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Hybrid quantum-classical modeling of quantum dot devices
Markus Kantner, Markus Mittnenzweig, Thomas Koprucki

Abstract

The design of electrically driven quantum dot devices for quantum optical applications asks
for modeling approaches combining classical device physics with quantum mechanics. We con-
nect the well-established fields of semi-classical semiconductor transport theory and the theory
of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with
a quantum master equation in Lindblad form, we obtain a new hybrid quantum-classical modeling
approach, which enables a comprehensive description of quantum dot devices on multiple scales:
It allows the calculation of quantum optical figures of merit and the spatially resolved simulation
of the current flow in realistic semiconductor device geometries in a unified way. We construct
the interface between both theories in such a way, that the resulting hybrid system obeys the fun-
damental axioms of (non-)equilibrium thermodynamics. We show that our approach guarantees
the conservation of charge, consistency with the thermodynamic equilibrium and the second law
of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of
an electrically driven single-photon source based on a single quantum dot in the stationary and
transient operation regime.

1 Introduction

Semiconductor quantum dots (QDs) are zero-dimensional nanostructures which provide a discrete
spectrum of electronic states due to the confinement of charge carriers in all spatial dimensions. Be-
cause of their tunable electro-optical properties and their easy integration into dielectric microcavities,
QDs have attracted considerable attention in particular for applications in solid-state based optoelec-
tronic devices [1–6]. These include e.g. highly efficient semiconductor micro- and nanolasers with a
few or even a single QD as gain medium [7–11], semiconductor optical amplifiers [12], and quantum
light sources such as single-photon emitters and sources of entangled photon pairs [13–17]. Appli-
cations comprise optical communication and quantum information processing [15, 16, 18], quantum
cryptography [19], optical computing [20] and bio-chemical sensing [21].

Currently, quantum optics is making the leap from the lab to commercial applications. On this way,
device engineers will need simulation tools, which combine classical device physics with models from
quantum mechanics. The modeling and simulation of electrically driven semiconductor devices con-
taining QDs constitutes a considerable challenge. On the one hand, modern optoelectronic devices
increasingly employ quantum optical effects based on coherent light matter interaction, entanglement,
photon counting statistics and non-classical correlations, which require a quantum mechanical de-
scription of the charge carriers and the optical field. In the last decades, light emitting devices based
on a single or a few QDs have been successfully described by quantum master equations (QMEs) for
the density matrix [8, 10, 22–26], which enable a detailed description of the dynamics of open quantum
systems. On the other hand, the simulation of electrically driven devices requires a spatially resolved
description of the current injection from the highly doped barriers and metal contacts into the optically
active region containing the semiconductor QDs. The carrier transport problem is well described by
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semi-classical transport models such as the van Roosbroeck system [27, 28], which describes the
drift and diffusion of carriers within their self-consistently generated electric field. The van Roosbroeck
system has been applied previously to QD devices, in particular to QD-based intermediate band solar
cells [29, 30] and for the optimization of the current injection in single-photon sources [31].

Both fields, the theory of open quantum systems and the semi-classical semiconductor transport the-
ory, are well developed and established for several decades. The scope of this paper is the self-
consistent coupling of both theories in order to obtain a comprehensive description of QD based op-
toelectronic devices on multiple scales. Therefore, the interface connecting both systems will be con-
structed in such a way, that the resulting hybrid quantum-classical model guarantees the conservation
of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics.

The paper is organized as follows: In Sec. 2 the model equations are introduced and the physical prop-
erties of the hybrid quantum-classical model are discussed. We present the structure of the coupling
terms between both systems and investigate important features such as the conservation of charge.
In Sec. 3 the consistency of the model equations with fundamental axioms of (non-)equilibrium ther-
modynamics is investigated. In particular, we construct the thermodynamic equilibrium solution by
minimizing the grand potential of the coupled system and show that the hybrid model obeys the sec-
ond law of thermodynamics. In Sec. 4 the approach is applied to the simulation of an electrically driven
single-photon source based on a single QD. We study the stationary and transient excitation regime
by numerical simulations and show how the model allows to compute the decisive quantum optical
figures of merit along with the spatially resolved carrier transport characteristics. Finally, in Sec. 5 we
give an outlook on possible improvements and extensions of the approach.

2 Model equations

We consider a hybrid quantum-classical model that self-consistently couples semi-classical transport
theory to a kinetic equation for the quantum mechanical density matrix. The latter one is a QME in
a Born-Markov and secular (rotating wave) approximation that describes the evolution of an open
quantum system which interacts with its macroscopic environment [32–35]. In the following, the open
quantum system is given by a single or a few QDs. Our approach is based on the assumption that the
charge carriers can be separated into (free) continuum carriers and (bound) carriers confined to QDs,
which is typically met for optoelectronic devices operating close to flat band conditions (weak electric
fields) [36–38]. The model equations read

−∇ · ε∇ψ = q (p− n+ C +Q (ρ)) , (1)

∂tn−
1

q
∇ · jn = −R− Sn (ρ) , (2)

∂tp+
1

q
∇ · jp = −R− Sp (ρ) , (3)

d

dt
ρ = L (ρ) = − i

~
[H, ρ] +D (ρ) (4)

on the domain Ω ⊂ R3. The system (1)–(4) is subject to initial conditions and mixed boundary con-
ditions modeling metal contacts, semiconductor-insulator interfaces and artificial boundaries [28, 39].
See Appendix A for the boundary conditions considered throughout this paper. A schematic illustration
of the modeling approach is shown in Fig. 1.
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drift-diffusion equations
⚪ transport + recombination
 of continuum carriers
⚪ quasi-equilibrium distributions

quantum master equation
⚪ evolution of confined quasi-
 particles (many-body problem)
⚪ non-equilibrium distributions

carrier capture/ escape
dissipative charge transfer

Poisson’s equation
self-consistent electric field

control
electric contacts, ext. circuit
(boundary conditions)

photon emission
⚪ emission rates
⚪ correlation functions

Figure 1: Schematic illustration of the hybrid quantum-classical modeling approach. A quantum system
described by a QME is self-consistently coupled to the semi-classical transport equations for the freely
roaming continuum carriers. Both (sub-)systems exchange charge carriers by capture and escape and
interact via their self-consistently generated electric field.

2.1 Van Roosbroeck system

Eqns. (1)–(3) represent the standard van Roosbroeck system, extended by additional terms that con-
stitute the coupling to the quantum system. Poisson’s Eq. (1) describes the electrostatic potential ψ
generated by the free electron and hole densities n and p, the (stationary) built-in doping profileC and
the expectation value of the charge density Q (ρ) of the carriers confined to the QDs. The dielectric
permittivity of the semiconductor material is given by ε = ε0εr and q denotes the elementary charge.
The continuity equations (2)–(3) describe the flux of free electrons and holes in the presence of re-
combination and transitions between free and bound states. The (net-)recombination rate R includes
several recombination channels such as Shockley-Read-Hall recombination, spontaneous emission
and Auger recombination. Moreover, carriers can be scattered from the continuum to the QDs which
is described by the (net-)capture rates Sn and Sp. The van Roosbroeck system must be augmented
with additional state equations for the free carrier densities

n = NcF1/2 (β (µc − Ec + qψ)) , (5a)

p = NvF1/2 (β (Ev − qψ − µv)) (5b)

and the electrical current densities

jn =
1

q
σn∇µc, (6a)

jp =
1

q
σp∇µv. (6b)

Here, Nc and Nv denote the effective density of states of the conduction and valence band and Ec
and Ev are the respective band edge energies. The inverse temperature β = (kBT )−1 is considered
as a fixed parameter and

Fν (η) =
1

Γ (ν + 1)

∫ ∞
0

dξ
ξν

eξ−η + 1

is the Fermi–Dirac integral of order ν. The state equations (5) describe thermalized carrier ensembles
in a quasi-equilibrium distribution, where the quasi-Fermi energies of the conduction band µc and the
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valence band µv parametrize the deviation from the global thermodynamic equilibrium. In accordance
with linear irreversible thermodynamics, the current densities are driven by the gradients of the quasi-
Fermi energies [40, 41]. The electrical conductivities σn = qMnn, σp = qMpp are products of the
free carrier densities and the carrier mobilities Mn/p [28].

2.2 Quantum master equation

The state of the quantum system is described by the density matrix ρ, which is subject to the QME (4).
Here, the open quantum system represents a many-body problem describing the charge carriers con-
fined to QDs and possibly further quasi-particles, e.g. cavity photons, phonons or exciton-polaritons
(dressed states).

The Hamiltonian in Eq. (4) takes the form

H = H0 +HI ,

where H0 describes the single-particle energies of the confined electrons and holes (and possibly
additional particle species). The interaction Hamiltonian HI is assumed to commute with the charge
number operator

N = ne − nh (7)

(ne and nh are the number operators of the bound electrons and holes) such that the Hamiltonian part
of the evolution conserves the net charge

[H,N ] = 0. (8)

This imposes only a weak restriction on HI and allows e.g. for Coulomb interaction between the
confined carriers (configuration interaction) as well as coherent light-matter interaction.

The non-Hamiltonian part of the evolution of the quantum system is modeled by a dissipator of the
form

D (ρ) =
∑
α

(
γα
(
AαρA

†
α −

1

2

{
A†αAα, ρ

})
+ γ̂α

(
A†αρAα −

1

2

{
AαA

†
α, ρ
}))

, (9)

which is a superoperator in Lindblad form acting on the density matrix. The symbol {A,B} =
AB + BA denotes the anti-commutator. The dissipator accounts for various irreversible interactions
(indexed by α) of the open system with its macroscopic environment. In this paper, the environment of
the quantum system is the spatio-temporally resolved free electron-hole plasma, which itself is subject
to the van Roosbroeck system (1)–(3). A QME in Lindblad form ensures the preservation of trace,
hermiticity and (complete) positivity of the density matrix [33, 34]. The operators Aα represent the
quantum jump operators, which are projectors between different eigenstates ofH . Following the stan-
dard construction of a Lindblad-QME for a weak system-reservoir interaction [32, 35] (extended to the
case of variable charge number here), we require the jump operators to satisfy

[H,Aα] = −~ωαAα, (10a)

[N,Aα] = −`αAα, (10b)

where ~ωα denotes the transition energy and `α ∈ Z quantifies the charge transfer of the interaction
described by Aα. We assume a decomposition of the dissipator into several channels

D (ρ) = De (ρ) +Dh (ρ) +D0 (ρ) (11)
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Hybrid quantum-classical modeling of quantum dot devices 5

(with α in Eq. (9) running over disjoint index sets Ie, Ih and I0). Here, De (ρ) and Dh (ρ) are dis-
sipators which can change the charge of the quantum system (by capture and escape of electrons
and holes), whereas the processes described byD0 (ρ) leave the charge invariant (e.g. spontaneous
emission, photon absorption, intraband carrier relaxation, outcoupling of cavity photons, simultaneous
capture of electrons and holes), i.e. it holds

tr (ND0 (ρ)) = 0. (12)

Throughout this paper, we restrict ourselves to dissipators which satisfy the quantum detailed balance
principle with respect to the thermodynamic equilibrium [42, 43]. Details on this will be discussed in
Sec. 3.3.

2.3 Macroscopic coupling terms and charge conservation

By taking the time derivative of Poisson’s Eq. (1) and using Eq. (2)–(3), we obtain the continuity
equation

∇ · jtot = q (∂tQ− Sp + Sn)

for the total current density jtot = jn + jp + ∂tD. Besides the flux of charge carriers, it also includes
the displacement current density ∂tD = −ε∂t∇ψ. For the sake of simplicity, we consider a quan-
tum system comprising only a single QD. The generalization of the approach outlined below to the
case of multiple QDs is straightforward. We approximate the electric charge density of the QD by the
expectation value of the (net-)charge operator

Q (ρ) = −w (r) tr (Nρ) , (13)

where w models the spatial profile of the captured carriers, which is assumed to be identical for all
carriers. The function w is normalized such that

∫
Ω

d3r w (r) = 1. The spatial profile w replaces the
absolute squares of the many-body wave functions of the bound carriers. The actual spatial distribu-
tions of the confined carriers differ only on a small length scale, which can be safely neglected in the
simulation of macroscopic charge transport. In the form of Eq. (13), the model accounts for long range
electrostatic correlations induced by the confined carriers.

Using Eqns. (4), (8), (11) and (12), the time derivative of Eq. (13) is obtained as

∂tQ = −w (r) tr (NDe (ρ))− w (r) tr (NDh (ρ)) .

Consequently, in order to ensure local charge conservation ∇ · jtot = 0, the (net-)capture rates
appearing in the carrier transport equations (2) and (3) are identified as

Sn = +w (r) tr (NDe (ρ)) , (14a)

Sp = −w (r) tr (NDh (ρ)) . (14b)

The (net-)capture rates Sn/p contain all microscopic capture processes connected with transitions
between the various multi-particle configurations of the QD.

For different choices of Q (ρ), e.g. different localization profiles of captured electrons and holes
Q (ρ) = wh (r) tr (nhρ)−we (r) tr (neρ) (with we/h normalized), the property of strict local charge
conservation is lost in general. However, the violation of local charge conservation is restricted to a
small region∇ · jtot ∝ (we (r)− wh (r)) and is preserved globally, i.e. it holds

∫
Ω

d3r∇ · jtot = 0.
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Figure 2: Sketch of the system S , its surrounding reservoirs and boundaries for charge and energy
exchange. The system S consists of a macroscopic subsystem Scl and a microscopic subsystem Sqm

in the interior of the domain Ω. The reservoirs Ri≥1 denote electric contacts. The crystal lattice R0

spatially overlaps with S and is therefore not shown. Across the artificial boundaries labeled with ∂ΩN

neither energy nor charge exchange is admitted.

3 Thermodynamics

In the recent years, the on-going miniaturization of (quantum) electronic devices has enabled the in-
vestigation of thermodynamical laws on the nanoscale. This has lead to the emergence of the novel
field of quantum thermodynamics [44–47]. Experiments and theory indicate that the fundamental ther-
modynamical laws also hold in the quantum regime [48, 49] and therefore we view thermodynamic
consistency as a crucial feature for any hybrid quantum-classical model.

In this section we discuss the thermodynamic properties of the hybrid model system (1)–(4). At first,
this concerns a consideration of the energy, charge and entropy balance between the system and its
reservoirs. Second, the thermodynamic equilibrium solution of the hybrid system will be constructed
by minimizing its grand potential. Moreover, we formulate a relation between the microscopic transition
rates satisfying the quantum detailed balance condition. Finally, the hybrid quantum-classical model
(1)–(4) is shown to have a non-negative entropy production rate, which we interpret as consistency
with the second law of thermodynamics.

3.1 Energy, charge and entropy balance

We consider an open system S , which itself consists of a classical and a quantum-mechanical sub-
system S = Scl∪Sqm, that is in contact with several reservoirsR =

⋃
iRi as illustrated in Fig. 2. The

system S can exchange energy and charge carriers with the reservoirs. The combined system S ∪R
is assumed to be isolated. The reservoir R0 subsumes the crystal lattice as well as the surround-
ing radiation field, which are characterized by the fixed background temperature T . The reservoirs
Ri≥1 model the electric contacts at the boundary of the device. They are described by their chemical
potentials µi (or applied voltages), which are external control parameters.

DOI 10.20347/WIAS.PREPRINT.2412 Berlin 2017



Hybrid quantum-classical modeling of quantum dot devices 7

The total change of entropy is given by

∆Stot = ∆SS + ∆SR ≥ 0,

and the conservation of the total internal energy and charge is expressed as

∆U = ∆US + ∆UR = 0,

∆N = ∆NS + ∆NR = 0.

The reservoirR0 can exchange only energy with S , hence its change of entropy is given by ∆SR0 =
1
T

∆UR0 . For the contacts Ri≥1, also charge transfer is possible such that ∆SRi = 1
T

∆URi −
µi
T

∆NRi . Using the conservation laws state above, we obtain

∆Stot = ∆SS −
1

T
∆US −

∑
i≥1

µi
T

∆NRi ,

where ∆NRi is just the negative charge flow across the boundary Γi. Using

lim
∆t→0

∆NRi
∆t

=
dNRi

dt
= −1

q

∫
Γi

dA · (jn + jp) ,

we obtain the entropy production rate

dStot

dt
= − 1

T

dFS
dt

+
∑
i≥1

µi
qT

∫
Γi

dA · (jn + jp) , (15)

where FS = US − TSS denotes the free energy of the system S . In Sec. 3.4 it will be shown, that
the entropy production rate is indeed always positive for the hybrid model (1)–(4). Under chemical
equilibrium boundary conditions (all reservoirsRi≥1 have the same chemical potential µi = µeq), the
above expression simplifies further. Exploiting the conservation of total charge, one obtains

dStot

dt

∣∣∣∣
eq

= − 1

T

dΩS
dt

(16)

with the grand potential ΩS = US − TSS − µeqNS . Thus, the grand potential ΩS is a Lyapunov
function for the irreversible relaxation of S into the thermodynamic equilibrium.

3.2 Thermodynamic equilibrium

According to Eq. (16), the thermodynamic equilibrium solution of (1)–(4) can be constructed by mini-
mizing the grand potential ΩS . Since we assume only a weak coupling between the quantum system
and its macroscopic environment, the total entropy, total internal energy and total charge number are
given by sums of the classical and the quantum mechanical contribution

S (n, p, ρ) = Scl (n, p) + Sqm (ρ) , (17a)

U (n, p, ρ) = Ucl (n, p) + Uqm (ρ) + Uψ (p− n+Q (ρ)) , (17b)

N (n, p, ρ) = Ncl (n, p) +Nqm (ρ) . (17c)

DOI 10.20347/WIAS.PREPRINT.2412 Berlin 2017



M. Kantner, M. Mittnenzweig, Th. Koprucki 8

Here also the energy contribution Uψ of the electrostatic field is taken into account. The extensive
thermodynamic quantities of the macroscopic system are expressed via volume densities

Scl (n, p) =

∫
Ω

d3r scl (n, p) ,

Ucl (n, p) =

∫
Ω

d3r ucl (n, p) ,

Ncl (n, p) =

∫
Ω

d3r (n− p)

with the entropy density scl and the internal energy density ucl. We consider the continuum carriers
to be in a local thermodynamic equilibrium [40]. Hence, the internal energy density and the entropy
density can be expressed as functions of the local carrier density

scl(n, p) = −kB
(
nF−1

1/2

(
n

Nc

)
− 5

2
NcF3/2

(
F−1

1/2

(
n

Nc

)))
− kB

(
pF−1

1/2

(
p

Nv

)
− 5

2
NvF3/2

(
F−1

1/2

(
p

Nv

)))
, (18a)

ucl(n, p) =
3

2
kBTNcF3/2

(
F−1

1/2

(
n

Nc

))
+ Ecn

+
3

2
kBTNvF3/2

(
F−1

1/2

(
p

Nv

))
− Evp. (18b)

The above relations are obtained for the quasi-free electron and hole gas with parabolic energy disper-
sion and Fermi–Dirac statistics in three dimensions [50]. The contributions of the quantum system are
given by the von Neumann entropy and the expectation values of the Hamiltonian H and the charge
number operator N

Sqm = −kBtr (ρ log ρ) , (19a)

Uqm = tr (Hρ) , (19b)

Nqm = tr (Nρ) . (19c)

The free carriers interact via their self-consistently generated electrostatic field, which yields the con-
tribution Uψ to the internal energy. It is convenient to decompose the total electrostatic potential into
ψ = ψint + ψext, where the internal field ψint = ψint (ρint) is generated by the total internal carrier
density

ρint = p− n+Q (ρ) ,

whereas the external field ψext arises from the built-in doping profile and voltages applied at the electric
contacts. Then, the field energy can be written as [51]

Uψ (ρint) =
1

2

∫
Ω

d3r ε |∇ψint (ρint)|2 + q

∫
Ω

d3r ρintψext +
1

2

εox

dox

∫
ΓG

dAψ2
int (ρint) . (20)

The last term describes Gate contacts, which may occur in certain devices. See the Appendix B for
details.

Assuming the charge density of the quantum system as stated in Eq. (13), and finally minimizing the
grand potential ΩS under the constraint tr (ρ) = 1, we obtain the equilibrium free carrier densities as

neq = NcF1/2 (β (µeq − Ec + qψeq)) ,

peq = NvF1/2 (β (Ev − qψeq − µeq))
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Hybrid quantum-classical modeling of quantum dot devices 9

and the equilibrium density matrix

ρeq =
1

Z
e−β(H−(µeq+q〈ψeq〉w)N). (21)

Here,Z = tr
(
exp

(
−β
(
H −

(
µeq + q 〈ψeq〉w

)
N
)))

represents the grand canonical partition func-
tion,

〈ψ〉w =

∫
Ω

d3r w (r)ψ (r) (22)

is the averaged electrostatic potential in the vicinity of the QD and the built-in potential ψeq solves
Eq. (1) with the right hand side q (peq − neq + C +Q (ρeq)) at equilibrium boundary conditions. The
equilibrium density matrix is a grand canonical ensemble, which contains a contribution from the elec-
trostatic potential due to the electrostatic interaction with the macroscopic system. The field contribu-
tion in Eq. (21) appears as a spatial average using the localization profile w of the confined carriers
as a weighting function, see Eq. (22). This is a remarkable result, which indicates that the quantum
system interacts only with its spatially averaged macroscopic environment. We emphasize that this is
a direct consequence of the ansatz Eq. (13) and the variation of Eq. (20) with respect to n, p and ρ.
See Appendix B for details.

In the following, the concept of a non-local interaction of the quantum system with its spatially averaged
macroscopic environment will be extended to non-equilibrium situations.

3.3 Microscopic transition rates and the quantum detailed balance condition

We assume the microscopic transition rates in the dissipator (9) to be functions of the spatially aver-
aged macroscopic potentials

γα = γα (〈µc〉w , 〈µv〉w , 〈ψ〉w) ,

γ̂α = γ̂α (〈µc〉w , 〈µv〉w , 〈ψ〉w) ,

where 〈·〉w denotes the spatial average according to Eq. (22). The quantum detailed balance condition
requires the dissipator to vanish in equilibrium. Hence, the condition

0
!

= Dα (ρeq) = γeq
α

(
AαρeqA

†
α −

1

2

{
A†αAα, ρeq

})
+ γ̂eq

α

(
A†αρeqAα −

1

2

{
AαA

†
α, ρeq

})
can be used to derive a relation between the equilibrium transition rates γeq

α = γα
(
µeq, µeq, 〈ψeq〉w

)
and γ̂eq

α . From Eq. (10), one obtains for any λ ∈ R

eλHAαe
−λH = e−λ~ωαAα,

eλNAαe
−λN = e−λ`αAα,

which implies

Aαρeq = e−β(~ωα−(µeq+q〈ψeq〉w)`α)ρeqAα,

A†αρeq = e+β(~ωα−(µeq+q〈ψeq〉w)`α)ρeqA
†
α.

Subsequently, one obtains

Dα (ρeq) =
(
γeq
α − γ̂eq

α e
+β(~ωα−(µeq+q〈ψeq〉w)`α)

)
×

×
(
AαρeqA

†
α − e

−β(~ωα−(µeq+q〈ψeq〉w)`α)A†αρeqAα

)
,

DOI 10.20347/WIAS.PREPRINT.2412 Berlin 2017
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which yields the desired relation between γeq
α and γ̂eq

α :

γ̂eq
α = γeq

α e
−β(~ωα−(µeq+q〈ψeq〉w)`α).

This agrees with the relation imposed by the Kubo-Martin-Schwinger (KMS) condition on the equilib-
rium reservoir correlation functions [35, 43]. Since throughout this paper we consider only thermalized
reservoirs, we extend the above relation to non-equilibrium situations

γ̂α (〈µc〉w , 〈µv〉w , 〈ψ〉w) = e−β(~ωα−(〈µα〉w+q〈ψ〉w)`α)γα (〈µc〉w , 〈µv〉w , 〈ψ〉w) (23)

with µα∈Ie = µc and µα∈Ih = µv. For charge-conserving processes we require `α∈I0 = 0, single
electron-capture processes are described by `α∈Ie = −1 and for single hole-capture processes it
holds `α∈Ih = +1.

Thus, supposing Eq. (23), the hybrid model obeys the quantum detailed balance condition for any
model of the transition rate γα (〈µc〉w , 〈µv〉w , 〈ψ〉w) ≥ 0 that is non-negative. Physically, the latter
one must represent a parametrization of a microscopically derived transition rate (using Fermi’s Golden
Rule [52]) in terms of the averaged macroscopic potentials. In particular, this enables the inclusion of
microscopically calculated capture rates as presented e.g. in Refs. [53–58].

3.4 Entropy production and the second law of thermodynamics

From Eq. (15) we obtain the entropy production rate as (see Appendix C for the derivation)

dStot

dt
=

1

T

∫
Ω

d3r (µc − µv)R

+
1

qT

∫
Ω

d3r (jn · ∇µc + jp · ∇µv)

− kBtr ((βH + log ρ)D0 (ρ)) (24)

− kBtr
((
β
(
H − µeff

c N
)

+ log ρ
)
De (ρ)

)
− kBtr

((
β
(
H − µeff

v N
)

+ log ρ
)
Dh (ρ)

)
with µeff

c/v =
〈
µc/v

〉
w

+ q 〈ψ〉w. The first two lines are the entropy production rate of the van Roos-
broeck system [59] and the third line describes the entropy production rate arising from internal pro-
cesses within the open quantum system. The fourth and fifth line represent the contributions arising
from the coupling of the macroscopic and the quantum mechanical subsystem via capture and es-
cape. All terms are products of abstract thermodynamic forces and their corresponding fluxes, which
is in agreement with the general theory of linear irreversible thermodynamics [40, 60]. All individual
lines of Eq. (24) are non-negative and therefore

dStot

dt
≥ 0,

where the equality holds only in the case of thermodynamic equilibrium. A proof is given in the Ap-
pendix D. This results relies on the specific coupling imposed in the previous sections, which involves
the spatially averaged macroscopic potentials. We emphasize, that if e.g. averaged carrier densities
were used instead, a non-negative entropy production rate could not be guaranteed in general. Finally,
we conclude that our hybrid quantum-classical modeling approach is consistent with the second law
of thermodynamics.
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n-doped

p-doped

p-contact

n-contact/ bottom mirror

wetting layer

quantum dot

insulator
symmetry axis

intrinsic

Figure 3: Cross section of the example device considered in the numerical simulations: A single QD
is placed on the symmetry axis within the center of the intrinsic zone of a cylindrical p-i-n diode with
etched mesa structure on top. The bottom mirror leads to a directed emission in vertical direction. Due
to the lack of a top mirror, the device represents a leaky photonic cavity with low Q factor. The device
has electric contacts at the top and the bottom facets.

Our approach can also be interpreted as a damped Hamiltonian system in the framework of GENERIC
(general equation for the non-equilibrium reversible-irreversible coupling) [61], which automatically en-
sures a non-negative entropy production rate and the existence of an unique thermodynamic equilib-
rium. It can be applied to a wide range of physical problems [62–64].

4 Application to electrically driven single-photon sources

In this section we demonstrate the capability of our approach by the numerical simulation of an elec-
trically driven single-photon source based on a p-i-n diode including a single QD. Such devices have
been shown to act as single-photon emitters and are promising candidates for applications in quantum
communication networks [65–69].

4.1 Model specification

The model equations are described in Sec. 2 and 3. For the hybrid system (1)–(4), we have to specify
the Hamiltonian H as well as the quantum jump operators Aα and the transition rates γα, which
constitute the dissipative interactions with the macroscopic environment. In particular, they need to
satisfy the conditions (8) and (12) that guarantee charge conservation and the eigenoperator relations
(10).

4.1.1 Hamiltonian

We consider a single QD embedded in a very leaky dielectric cavity with low Q factor, which is
sketched in Fig. 3. In such devices, the light-matter interaction is governed by spontaneous emission
and thus can be described by a Lindblad dissipator. Hence, we can model the quantum system by a
purely electronic Hamiltonian. We aim for a description of the electronic QD states in terms of many-
body states covering single particle states, excitons, trions and the biexciton as shown in Fig. 4(a). We
assume a single one-particle level (ground state) for the electrons and holes each, labeled by εc and
εv, respectively. The Hamiltonian

H = H0 +HI

contains the single-particle contributions

H0 =
∑
σ

εce
†
σeσ −

∑
σ

εvh
†
σhσ
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and their Coulomb interaction

HI =
1

2

∑
σ,σ′

(
Vc,ce

†
σe
†
σ′eσ′eσ + Vv,vh

†
σh
†
σ′hσ′hσ − 2Vc,ve

†
σh
†
σ′hσ′eσ

)
.

The operators e†σ (eσ) and h†σ (hσ) create (annihilate) an electron or hole with total angular momen-
tum quantum number in z-direction σ. We consider a single valence band describing heavy holes with
a pseudo spin ±3/2 indicated by {⇑,⇓}. Here, only direct (Hartree-like) Coulomb matrix elements
Vi,j = Vi,j,j,i occur, which are of the order of several tens of meV (see Appendix F). The creation and
annihilation operators obey the fermionic anti-commutator relations {eσ, e†σ′} = {hσ, h†σ′} = δσ,σ′ ,
{eσ, eσ′} = {hσ, hσ′} = 0 and [eσ, hσ′ ] = 0. The single-particle energy levels and the Coulomb
matrix elements are obtained from Schödinger’s equation with an effective confinement potential for
InGaAs-QDs [54, 56, 70]. With the number operators ne,σ = e†σeσ, nh,σ = h†σhσ and the abbrevia-
tions

ne =
∑

σ={↑,↓}

ne,σ, nh =
∑

σ={⇑,⇓}

nh,σ,

we can express the Hamiltonian in the occupation number representation as

H =

(
εc −

1

2
Vc,c

)
ne −

(
εv +

1

2
Vv,v

)
nh +

1

2
Vc,cn

2
e +

1

2
Vv,vn

2
h − Vc,vnenh. (25)

By diagonalization, we obtain the spectral representation of H in terms of multi-particle states

H =
∑
k

εk
∣∣k〉〈k∣∣,

where k = (ne,↑, ne,↓, nh,⇑, nh,⇓) is a multi-index labeling the 16 different electronic configurations
which are illustrated in Fig. 4(a, b). If excited states are included and full configuration interaction is
taken into account, the diagonalization of H is in general a non-trivial task. In this case, an approxi-
mative representation of the Coulomb interaction in terms of number operators as in Eq. (25) can be
obtained by the Hartree-Fock approximation [71].

4.1.2 Dissipators

We describe the spontaneous emission and the capture and escape of carriers by dissipators of the
type (9). A jump operator Aα describes the transition between two multi-particle states |i〉 and |f〉
and is given by the projector |f〉 〈i|. These transitions are indicated by arrows in Fig. 4(a), e.g. the
dissipator connected with Aα = |X1〉

〈
e↑
∣∣ describes the capture of a hole into a QD occupied by

a single electron leading to the formation of the bright exciton |X1〉. By using adjacency matrices to
encode the allowed transitions shown in Fig. 4(a), the dissipators for all processes can be written in a
compact form as

De (ρ) =
∑
i,f

Aei,fγei→f
(
L|f〉〈i| (ρ) + e−β∆εei,fL|i〉〈f | (ρ)

)
, (26a)

Dh (ρ) =
∑
i,f

Ahi,fγhi→f
(
L|f〉〈i| (ρ) + e−β∆εhi,fL|i〉〈f | (ρ)

)
, (26b)

D0 (ρ) =
∑
i,f

A0
i,fγ

0
i→f

(
L|f〉〈i| (ρ) + e−β∆ε0i,fL|i〉〈f | (ρ)

)
, (26c)
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bulk
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QD GS reduced model with

effective transition rates

Figure 4: (a) Diagram of electronic states of the QD-Hamiltonian (25) and possible (irreversible) tran-
sitions. The arrows indicate capture and recombination, for the corresponding reverse processes (es-
cape, generation) the arrows need to be reversed. We use short notations for the multi-particle states∣∣ne,↑, ne,↓, nh,⇑, nh,⇓〉: empty QD

∣∣0〉 =
∣∣0, 0, 0, 0〉, single-electron states

∣∣e↑〉 =
∣∣1, 0, 0, 0〉,∣∣e↓〉 =

∣∣0, 1, 0, 0〉, single-hole states
∣∣h⇑〉 =

∣∣0, 0, 1, 0〉, ∣∣h⇓〉 =
∣∣0, 0, 0, 1〉, two-electron state∣∣ee〉 =

∣∣1, 1, 0, 0〉, two-hole state
∣∣hh〉 =

∣∣0, 0, 1, 1〉, bright excitons
∣∣X1

〉
=
∣∣1, 0, 0, 1〉,∣∣X2

〉
=
∣∣0, 1, 1, 0〉, dark excitons

∣∣D1

〉
=
∣∣1, 0, 1, 0〉, ∣∣D2

〉
=
∣∣0, 1, 0, 1〉, negative trions∣∣X⇑−〉 =

∣∣1, 1, 1, 0〉, ∣∣X⇓−〉 =
∣∣1, 1, 0, 1〉, positive trions

∣∣X↑+〉 =
∣∣1, 0, 1, 1〉, ∣∣X↓+〉 =

∣∣0, 1, 1, 1〉
and the biexciton state

∣∣B〉 =
∣∣1, 1, 1, 1〉. (b) Schematic representation of the QD occupation for

some example states. (c) Illustration of the effective scattering cascade in the reduced model involving
only the single-particle ground states.

where the Lindblad superoperator reads

LA (ρ) = AρA† +
1

2

{
A†A, ρ

}
and the indices i and f run over all multi-particle states. In accordance with Eq. (23), the effective
transition energies are given as

∆εei,f = εi − εf − q 〈ψ〉w − 〈µc〉w ,
∆εhi,f = εi − εf + q 〈ψ〉w + 〈µv〉w ,
∆ε0

i,f = εi − εf
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and the adjacency matrix elements encoding Pauli blocking and the optical selection rules (conserva-
tion of total angular momentum) read

Aei,f = δ〈i|ne|i〉+1,〈f |ne|f〉
∏

σ={⇑,⇓}

δ〈i|nh,σ |i〉,〈f |nh,σ |f〉,

Ahi,f = δ〈i|nh|i〉+1,〈f |nh|f〉
∏

σ={↑,↓}

δ〈i|ne,σ |i〉,〈f |ne,σ |f〉,

A0
i,f = δ〈i|ne,↑|i〉,〈f |ne,↑|f〉δ〈i|ne,↓|i〉−1,〈f |ne,↓|f〉δ〈i|nh,⇑|i〉−1,〈f |nh,⇑|f〉δ〈i|nh,⇓|i〉,〈f |nh,⇓|f〉+

+ δ〈i|ne,↑|i〉−1,〈f |ne,↑|f〉δ〈i|ne,↓|i〉,〈f |ne,↓|f〉δ〈i|nh,⇑|i〉,〈f |nh,⇑|f〉δ〈i|nh,⇓|i〉−1,〈f |nh,⇓|f〉.

Finally, we need to specify the transition rates γi→f occurring in the dissipators Eq. (26).

4.1.3 Transition rate models

The spontaneous decay rates of the various (bright) electronic states of the quantum system can be
modeled by the Weisskopf-Wigner rate [72]

γ0
i→f =

Pi,fd
2
c,vnr

6π~ε0c3
0

(
εi − εf

~

)3(
1 + npt

(
εi − εf

~

))
, (27)

where npt (ω) =
(
eβ~ω − 1

)−1
is the thermally induced photon number, nr is the refractive index

of the material, dc,v denotes the interband dipole moment and c0 is the vacuum speed of light. Due
to cavity effects, the decay rate is slightly modified with respect to the free space situation, which is
accounted for by the Purcell factors Pi,f . The Weisskopf-Wigner rate is applicable in low Q optical
resonators, where the photonic density of states varies insignificantly over the linewidth of the emitter
[17, 73]. Using the parameters given in Appendix F, all decay rates are found to be approximately
109 s−1.

For semiconductor QDs, Auger scattering and the Fröhlich coupling typically constitute the dominant
capture processes. As a rule of thumb, in the regime of low reservoir carrier densities, the LO-phonon
assisted Fröhlich coupling provides the dominant scattering channel, whereas at elevated reservoir
carrier densities the Auger scattering becomes increasingly efficient [10, 56, 74]. Due to the relatively
large Coulomb matrix elements in semiconductor QDs, the scattering rates into charged states differ
significantly from those into neutral states. This effect is known as Coulomb suppression or Coulomb
enhancement, respectively [74].

The scattering rates can be calculated microscopically by Fermi’s Golden rule [53–58], however here
we restrict ourselves to phenomenological laws for the effective capture rate of continuum carriers
into the QD. This effective capture rate approximates the entire scattering cascade, see Fig. 4(c). We
model the effective electron capture rates entering Eq. (26a) as

γei→f (〈µc〉w , 〈µv〉w , 〈ψ〉w) =
1 + nLO

τ eLO

1

eβ(Ec−q〈ψ〉w−〈µc〉w+aeLO+Cei,f) + 1
+

+
1

τ e,eAu

n̄2
w

1 + n̄
2−γe,eAu
w

+
1

τ e,hAu

n̄wp̄w

1 + (n̄wp̄w)1−γe,hAu /2
,

(28a)
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and the effective hole capture rates in Eq. (26b) as

γhi→f (〈µc〉w , 〈µv〉w , 〈ψ〉w) =
1 + nLO

τhLO

1

e−β(Ev−q〈ψ〉w−〈µv〉−a
h
LO−Chi,f) + 1

+

+
1

τh,hAu

p̄2
w

1 + p̄
2−γh,hAu
w

+
1

τh,eAu

n̄wp̄w

1 + (n̄wp̄w)1−γh,eAu /2
.

(28b)

with n̄w = nw/n
crit
Au and p̄w = pw/p

crit
Au . Please note that the ambient continuum carrier densities

nw = NcF1/2 (β (〈µc〉w − Ec + q 〈ψ〉w)) and pw = NvF1/2 (β (Ev − q 〈ψ〉w − 〈µv〉w)) are func-
tions of the averaged macroscopic potentials. The first terms in Eq. (28a) and (28b) describe the
LO-phonon assisted relaxation of continuum carriers and the last lines are each attributed to Auger
scattering. The number of thermally excited LO-phonons is given by nLO =

(
eβ~ωLO − 1

)−1
. The time

constants τλLO as well as the parameters aλLO, γ
λ
LO, λ ∈ {e, h} are considered as fitting factors that can

be extracted from microscopic calculations or experimental data. The phonon assisted capture rates
involve the Coulomb enhancement/ suppression factors

Ce
i,f = εf − εi − εc,

Ch
i,f = εf − εi + εv,

which describe the additional attractive or repulsive Coulomb shifts and thereby either enhance (if
Cλ
i,f < 0, λ ∈ {e, h}) or decrease (if Cλ

i,f > 0, λ ∈ {e, h}) the capture rate. At low temperatures
the effect of Coulomb enhancement or suppression becomes increasingly important. For the Auger-
like capture processes the modifications of the capture rates due to Coulomb shifts are assumed to
be negligible due to strong screening effects at high carrier densities. The expressions in Eq. (28a)
and (28b) take saturation effects at high reservoir carrier densities into account. The functional form is
motivated from microscopically computed results presented in Refs. [58, 74]. In the low density limit
(Maxwell–Boltzmann approximation) the capture rate models asymptotically take the form

γei→f ≈
(nLO + 1) e−βa

e
LO

τ eLONc

e−βC
e
i,fnMB

w +
(n̄MB

w )
2

τ e,eAu

+
n̄MB
w p̄

MB
w

τ e,hAu

,

γhi→f ≈
(nLO + 1) e−βa

h
LO

τhLONv

e−βC
h
i,fpMB

w +
(p̄MB
w )

2

τh,hAu

+
n̄MB
w p̄

MB
w

τh,eAu

,

showing a linear dependency on the continuum carrier density in the case of LO-phonon assisted
capture and a quadratic dependency for the Auger capture processes. Moreover, the Coulomb en-
hancement and suppression effect becomes apparent in this form. The expression for nMB

w is obtained
by replacing F1/2 (·) → exp (·) in the above definition of nw (analogous for pMB

w ). The parameters

ncrit
Au , pcrit

Au and γλ,λ
′

Au λ, λ′ ∈ {e, h} are fitting factors.

4.2 Numerical simulation method

The van Roosbroeck system (1)–(3) is discretized using a Voronoï box based finite volumes method
[28, 75] along with a modified Scharfetter-Gummel scheme [76–78] for the discretization of the current
densities. The latter one properly reflects the strong degeneration effects of the electron-hole plasma at
cryogenic temperatures and takes the Fermi–Dirac statistics and nonlinear diffusion via a generalized
Einstein relation fully into account [79]. For time-dependent simulations, an implicit Euler backward
discretization along with an adaptive time stepping method is used.

DOI 10.20347/WIAS.PREPRINT.2412 Berlin 2017



M. Kantner, M. Mittnenzweig, Th. Koprucki 16

The discretized van Roosbroeck system is solved along with the QME (4) by a full Newton iteration
using the electrostatic potential ψ, the quasi-Fermi energies µc, µv and the density matrix elements〈
k
∣∣ρ∣∣l〉 as independent variables. Therefore, in order to obtain a system of ordinary differential equa-

tions, the QME is projected on the Hilbert space basis spanned by the multi-particle eigenstates of H
(see Appendix E).

The coupling terms Q stated in Eq. (13) and Sn/p given by Eq. (14) introduce a non-local coupling
of the van Roosbroeck system with the QME by the spatial profile function w. This has an impact on
the sparsity pattern of the Jacobian of the discretized system, since the quantum system interacts in
general with a large number of control volumes in its environment. Since the discretized spatial profile
function wK = |ΩK |−1 ∫

ΩK
d3r w (r) (with |ΩK | being the volume of the K-th Voronoï cell), quickly

decays, we discard small matrix elements below a chosen threshold. This preserves the quadratic
convergence of the Newton iteration while the overall numerical effort is reduced.

Single-photon sources are typically operated at cryogenic temperatures, which causes serious con-
vergence issues during the numerical solution of the van Roosbroeck system because of the strong
depletion of minority carrier densities [80, 81]. By using the temperature embedding method described
in Ref. [79], the problem becomes tractable in the vicinity of flat band conditions.

4.3 Device specification

In the numerical simulations presented in the following, we consider the cylindrical GaAs-based p-i-n
structure depicted in Fig. 3, where a single QD is placed on the symmetry axis within the center of the
intrinsic zone. The total height of the device is 800 nm, the intrinsic layer has a thickness of 200 nm and
the doped layers both are 300 nm in height. The doping concentrations areC = ND = 2×1018 cm−3

and C = −NA = −1019 cm−3 in the n- and p-domain, respectively. The top radius of the mesa is
0.5 µm and the total radius (at the bottom) is 2.5 µm. The bottom facet is assumed to consist of a highly
reflective metal such that it simultaneously acts as an electric contact and a mirror leading to a directed
emission in vertical direction. The ohmic contact on the top facet is assumed to consist of an optically
transparent material, such that the structure forms a leaky cavity with a low Q factor. The remaining
facets are modeled by homogeneous Neumann boundary conditions. The wetting layer (WL) indicated
in Fig. 3 is neglected in the simulation. The device is assumed to operate under cryogenic conditions
at T = 50 K.

The numerical simulation exploits the rotational symmetry of the device, such that the computational
domain reduces to a 2D cross section with adapted cell volumes.

4.4 Stationary operation

The device operates as a p–i–n diode, which can be seen from the current-voltage curve shown in
Fig. 5(c). At cryogenic temperatures the Fermi energy levels in the doped domains are very close to
the band edges and therefore the diode’s threshold voltage approximately equals the energy band
gap of the material (around 1.52 V). The population of the QD states 〈k〉 =

〈
k
∣∣ρ∣∣k〉 can be con-

trolled by the externally applied bias as shown in Fig. 5(a). Since the QD is located within the intrinsic
zone of the device, it is most probably unoccupied in the low bias regime. When the applied bias ap-
proaches the diode’s threshold voltage, the QD population turns into a non-equilibrium distribution: At
first, due to the increased continuum carrier densities in the vicinity of the QD, the single-particle and
excitonic states are populated. In particular, due to the lack of an radiative decay channel, the dark
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Figure 5: Numerical results at stationary injection. (a) Occupation of the QD states vs. applied bias. (b)
Single-photon generation rates of the different emission lines vs. injection current. (c) Current-voltage
curve of the diode. (d) Second order correlation function of the photons generated on the exciton line.
(e) Comparison of recombination and capture rates of free carriers along the symmetry axis of the
device. For the notion of QD states we refer to the caption of Fig. 4.

excitons
〈
D1/2

〉
have a high occupation probability. Finally, beyond the threshold, the QD is quickly

driven into saturation and the population is dominated by the biexciton state
〈
B
〉
. Due to Coulomb

enhancement and suppression, the population of neutral states is favored in the whole bias range. In
particular, Fig. 5(a) shows that the population of the doubly charged states

〈
ee
〉

and
〈
hh
〉

is strongly
suppressed.

The single-photon generation rates of the different emission lines are given by

Γk =
∑
l

A0
k,lγ

0
|k〉→|l〉 〈k〉 . (29)

Since the decay rates for all radiative processes are approximately equal, the occupation probabilities
are directly proportional to the single-photon generation rates, which are depicted in Fig. 5(b). At low
injection currents, the emission spectrum is dominated by photons generated via the decay of bright
excitons. Close to the threshold voltage the bright exciton line reaches a maximum and then decreases
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while the intensity of the biexciton line grows until it finally saturates. In this regime, the capture rates
exceed the radiative decay rates by several orders of magnitude. This simulation result agrees with
experimental observations presented in Ref. [65].

Another important figure of merit for single-photon emitters is the second order intensity correlation
function of the generated photons

g(2) (τ) =

〈
a† (0) a† (τ) a (τ) a (0)

〉
〈a† (0) a (0)〉2

, (30)

where a† (a) correspond to the creation (annihilation) of a photon and τ is a time delay. A value of
g(2) (0) < 0.5 indicates the presence of a single-photon Fock state in the radiation field. In our model
the decay of an optically active QD state is equivalent to the generation of a corresponding photon.
Therefore, the electronic operators can be used to evaluate Eq. (30), cf. Ref. [73]. For the bright exciton
line, we identify the photon creation operator with the projector a† = |0〉〈Xi| (with i = 1 or 2) and use
the quantum regression theorem [35, 82] to evaluate Eq. (30). The result is presented in Fig. 5(d) and
recovers the characteristic dip around τ = 0 for high-quality single-photon sources [15, 65]. Since the
present model assumes an ideal quantum emitter and an instantaneous extraction of the generated
photons from the cavity, the value of g(2) (0) is exactly zero. For a refined description at this stage, a
coherent light-matter interaction must be included in the Hamiltonian and D0 (ρ) has to be extended
by a photon outcoupling mechanism.

Finally, in Fig. 5(e) we show the recombination rate R of the continuum carriers and the capture rates
Sn/p along the vertical (symmetry) axis of the device. Close to the threshold voltage, the transition of
carriers into the QD imposes the dominant loss mechanism of continuum carriers in the vicinity of the
QD.

4.5 Pulsed operation

For many applications, the generation of single photons at certain instances of time is required. Electri-
cally driven QD-based single-photon sources offer an easy off-resonant excitation scheme [83], where
the QD is excited by short voltage pulses. This process shall be simulated in the following, where we
apply rectangular voltage pulses with a fixed duration of 100 ps superimposed on a DC bias of 1.35 V
as illustrated in Fig. 6(a). We investigate the impact of the pulse repetition time and the peak bias,
which are the key external control parameters. The results of a numerical carrier transport simulation
for a single pulse with a peak voltage of 1.6 V are shown in Fig. 6(b, c). Due to the high carrier mobil-
ities at low temperatures (cf. Appendix F), the carriers quickly spread out within the device such that
the intrinsic zone is highly populated at the end of the excitation pulse (100 ps). Subsequently, when
the applied voltage is switched back to the resting DC bias, the carriers are quickly withdrawn from the
intrinsic zone. In the snapshots taken at 116 ps and 200 ps we observe that in particular the vicinity
of the QD (which is located on the center of the symmetry axis at 0.4 µm, cf. Fig. 3) is depleted first.
Moreover, a conducting channel underneath the insulating region is formed. The plot at 10 ns shows
the stationary state reached after a long time.

The impact of the voltage pulse on the occupation of the QD is shown in Fig. 7(a). In the case of
an excitation with a peak voltage of 1.6 V (high injection), one first observes a fast occupation of the
biexciton state which subsequently decays radiatively. Via the so-called biexciton-cascade, the bright
exciton states are populated in the following. Comparing the time scales of the carrier transport with
the life times of the bright QD states, see Fig. 6(b, c) and Fig. 7(a), it is apparent that the decay of the
bright exciton happens a long time after the continuum carriers have left the vicinity of the QD. This
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separation of time scales is of particular importance for the generation of indistinguishable photons
[84], since fluctuations of the carrier density in the vicinity of the emitter might shift the generated
photon’s energy.

Next, we study the impact of the peak bias value. Figure 7(b) shows the number of generated photons
for different peak voltages after 10 ns. The number of generated photons on line k until time t is
obtained from

Nk (t) =

∫ t

0

dt′ Γk (t′) ,

using the single-photon generation rate defined in Eq. (29). The plot clearly reveals the existence
of two regimes: A subthreshold (low injection) regime, where the peak voltage is insufficient for the
excitation of the QD (cf. Fig. 7(a)), and a high injection regime where the biexciton-cascade can be
observed practically after each pulse. For the exciton-photons, this implies a generation efficiency of
around 50 % for both polarizations. The generation efficiency of the two differently polarized photons
on the biexciton-line is a little higher than 50 %, due to additional recombination during the excitation
period, see Fig. 7(a, b).

Finally, we investigate the optimal repetition frequency of the excitation cycle for the generation of sin-
gle exciton-photons. The optimal repetition frequency f ∗ = 1/t∗ maximizes the number of generated
photons per time:

Γ̄X (t∗) =
NX (t∗)

t∗
=

1

t∗

∫ t∗

0

dt′ ΓX (t′)→ max .

Figure 7(c) shows a clear maximum at a pulse repetition rate of f ∗ ≈ 650 MHz (t∗ ≈ 1.5 ns), which
corresponds to a maximum single-photon generation rate of Γ̄X (t∗) ≈ 185 MHz. Even though in this
optimal case the photon generation efficiency per pulse shrinks to 28%, the high repetition frequency
leads to an enhanced overall performance. Moreover, Fig. 7(c) indicates that this result is practically
independent of the peak voltage. In order to obtain the photon emission rate, the generation rate must
be multiplied with the photon extraction efficiency [85].

We conclude this section with a consideration of the entropy production during an excitation cycle,
which is depicted in Fig. 8. The plot shows, that during the first 2 ns the entropy production rate is
clearly governed by the contributions arising from the macroscopic system, whereas at later times
the slow decay of the QD-exciton becomes dominant. Our numerical result is in accordance with the
theory presented in Sec. 3.4, which predicts a positive entropy production rate at all times.

5 Discussion and outlook

The presented quantum-classical modeling approach can be extended into several directions, mostly
by improving some of the simplifying assumptions made above.

First, the inclusion of nanostructures leads to a modification of the local density of electronic states,
which has been neglected here. For a more realistic simulation, this effect can be accounted for by a
modification of the Fermi–Dirac integral in the vicinity of the nanostructures. Moreover, we introduced
the spatial profile function w in order to embed the QD into the spatially resolved macroscopic system.
This approximation can be greatly enhanced by incorporating a Schrödinger–Poisson model into the
hybrid model system. Besides a better description of the localized charges due to the usage of realistic
wave functions, this would also enable a precise modeling of the quantum confined Stark effect and
tunnel injection. Previous works on the 1D drift-diffusion-Schrödinger-Poisson system [86, 87] indicate
the feasibility of this approach.
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Furthermore, semiconductor QDs are often grown in the Stranski–Krastanov mode and therefore come
along with a thin WL [1], which has been neglected in the current presentation. The WL represents
a 2D-like carrier reservoir, which may be important for a refined description of the carrier scattering
cascade from the continuum states to the QDs. For the inclusion of the WL into the drift-diffusion
equations, previously developed approaches for quantum wells can be adopted [36, 37].

In this paper, the van Roosbroeck system was used to describe the semi-classical carrier transport
on macroscopic scales. For certain applications (e.g. strong internal fields, very short length scales,
hot carrier effects) the drift-diffusion approximation becomes insufficient. Higher order models like the
hydrodynamic transport model or the six-moment model are more suitable then [88–90]. In this case,
the inclusion of the QD system into the macroscopic model can be achieved in principle along the
same lines as in Sec. 2 and 3 of this paper.

In the transient numerical simulations presented in Sec. 4, the system shows an extremely fast re-
sponse to the external excitation. This behavior can be assigned to the lack of external circuit elements
like external resistors and capacitors. If RC elements were included in the simulation, we would expect
a slower response of the system to the applied voltage pulses.

Finally, the inclusion of a reversible light-matter interaction into the Hamiltonian of the quantum system
enables the simulation of devices showing pronounced cavity-QED effects. In particular, this allows
for a spatially resolved simulation of electrically driven nano-VCSELs and exciton-polariton lasers with
one or a few QDs as gain material. The self-consistent photon number equation, which is needed for
the simulation of laser devices [36, 41], is automatically delivered by the QME. Moreover, the model
should also be supplemented with a Helmholtz equation for the calculation of the cavity modes and
photon lifetimes. Finally, in the case of multiple QDs a spatially resolved simlation of superradiant
emitters [91] may be achieved.

6 Summary

Nowadays, quantum optical technologies are on their way from the lab to real world applications. To
advance this development, device engineers will need simulation tools, which combine classical device
physics with models from cavity quantum electrodynamics. As a step on this route, we have presented
a new modeling approach for the simulation of single and few quantum dot devices.

By connecting semi-classical carrier transport theory with a quantum master equation in Lindlad form,
our approach has lead to a hybrid quantum-classical system, that allows for a comprehensive de-
scription of electrically driven quantum dot devices on multiple scales: It enables the computation of
the spatially resolved carrier transport together with the calculation of quantum optical figures of merit
(e.g. photon generation rates, higher order correlation functions) in realistic semiconductor structures
in a unified way. This has been demonstrated by numerical simulations of an electrical single-photon
source based on a single quantum dot. We have presented a thorough theoretical analysis of the
approach and showed that it guarantees the conservation of charge and the consistency with the ther-
modynamic equilibrium. Finally, we have proven that our hybrid quantum-classical system obeys the
second law of thermodynamics.

We believe that our approach serves as a blueprint for the simulation of further quantum dot based
photonic devices, in particular nanolasers.

DOI 10.20347/WIAS.PREPRINT.2412 Berlin 2017



Hybrid quantum-classical modeling of quantum dot devices 23

A Boundary conditions

We assume a decomposition of the domain boundary

∂Ω =

(⋃
i

Γi

)
∪ ΓG ∪ ∂ΩN

into several ohmic contacts, a gate contact and artificial boundaries of the device [28]. The boundary
conditions on the artificial boundaries are given by the homogeneous Neumann conditions

n · ∇ψ = 0, n · ∇µc = 0, n · ∇µv = 0

on ∂ΩN , where n denotes the outer normal vector. For the ohmic contacts, we assume the Dirichlet
boundary conditions

ψ = ψeq + Uappl,i, µc = µi, µv = µi,

on Γi, where Uappl,i represents the applied voltage at the i-th ohmic contact and µi = µeq − qUappl,i.
The value of the built-in potential ψeq is obtained from the local charge neutrality condition at the
ohmic boundaries and zeros bias conditions (µi = µeq ∀i) [75]. On the gate contact ΓG, we impose a
boundary condition of third kind for the electrostatic potential

εn · ∇ψ +
εox

dox
(ψ − Uappl,G) = 0

along with “no flux” conditions for the carriers

n · ∇µc = 0, n · ∇µv = 0.

Here, εox and dox describe the permittivity and the thickness of the insulating layer between the semi-
conductor material and the metal electrode.

B Electrostatic field energy

Following [51], we split the electrostatic potential

ψ = ψint + ψext

into an internal field ψint generated by the internal charge density and an external field ψext, which
arises from the built-in doping profile and the applied voltages. Consequently, the Poisson problem (1)
on Ω is decomposed into

−∇ · ε∇ψint = qρint,

−∇ · ε∇ψext = qC,

such that the internal field ψint = ψint (ρint) can be written as a functional of the total internal carrier
density

ρint = p− n+Q (ρ) .

On the domain boundaries it holds

n · ε∇ψint = 0 on ∂ΩN ,

ψint = 0 on Γi,

n · ε∇ψint +
εox

dox
ψint = 0 on ΓG,
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and

n · ε∇ψext = 0 on ∂ΩN ,

ψext = ψeq + Uappl,i on Γi,

n · ε∇ψext +
εox

dox
ψext =

εox

dox
Uappl,G on ΓG.

A variation of the internal carrier density ρint → ρint + aδρ (0 < a � 1 is a small parameter) in the
interior of the domain yields a variation of the electrostatic field δψ according to

−∇ · ε∇δψ = qδρ on Ω

with the same boundary conditions for δψ as for ψint stated above. The variation of the internal energy
given by Eq. (20) leads to

Uψ (ρint + aδρ) = Uψ (ρint) + a

∫
Ω

d3r ε∇ψint (ρint) · ∇δψ + aq

∫
Ω

d3r δρψext+

+ a
εox

dox

∫
ΓG

dAψint (ρint) δψ +O
(
a2
)
.

Finally, using the identity∫
Ω

d3r ε∇ψint (ρint) · ∇δψ = q

∫
Ω

d3r ψint (ρint) δρ+

∫
ΓG

dA · ∇δψ εψint (ρint) ,

one obtains the Gâteaux-derivative

lim
a→0

Uψ (ρint + aδρ)− Uψ (ρint)

a
= q

∫
Ω

d3r (ψint (ρint) + ψext) δρ.

The central feature of the field’s internal energy expression Eq. (20) is [50, 51]

δUψ
δρ

= qψ. (31)

C Entropy production rate

This section gives some details on the derivation of the expression (24) for the entropy production rate.
Starting from Eq. (15), one obtains by using Eq. (17) and (18) the entropy production rate as

dStot

dt
= − 1

T

∫
Ω

d3r

(
∂ucl (n, p)

∂t
− T ∂scl (n, p)

∂t

)
− 1

T
(tr (HL (ρ)) + kBT tr (log (ρ)L (ρ)))

− 1

T

dUψ
dt

+
∑
i≥1

µi
qT

∫
Γi

dA · (jn + jp) .

Taking the partial time derivatives, using the state equations (5), Eq. (31) and

dUψ
dt

=

∫
Ω

d3r qψ
∂ (p− n+Q (ρ))

∂t
,
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we arrive at

dStot

dt
= − 1

T

∫
Ω

d3r

(
µc
∂n

∂t
− µv

∂p

∂t

)
− 1

T
(tr (HL (ρ)) + kBT tr (log (ρ)L (ρ)))

+
q

T
〈ψ〉w tr (NL (ρ))

+
∑
i≥1

µi
qT

∫
Γi

dA · (jn + jp) ,

where we have explicitly used Eq. (13) for the charge density of the quantum system. For different
Q (ρ) and multiple QDs, the calculation follows the same lines. With the help of the carrier transport
equations (2)–(3), the macroscopic capture rates (14), partial integration and the boundary conditions
given in Appendix A, this is

dStot

dt
=

1

T

∫
Ω

d3r (µc − µv)R

+
1

qT

∫
Ω

d3r (jn · ∇µc + jp · ∇µv)

+
1

T
〈µc〉w tr (NDe) +

1

T
〈µv〉w tr (NDh)

− 1

T
(tr (HD (ρ)) + kBT tr (log (ρ)D (ρ)))

+
q

T
〈ψ〉w tr (ND (ρ)) .

In the above expression, the surface integrals have canceled out. Using Eq. (11) and (12), one finally
arrives at Eq. (24).

D Second law of thermodynamics

In this section we proof the non-negativity of the entropy production rate (24) of the hybrid system
(1)–(4).

First, we introduce the (auxiliary) density matrices

ρ∗0 =
1

Z∗0
e−βH , (32a)

ρ∗e =
1

Z∗e
e−β(H−µ

eff
c N), (32b)

ρ∗h =
1

Z∗h
e−β(H−µ

eff
v N) (32c)

with µeff
c/v =

〈
µc/v

〉
w

+q 〈ψ〉w. Using Eq. (23) it can be shown by direct calculation thatDν (ρ∗ν) = 0,
ν ∈ {0, e, h}, for the dissipators given in Eq. (11). Then it holds [92, 93]

tr ((log ρ∗ν − log ρ)Dν (ρ)) ≥ 0 (33)

for ν ∈ {0, e, h}.
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The entropy production rate Eq. (24) can be written in the form

dStot

dt
= kB

∫
Ω

d3r β (µc − µv)
(
1− e−β(µc−µv)

)∑
j

rj

+
1

q2T

∫
Ω

d3r
(
σn |∇µc|2 + σp |∇µv|2

)
+ kBtr ((log ρ∗0 − log ρ)D0 (ρ)) (34)

+ kBtr ((log ρ∗e − log ρ)De (ρ))

+ kBtr ((log ρ∗h − log ρ)D (ρ)) ,

where we have used Eqns. (6), (32), the trace conservation property of the dissipator and a recombi-
nation rate of the form [75]

R =
(
1− e−β(µc−µv)

)∑
j

rj (n, p, ψ) .

Here, j labels the recombination channels and the functions rj = rj (n, p, ψ) are assumed to be
non-negative. Using the inequalities (33) and x (1− e−x) ≥ 0 ∀x ∈ R, it is easy to see that each
line of Eq. (34) is non-negative.

E Projection on eigenstates

In order to convert Eq. (4) into a system of ODEs, the density matrix must be projected on a basis of
the Hilbert space of the quantum system. In order to reduce the numerical complexity, it is beneficial
to choose the eigenbasis of the Hamiltonian H , for which we assume the spectral representation

H =
∑
k

εk
∣∣ϕk〉〈ϕk∣∣.

For the sake of simplicity, we consider the energy spectrum {εk} to be non-degenerate here. Then, the
jump operators are projectors between energy eigenstates Aα → Ai,j =

∣∣ϕi〉〈ϕj∣∣. The equations
of motion for the diagonal elements of the density matrix are obtained as

∂t
〈
ϕk
∣∣ρ∣∣ϕk〉 =

∑
j

(
Mk,j

〈
ϕj
∣∣ρ∣∣ϕj〉−Mj,k

〈
ϕk
∣∣ρ∣∣ϕk〉) ,

whereas the off-diagonal elements k 6= l obey

∂t
〈
ϕk
∣∣ρ∣∣ϕl〉 = − i

~
(εk − εl)

〈
ϕk
∣∣ρ∣∣ϕl〉− 1

2

∑
j

(Mj,k +Mj,l)
〈
ϕk
∣∣ρ∣∣ϕl〉

with the (non-negative) transition rate matrix elements

Mi,j = γi,j + γ̂j,i

= γi,j

(
1 + e−β(εj−εi−(〈µi,j〉w+q〈ψ〉w)`i,j)

)
≥ 0.

Obviously, in the case of non-degenerate energy spectra the diagonal elements decouple from the off-
diagonal elements. The off-diagonal elements are fully decoupled each and show damped oscillations
(dephasing).
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The above observation has strong implications on the numerical simulations. Starting from the thermal
equilibrium state, where only diagonal elements of the density matrix are occupied, the dynamics
never excite any off-diagonal elements (in the representation using the eigenbasis of H). Hence, the
off-diagonal elements can be omitted from the numerical simulation. This is a consequence of the
restriction to dissipators of the form (9), which satisfy the quantum detailed balance condition. This
feature is of outstanding importance, since the number of degrees of freedom of the quantum system
grows only with N instead of N2, where N is the dimension of the (possibly truncated) Hilbert space.

F Parameters and auxiliary models

This section lists the parameters used in the numerical simulations presented in Sec. 4.

F.1 Van Roosbroeck system

We use GaAs parameters at T = 50 K. The effective masses are m∗e = 0.068m0, m∗h = 0.503m0,
where m0 denotes the (free) electron mass and the band edge energies are taken as Ev = 0 eV
and Ec = 1.516 eV. The (static) relative permittivity is set to εr = 12.9, the LO-phonon energy is
~ωLO = 36.5 meV and the refractive index is nr = 3.55 for the considered wavelengths (around
950 nm). The recombination rate in Eqns. (2), (3) is modeled as

R = RSRH +Rsp +RAu

with

RSRH =
np

τp (n+ nd) + τn (p+ pd)

(
1− e−β(µc−µv)

)
,

Rsp = Bnp
(
1− e−β(µc−µv)

)
,

RAu = (Cn
Aun+ Cp

Aup)np
(
1− e−β(µc−µv)

)
and nd = neβ(ET−qψ−µc), pd = pe−β(ET−qψ−µv). The non-radiative life times are sensitive to the
impurity concentration and modeled via τn/p = τn/p,0/

(
1+
(
|C|/Cref

)γSRH
)

with τn,0 = τp,0 = 10 ns,
γSRH = 1.72 and Cref = 9× 1017 cm−3 [94]. The trap energy level ET is assumed to be in the center
of the energy gap. The radiative recombination coefficient is taken as B = 1.06 × 10−8 cm−3 s−1

and the Auger recombination coefficients are set to Cn
Au = 6 × 10−30 cm−6 s−1, Cp

Au = 1.6 ×
10−29 cm−6 s−1 [94]. The conductivities are given as σn = qMnn, σp = qMpp, where we model the
carrier mobilities Mn/p according to the model given in Ref. [95]. The mobility model is reported to
hold down to T = 50 K. The doping densities are set to C = ND = 2× 1018 cm−3 in the n-domain
and C = −NA = −1 × 1019 cm−3 in the p-domain. Despite the low temperatures, we assume
complete ionization due to the metal-insulator transition at heavy doping [96].

F.2 Open quantum system

The eigenenergies of the Hamiltonian (25) are obtained from the parabolic/step-like confinement po-
tential (relative to the respective continuum band edge)Uλ (r, z) = −Uλ

0 Θ (h/2− |z|)+1
2
m∗λω

2
λ,0r

2,
λ ∈ {e, h}, by solving the stationary Schrödinger equation at flat band conditions [54, 70]. The
parameters for the InGaAs-QD are taken as Ue = 350 meV, Uh = 170 meV, m∗e = 0.067m0,
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m∗h = 0.15m0 [54] and ~ωe,0 = 45.5 meV, ~ωh,0 = 20.3 meV. The QD height is assumed as
h = 3 nm. For the computation of the Coulomb matrix elements we set the background dielectric
permittivity to εr = 12.5 [54].

With the parameters above, the QD conduction band ground state εc is found at 137.7 meV below
the continuum band edge and the QD valence band ground state εv is 44.7 meV above the valence
band edge. The Coulomb matrix elements are obtained as Vc,c = 23.2 meV, Vv,v = 24.5 meV and
Vc,v = 23.7 meV. The interband dipole moment is assumed as dc,v = q × 0.6 nm and the Purcell
factor is set to Pi,f = 1.8 for all allowed optical transitions. The emission energies are obtained around
1.31 eV with radiative life times of approximately 1 ns according to Eq. (27). The fitting parameters in
the carrier scattering rates are set to τ eLO = τhLO = 10 ps, aeLO = 25 meV, ahLO = 7 meV, τλ,λ

′

Au = 1 ps,

γλ,λ
′

Au = 0.7 (for all λ, λ′ ∈ {e, h}), ncrit
Au = 1× 1019 cm−3 and pcrit

Au = 5× 1018 cm−3.
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