 3.1 (Hyperedge Potential). A hyperedge potential (or simply potential) is a measurable
function Φ : E 7→ (−∞,∞] with the following properties:

1 Finite-horizon: For each (η,ω) ∈ E there exists ∆(η,ω) b Rd such that if (η,ω′) ∈ E and
ω∆(η,ω) = ω′∆(η,ω), then Φ(η,ω) = Φ(η,ω′).

2 Well-definedness: For all Λ b Rd the series

HΛ(ω) =
∑

η∈E(ω): η∩Λ 6=∅

Φ(η,ω)

exists in the sense that HΛ(ω) is the limiting point of the net(
HΛ,∆(ω)

)
∆bRd

with

HΛ,∆(ω) =
∑

η∈E(ω∆): η∩Λ 6=∅

Φ(η,ω).

For Λ b Rd and r > 0 we denote by Br(Λ) = {x ∈ Rd : |x − y| < r for some y ∈ Λ} the
r-mollification of Λ. Next we distinguish potentials in view of their finite-horizon properties.

Definition 3.2 (Uniform finite-horizon & vacuum potentials). We call a potential a

1 uniformly finite-horizon potential if for all (η,ω) ∈ E the finite-horizon property holds with
∆(η,ω) = ∆(η).
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Gibbsian representation for point processes 5

2 r-uniformly finite-horizon potential if for all (η,ω) ∈ E the finite-horizon property holds with
∆(η,ω) = Br(η) with r > 0.

3 vacuum potential if for all (η,ω) ∈ E the finite-horizon property holds with ∆(η,ω) = η and
it is vacuum normalized, i.e. for all ξ ( η

Φ(η,ωξ) = 0.

We can further distinguish different types of potentials w.r.t. their convergence properties. In order to
make the connection to the domains Ω∗ of admissible configurations, let us write E∗ for hypergraph
structures which are subsets of Ē∗ = {(η,ω) ∈ Ωf ×Ω∗ : η ⊂ ω}.

Definition 3.3 (Potential convergence). We call a potential Φ on E∗

1 uniformly convergent if for all Λ b Rd we have

lim
∆↑Rd

sup
ω∈Ω∗

|HΛ,∆(ω)−HΛ(ω)| = 0.

2 uniformly absolutely convergent if for all Λ b Rd and ω ∈ Ω∗ we have∑
η∈E∗(ω): η∩Λ6=∅

|Φ(η,ω)| = H̄Λ(ω) <∞ and

lim
∆↑Rd

sup
ω∈Ω∗

|
∑

η∈E∗(ω): ∅6=Λ∩η⊂∆

|Φ(η,ω)| − H̄Λ(ω)| = 0.

Clearly, the types of convergence are ordered such that (2) implies (1) and (1) implies well-definedness.
Let us note that the definitions above could be extended to also include the case of H̄(ω) = ∞ by
requiring the series to be invariant under re-summation, but we omit this here. The next definition
describes the fundamental goal behind this work.

Definition 3.4 (Potential representation). We say that a potential Φ represents the Ω∗-Poisson mod-
ification ρ if Φ is defined on a hypergraph structure E∗ and for all Λ b Rd and ω ∈ Ω∗

ρΛ(ω) = exp
(
−

∑
η∈E∗(ω): η∩Λ 6=∅

Φ(η,ω)
)
.

Our first result establishes existence of such potentials for given pre-modifications under the condition
of vacuum positivity and continuity required to hold only in the direction of the vacuum.

Definition 3.5 (Vacuum quasilocality). We call a real-valued measurable function f with domainΩ∗ ⊂
Ω vacuum quasilocal if for all ω ∈ Ω∗ we have that

lim
Λ↑Rd

|f(ω)− f(ωΛ)| = 0.

Moreover, f is called vacuum uniformly log-quasilocal if f is positive and

lim
Λ↑Rd

sup
ω∈Ω∗

| log f(ω)− log f(ωΛ)| = 0.

Here and in the sequel, the limits should be understood as limits of nets on {Λ : Λ ⊂ Rd} ordered
by inclusion. Clearly, uniform quasilocality w.r.t. the τ -topology, i.e.,

lim
Λ↑Rd

sup
ω,ω′∈Ω

|f(ωΛω
′
Λc)− f(ω)| = 0

implies vacuum quasilocality but not uniform log-quasilocality even if f is assumed positive. The last
implication is true under the additional assumption of uniform positivity which is meaningful for example
in lattice systems. But in our continuous setting even for f given as the Poisson modification of the
Potts gas we have uniform log-quasilocality but no uniform positivity.

DOI 10.20347/WIAS.PREPRINT.2414 Berlin 2017
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Theorem 3.6. Suppose ρ is a vacuum positive and vacuum quasilocal Ω∗-pre-modification such that
for all Λ b Rd and ωΛc ∈ Ω∗ we have∫

PΛ(dωΛ)ρΛ(ωΛωΛc) = 1.

Then, there exists a unique vacuum potential Φ on Ē∗. Moreover, if ρ is vacuum uniformly log-
quasilocal, then Φ is uniformly convergent.

Let us note that for example in the lattice case, potentials can be constructed which are unique
w.r.t. certain α-normalizations where α an arbitrary single-site measure. This freedom is not avail-
able in the continuum case since the geometry is not fixed. Further we note that the construction of
the vacuum potential has been performed multiple times for lattices systems, see for example [6, 10],
and even more general point fields in [11, Theorem 1B], but there without the uniform convergence
part.

The following statement that finite-range properties of Poisson modifications transfer to their associ-
ated vacuum potential is already partially presented in [11, Lemma 2].

Corollary 3.7. Let ρ be as in Theorem 3.6 and Φ the corresponding vacuum potential. Additionally
assume that ρ is of range r > 0, i.e., for all Λ b Rd, ρΛ is FBr(Λ) measurable. Then, if η is such
that there exist x, y ∈ η with |x− y| > r, we have Φ(η,ω) = 0.

The following main result of this paper shows that it is possible to derive a representation for vacuum
uniformly log-quasilocal Ω∗-pre-modifications given by an uniformly absolutely convergent potential.
This representation has the uniformly finite-horizon property but is no longer unique.

Theorem 3.8. Let ρ be vacuum uniformly log-quasilocal. Then, there exists a representation of ρ via
an uniformly absolutely convergent potential with uniform finite-horizon property.

Let us note that the constructed uniformly absolute convergent potential is defined on a much sparser
hypergraph structure E∗ described in the remarks following the proof.

4. POTENTIALS FOR A TIME-EVOLVED WIDOM-ROWLINSON MODEL

As an illustration we consider the WRM under independent spin flip as presented in [9]. We start by
recalling the model.

4.1. The WRM under independent spin flip. The WRM, as initially proposed in [18], is a hard-core
repulsion model with single spin space E = {+,−} and Ω-Poisson-modification given by

χΛ(ω) = 1{for all x, y ∈ ω with |x− y| < 2r : σx = σy}.

Alternatively, it can be described via the vacuum potential

Φ(η,ω) =∞× 1|x−y|<2r1η={x,y}1σx 6=σy .

Note that the interaction is of range 2r > 0. The underlying PPP is given by the superposition of two
PPP with spatially homogeneous intensities λ+ ≥ λ− > 0. It is well known, see for example [1,5,15],
that the symmetric WRM with λ+ = λ− exhibits a phase-transition in the high-intensity regime.
Writing Ω∗ = {ω ∈ Ω : ω has no infinite cluster}, high-intensity here means that for large enough
λ+ +λ−, the WRM is concentrated on Ω\Ω∗. We speak of low-intensity if the WRM is concentrated
on Ω∗. A cluster C ⊂ ω is defined via the property that for all x, y ∈ C we have |x − y| < 2r and
|x− z| ≥ 2r for all z ∈ ω \ C .
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The dynamics is given by rate-one Poisson flips independently attached to every particle, i.e., the
probability, that a site in the plus-state, is still in the plus-state at time t ≥ 0 is given by

pt(+,+) = 1
2(1 + e−2t)

with pt(+,−), pt(−,−) and pt(−,+) defined accordingly. The main findings of [9] are that, depend-
ing on asymmetry of the WRM and time, there is a sharp Gibbs-non-Gibbs transition in the sense that
the time-evolved WRM can be described as a Gibbs measure for a quasilocal Ω-Poisson modification
(respectively Ω∗-Poisson modification) ρ or not. Quasilocality here is defined as continuity w.r.t. the
τ -topology. Focussing on the asymmetric case λ+ > λ− with initial WRM being in the plus extremal
state, the critical time tG is given by the unique positive solution of

b =
λ−pt(+,+)

λ+pt(+,−)
= 1.

A set of configurations where discontinuities can not appear at the critical time tG can be defined by
Ω+ = {ω ∈ Ω : ω has no infinite cluster C with lim infn↑∞ |C ∩ Λn|−1

∑
x∈C∩Λn

σx ≤ 0}. In
Table 1 we summarize the results for the asymmetric model. In the table, when we write “no quasilocal
Poisson modification” we mean that there exists no Ω′ ⊂ Ω such that the time-evolved WRM would
be concentrated on Ω′ and there exists a quasilocal Ω′-Poisson modification. In all other cases, the
quasilocal Poisson modification can be constructed explicitly and will be introduced in the following
subsection.

TABLE 1. Quasilocality (ql) transitions of Poisson-modifications for the time-evolved
asymmetric WRM.

time high intensity low intensity

0 < t < tG no ql Poisson modification ql Ω∗-Poisson modification

t = tG ql Ω+-Poisson modification ql Ω∗-Poisson modification

tG < t ≤ ∞ ql Ω-Poisson modification ql Ω-Poisson modification

4.2. Uniformly finite-horizon potentials for the time-evolved WRM. It is one of the nice features
of the time-evolved WRM that Poisson modifications can be explicitly constructed. We now use the
time-evolved two-color PPP as the a-priori measure, in other words, the underlying point process P
is now given by the superposition of two PPP with spatially homogeneous intensity measure

F ({+}|x) = F ({+}) = λ+pt(+,+) + λ−pt(−,+)

F ({−}|x) = F ({−}) = λ+pt(+,−) + λ−pt(−,−).

The Ω-Poisson modification (respectively Ω∗-Poisson modification, Ω+-Poisson modification) ρ is
given by

ρΛ(ωΛωΛc) = hΛ(ωΛωΛc)/PΛ(hΛ)(ωΛc)

where

hΛ(ω) =
1

(1 + a)|ωΛ|+(1 + b)|ωΛ|−
∏

C∈Cf
Λ(ω)

(1 + a|ωC |
+
b|ωC |

−
).

Here we used the following notation: a = λ−pt(+,−)/(λ+pt(+,+)); |ωC |± denotes the number
of plus (respectively minus) spins in ωC ; Cf

Λ(ω) (respectively C∞Λ (ω)) denotes the set of clusters in
ω with nonempty intersection with the volume Λ and which are finite (respectively infinite). Note that
in [9] we use notation a|ωC |

+
b|ωC |

−
= ρ(ωC).
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In order to arrive at a potential representation, we write Cf(ω) for the set of finite clusters in ω and
compute

log hΛ(ωΛ) =
∑

C∈Cf(ωΛ)

log(1 + a|ωC |
+
b|ωC |

−
)− |ωΛ|+ log(1 + a)− |ωΛ|− log(1 + b).

Note that the second and third summand on the r.h.s. form single-site potentials which can be consid-
ered as part of the a-priori measure by incorporating them into the mark distribution F . Only the first
summand describes interactions. Hence, we can define a potential

Ψ(η,ω) = log(1 + a|ωη |
+
b|ωη |

−
)1η∈Cf(ω)

which is 2r-uniformly finite-horizon potential is the sense of Definition 3.2. To see this, note that Ψ
assigns an interaction energy to finite clusters of ω. In order to decide wether a subset η b ω is a
cluster, it suffices to know ωB2r(η). Note that a < 1 by definition. In the low-intensity regime P (Ω∗) =
1 and the number of clusters attached to any finite volume is finite. Hence the 2r-uniformly finite-
horizon Hamiltonian defined via Ψ exists in the domain Ω∗. Existence is also guaranteed at the critical
time on the domain Ω+ since then b = 1 and Ψ decays exponentially as the cluster size grows unless
the number of plus spins is macroscopically vanishing, but P (Ω+) = 1. At supercritical times and
high-intensities, also b < 1 and hence we have exponential decay. Finally, we note that Ψ is defined
on the hypergraph structure EC = {(η,ω) ∈ Ē : η = Cf(ω)} of finite clusters.

4.3. The vacuum potential for the time-evolved WRM. In the following we derive the vacuum po-
tential representation and investigate its decay properties. Using the definition in equation (5) we have

Φ(η,ω) = −
∑
ξ⊂η

(−1)|η\ξ| log
ρΛ(ωξ)

ρΛ(∅Λ)
= −

∑
ξ⊂η

(−1)|η\ξ|
∑

C∈C(ξ)

Ψ(C,ω).

Lemma 4.1. The vacuum potential Φ(η,ω) is non-zero only if η is a cluster.

In particular Φ is again defined on EC and if Φ(η,ω) 6= 0 then

Φ(η,ω) = −
∑
ξ⊂η

(−1)|η\ξ|Ψ(ξ,ω).

Note that clusters can become infinitely long with positive probability in the high intensity regime, for
details see [9]. Further, note that spatial positioning inside clusters do not play any rôle in Ψ(η,ω).
Hence, for nonzero Φ, we can write

Φ(η,ω) = −
|ωη |+∑
k=0

(
|ωη|+

k

)
(−1)|ωη |

+−k
|ωη |−∑
l=0

(
|ωη|−

l

)
(−1)|ωη |

−−lκ(k, l)

where κ(k, l) = log(1 + akbl). Expanding the logarithm yields,

Φ(η,ω) = (−1)|η|+1
∞∑
j=1

(−1)j
1

j
(1− aj)|ωη |+(1− bj)|ωη |− .

The vacuum potential is expected to converge slowly. Let us conclude the discussion by the following
(non-optimal) upper bound for the critical-time case where Φ(η,ω) = 0 if |ωη|− > 0 and hence Φ
is given by

ϕ(n) = (−1)n+1
∞∑
j=1

(−1)j
1

j
(1− αj)n with α = (λ−/λ+)2 < 1.

Lemma 4.2. We have that lim supn↑∞ |ϕ(n)| log n ≤ C for some C > 0.
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4.4. Existence of uniformly absolutely convergent potentials. The time-evolved WRM in the Gibb-
sian regime t > tG is uniformly quasilocal in the τ -topology and hence also uniformly vacuum quasilo-
cal, see [9]. The next result shows in particular, that it is also vacuum uniformly log-quasilocal.

Proposition 4.3. In the WRM under independent spin flip in the regime where the associated Ω-pre-
modification ρ is quasilocal, ρ is even uniformly log-quasilocal.

As a consequence of Theorem 3.8 the time-evolved WRM in the corresponding regime can thus be
written as a Gibbs measures w.r.t. an uniformly absolutely convergent potential. The result of Propo-
sition 4.3 also holds at the critical time tG, but we do not prove it here.

5. PROOFS

Proof of Lemma 2.4. First note that PΛρΛ = 1 and in particular for f ∈ F b
Λc and ωΛc ∈ Ω∗ we

have γρΛ(f |ωΛc) = f(ωΛc) and hence γρ is proper. As for the consistency, note that using the
concentration on Ω∗ we have that

γρ∆(γρΛ(f |·)|ω∆c)

=

∫
P∆(dω′∆)ρ∆(ω′∆ω∆c)

∫
PΛ(dω′′Λ)ρΛ(ω′′Λω

′
∆\Λω∆c)f(ω′′Λω

′
∆\Λω∆c)

=

∫
P∆(dω′∆)

h∆(ω′∆ω∆c)

P∆h∆(ω∆c)

∫
PΛ(dω′′Λ)

hΛ(ω′′Λω
′
∆\Λω∆c)

PΛhΛ(ω′∆\Λω∆c)
f(ω′′Λω

′
∆\Λω∆c)

=

∫
P∆(dω′∆)

hΛ(ω′∆ω∆c)

P∆h∆(ω∆c)

∫
PΛ(dω′′Λ)

h∆(ω′′Λω
′
∆\Λω∆c)

PΛhΛ(ω′∆\Λω∆c)
f(ω′′Λω

′
∆\Λω∆c)

=

∫
P∆\Λ(dω′∆)

∫
PΛ(dω′′Λ)

h∆(ω′′Λω
′
∆\Λω∆c)

P∆h∆(ω∆c)
f(ω′′Λω

′
∆\Λω∆c) = γρ∆(f |ω∆c)

where we used the pre-modification property in the forth line. �

Proof of Theorem 3.6. We prove in several steps similar to [3, Theorem 2.30] and [11, Theorem 1].
We claim, that the potential is given by

Φ(η,ω) =

−
∑

ξ⊂η(−1)|η\ξ| log
ρΛ(ωξ)
ρΛ(∅Λ) if ρΛ(ωη) > 0

+∞ if ρΛ(ωη) = 0
(5)

where the definition is independent of Λ as long as η ⊂ Λ.

Step 1: Note first, that by vacuum positivity ρΛ(∅Λ) > 0. Further, the pre-modification property for
ξ ⊂ η ⊂ Λ with η \ ξ ⊂ ∆ ⊂ Λ and ξ ∩∆ = ∅ implies that

ρ∆(ωη)ρΛ(ωξ) = ρ∆(ωξ)ρΛ(ωη).

By the vacuum positivity assumption ρ∆(ωξ) > 0 and thus ρΛ(ωη) > 0 implies ρΛ(ωξ) > 0 and
hence Φ is well-defined.

Step 2: The potential Φ has the following properties.

(1) Φ(η, ·) is Fη measurable since the evaluation is only w.r.t. η.

(2) By the inclusion-exclusion principle we have

log
ρΛ(ωΛ)

ρΛ(∅Λ)
= −

∑
η⊂ωΛ

Φ(η,ω).
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(3) Φ is vacuum normalized, indeed let ξ ( η, then

−Φ(η,ωξ) =
∑
ζ⊂ξ

∑
ζ′⊂η\ξ

(−1)|η\(ζ∪ζ
′)| log

ρΛ(ωζ)

ρΛ(∅Λ)

=
∑
ζ⊂ξ

(−1)|ξ\ζ| log
ρΛ(ωζ)

ρΛ(∅Λ)

∑
ζ′⊂η\ξ

(−1)|(η\ξ)\ζ
′|

which is zero since
∑

ζ′⊂η\ξ(−1)|(η\ξ)\ζ
′| = 0.

Step 3: Next we show that the definition of Φ is independent of the volume Λ via the pre-modification
property of ρΛ. For this, let ∅ 6= η ⊂ Λ′ ⊂ Λ, then∑

ξ⊂η
(−1)|η\ξ| log

ρΛ(ωξ)

ρΛ′(ωξ)
= log

ρΛ(∅)
ρΛ′(∅)

∑
ξ⊂η

(−1)|η\ξ| = 0.

Step 4: For the existence of the Hamiltonian, note that formely

HΛ,∆(ω) =
∑

∅6=η⊂ω∆

Φ(η,ω)−
∑

∅6=η⊂ω∆\Λ

Φ(η,ω)

= log
ρ∆\Λ(ω∆\Λ)

ρ∆\Λ(∅∆\Λ)
− log

ρ∆(ω∆)

ρ∆(∅∆)
= log

ρ∆(ω∆\Λ)

ρ∆(ωΛω∆\Λ)
= − log

ρΛ(ωΛω∆\Λ)

ρΛ(ω∆\Λ)

where we used the pre-modification property twice. By vacuum positivity ρΛ(ω∆\Λ) > 0 and thus

HΛ,∆(ω) is well defined. Now, by assumption of vacuum quasilocality, as ∆ tends to Rd, we have

HΛ(ωΛωΛc) = − log
ρΛ(ωΛωΛc)

ρΛ(ωΛc)
.

Moreover if ρΛ is vacuum uniformly log-quasilocal, it is in particular positive and we have

sup
ω∈Ω∗

|HΛ,∆(ω)− log
ρΛ(ωΛc)

ρΛ(ω)
| ≤ sup

ω∈Ω∗
(| log

ρΛ(ω∆\Λ)

ρΛ(ω∆\Λω∆c)
|+ | log

ρΛ(ω∆)

ρΛ(ω∆ω∆c)
|)

which tends to zero as ∆ tends to Rd.

Step 5: Note that hΦ
Λ(ω) = exp(−HΛ(ω)) = ρΛ(ω)/ρΛ(ωΛc) and the normalization is given by∫

PΛ(dωΛ)hΦ
Λ(ωΛωΛc) = 1/ρΛ(ωΛc). Hence, ρΦ = ρ.

Step 6: Finally, for the uniqueness, let Φ′ be another vacuum potential with ρΦ = ρΦ′ . Then, Φ′ −Φ
is again a vacuum potential which is equivalent to zero in the sense that

HΦ′−Φ
Λ = log(hΦ′

Λ /h
Φ
Λ) = log(ZΦ′

Λ /ZΦ
Λ )

is measurable w.r.t. FΛc . Then, it suffices to show that Ψ = Φ′ − Φ = 0. But for all Λ b Rd by the
inclusion-exclusion principle,

Ψ(η,ω) =
∑
∅6=ξ⊂η

(−1)|η\ξ|HΨ
Λ (ωξ) = HΨ

Λ (∅)
∑
∅6=ξ⊂η

(−1)|η\ξ| = 0

where we used the normalization in the last equation. �
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Proof of Corollary 3.7. Let η be such that there exist x, y ∈ η with |x − y| = s > r. Denote
η′ = η \ {x, y} and Br(x) the open ball with radius r centered at x ∈ Rd. Then, using the pre-
modification property, we have

−Φ(η,ω) =
∑
ξ⊂η

(−1)|η\ξ| log
ρΛ(ωξ)

ρΛ(∅Λ)

=
∑
ξ1⊂η′

(−1)|η
′\ξ1|[log

ρΛ(ωξ1xy)

ρΛ(ωξ1y)
+ log

ρΛ(ωξ1)

ρΛ(ωξ1x)
]

=
∑
ξ1⊂η′

(−1)|η
′\ξ1|[log

ρBs−r(x)(ωξ1xy)

ρBs−r(x)(ωξ1y)
− log

ρBs−r(x)(ωξ1x)

ρBs−r(x)(ωξ1)
] = 0

as required. �

The key to improve the possibly very poor summability properties of the vacuum potential is to apply a
suitable resummation procedure. For the lattice such resummations have been used for the first time
in [10] to improve convergence. It is interesting to note that resummations could even be used in certain
cases of non-Gibbsian lattice systems, namely for the joint measures of quenched random systems.
Here one obtains at least weakly Gibbsian representations. Having a weakly Gibbsian representation
means that the Hamiltonians converge absolutely at least on a measure one set of configurations,
but possibly not everywhere, see [12]. In the continuum such resummations have not been done so
far, to our knowledge. We will explain now, how nice they can be done, and how well indeed it works
together with the notion of Georgii’s hyperedge potential, see [2], as collected interactions can be
naturally indexed with hyperedges when one allows an additional dependence up to a finite horizon.

Proof of Theorem 3.8. Let us start by considering for every x ∈ Rd a co-final sequence (∆x,m)m≥1

of finite subsets in Rd to be specified later. Next, let ≥ denote a total ordering on Rd for which every
locally finite subset has a least element. For example think of the cycling order where points are
ordered first by their euclidean distance to the origin and then by their angles. Let Λx = {y ≥ x}
and define Ax,m = ∆x,m ∩ Λx with Ax,0 = ∅ the part of the sequence such that the x is the left
endpoint. For η b Rd we will write l(η) and r(η) to denote the left and right end points of η in the
given ordering. Further we define

Px,m = {η b Rd : l(η) = x and r(η) ∈ (Ax,m \Ax,m−1)}

the set of finite subsets of Rd with left end point equal to x and right end point in them-annulus of the
sequence Ax,m. Note that in particular,

⋃
x,m Px,m = {η : η b Rd} is a disjoint partition of the set

of finite subsets of Rd. This is a certain grading of the set of finite subsets of Rd.

Now we perform the regrouping w.r.t. the unique vacuum potential Φ. For a given ω ∈ Ω and any
x ∈ ω we denote by Pωx,m = Px,m ∩ {η b ω} the set of subsets of ω in the grading Px,m.

Such a Pωx,m might very well be empty. Note that Pωx,m = P ω̃x,m if ωAx,m = ω̃Ax,m . Next, we let
ωx,m = ω ∩ ({x} ∪ (Ax,m \Ax,m−1)) be the union of finite subsets of ω which have x as their left
endpoint and all their other points lying in the m-annulus. In these sets we will accumulate the energy
contribution of all η ⊂ ωx,m. In case Pωx,m = ∅ we do not need such a representative as will become
clear in the following definition. For (η,ω) ∈ E we define Ψ(η,ω) = 0 unless η = ωx,m for some
pair (x,m) in which case we put

Ψ(ωx,m,ω) =
∑

η∈Pωx,m

Φ(η,ω).

In words, the energy of vacuum interaction potentials within a class is accumulated in one interaction
for each class. The sum can contain configurations η with points inAx,m−1. Clearly Ψ is not a vacuum
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potential. However, note that we have Ψ(ωx,m,ω) = Ψ(ωx,m, ω̃) if ωAx,m = ω̃Ax,m and thus Ψ
has the finite-horizon property.

x4

x6

x3x5

x2

x1

o

FIGURE 1. Construction of re-summation of vacuum potentials. Indicated numbering
of points in configuration ω is according to cyclic ordering; Λx3 given by the comple-
ment of the dark-gray area; two balls ∆x3,m and ∆x3,m′ are given by middle-gray
and light and middle-gray area around x3 including the parts hidden by dark gray
area; ωx,m′ is given by the four connected points via black lines; example η ∈ Pωx,m′
is given via points in triangle with gray edges, for this η, ∆(η) = ∆x3,m′ .

What remains to show is that Ψ defines an equivalent Hamiltonian as Φ and that Ψ is indeed uniformly
absolutely convergent for a good choice of ∆x,m. W.r.t. the equivalence, note that

∑
ηbω: η∩Λ 6=∅

Ψ(η,ω) =
∑
x∈ωΛ

∞∑
m=1

Ψ(ωx,m,ω) +
∑

y∈ω: y<l(ωΛ)

∑
m∈N:ωy,m∩Λ6=∅

Ψ(ωy,m,ω)

=
∑
x∈ωΛ

∞∑
m=1

∑
η∈Pωx,m

Φ(η,ω) +
∑

y∈ω: y<l(ωΛ)

∑
m∈N:ωy,m∩Λ6=∅

∑
η∈Pωy,m

Φ(η,ω)

=
∑

ηbω: l(η)∈Λ

Φ(η,ω) +
∑

ηbω: l(η)<l(ωΛ), η∩Λ 6=∅

Φ(η,ω) +
∑

ηbω: η∈QωΛ

Φ(η,ω),

where QωΛ = {η b ω : l(η) < l(ωΛ), η ∩Λ = ∅, there exists m ∈ N such that η ⊂ ωy,m ∩Λ 6=
∅}. Now the last summand only depends on ωΛc and hence Ψ and Φ are equivalent.

W.r.t. the uniform absolute convergence, note that for all Λ b Rd and ω ∈ Ω,∑
ηbω: η∩Λ 6=∅

|Ψ(η,ω)| =
∑
x∈ωΛ

∞∑
m=1

|Ψ(ωx,m,ω)|+
∑

y∈ω: y<l(ωΛ)

∑
m∈N:ωy,m∩Λ 6=∅

|
∑

η∈Pωy,m

Φ(η,ω)|,
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where the second summand is finite since all the sums involved are in fact finite. Indeed, the first sum
is finite due to the definition of the ordering. The second sum is finite by finiteness of Λ and the third
sum is finite by the locally finiteness of ω and the assumption that the vacuum Hamiltonian is finite.

In order to prove
∑∞

m=1 |Ψ(ωx,m,ω)| < ∞, note that by assumption Φ is uniformly convergent
and hence, for every x ∈ Rd, there exists a co-final sequence (∆x,m)m≥1 of balls in Rd with radius
rm ∈ N, centered at x ∈ Rd such that

sup
ω∈Ω∗

|
∑

x∈ηbω: η 6⊂∆x,m

Φ(η,ω)| < m−2

and in particular, recalling Λx = {y ≥ x}, we have

sup
ωΛx∈Ω∗

|
∑

x∈ηbωΛx : η 6⊂Ax,m

Φ(η,ω)| < m−2.

For this choice of ∆x,m we have
∞∑
m=1

|Ψ(ωx,m,ω)| ≤ |
∑

ηbω: l(η)=x, η⊂Ax,1

Φ(η,ω)|+
∞∑
m=2

|
∑

ηbω: l(η)=x, r(η)∈Ax,m\Ax,m−1

Φ(η,ω)|

≤ |
∑

ηbω: l(η)=x, η⊂Ax,1

Φ(η,ω)|+ 2
∞∑
m=1

|
∑

ηbω: l(η)=x, η 6⊂Ax,m

Φ(η,ω)|

where the first summand consists of only finitely many summands and the second summand is
bounded from above by 2

∑
m≥1m

−2 < ∞ as required. Further, since our choice of the ∆x,m

is independent of ω, also the uniform absolute convergence follows.

Finally note that in order to determine the horizon of (η,ω) ∈ E , it suffices to consider the case
η = ωx,m for some x ∈ Rd and m ≥ 1. But by the definitions, Ψ(ωx,m,ω) = Ψ(ωx,m, ω̃) if
ω∆x,m = ω̃∆x,m and hence ∆(η,ω) = ∆(η). �

Let us make a few more comments on the above proof. (1) The mapping η 7→ ∆(η) is measurable
on B = {Bm(x)|x ∈ Rd,m ∈ N} with σ-algebra B(B) = σ({Bn(x) ∈ B|x ∈ A,n = m}, A ∈
B(Rd),m ∈ N). In order to see this, note that the mapping η 7→ l(η) is measurable w.r.t. B(Rd)
since {η| l(η) ∈ A} = {η| |η ∩ A| ≥ 1} ∩ {η| |η ∩ A′| = 0} where A′ = {x ∈ Rd|x <
y for all y ∈ A}. Further note that we can decompose η 7→ (l(η), η) 7→ ∆l(η)(η) = ∆(η) and

{(l(η), η)|∆(η) = Brn(l(η))} = {(l(η), η)| |η ∩Brn(l(η))c| = 0}∩⋃
m∈N

[{(l(η), η)| |η| = m} ∩ {(l(η), η)| |η ∩Brn−1(l(η))| ≤ m− 1}]

which shows measurability of the second mapping. Finally, since the mapping n 7→ rn, N → N is
trivially measurable, the result follows.

(2) Instead of balls, the co-final sequence ∆x,m can also consist of measurable sets. Also in this case
measurability of η 7→ ∆(η) follows by measurability of Φ.

(3) Let us also note, that the proof of Theorem 3.8 is not easily adaptable to give absolutely convergent
potentials (where we do not require the convergence to hold uniformly in ω ∈ Ω∗) in the absence of
uniformly convergent vacuum potentials. The reason for this is that in that case the co-final sequence
∆x,m (which is designed to give a sufficiently quick exhaustion of Rd such that summability follows)
depends on ω. In this case the finite horizon property can not be guaranteed any more.

(4) As can be seen from the proof, the hypergraph structure for Ψ is given by E∗ = {(η,ω) ∈ Ē∗ :
η = ωl(η),m for some m ∈ N}.
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(5) Finally, note that although the convergence is uniform in general there is no absolute summability
with a uniform bound, see for example the Potts gas.

Proof of Lemma 4.1. Assume that η consists of two clusters η1, η2 6= ∅, then we have

−Φ(η,ω) =
∑
ξ1⊂η1

(−1)|η1\ξ1|
∑
ξ2⊂η2

(−1)|η2\ξ2|
∑

C∈C(ξ1∪ξ2)

Ψ(C,ω)

=
∑
ξ1⊂η1

(−1)|η1\ξ1|
∑
ξ2⊂η2

(−1)|η2\ξ2|(Ψ(C,ωξ1) + Ψ(C,ωξ2))

=
∑
ξ1⊂η1

(−1)|η1\ξ1|
∑
ξ2⊂η2

(−1)|η2\ξ2|Ψ(C,ωξ2) = 0.

�

Proof of Lemma 4.2. Let us start by estimating ϕ using additional cross terms.

|ϕ(n)| = |
∞∑

j=1,3,...

(1

j
(1− aj)n − 1

j + 1
(1− aj+1)n

)
|

≤ |
∞∑

j=1,3,...

1

j

(
(1− aj)n − (1− aj+1)n)

)
|+ |

∞∑
j=1,3,...

(
1

j
− 1

j + 1
)(1− aj+1)n|

≤
∞∑
j≥1

1

j

(
(1− aj+1)n − (1− aj)n)

)
+
∞∑
j≥1

1

j(j + 1)
(1− aj+1)n

≤ (1− a)n + 2
∞∑
j≥1

1

j(j + 1)
(1− aj+1)n

The first term decays exponentially. In order to determine the asymptotic behaviour of the second
term, let us split the sum into terms j ≥ J and j < J , with J = J(n) tending to infinity with n, in a
way chosen below. We obtain the upper bound∑

j≥J

1

j(j + 1)
(1− aj+1)n +

∑
j<J

1

j(j + 1)
(1− aj+1)n ≤ 1

J
+ (1− aJ)n

where we used twice that
∑

j≥J(j(j + 1))−1 = J−1. As a final step, we optimize over J given n in
such a way that the expression

(1− aJ)n = exp
(
− n(aJ + o(aJ))

)
tends to zero as n tends to infinity. In order to achieve this, take naJ = nε for arbitrary ε > 0.
Then J(n) = ((ε − 1)/ log a) log n which gives the desired speed of convergence with C >
2 log(1/a). �

Proof of Proposition 4.3. It suffices to consider

sup
ω∈Ω
| log hΛ(ω)− log hΛ(ω∆)|

= sup
ω∈Ω
|
∑

C∈Cf
Λ(ω)

log(1 + a|ωC |
+
b|ωC |

−
)−

∑
C∈Cf

Λ(ω∆)

log(1 + a|ωC |
+
b|ωC |

−
)|

with ∆ ⊃ Λ. Let d(Λ,∆c) denotes the set distance between ∆c and Λ. Note that, in order for a
cluster in Cf

Λ(ω) not to be also contained in Cf
Λ(ω∆) it must at least have d(Λ,∆c)/(2r) many points

since otherwise is would be contained in ∆. Conversely, every cluster in Cf
Λ(ω∆) is part of a cluster in

Cf
Λ(ω) ∪ C∞Λ (ω). If the cluster would be contained in ∆, then both contributions cancel. Hence, non

DOI 10.20347/WIAS.PREPRINT.2414 Berlin 2017



Gibbsian representation for point processes 15

canceling clusters in Cf
Λ(ω∆) must also have at least d(Λ,∆c)/(2r) many points. Moreover, there

can only be K = K(Λ, r) different clusters attached to Λ. Hence with c = a ∨ b we have

sup
ω∈Ω
| log hΛ(ω)− log hΛ(ω∆)| ≤ 2K log(1 + cd(Λ,∆c)/(2r))

which tends to zero as ∆ tends to Rd since in the Gibbsian regime t > tG we have a, b < 1. �
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