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The weighted energy-dissipation principle and evolutionary
Γ-convergence for doubly nonlinear problems

Matthias Liero, Stefano Melchionna

Abstract

We consider a family of doubly nonlinear evolution equations that is given by families of convex
dissipation potentials, nonconvex energy functionals, and external forces parametrized by a small
parameter ε. For each of these problems, we introduce the so-called weighted energy-dissipation
(WED) functional, whose minimizer correspond to solutions of an elliptic-in-time regularization of
the target problems with regularization parameter δ. We investigate the relation between the Γ-
convergence of the WED functionals and evolutionary Γ-convergence of the associated systems.
More precisely, we deal with the limits δ → 0, ε→ 0, as well as δ+ ε→ 0 either in the sense of
Γ-convergence of functionals or in the sense of evolutionary Γ-convergence of functional-driven
evolution problems, or both. Additionally, we provide some quantitative estimates on the rate of
convergence for the limit ε → 0, in the case of quadratic dissipation potentials and uniformly
λ-convex energy functionals. Finally, we discuss a homogenization problem as an example of
application.

1 Introduction

In this text, we discuss an abstract convergence result for solutions to a family of doubly nonlinear
equations depending on a small parameter ε > 0

dψε(u̇) + ∂φε(u) 3 gε(t), u(0) = u0
ε. (Pε)

Here u̇ denotes the time derivative of the unknown u : [0, T ] → H , where H is a reflexive Banach
space. The evolution is driven by a dissipation functional ψε : H → [0,∞), assumed to be convex
and Gâteaux differentiable, by an energy functional φε : H → (−∞,∞] with a suitable notion of
(sub)differential ∂φε (see below), and by time-dependent external forces t 7→ gε(t).

The abstract system (Pε) can describe a variety of different dissipative problems in a large number of
applications from mechanics to thermodynamics, from population dynamics to finance, just to mention
a few. Problems of this type have been studied by several authors, and we refer to [Col92, CV90, Ô82]
and the references therein for a survey.

The parameter ε > 0 can have different origins: In real world applications often the problem’s data
are affected by errors or a mathematical model might be too complex such that one is interested in
simplifying it without loosing key features. This is the case for example in homogenization problems,
where fast oscillations of the coefficient, describing the physical microstructure, can be removed with
a limiting procedure to obtain an effective macroscopic model. In this sense, the parameter ε can be
understood as a ratio between micro- and macroscopic scales in the system. In other applications, ε
might be given by a numerical approximation denoting for example the fineness of the grid.

A natural question is whether solutions to (Pε) are stable with respect to the these perturbations. In
other words, is it possible to prove convergence of the solutions to (Pε) to solutions of an effective
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M. Liero, S. Melchionna 2

equation assuming convergence of the energy and dissipation functionals and of the data in some
proper sense? This question has been formalized in the notion of evolutionary Γ-convergence (E-
convergence) introduced by Mielke in [Mie16] for the case gε ≡ 0: We say that a system (φ0, ψ0, g0) is
the evolutionary Γ-limit of the system associated with (Pε), if the convergence of the initial data implies
that limits of the curves t 7→ uε(t) are solutions with respect to (φ0, ψ0, g0). Sufficient conditions
for evolutionary Γ-convergence of dissipative problems have been provided in terms of Γ- and Mosco
convergence of the corresponding dissipation and energy functionals, see e.g. [SS04]. In particular,
the convergence results in the survey paper [Mie16] are based on two equivalent formulations of
(Pε): (i) the energy-dissipation principle formulation (EDP formulation) and (ii) the formulation as an
evolutionary variational inequality (EVI formulation) in the case that φε satisfies a uniform λ-convexity
property. The EDP formulation is written in terms of a scalar balance between the final and initial
energy and the total dissipation, which in turn is written as sum of the primal and dual dissipation
potentials, where the latter is given by the Legendre transform of ψε. The E-convergence result then
follows from proving a lower Γ-limit for the involved functionals and establishing that the resulting
dissipation functional has again a (ψ0, ψ

∗
0) structure. In contrast, the EVI approach exploits the uniform

λ-convexity of the energy functional φε, which might not be satisfied in certain applications.

Our approach to E-convergence is based on a variational formulation of (Pε) using the so-called
Weighted-Energy-Dissipation (WED) principle, see e.g. [AS14, AS16, AM17]. Given a target evolu-
tionary problem, the WED principle consists of two steps: First, a global parameter-dependent func-
tional Iε,δ, defined over entire trajectories, is proved to admit minimizers. In the case of (Pε) the WED
functional has the form

Iε,δ(u) =

∫ T

0

e−t/δ
(
ψε(u̇) +

1

δ
φε(u)− 1

δ
〈gε(t), u〉H

)
dt. (1.1)

These minimizers solve an elliptic-in-time regularization of the target problem, i.e. in the case of (Pε)
as target problem,

(Pε,δ)
−δ d

dt
dψε(u̇) + dψε(u̇) + ∂φε(u) 3 g(t) a.e. in (0, T ),

u(0) = u0
ε, δdψε(u̇(T )) = 0.

(1.2)

Second, minimizers (i.e. solutions to (1.2)) are proved to converge, up to subsequences, to solutions
to the target problem, as the parameter δ goes to 0. Since solutions to (1.2) depend on the future,
note in particular the final condition in (1.2), causality is lost for δ > 0. Thus, the limit δ → 0 is usually
referred to as causal limit.

The WED principle, originally proposed by Ilmanen [Ilm94] (see also [LM68]), has been brought to new
attention by Mielke and Ortiz [MO08] in the context of rate-independent systems. Later, many authors
widely extended the theory, especially concerning the range of applications, i.e. the target problem
considered. The gradient flow case with λ-convex potentials has been studied by Mielke and Stefanelli
[MS11]. Akagi and Stefanelli have extended the theory to the genuinely nonconvex case for gradient
flows [AS16] and to convex doubly nonlinear systems [AS14]. Moreover, an analogous approach has
been applied to some hyperbolic problems, e.g., the semilinear wave equation [LS13b, ST12, Ste11],
and to Lagrangian Mechanics [LS13a]. Recently, nonpotential perturbation problems have also been
considered [Mel17, AM17].

The interest in such a variational approach lies in the fact that variational methods for evolution equa-
tions allow to apply tools and technique of the calculus of variation in the evolutionary setting. This is
indeed the spirit of this work, where we want to study evolutionary Γ-convergence (see below for a
discussion) of equations, by looking at Γ-convergence of the associated WED functionals.
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The WED principle and E-convergence for doubly nonlinear problems 3

Throughout this paper, we assume that φε can be decomposed into the difference of two functionals,
namely φε = ϕ1

ε−ϕ2
ε, where ϕ1

ε, ϕ
2
ε : V → (−∞,∞] are proper, lower semicontinuous, and convex

functionals on a Banach space V ⊂ H with ϕ1
ε dominating ϕ2

ε in a suitable sense. This will allow us to
define ∂φε as the difference of the convex subdifferentials ∂ϕ1

ε and ∂ϕ2
ε (see Theorem 2.1 for a more

rigorous definition). These assumptions along with suitable uniform growth conditions for ϕ1
ε, ϕ

2
ε, and

ψε yield the well-posedness of the WED principle for fixed ε > 0.

A first question, that we answer in this paper, is whether the WED procedure is stable under these
perturbations, or, in other words, whether the WED functionals Iδ,ε converge to Iδ,0 under some con-
vergence assumptions on the functionals ψε, φε, and on the data u0

ε and gε. Indeed, assuming static
Γ-convergence of the energy functionals φε, and continuous convergence of ψε along strongly con-
verging sequences in H (see Subsection (2.2)), as well as the convergence of gε, u0

ε in a proper
sense, we prove Γ-convergence of the corresponding WED functionals (for δ > 0 fixed). Note that
Γ-convergence is a natural notion of convergence for functionals, as it implies convergence of mini-
mizers. In particular, Γ-convergence of the WED functionals implies evolutionary Γ-convergence for
the elliptic-regularized problems (1.2). Our proof is based on using time-discrete approximations of
curves t 7→ u(t) to obtain the lower lim inf estimate and to construct recovery sequences.

Second, we consider the joint limit δ + ε → 0 and show that solutions to the elliptic regularized
and perturbed problem, i.e. (1.2), converge to solutions to the target problem (Pε) with ε = 0. Here
we exploit the uniform growth conditions posed on the functionals to derive the necessary a priori
estimates. Let us remark that the Γ-limit of WED functionals for δ → 0 is highly degenerate (intuitively
it is just a constraint on the initial condition). Thus, the limit δ + ε → 0 is meaningful only at the level
of equations and not for functionals.

Finally, we address the question of obtaining explicit convergence rates for the Γ-convergence of
the WED functionals. Here we restrict ourselves to the case of quadratic dissipation potentials ψε
and uniformly λ-convex energy functionals φε. Assuming to have some information on the rates of
convergence for a good recovery sequence of the static functionals, we deduce rates of convergence
for the minimizers of the corresponding dynamic WED functionals. To the best of our knowledge, the
strategy we use in our proof is new. It is based on a simple abstract result (cf. Lemma 3.3) which
describes sufficient conditions for having quantitative estimates in Γ-convergence problems and time-
discrete approximations.

We note here that a related result has been obtained in [AS14]. More precisely, the authors proved
Mosco convergence of the WED functionals in the case ϕ2

ε ≡ 0 and gε ≡ 0 assuming Mosco con-
vergence of ϕ1

ε in X and of ψε in H . In contrast to our approach, it is required that a strongly in X
converging joint recovery sequence for the static dissipation and energy functionals exists and that
the well preparedness of initial data is satisfied. The latter is also necessary in the EDP approach in
[Mie16] and means that in additions to u0

ε → u0
0 in H also φε(u0

ε) → φ0(u0
0) holds. Note that our

result is more flexible since weaker conditions are assumed. In particular, we do not need to assume
the existence of a joint recovery sequence for the dissipation and energy functionals. This sequence
will be constructed by taking advantage of the coercivity of the energy functional in X and by us-
ing the continuous convergence of the dissipation functionals in H . Moreover, weaker assumptions
on the Γ-convergence of the energy functionals allow us to deal with a much larger set of applica-
tions, namely families of gradient flows driven by Γ-convergent (but not necessary Mosco convergent)
energy functionals (cf., e.g., the homogenization example in Section 4).

The paper is structured as follows. In Section 2 we introduce the abstract setting for the WED
principle and the evolutionary Γ-convergence and formulate the main results. In particular, we collect
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M. Liero, S. Melchionna 4

all assumptions on the dissipation potentials, energy functionals, and data that guarantee the well-
posedness of the WED principle for fixed parameter ε > 0, hereby relying on the results in [AM17]
(see Subsection 2.1). Next, we fix conditions on the convergence of the “static” functionals φε and
ψε (Subsection 3.2) that allow us to proof the evolutionary Γ-convergence of (Pε) in the setting of the
WED principle and to obtain explicit convergence rates for the latter, see Theorems 2.2 and 2.5 as
well as Theorem 2.7. The proofs of these results are collected in Section 3. Finally, in Section 4, we
discuss the example of deriving the homogenized limit for a nonlinear parabolic equation with rapidly
oscillating coefficient functions.

2 Preliminaries and main result

In this section, we recall the basic framework of WED functionals and present the main results of this
paper whose proofs are postponed to Section 3. We refer to [MS11, AS14] for more details on the
WED principle.

2.1 The WED principle

Let H and X be reflexive Banach spaces such that we have the dense and compact embedding
X ⊂ H . On H we consider a convex dissipation potential ψ : H → [0,∞), which is assumed to be
Gâteaux differentiable. In particular, we denote by dψ(v) ∈ H∗ the Gâteaux differential for v ∈ H .
The energy functional φ : H → R∞ := R ∪ {+∞} is assumed to be of the form φ = ϕ1 − ϕ2,
where ϕ1, ϕ2 : H → [0,∞] are proper, lower semicontinuous, and convex functionals with domains
D(ϕi), i = 1, 2. To include the work of the external forces gε(t) ∈ H∗ we introduce the augmented

energy functional φ̃ : [0, T ]×H → R∞ by setting

φ̃(t, u) = φ(u)− 〈g(t), u〉H . (2.1)

We impose the following growth assumptions on the dissipation and energy functional which are in ac-
cordance with [AM17]. In particular, we refer to [AM17, Remark 1] for a discussion of the assumptions.
Let p ∈ (1,∞) and m ∈ (1,∞) be fixed. We assume, that there exists a constant C > 0 such that

(A1) ‖v‖pH ≤ C(ψ(v) + 1) for all v ∈ H , (2.2a)

(A2) ‖u‖mX ≤ C(ϕ1(u) + 1) for all u ∈ D(ϕ1). (2.2b)

In particular, we have that D(ϕ1) ⊂ X and we will denote the restriction of ϕ1 to X again by ϕ1.
The (convex) subdifferential with respect to X of ϕi in u ∈ X is denoted by ∂Xϕi(u) ⊂ X∗ and
its domain by D(∂Xϕ

i). The element in ∂Xϕi(u) that realizes the minimal X∗-norm is denoted by
(∂Xϕ

i(u))◦ ∈ X∗. We assume that

(A3)
∥∥η1
∥∥m′
X∗
≤ C(‖u‖mX + 1) for all u ∈ X and η1 ∈ ∂Xϕ1(u), (2.3a)

(A4) ‖dψ(v)‖p
′

H∗ ≤ C(‖v‖pH + 1) for all v ∈ H, (2.3b)

where m′ = m/(m−1) and p′ = p/(p−1) are the dual exponents.
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The WED principle and E-convergence for doubly nonlinear problems 5

Additionally, as in [AS16, AM17] we make the assumption that there exist κ ∈ (0, 1) and c > 0 such
that we have

(A5) ϕ2(u) ≤ κ(ϕ1(u) + c) for all u ∈ D(ϕ1), (2.4a)

(A6)
∥∥η2
∥∥p′
H∗
≤ c
(
ϕ1(u) + 1

) for all u ∈ D(∂Xϕ
1)

and η2 ∈ ∂Hϕ2(u).
(2.4b)

Note that due to the domination assumption (2.4a) we can exclude the ambiguous case∞−∞ in
the definition of φ = ϕ1 − ϕ2 by setting

φ(u) =

{
ϕ1(u)− ϕ2 (u) if u ∈ D(ϕ1),

∞ else.

Finally, for the external forces and the initial data we demand that

(A7) g ∈ Lp′(0, T ;H∗) and (A8) u0 ∈ D(ϕ1). (2.5)

For a given time horizon T > 0 we define the set of admissible trajectories

K(u0) :=
{
u ∈ W 1,p(0, T ;H) ∩ Lm(0, T ;X) : u(0) = u0

}
and introduce for a (fixed) constant δ > 0 the Weighted-Energy-Dissipation functional (WED func-
tional) via

Iδ(u) =

{ ∫ T
0

e−t/δ
(
ψ(u̇) + 1

δ
φ̃(t, u)

)
dt if u ∈ K(u0),

∞ else.
(2.6)

The WED principle is concerned with finding a minimizer uδ ∈ K(u0) and passing to the limit δ → 0
to recover a solution u of the original doubly nonlinear equation. In particular, in [AM17] the following
result was proven.

Theorem 2.1 (Akagi–Melchionna [AM17, Theorem 13]) 1 Assume that (A1)–(A8) are satisfied.
Then for every δ > 0 sufficiently small the WED functional Iδ defined in (2.6) admits at least one
global minimizer uδ ∈ K(u0). Furthermore, every local minimizer uδ solves (1.2) in the strong
sense, i.e. there exists η1

δ ∈ Lm
′
(0, T ;X∗) and η2

δ ∈ Lp
′
(0, T ;H∗) with η1

δ ∈ ∂Xϕ1(uδ) and
η2
δ ∈ ∂Hϕ2(uδ) such that

−δξ̇δ + ξδ + η1
δ − η2

δ = g(t), in X∗ a.e. in (0, T ),

and uδ(0) = u0, δξδ(T ) = 0,
(2.7)

where ξδ = dψ(u̇δ) satisfies ξδ ∈ Lp
′
(0, T ;H∗) and ξ̇δ ∈ Lm

′
(0, T ;X∗) + Lp

′
(0, T ;H∗).

2 Moreover, up to subsequences, uδ → u weakly inW 1,p(0, T ;H)∩Lm(0, T ;X) and strongly
in C([0, T ];H) to a solution u to

ξ + η1 − η2 = g(t), in X∗ a.e. in (0, T ), and u(0) = u0 (2.8)

with ξ = dψ(u̇) satisfying ξ ∈ Lp′(0, T ;H∗) and η1 ∈ Lm′(0, T ;X∗) and η2 ∈ Lp′(0, T ;H∗)
with η1 ∈ ∂Xϕ1(u) and η2 ∈ ∂Hϕ2(u).

We easily see that limit problem (2.8) can be formally recovered by setting δ = 0 in (2.7).
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2.2 Γ-convergence of the WED functionals

Let us now consider a family of WED functionals Iδ,ε which in turn is induced by families of dissipation
and energy functionals ψε and φε and external forces gε as in (2.6) depending on a small parameter
ε > 0 describing e.g. the ratio between microscopic and macroscopic length scale. In the following
theorem we provide sufficient conditions on the convergence of the dissipation and energy functionals
and of the external force to limits ψ0, φ0, and g0, respectively, that guarantee the Γ-convergence of
the WED functionals Iδ,ε to the limiting WED functional Iδ,0.

In particular, we shall assume that the energy functionals φε = ϕ1
ε − ϕ2

ε converge in the following
sense:

(Γ1) ϕ1
ε

M−→ ϕ1
0 in H, (Γ2) ϕ2

ε
C−→ ϕ2

0 weakly in X. (2.9)

Here, “
M−→” denotes Mosco convergence (Γ-convergence with respect to the strong and weak topol-

ogy) and “
C−→” means continuous convergence, i.e. ϕ2

ε(uε) → ϕ2
0(u0) for all sequences with uε →

u0 weakly in X . In particular, in the case of uniform coercivity of ϕ1
ε on X the convergence in (Γ1) is

equivalent to ϕ1
ε

Γ−→ ϕ1
0 weakly in X , see e.g. [Mie16, Prop. 2.5].

Additionally, for the dissipation potentials ψε we assume that

(Γ3) ψε
C−→ ψ0 strongly in H. (2.10)

On the forcing terms we impose

(Γ4) gε → g0 weakly in Lp
′
(0, T ;H∗). (2.11)

Finally, we demand that the initial values u0
ε yield energies that are finite and uniformly bounded in ε,

i.e. there exists a constant C > 0 independent of ε such that

(Γ5) φε(u
0
ε) ≤ C . (2.12)

In particular, given the uniform coercivity of ϕ1
ε in X it is natural to assume that

u0
ε → u0 weakly in X (strongly in H).

Theorem 2.2 (Γ-convergence of WED functionals) Let us assume that ϕ1
ε, ϕ

2
ε, ψε, and gε satisfy

the assumptions (A1)–(A8) with C, c, κ, p,m independent of ε as well as the convergence conditions
(Γ1)–(Γ5). Then, the WED functionals

Iδ,ε(u) =

{ ∫ T
0

e−t/δ
(
ψε(u̇(t)) + 1

δ
φ̃ε(t, u(t))

)
dt if u ∈ K(u0

ε),

∞ else,

Γ-converge to

Iδ,0(u) =

{ ∫ T
0

e−t/δ
(
ψ0(u̇(t)) + 1

δ
φ̃0(t, u(t))

)
dt if u ∈ K(u0),

∞ else,
(2.13)

in the weak topology of W 1,p(0, T ;H) ∩ Lm(0, T ;X).

In particular, let u∗δ,ε be a minimizer of Iδ,ε, then, u∗δ,ε → u∗δ weakly in W 1,p(0, T ;H)∩Lm(0, T ;X)
and strongly in C ([0, T ];H), where u∗δ is a minimizer of Iδ,0.
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The WED principle and E-convergence for doubly nonlinear problems 7

The following generalization of the previous result to ε-dependent time intervals and weight functions
in the definition of the WED functionals is straightforward.

Corollary 2.3 (ε-dependent weights) Let the assumption of Theorem 2.2 be satisfied. Moreover, let
Tε ↗ T < ∞, and let eε,δ : [0, Tε) → [0,∞) be a family of L∞ functions uniformly convergent to
t 7→ e−t/δ for fixed δ > 0. Then, the WED functionals

Iδ,ε(u) =

{ ∫ T
0
eε,δ(t)χ[0,Tε](t)

(
ψε(u̇(t)) + 1

δ
φ̃ε(t, u(t))

)
dt if u ∈ KTε(u0

ε),

∞ else,

where
KTε(u0

ε) = {u ∈ K(u0
ε) : u is constant in [Tε, T ]},

Γ-converge to Iδ,0 defined in (2.13) in the weak topology of W 1,p(0, T ;H) ∩ Lm(0, T ;X).

Since minimizers of the WED functionals solve elliptic-in-time regularized problems, namely the asso-
ciated Euler–Lagrange equations, we immediately deduce evolutionary Γ-convergence in the sense
of [Mie16]. More precisely, we have the following.

Corollary 2.4 (Evolutionary Γ-convergence of the elliptic-regularized problems) Let the assump-
tions of Theorem 2.2 be satisfied. Then solutions to the problem

−δ d

dt
dψε(u̇) + dψε(u̇) + ∂φε(u) 3 gε(t) a.e. in (0, T ),

u(0) = u0
ε, δdψε(u̇(T )) = 0,

(Pδ,ε)

converge (up to subsequences) to solutions to

−δ d

dt
dψ0(u̇) + dψ0(u̇) + ∂φ0(u) 3 g0(t) a.e. in (0, T ),

u(0) = u0, δdψ0(u̇(T )) = 0.
(Pδ,0)

Note that both equation (Pδ,ε) and (Pδ,0) admit in general nonunique solutions. Thus, evolutionary Γ-
convergence has to be interpreted in the following sense. For all u0

ε, there exists a solution uε to (Pδ,ε)
such that {uε} converges, up to subsequences, to a solution u to (Pδ,0). (Of course in Corollary 2.4
we choose uε = u∗δ,ε and u = u∗δ,0, i.e. the minimizers of the WED functionals). Moreover, solutions
to both (Pδ,ε) and (Pδ,0) are intended in the strong sense defined in Theorem 2.1.

2.3 The joint limit ε+ δ → 0

The crucial question now is whether it is possible to consider the joint limit ε + δ → 0. The main
result in this section states that minimizers u∗δ, ε of the WED functional Iδ,ε, i.e. strong solutions to
(Pδ,ε), converge (up to subsequences (δk, εk) → (0, 0)) to solutions to the target problem (2.8). We
remark that the limit δ+ε→ 0 is meaningless in the sense of Γ-convergence of the WED functionals,
since the Γ-limit of Iδ,ε for δ → 0 is highly degenerate, see [MO08, Sect. 4.3], and provides only little
information on the limiting solutions.

The following theorem combines the convergence results of Theorems 2.1 and 2.2.
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Theorem 2.5 With the same assumptions as in Theorem 2.2 let u∗ε,δ denote a minimizer of the WED
functional Iε,δ. Assume additionally that for ε ≥ 0 we have gε = g1

ε + g2
ε with

g1
ε ∈ W 1,p′(0, T ;H∗) and g1

ε → g1
0 weakly in W 1,p′(0, T ;H∗), (2.14)

g2
ε → g2

0 strongly in Lp
′
(0, T ;H∗), (2.15)

and well preparedness of initial data, i.e.

φε(u
0
ε)→ φ(u0). (2.16)

Then, there exists a subsequence (εk, δk) such that εk + δk → 0 and u∗εk,δk → u, where u is a
solution of the doubly nonlinear equation (2.8) (with ψ = ψ0, φ = φ0, and g = g0).

Let us now briefly comment on the assumptions (2.14)-(2.16).

Remark 2.6 Note that the stronger assumptions in Theorem 2.5 are not needed in Theorem 2.2,
i.e. they are not necessary for the limit passage ε → 0 with δ > 0 fixed. However, although the
assumptions (2.14)-(2.16) refer to the convergence of the data for ε→ 0 they are fundamental for the
limit δ + ε→ 0.

Indeed, the limit δ + ε→ 0 is computed at the level of the equations (Pδ,ε) and not for the functionals
Iδ,ε. To compute this limit we first derive uniform estimates on each term in (Pδ,ε). Note that this can be
done just with the assumptions of Theorem 2.1. These uniform estimates suffice to extract converging
subsequences and to pass to the limit in each term of equation (Pδ,ε). The next step is to identify the
limits of the nonlinear terms, in particular, to prove limε→0 dψε(u̇

∗
δ,ε) = dψ0(u̇).

By taking advantage of the convexity of the dissipation potential ψ0, we only have to prove an up-
per estimate on lim supε→0

〈
dψε(u̇

∗
δ,ε), u̇

∗
δ,ε

〉
H

, see (3.25). Since our estimates provide only weak

convergence of both dψε
(
u̇∗δ,ε
)

and u̇∗δ,ε, we substitute dψε
(
u̇∗δ,ε
)

by using equation (Pδ,ε). As a con-

sequence we have to handle the two terms
〈
∂φε(u

∗
δ,ε), u̇

∗
δ,ε

〉
H

and
〈
gε, u̇

∗
δ,ε

〉
H

. We can pass to the
limit in the first by integrating by parts and using the well preparedness of initial data (2.16) and in
the second by virtue of (2.14)-(2.15). Note that this procedure is necessary only in the case that the
term dψε is nonlinear. In the case of quadratic dissipation potentials there is no need to additionally
assume (2.14)-(2.16), and the statement of Theorem 2.5 holds true under the same assumptions of
Theorem 2.2, in particular, without assuming well preparedness of initial data.

2.4 Convergence rates

Assuming some quantitative estimates on the rates of the Γ-convergence for the static functionals
φε and ψε is it possible to derive quantitative estimates on the rate of Γ-convergence for the corre-
sponding WED functionals? In particular, can we estimate the rate of convergence of the minimizers∥∥u∗δ,ε − u∗δ,0∥∥ in some norm?

We give a positive answer in the case of quadratic dissipation potentials ψε and λ-convex energy
functionals, since stronger estimates on the time derivative of the minimizer of the functional u∗δ,ε
are available, which provide H2 regularity (cf. [MS11]). Moreover, in the case of nonconvex energies
minimizers of WED functionals are not unique. Thus, quantitative estimates on convergence rates
seem out of reach in this case.

We assume that p = 2, H is a Hilbert space with scalar product (·, ·)H , and that for all ε ≥ 0, ψε
is quadratic such that ψε(v) = 1

2
(Aεv, v)H with Aε ∈ Lin(H,H) symmetric and positive definite.
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The WED principle and E-convergence for doubly nonlinear problems 9

Moreover, we assume ϕ2
ε = 0, but we relax the convexity assumption on φε: here we assume φε to

be λ-convex, i.e.

φε(·)−
λ

2
‖·‖2

H is convex for all ε ≥ 0 and λ ∈ R,

where λ is independent of ε.

Given a nonconvex functional φ : H → R, we recall that its Fréchet subdifferential ∂F
Hφ(u) ⊂ H is

defined as

v ∈ ∂F
Hφ(u) iff u ∈ D(φ) and lim inf

w→u

φ(w)− φ(u)− (v, w−u)H
‖w−u‖H

≥ 0.

In the case that φ is λ-convex, we can identify ∂F
Hφ(u) = ∂Hφ

λ(u) + λu, where φλ(u) = φ(u) −
λ‖u‖2

H/2 is convex. In particular, we have D(φ) = D(φλ) and D(∂F
Hφ) = D(∂Hφ

λ). Thus, to
simplify notation we will also write ∂Hφ for the Fréchet subdifferential of the λ-convex functional φ.

Let us assume that there exists a space B such that H ⊂ B ⊂ X , and a positive constant C and
such that ∥∥u∗δ,ε∥∥H1(0,T ;B)

≤ C for all ε ≥ 0. (2.17)

Note that in concrete applications the space B is typically an interpolation space between H and X
(see e.g. Section 4).

Let Rε : D(φ0) → D(φε) be the recovery operator for the energy functionals φε
M−→ φ0 in H ,

namely

∀u ∈ D(φ0) : lim
ε→0

Rε(u) = u strongly in H and lim
ε→0

φε(Rε(u)) = φ0(u).

We assume there exists rRε , r
R,φ
ε , rR,ψε > 0 with limε r

R
ε = limε r

R,φ
ε = limε r

R,ψ
ε = 0, a non-

decreasing function ` : [0,∞)→ [0,∞), and a positive constant C , such that

(R1) ‖Rεv − v‖H ≤ rRε (`(‖v‖H) + ‖v‖mX)
1/2 for all v ∈ X , (2.18)

(R2) φε(Rεv)− λ

2
‖Rεv‖2

H ≤ φ0(v)− λ

2
‖v‖2

H + rR,φε

(
`(‖v‖H) + ‖v‖mX + ‖η‖2

H

)
for all v ∈ D(φ0) and η ∈ ∂H(φ0(v)), (2.19)

(R3) |ψε(vε)− ψ0(v)| ≤ C(‖v‖H + ‖vε‖H) ‖vε − v‖H + rR,ψε ‖v‖2
B

for all vε ∈ H and v ∈ B. (2.20)

Furthermore, we assume that there exists an operatorSε : D(φε)→ D(φ0), rates rSε , r
S,φ
ε , rS,ψε >

0 with limε r
S
ε = limε r

S,φ
ε = limε r

S,ψ
ε = 0, a nondecreasing function, again denoted by ` :

[0,∞)→ [0,∞), and a positive constant C , such that

(R4) ‖Sεvε − vε‖H ≤ rSε (`(‖vε‖H) + ‖vε‖mX)
1/2 for all vε ∈ D(φε). (2.21)

(R5) φ0(Sεvε)−
λ

2
‖Sεvε‖2

H ≤ φε(vε)−
λ

2
‖vε‖2

H + rS,φε

(
`(‖vε‖H) + ‖vε‖mX + ‖ηε‖2

H

)
for all vε ∈ D(φε) and ηε ∈ (∂Hφε(vε), (2.22)

(R6) |ψε(vε)− ψ0(v)| ≤ C(‖v‖H + ‖vε‖H) ‖vε − v‖H + rS,ψε ‖vε‖2
B

for all vε ∈ B and v ∈ H. (2.23)
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Finally, we assume that gε ∈ H1(0, T ;H) and that there exist C > 0 and rates rgε , r
0
ε > 0 with

limε r
g
ε = limε r

0
ε = 0 such that

(R7) ‖gε − g0‖L2(0,T ;H) ≤ rgε , and (R8)
∥∥u0

ε − u0
∥∥
H
≤ r0

ε . (2.24)

In Section 4 we will discuss a typical example for the developed theory, namely, the homogenization
of a parabolic equation. Since the operator Sε will be used to smooth out oscillations coming from the
microstructure, we will call it smoothing operator from now on.

Theorem 2.7 (Convergence rates) Let (R1)–(R8) be satisfied and let u∗δ,ε and u∗δ,0 be the minimizers
of Iδ,ε and Iδ,0 respectively. Then, there exists a constantC depending on δ and on the problems data,
but independent on ε, such that∥∥u∗δ,ε − u∗δ,0∥∥L2(0,T ;H)

≤ C
(
ρ1
ε +

(
ρ2
ε + ρ3

ε

)1/2
)

,

where

ρ1
ε = rRε + ρdtc

τRε
+
(
τRε
)1/2

r0
ε ,

ρ2
ε = rRε + ρdtc

τRε
+ r0

ε + rR,φε + rR,ψε + τRε + rgε + rRε /τ
R
ε + r0

ε ,

ρ3
ε = rSε + ρdtc

τSε
+ r0

ε + rS,φε + rS,ψε + τSε + rgε + rSε /τ
S
ε + r0

ε ,

and

τRε = arg min
τ

(rRε /τ + τ 1/2 + τ) and τSε = arg min
τ

(rSε /τ + τ 1/2 + τ),

Note that, analogously to Theorem 2.2 (where δ is fixed), Theorem 2.7 does not require well prepared-
ness of initial data.

3 Proof of the main results

In this section we collect the proofs of the main results of Section 2.

3.1 Proof of the Γ-convergence of the WED functionals

As usual, we divide the proof of the Γ-convergence into two parts: first, we prove the liminf estimate
and then the existence of recovery sequences. Since δ > 0 is fixed throughout this subsection, we
will omit it in the indices of the WED functionals, etc.

Proposition 3.1 Let uε → u weakly in W 1,p(0, T ;H) ∩ Lm(0, T ;X), thes,

lim inf
ε→0

Iε(uε) ≥ I0(u).

Proof. Note that, as a consequence of the Mosco and continuous convergence of ϕ1
ε and ϕ2

ε, respec-

tively, in (2.9), and of the coercivity condition in (2.2b), we have the Mosco convergence φε
M−→ φ
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The WED principle and E-convergence for doubly nonlinear problems 11

in H . Consider now a sequence satisfying uε → u weakly in W 1,p(0, T ;H) ∩ Lm(0, T ;X). In
particular, by standard embedding results we also have

uε → u strongly in C([0, T ];H). (3.1)

Thus, from the Mosco convergence of φε and the Fatou Lemma it follows that

lim inf
ε→0

∫ T

0

e−t/δφε(uε(t)) dt ≥
∫ T

0

e−t/δφ0(u(t)) dt,

see also [Ste08]. Moreover, thanks to (2.11) and to the strong convergence (3.1), we have

lim
ε→0

∫ T

0

e−t/δ 〈gε(t), uε(t)〉H dt =

∫ T

0

e−t/δ 〈g0(t), u(t)〉H dt.

We focus now on the dissipation part. Fix N ∈ N, N ≥ 2 and set τ := T/N . By using convexity of
ψε, Jensen’s inequality yields

lim inf
ε→0

∫ T

0

e−t/δψε(u̇ε) dt ≥ lim inf
ε→0

N∑
i=1

e−iτ/δτ

∫ iτ

(i−1)τ

ψε(u̇ε)
dt

τ

≥ lim inf
ε→0

N∑
i=1

e−iτ/δτψε

(∫ iτ

(i−1)τ

u̇ε
dt

τ

)
, (3.2)

where we used e−iτ/δ ≤ e−t/δ for t ≤ iτ in the estimate. Thus, exploiting the continuous convergence
of ψε in (2.10) and to (3.1) we can pass to the limit ε→ 0 to arrive at

lim
ε→0

N∑
i=1

e−iτ/δτψε

(
uε(iτ)− uε((i−1)τ)

τ

)
=

N∑
i=1

e−iτ/δτψ0

(
u(iτ)− u((i−1)τ)

τ

)
. (3.3)

Let us denote by ûτ the piecewise affine interpolant of the nodes {u(iτ)}Nk=0. We easily check that
d
dt
ûτ → u̇ weakly in Lp(0, T ;H) for τ → 0. Moreover, for (i−1)τ ≤ t ≤ iτ we can estimate

exp(t−iτ) ≥ exp(−τ) hence

N∑
i=1

e−iτ/δτψ0

(
u(iτ)− u((i−1)τ)

τ

)
dt ≥ e−τ/δ

∫ T

0

e−t/δψ0

(
d

dt
ûτ

)
dt for all τ .

Since ψ0 is lower semicontinuous and convex, we can pass to the limit τ → 0 to arrive with (3.2) and
(3.3) at the liminf inequality.

Next, we construct recovery sequences for Iε,δ. Here, we use a density argument.

Proposition 3.2 For every u ∈ K(u0) and there exists a subsequence εk → 0 and a sequence
uεk → u strongly in W 1,p(0, T ;H) and weakly in Lm(0, T ;X) such that

lim
εk→0
Iεk(uεk) = I0(u).

Proof. Our proof follows the lines of [AS11, Thm. 7.2]. Let us start by assuming that u ∈ K(u0) ∩
C1([0, T ];X) (recall that u0 ∈ X). We fix N ∈ N, set τ = T/N , and define the nodal values
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uiτ = u(iτ) ∈ X , for i = 0, ..., N . Let ûτ , and uτ be the piecewise affine and piecewise forward
constant interpolants of {uiτ}Ni=0 defined via

ûτ (t) = αiτ (t)u
i
τ + (1−αiτ (t))ui+1

τ

uτ (t) = ui+1
τ

}
for t ∈ [iτ, (i+1)τ) , (3.4)

where αiτ (t) = 1− (iτ − t)/τ .

Since u ∈ C1([0, T ];X) it follows that

ûτ → u strongly in W 1,∞(0, T ;H), (3.5a)

uτ → u strongly in L∞(0, T ;X). (3.5b)

In particular, by the continuity properties of the functionals φ0 and ψ0 we immediately obtain the
convergence of the limiting WED functional

I0(ûτ )→ I0(u) for τ → 0 (3.6)

and (see [AS11, Sect. 6.1.2]

I0(ûτ ) =
N−1∑
i=0

∫ (i+1)τ

iτ

e−t/δ
(
ψ0

(
ui+1
τ − uiτ
τ

)
+

1

δ
φ0(ui+1

τ )− 1

δ
〈g0(t), ûτ (t)〉H

)
dt+ h1

τ ,

where h1
τ :=

∫ T

0

e−t/δ

δ

(
φ0(ûτ )− φ0(uτ )

)
dt.

Indeed, using the convexity of ϕ1
0 and choosing η1,i

τ ∈ ∂Xϕ1
X(uiτ ) and η2,i

τ ∈ ∂Xϕ2
X(uiτ ) we arrive

at the estimate

h1
τ ≤

N−1∑
i=0

∫ (i+1)τ

iτ

e−t/δ

δ

(
αiτ (t)(ϕ

1
0(uiτ )− ϕ1

0(ui+1
τ )) + ϕ2

0(ui+1
τ )− ϕ2

0(ûτ (t))
)

dt

≤ C
N−1∑
i=0

τ
( ∥∥η1,i

τ

∥∥
X∗

+
∥∥η2,i+1

τ

∥∥
X∗

)∥∥ui+1
τ − uiτ

∥∥
X
.

Hereafter, the symbol C will denote a positive constant independent of τ and ε. By using (2.3a) and
(2.4b), and convergence (3.5b), we estimate∥∥η1,i

τ

∥∥
X∗

+
∥∥η2,i+1

τ

∥∥
X∗
≤ C .

Thus, we obtain h1
τ → 0 for τ → 0.

We now build a recovery sequence for the WED functional Iε,δ and u ∈ K(u0)∩C1([0, T ];X). The
strategy is to discretize the time interval and to interpolate between the recovery sequences for the
energy functional at each node. To unify notation, we define u0

τ,ε := u0
ε. Due to (2.9) and the coercivity

of φε in X we find sequences uiτ,ε for every i ∈ {1, ..., N} such that

uiτ,ε → uiτ weakly in X and ϕ1
ε(u

i
τ,ε)→ ϕ1

0(uiτ ).

Note that uiτ,ε → uiτ strongly in H . Thus, thanks to (2.9) and (2.10), we have

ψε

(
uiτ,ε − ui−1

τ,ε

τ

)
→ ψ0

(
uiτ − ui−1

τ

τ

)
for all i ∈ {1, ..., N},

ϕ2
ε

(
uiτ,ε
)
→ ϕ2

0

(
uiτ
)

for all i ∈ {0, ..., N}.
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Let ûτ,ε and uτ,ε be the correspondent piecewise affine and piecewise constant interpolants as in
(3.4). Thus, for τ still fixed we obtain the convergences

ûτ,ε → ûτ weakly in Lm(0, T ;X), (3.7)

ûτ,ε → ûτ strongly in W 1,p(0, T ;H), (3.8)

uτ,ε → uτ weakly in Lm(0, T ;X). (3.9)

We now claim that the following upper estimate holds

Iε(ûτ,ε) ≤ I0(ûτ ) + r1
τ,ε + r2

τ , (3.10)

where
lim
τ→0

lim
ε→0

r1
τ,ε = 0 and lim

τ→0
r2
τ = 0.

Indeed, we compute

Iε(ûτ,ε) =
N−1∑
i=0

∫ (i+1)τ

iτ

e−t/δ
(
ψε

(
ui+1
τ,ε − uiτ,ε

τ

)
+

1

δ
φε(u

i+1
τ,ε )− 1

δ
〈gε, ûτ,ε〉H

)
dt

+
1

δ

N−1∑
i=0

∫ (i+1)τ

iτ

e−t/δ
(
ϕ1
ε

(
αiτ (t)u

i
τ,ε + (1−αiτ (t))ui+1

τ,ε

)
− ϕ1

ε(u
i+1
τ,ε )
)

dt

− 1

δ

N−1∑
i=0

∫ (i+1)τ

iτ

e−t/δ
(
ϕ2
ε (ûτ,ε)− ϕ2

ε(u
i+1
τ,ε )
)

dt =: Iτ,ε + h2
τ,ε + h3

τ,ε.

Clearly, we have Iτ,ε → I0(ûτ )+h1
τ for ε→ 0. Moreover, using the convexity of ϕ1

ε and the definition
of the sequences uiτ,ε we arrive at

lim
ε→0

h2
τ,ε ≤ lim

ε→0

N−1∑
i=1

∫ (i+1)τ

iτ

e−t/δ

δ
αiτ (t)

(
ϕ1
ε

(
uiτ,ε
)
− ϕ1

ε(u
i+1
τ,ε )
)

dt

+ lim
ε→0

∫ τ

0

(
e−t/δ

τ − t
τ

)(
ϕ1
ε

(
u0
ε

)
− ϕ1

ε(u
1
τ,ε)
)

dt

=
N−1∑
i=1

∫ (i+1)τ

iτ

e−t/δ

δ
αiτ (t)

(
ϕ1

0(uiτ )− ϕ1
0(ui+1

τ )
)

dt+ lim
ε→0

h2,2
τ,ε.

Note that we have to treat the case i = 0 separately since u0
ε is not a recovery sequence.

Choosing ηiτ ∈ ∂Xϕ1
0(uiτ ) we can argue as above to obtain

lim
ε→0

h2
τ,ε ≤

N−1∑
i=0

Cτ
∥∥ηiτ∥∥X∗ ∥∥uiτ − ui+1

τ

∥∥
X

+ lim
ε→0

h2,2
τ,ε,

whose right-hand side tends to zero as τ → 0. Moreover, for i = 0, thanks to (2.12) and to the fact
that ϕ1

0(uτ ) ∈ L1(0, T ), we get

h2,2
τ,ε =

∫ τ

0

(
e−t/δ

τ − t
τ

)(
ϕ1
ε

(
u0
ε

)
− ϕ1

ε(u
1
τ,ε)
)

dt ≤ Cτ.

Here we used (2.3a) and strong convergence (3.5b).
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It remains to show that also h3
τ,ε → 0 as ε → 0 and τ → 0. For this, note that for all t ∈ [0, T ] one

has ûτ,ε(t)→ ûτ (t) weakly inX . Thus, as a consequence of the continuous convergence in (2.9) we
have limε→0 ϕ

2
ε (ûτ,ε(t)) = ϕ2

0 (ûτ (t)). Moreover, since t 7→ ϕ2
ε(ûτ,ε(t)) are uniformly integrable

due to (2.4a), we can apply the Vitali convergence Theorem [Rud87, Pag. 133] to deduce

lim
ε→0

h3
τ,ε =

∫ T

0

e−t/δ

δ

(
ϕ2

0 (ûτ )− ϕ2
0(uτ )

)
dt.

With the convergences in (3.5a) and (3.5b) as well as estimate (2.4b), we conclude that the right-hand
side vanishes as τ → 0.

Finally, the convergences (3.8) and (2.11) give us

lim
ε→0

∫ T

0

e−t/δ 〈gε, ûτ,ε〉H dt =

∫ T

0

e−t/δ 〈g0, ûτ 〉H dt,

which proves the claim in (3.10).

Note additionally that the sequence ûτ,ε is bounded inLm(0, T ;X) independently of τ and ε. Indeed,
without loss of generality, we can assume that uiτ,ε and uiτ are such that

ϕ1
ε(u

i
τ,ε) ≤ ϕ1

0(uiτ ) + 1 = ϕ1
0(u(iτ)) + 1 for all i = {0, ..., N}.

As the functionals ϕ1
ε and ϕ1

0 are uniformly coercive in X , we have that∥∥uiτ,ε∥∥mX ≤ C
(
ϕ1
ε(u

i
τ,ε) + 1

)
≤ C

(
ϕ1

0(u(iτ)) + 2
)

and hence, by convexity,

‖ûτ,ε‖mLm(0,T ;X) ≤
N−1∑
i=0

∫ (i+1)τ

iτ

{
αiτ (t)

∥∥uiτ,ε∥∥mX +
(
1−αiτ (t)

) ∥∥ui+1
τ,ε

∥∥m
X

}
dt

≤ C
N−1∑
i=0

∫ (i+1)τ

iτ

{
αiτ (t)ϕ

1
0(u(iτ)) +

(
1−αiτ (t)

)
ϕ1

0(u((i+1) τ))
}

dt+ 2CT.

Therefore, without loss of generality, we can assume

‖ûτ,ε‖mLm(0,T ;X) ≤ C̃
(∫ T

0

ϕ1
0(u) dt+ T

)
(3.11)

for some constant C̃ independent of τ , ε, and u.

We now show that we can extract subsequences εk and τk such that the sequence defined by uεk :=
ûεk,τk satisfies the statement of the proposition. Indeed, note that

‖ûτ,ε − u‖W 1,p(0,T ;H) ≤ ‖ûτ,ε − ûτ‖W 1,p(0,T ;H) + ‖ûτ − u‖W 1,p(0,T ;H) , (3.12)

and for all for all ζ ∈ Lm′(0, T ;X∗) we find

| 〈ζ, ûτ,ε − u〉Lm(0,T ;X) | ≤ | 〈ζ, ûτ,ε − ûτ 〉Lm(0,T ;X) |+ | 〈ζ, ûτ − u〉Lm(0,T ;X) |. (3.13)

Let {ζj}∞j=0 be a dense subset of Lm
′
(0, T ;X∗). Thanks to the convergences in (3.7)-(3.9) and

estimate (3.10), we can choose ε = ετ such that

‖ûτ,ετ − ûτ‖W 1,p(0,T ;H) ≤ τ and | 〈ζj, ûτ,ετ − ûτ 〉Lm(0,T ;X) | ≤ τ for all j ≤ 1

τ
. (3.14)
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Moreover, we can assume that r1
τ,ετ ≤ τ with r1

τ,ε from (3.10). By using convergences (3.5a)-(3.5b)
and estimates (3.12)-(3.13), we obtain that

lim
τ→0
‖ûτ,ετ − u‖W 1,p(0,T ;H) = 0 and lim sup

τ→0
Iετ (ûτ,ετ ) ≤ I0(u).

In particular, ûτ,ετ → u strongly in W 1,p(0, T ;H).

It remains to show that also ûτ,ετ → u weakly in Lm(0, T ;X). Given ζ ∈ Lm
′
(0, T ;X∗), for all

α > 0 there exists j ∈ N such that ‖ζ − ζj‖Lm′ (0,T ;X∗) ≤ α and τ = τ(j) with j ≤ 1/τ , τ ≤ α
and satisfying ∣∣〈ζl, ûτ − u〉Lm(0,T ;X)

| ≤ α for all l ≤ 1

τ
.

Thus, by using (3.14) and (3.11), we have that

| 〈ζ, ûτ,ετ − u〉Lm(0,T ;X) | = | 〈ζ − ζj, ûτ,ετ − u〉Lm(0,T ;X) |
+ | 〈ζj, ûτ,ετ − ûτ 〉Lm(0,T ;X) |+ | 〈ζj, ûτ − u〉Lm(0,T ;X) |
≤ Cα + α + α.

In particular, ûτ,ετ → u weakly in Lm(0, T ;X). This proves the existence of a recovery sequence
under the additional assumption u ∈ C1([0, T ];X).

Let us now consider the general case with u ∈ W 1,p(0, T ;H) ∩ Lm(0, T ;X). We can find an
approximating sequence un ∈ C1([0, T ], X) with

un → u strongly in W 1,p(0, T ;H) ∩ Lm(0, T ;X).

Hence, I0(un) → I(u). For every n let un,ε be a recovery sequence for un as constructed in
the first step, i.e. un,ε → un strongly in W 1,p(0, T ;H) and weakly in Lm(0, T ;X) and such that
lim supε→0 Iε(un,ε) ≤ I0(un). Moreover, we can assume that un,ε satisfies the additional require-
ment

‖un,ε‖mLm(0,T ;X) ≤ C̃(ϕ1(u) + T + 1).

Thus, it is possible to apply Lemma 5.1 and extract a subsequence uεk,nk such that unk,εk →
u strongly in W 1,p(0, T ;H) and weakly in Lm(0, T ;X) and such that the lim sup-inequality is
satisfied. As a consequence of the liminf-estimate obtained in Proposition 3.1, we conclude that
limεk→0 Iεk(unk,εk) = I0(u).

Theorem 2.2 can be now proved by simply combining the two propositions above.

Proof of Corollary 2.3. For all u ∈ KTε(u0
ε) we decompose

Iε(u) =

∫ T

0

eε,δ(t)χ[0,Tε](t)

(
ψε(u̇) +

1

δ
φ̃ε(t, u)

)
dt

=

∫ T

0

e−t/δ
(
ψε(u̇) +

1

δ
φ̃ε(t, u)

)
dt−

∫ T

Tε

e−t/δ
(
ψε(0) +

1

δ
φ̃ε(t, u)

)
dt

+

∫ Tε

0

(
eε,δ(t)− e−t/δ

)(
ψε(u̇) +

1

δ
φ̃ε(t, u)

)
dt. (3.15)

Note that, since t 7→ ψε(u̇(t))+ 1
δ
φ̃ε(t, u(t)) is uniformly bounded in L1(0, T ), thanks to the uniform

convergence of eε,δ to t 7→ e−t/δ and to the convergence of Tε, we have that the second and the third
terms in (3.15) vanish as ε → 0 and independently of u as long as u lies in a bounded subset of
W 1,p(0, T ;H) ∩ Lm(0, T ;X). By applying Theorem 2.2 we have that the first term Γ-converges
to I0. By recalling the equicoercivity of the functionals Iε in W 1,p(0, T ;H) ∩ Lm(0, T ;X) we then
conclude the proof of Corollary 2.3.
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3.2 Proof of the joint limit

Let uε,δ := u∗ε,δ denote the minimizer of the WED functional Iε,δ, which solves the Euler–Lagrange
system as stated in Theorem 2.1 (see also [AS11, AM17])

−δξ̇ε,δ + ξε,δ + η1
ε,δ − η2

ε,δ = gε in X∗ a.e. in (0, T ),

with δξε,δ(T ) = 0 and uε,δ(0) = u0
ε,

(3.16)

where ξε,δ = dψε(u̇ε,δ) ∈ Lp
′
(0, T ;H∗), η1

ε,δ ∈ Lm
′
(0, T ;X∗), η2

ε,δ ∈ Lp
′
(0, T ;H∗) with

η1
ε,δ(t) ∈ ∂Xϕ1

ε(uε,δ(t)), and η2
ε,δ(t) ∈ ∂Hϕ2

ε(uε,δ(t)) for almost every t ∈ (0, T ).

In order to prove Theorem 2.5, we want to pass to the limit δ + ε→ 0 in (3.16). To this aim we recall
that uε,δ satisfies the following uniform estimate (cf. [AM17, Sec. 4.4], see also [AS11] for the convex
energy case)∥∥ξε,δ∥∥Lp′ (0,T ;H∗)

+
∥∥uε,δ∥∥W 1,p(0,T ;H)∩Lm(0,T ;X)

+
∥∥η1

ε,δ

∥∥
Lm′ (0,T ;X∗)

+
∥∥η2

ε,δ

∥∥
Lp′ (0,T ;H∗)

+
∥∥ξε,δ∥∥C([0,T ];X∗)

+
∥∥δξ̇ε,δ∥∥Lp′ (0,T ;H∗)+Lm′ (0,T ;X∗)

≤ C , (3.17)

which implies, up to not-relabeled subsequences, the following convergence results for the joint limit
δ + ε→ 0

uε,δ → u weakly in Lm(0, T ;X) ∩W 1,p(0, T ;H), (3.18a)

uε,δ → u strongly in C ([0, T ];H) , (3.18b)

ξε,δ → ξ weakly in Lp
′
(0, T ;H∗), (3.18c)

δξε,δ → 0 strongly in Lp
′
(0, T ;H∗), (3.18d)

η1
ε, δ → η1 weakly in Lm

′
(0, T ;X∗), (3.18e)

η2
ε,δ → η2 weakly in Lp

′
(0, T ;H∗), (3.18f)

δξ̇ε,δ → 0 weakly in Lp
′
(0, T ;H∗) + Lm

′
(0, T ;X∗). (3.18g)

for some limits η1 ∈ Lm′(0, T ;X∗), η2 ∈ Lp′(0, T ;H∗) and ξ ∈ Lp′(0, T ;H∗). Furthermore, we
recall that gε → g0 weakly in Lp

′
(0, T ;H∗) by assumption (2.11). Thus, we can pass to the limit

δ + ε→ 0 to obtain the limiting equation

ξ + η1 − η2 = g0 in X∗ a.e. in (0, T ), (3.19)

u(0) = u0. (3.20)

Note that, since η2, g0, and ξ belong to the spaceLp
′
(0, T ;H∗), then, by comparison in (3.19) we also

have η1 ∈ Lp′(0, T ;H∗). In particular, equation (3.19) can be equivalently rewritten in the stronger
form

ξ + η1 − η2 = g0 in H∗ a.e. in (0, T ).

It remains to identify the limits ξ, η1, and η2.

Identification of η2 ∈ ∂Hϕ
2
0(u). Letw ∈ D(ϕ2

0) and let ρ ∈ C∞c (0, T ), ρ ≥ 0. By the definition
of the subdifferential, we have∫ T

0

ϕ2
ε(w)ρ(t)dt+

∫ T

0

〈
η2
ε,δ(t), uε,δ(t)− w

〉
H
ρ(t)dt ≥

∫ T

0

ϕ2
ε(uε,δ(t))ρ(t)dt (3.21)
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As a consequence of convergence (3.18b) and (3.18f), we get

lim
ε→0

∫ T

0

〈
η2
ε,δ(t), uε,δ(t)− w

〉
H
ρ(t)dt =

∫ T

0

〈
η2(t), u(t)− w

〉
H
ρ(t)dt.

Thanks to continuous convergence of ϕ2
ε in (2.9) and the convergence in (3.18b), we have∫ T

0

ϕ2
ε(w)ρ(t)dt→

∫ T

0

ϕ2
0(w)ρ(t)dt and

∫ T

0

ϕ2
ε(uε,δ(t))ρ(t)dt→

∫ T

0

ϕ2
0(u(t))ρ(t)dt.

Thus, passing to the limit in (3.21), we obtain∫ T

0

ϕ2
0(w)ρ(t)dt+

∫ T

0

〈
η2(t), u(t)− w

〉
H
ρ(t)dt ≥

∫ T

0

ϕ2
0(u(t))ρ(t)dt.

As ρ and w are arbitrary, we deduce η2(t) ∈ ∂Hϕ2
0(u(t)) for a.a. t ∈ (0, T ).

Identification of η1 ∈ ∂Xϕ
1
X(u). As before, let w ∈ D(ϕ1

0) and let ρ ∈ C∞c (0, T ) with ρ ≥ 0.
Let now {wε} ⊂ X be a recovery sequence for ϕ1

0 at w, i.e.

wε → w weakly in X (strongly in H) (3.22)

and ϕ1
ε(wε)→ ϕ1

0(w). By the definition of the subdifferential, we have∫ T

0

ϕ1
ε(wε)ρ(t)dt+

∫ T

0

〈
η1
ε,δ(t), uε,δ(t)− wε

〉
X
ρ(t)dt ≥

∫ T

0

ϕ1
ε(uε,δ(t))ρ(t)dt. (3.23)

As wε is a recovery sequence, we have convergence∫ T

0

ϕ1
ε(wε)ρ(t)dt→

∫ T

0

ϕ1
0(w)ρ(t)dt.

Testing equation (3.16) with (uε,δ − wε)ρ leads to∫ T

0

〈
η1
ε,δ(t), uε,δ(t)− wε

〉
X
ρ(t)dt

=

∫ T

0

〈
η2
ε,δ(t), uε,δ(t)− wε

〉
H
ρ(t)dt+

∫ T

0

〈gε(t), uε,δ(t)− wε〉H ρ(t)dt

+

∫ T

0

〈
δξ′ε,δ(t), uε,δ(t)− wε

〉
X
ρ(t)dt−

∫ T

0

〈ξε,δ(t), uε,δ(t)− wε〉H ρ(t)dt. (3.24)

Note that, as a consequence of convergences (3.18b), (3.18f), (3.22), we obtain∫ T

0

〈
η2
ε,δ(t), uε,δ(t)− wε

〉
H
ρ(t)dt→

∫ T

0

〈
η2(t), u(t)− w

〉
H
ρ(t)dt.

Integration by parts, together with the final condition for ξε,δ in (3.16) and estimate (3.17) yield (see
[AS11] for a rigorous derivation of the integration by parts formula)∫ T

0

〈
δξ′ε,δ(t), uε,δ(t)− wε

〉
X
ρ(t)dt

= −δ
∫ T

0

〈ξε,δ(t), u̇ε,δ(t)〉H ρ(t)dt− δ
∫ T

0

〈ξε,δ(t), uε,δ(t)− wε〉H ρ̇(t)dt

≤ δ‖ρ‖W 1,∞ ‖ξε,δ‖Lp′ (0,T ;H∗)

(
‖u̇ε,δ‖Lp(0,T ;H) + ‖uε,δ − wε‖Lp(0,T ;H)

)
→ 0.
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Furthermore, thanks to assumption (2.11) and strong convergences (3.18b) and (3.22),∫ T

0

〈gε(t), uε,δ(t)− wε〉H ρ(t)dt→
∫ T

0

〈g0(t), u(t)− w〉H ρ(t)dt

Finally, from (3.18b), (3.18c), (3.22) it follows that∫ T

0

〈ξε,δ(t), uε,δ(t)− wε〉H ρ(t)dt→
∫ T

0

〈ξ(t), u(t)− w〉H ρ(t)dt.

Substituting into (3.24) and using identity (3.19), one gets∫ T

0

〈
η1
ε,δ(t), uε,δ(t)− wε

〉
X
ρ(t)dt→

∫ T

0

〈
η2(t) + ξ(t) + g0(t), u(t)− w

〉
H
ρ(t)dt

=

∫ T

0

〈
η1(t), u(t)− w

〉
X
ρ(t)dt.

The Mosco convergence of ϕ1
ε, (3.18b), and the Fatou Lemma yield

lim inf
δ+ε→0

∫ T

0

ϕ1
ε(uε,δ(t))ρ(t)dt ≥

∫ T

0

ϕ1
0(u(t))ρ(t)dt.

Combining all these facts from (3.23) we deduce∫ T

0

ϕ1
0(w)ρ(t)dt+

∫ T

0

〈
η1(t), u(t)− w

〉
X
ρ(t)dt ≥

∫ T

0

ϕ1
0(u(t))ρ(t)dt.

Hence, η1 ∈ ∂Xϕ1
0(u) a.e. in (0, T ). Moreover, since η1(t) ∈ H∗ for a.a. t ∈ (0, T ), then η1(t) ∈

∂Hϕ
1
0(u(t)) for a.a. t ∈ (0, T ) (cf. [AS11] for details).

Identification of ξ = dHψ0(u
′). Let v ∈ Lp(0, T ;H). Again by the definition of the subdifferen-

tial, we have ∫ T

0

ψε(v(t))dt+

∫ T

0

〈ξε,δ(t), u̇ε,δ(t)− v(t)〉H dt ≥
∫ T

0

ψε(u̇ε,δ(t))dt. (3.25)

Note that, as ψε
C→ ψ0 strongly in H , we have∫ T

0

ψε(v(t))dt→
∫ T

0

ψ0(v)dt.

Arguing as in Proposition 3.1, the following inequality follows from Jensen’s inequality

lim inf
ε+δ→0

∫ T

0

ψε(u̇ε,δ(t))dt ≥
∫ T

0

ψ0(u̇(t))dt.

The weak convergence in (3.18c) implies∫ T

0

〈ξε,δ(t), v(t)〉H dt→
∫ T

0

〈ξ(t), v(t)〉H dt.
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Using the Euler-Lagrange equation (3.16), we obtain

lim sup
ε+δ→0

∫ T

0

〈ξε,δ(t), u̇ε,δ(t)〉H dt ≤ lim sup
ε+δ→0

∫ T

0

〈
δξ̇ε,δ(t)− η1

ε,δ(t), u̇ε,δ(t)
〉
H

dt

+ lim sup
ε+δ→0

∫ T

0

〈
η2
ε,δ(t), u̇ε,δ(t)

〉
H

+ 〈gε(t), u̇ε,δ(t)〉H dt.

Note that, as ξε,δ = dψε(u̇ε,δ) ∈ ∂Hψε(u̇ε,δ), then u̇ε,δ ∈ ∂H∗ψ∗ε(ξε,δ), where ψ∗ε : H∗ → [0,∞) is
the Fenchel conjugate of ψε, i.e. ψ∗ε(ξ) = supv{〈ξ, v〉 − ψε(v)}. Using the chain rule and recalling
the final condition ξε,δ(T ) = 0 (cf. [AS11] for a rigorous proof and more details), we get∫ T

0

〈
δξ̇ε,δ(t)− η1

ε,δ(t), u̇ε,δ(t)
〉
H

dt ≤
∫ T

0

(
δ

d

dt
ψ∗ε(ξε,δ(t))−

d

dt
ϕ1
ε(uε,δ(t))

)
dt

≤ −δψ∗ε(ξε,δ(0))− ϕ1
ε(uε,δ(T )) + ϕ1

ε(u
0
ε)

≤ −ϕ1
ε(uε,δ(T )) + ϕ1

ε(u
0
ε).

By using the well preparedness of the initial data, the Mosco convergence of ϕ1
ε and (3.18b), we can

pass to the limit above to arrive at

lim sup
ε+δ→0

∫ T

0

〈
δξ̇ε,δ(t)− η1

ε,δ(t), u̇ε,δ(t)
〉
H

dt ≤ − lim inf
ε+δ→0

ϕ1
ε(uε,δ(T )) + lim

ε+δ→0
ϕ1
ε(u

0
ε)

= −ϕ1
0(u(T )) + ϕ1

0(u0).

As already observed η1(t) ∈ H∗ for a.a. t ∈ (0, T ), as a consequence of identity (3.19), thus, we
obtain

−ϕ1
0(u(T )) + ϕ1

0(u0) =

∫ T

0

〈
η1(t), u̇(t)

〉
H

dt.

Thus, thanks to the assumption (2.9) and the convergence in (3.18b), we can use the chain rule for
t 7→ ϕ2

ε(uε,δ) to get

lim sup
ε+δ→0

∫ T

0

〈
η2
ε,δ(t), u̇ε,δ(t)

〉
H

dt

= lim
ε+δ→0

ϕ2
ε(uε,δ(T ))− lim

ε+δ→0
ϕ2
ε(u

0
ε) = ϕ2

0(u(T ))− ϕ2
0(u0) =

∫ T

0

〈
η2(t), u̇(t)

〉
H

dt.

Finally, by using convergences (2.14)-(2.15) and (3.18a)-(3.18b), by integrating by parts, we get∫ T

0

〈gε(t), u̇ε,δ(t)〉H dt

=
〈
g1
ε(T ), uε,δ(T )

〉
H
−
〈
g1
ε(0), u0

ε

〉
H
−
∫ T

0

〈
ġ1
ε(t), uε,δ(t)

〉
H

dt+

∫ T

0

〈
g2
ε(t), u̇ε,δ(t)

〉
H

dt

→
〈
g1

0(T ), u(T )
〉
H
−
〈
ġ1

0(0), u0
〉
H
−
∫ T

0

〈
ġ1

0(t), u(t)
〉
H

dt+

∫ T

0

〈
g2

0(t), u̇0(t)
〉
H

dt

=

∫ T

0

〈g0(t), u̇(t)〉H dt.

Combining the above estimates and (3.25), we conclude∫ T

0

ψ0(v(t))dt+

∫ T

0

〈ξ(t), u̇(t)− v(t)〉H dt ≥
∫ T

0

ψ0(u̇(t))dt,
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i.e. ξ ∈ ∂Lp(0,T ;H)ψ0(u̇), where ψ0(v) =
∫ T

0
ψ0(v(t))dt for all v ∈ Lp(0, T ;H). As ψ0 is Gâteaux

differentiable in H , then ψ0 is Gâteaux differentiable in Lp(0, T ;H). Moreover,〈
dLp(0,T ;H)ψ0(v), w

〉
Lp(0,T ;H)

≤
∫ T

0

〈dHψ0(v(t)), w(t)〉H dt for all v, w ∈ Lp(0, T ;H).

In particular, ξ ∈ ∂Lp(0,T ;H)ψ0(u̇) implies ξ(t) = dHψ0(u̇(t)) for a.a. t ∈ (0, T ). This concludes
the proof of Theorem 2.5.

3.3 Proof of the convergence rates

We now prove Theorem 2.7, i.e. quantitative estimates for the convergence of the WED minimizers.
To this aim, we take advantage of the following abstract result for Γ-converging functionals.

Lemma 3.3 Let Iε, I0 : V → (−∞,∞] be functionals defined on some Banach space V . Assume
that each functional admits a unique minimizer, denoted by u∗ε = argmin Iε, u∗ = argmin I , respec-

tively. Let Iε
Γ→ I as ε → 0 in the strong topology of V . Finally, assume that there exist sequences

uRε ∈ V and uSε ∈ V satisfying

(i) there exists ρ1
ε > 0, such that

‖uRε − u∗‖V ≤ ρ1
ε; (3.26)

(ii) there exists ρ2
ε ∈ R such that

Iε(u
R
ε )− I0(u∗) ≤ ρ2

ε; (3.27)

(iii) there exist ρ3
ε > 0 such that

I0(uSε )− Iε(u∗ε) ≤ ρ3
ε; (3.28)

(iv) there exist C > 0, γ > 1, and ρ4
ε > 0 such that

C
∥∥uRε − u∗ε∥∥γV ≤ Iε(u

R
ε )− Iε(u∗ε) + ρ4

ε. (3.29)

Then, ‖u∗ε − u∗‖V ≤ ρ1
ε + C (ρ2

ε + ρ3
ε + ρ4

ε)
1/γ

where C = (1/C)1/γ .

Proof. We estimate

‖u∗ε − u∗‖V ≤
∥∥uRε − u∗∥∥V +

∥∥u∗ε − uRε ∥∥V
≤

(3.26)+(3.29)
ρ1
ε + C

(
Iε(u

R
ε )− Iε(u∗ε) + ρ4

ε

)1/γ

= ρ1
ε + C

(
Iε(u

R
ε )− I(u∗) + I(u∗)− Iε(u∗ε) + ρ4

ε

)1/γ

≤
(3.27)

ρ1
ε + C

(
ρ2
ε + I(uSε )− Iε(u∗ε) + ρ4

ε

)1/γ

≤
(3.28)

ρ1
ε + C

(
ρ2
ε + ρ3

ε + ρ4
ε

)1/γ
,

which completes the proof.

Remark 3.4 Note that we need the sequences uRε and uSε to be defined just for the minimizers u∗

and u∗ε and not for every element in the domain of the functionals.
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3.3.1 Time-discrete to time-continuous WED functionals.

To prove the result in Theorem 2.7, we will use a time-discrete version of the WED functional. It is
known that minimizers of the time-discrete WED functional (i.e. solutions to the time-discrete Euler-
Lagrange equation) converge to their time-continuous counterpart as the discretization parameter τ
goes to zero, see e.g. [MS11, Sect. 2.6]. In this subsection we estimate the rate of convergence of
the time-discrete minimizers with respect to the time step parameter τ > 0. This result constitutes
a first step in the proof of Theorem 2.7. Recall that we restrict ourselves to the setting of a quadratic
dissipation potential ψε(v) = 1

2
(Aεv, v)H and of uniformly λ-convex energy functionals φε as well as

gε ∈ H1(0, T ;H).

We fix δ > 0, T > 0, as well as a time step τ = T/N for N ∈ N. The parameter ε > 0 will be fixed
in this subsection, hence, we omit the index.

The time-continuous WED functional Iδ is defined as in (2.6) while its time-discrete counterpart Iτδ :
Kτ (u0)→ R ∪ {+∞} where Kτ (u0) := {u0} ×HN is defined via

Iτδ (u0, . . . , uN) =
N−1∑
i=0

ρiττ

(
ψ

(
ui+1 − ui

τ

)
+

1

δ
φ(ui)− 1

δ
(gi, ui)H

)
=

∫ T

0

ρτ (t)

(
ψ(û′τ ) +

1

δ
φ(uτ )−

1

δ
(gτ (t), uτ )H

)
dt, (3.30)

where uτ and ûτ denote the piecewise constant and piecewise affine interpolants of the nodes
(u0, . . . , uN) (analogously for gτ and ρτ ). The discrete weights are given via ρiτ = (δ/(δ + τ))i

and (g1
τ , . . . , g

N
τ ) ∈ HN is a suitable approximation of g so that ‖gτ − g‖L2(0,T ;H) ≤ Cτ . Note that

Kτ (u0) is in bijective correspondence with the set{
u ∈ K(u0) : u is piecewise affine with respect to [iτ, (i+1)τ), i = 0, . . . , N−1

}
.

In particular, from now on, we will identify the tuple (u∗,0, . . . , u∗,N) that minimizes the time-discrete
WED functional with the piecewise affine interpolant, denoted by udisc

τ . The former solves the discrete
Euler-Lagrange equation

−δAv
∗,i+1
τ − v∗,iτ

τ
+ Avi,∗τ + η∗,iτ = giτ ,

where v∗,iτ =
u∗,i+1
τ − u∗,iτ

τ
and η∗,iτ ∈ ∂Hφ(u∗,iτ ),

(3.31)

where we additionally have the final condition v∗,Nτ = 0, see [MS11, Eqn. 6.6]. Moreover, arguing as
in [MS11, Sect. 6.2] we obtain the following estimate with a constant C independent of ε ≥ 0 for the
time-discrete solution

δ1/2 ‖w∗τ‖L2(0,T ;H) + δ1/2 ‖v∗τ‖L∞(0,T ;H) + ‖u∗τ‖L2(0,T ;H)

+
∥∥udisc

τ

∥∥
H1(0,T ;H)

+ ‖η∗τ‖L2(0,T ;H) +

∫ T

0

φ(u∗τ ) dt ≤ C , (3.32)

where w∗τ is the piecewise constant interpolant of the second order difference quotient of u∗,iτ , i.e.
w∗,iτ = (v∗,i+1

τ −v∗,iτ )/τ . Note, that this estimate mimics the time-continuous estimate

δ1/2 ‖∂ttu∗‖L2(0,T ;H) + δ1/2 ‖∂tu∗‖C([0,T ];H) + ‖u∗‖H1(0,T ;H)

+ ‖η∗‖L2(0,T ;H) +

∫ T

0

φ(u) dt ≤ C, (3.33)
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see [MS11, Sect. 4].

The following proposition gives a quantitative estimate for the time-discrete solutions.

Proposition 3.5 Let udisc
τ and u∗ be the minimizers of the time-discrete and -continuous WED func-

tional Iτδ and Iδ, respectively. Then, we have

∥∥udisc
τ − u∗

∥∥
L2(0,T ;H) ≤ Cτ 1/2 =: ρdtc

τ . (3.34)

Proof. In what follows the symbol C will denote a constant independent of τ , δ, and ε possibly varying
from line to line.

Without loss of generality, we can assume that A = Id. The general case follows from analogous
computation. We start by considering the difference between the time-discrete and time-continuous
Euler–Lagrange equation, i.e. (3.31) and (Pδ,ε), respectively,

−δ (w∗τ − ∂ttu∗) + (v∗τ − ∂tu∗) + (η∗τ − η∗) = (gτ − g) .

We define the auxiliary function U∗τ := udisc
τ − u∗, use it as test function in the equation above, and

obtain after integration over [0, t] for t = Kτ for some K ∈ {1, . . . , N}

− δ
K−1∑
i=0

∫ (i+1)τ

iτ

(
v∗,i+1
τ − v∗,iτ

τ
, U∗τ

)
H

ds+ δ

∫ t

0

(∂ttu
∗, U∗τ )H ds

+

∫ t

0

(v∗τ − ∂tu∗, U∗τ )H ds+

∫ t

0

(η∗τ − η∗, U∗τ )H ds =

∫ t

0

(gτ − g, U∗τ )H ds. (3.35)

For the first and second term we employ a discrete and continuous integration by parts formula (recall
that udisc

τ (0)− u∗(0) = U∗τ (0) = 0 and v∗τ = ∂tu
disc
τ ) to arrive at

δ

τ

∫ τ

0

(
v∗,0τ , U∗τ

)
H

ds− δ

τ

∫ Kτ

(K−1)τ

(
v∗,Kτ , U∗τ

)
H

ds+ δ
(
∂tu
∗(t), U∗τ (t)

)
H

+ δ
K−1∑
i=1

∫ (i+1)τ

iτ

(
v∗,iτ ,

U∗τ (s+τ)− U∗τ (s)

τ

)
H

ds− δ
∫ t

0

(∂tu
∗, ∂tU

∗
τ )H ds+

1

2

∫ t

0

d

dt
‖U∗τ ‖

2
H ds

+

∫ t

0

(
η∗τ − η∗, udisc

τ − u∗
)
H

ds+

∫ t

0

(
η∗τ − η∗, udisc

τ − udisc
τ

)
H

ds ≤
∫ t

0

‖gτ − g‖H ‖U
∗
τ ‖H ds,

where udisc
τ denotes the piecewise constant interpolant associated with the minimizer of the time-

discrete WED functional. By monotonicity, the first term on the last line is nonnegative, viz.∫ t

0

(
η∗τ−η∗, udisc

τ −u∗
)
H

ds ≥ 0.

Moreover, thanks to the uniform bounds on η∗τ , on η∗ and on the time derivative of udisc
τ , we have that

|
∫ t

0

(
η∗τ − η∗, udisc

τ − udisc
τ

)
H

ds| ≤ Cτ . Furthermore, it is not hard to see that due to the estimate
in (3.33) and (3.32) the first term on the first line vanishes for τ → 0 with an order of at least τ .
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Next, we consider the second and third term on the first line, namely,

− δ

τ

∫ Kτ

(K−1)τ

(
v∗,Kτ , U∗τ (s)

)
H

ds+ δ
(
∂tu
∗(t), U∗τ (t)

)
H

= −δ
(
∂tU

∗
τ (t), U∗τ (t)

)
H
− δ

(
v∗,Kτ ,

1

τ

∫ t

t−τ
U∗τ (s)ds− U∗τ (t)

)
H

=: −δ
(
∂tU

∗
τ (t), U∗τ (t)

)
H

+ ∆∗τ

Here, thanks to the uniform bounds in (3.33) and (3.32), we can estimate

|∆∗τ | ≤ δ ‖v∗τ‖L∞(0,T ;H)

∥∥∥∥1

τ

∫ t

t−τ
U∗τ (s)ds− U∗τ (t)

∥∥∥∥
H

≤ Cτδ1/2(‖v∗τ‖L∞(0,T ;H) + ‖∂tu∗‖L∞(0,T ;H)) ≤ Cτ.

Next, we treat the first and second term on the second line in the above estimate. We write

δ

K−1∑
i=1

∫ (i+1)τ

iτ

(
v∗,iτ ,

U∗τ (s+ τ)− U∗τ (s)

τ

)
H

ds− δ
∫ t

0

(∂tu
∗, ∂tU

∗
τ )H ds

= δ

∫ t

0

‖∂tU∗τ ‖
2
H ds+ δ

K−1∑
i=1

∫ (i+1)τ

iτ

(
∂tu

disc
τ ,

U∗τ (s+ τ)− U∗τ (s)

τ
− ∂tU∗τ

)
H

ds.

We observe that the last term on the right-hand side is of order τ . Indeed, we have that∣∣∣∣∣δ
K−1∑
i=1

∫ (i+1)τ

iτ

(
∂tu

disc
τ ,

u∗(s+ τ)− u∗(s)
τ

− ∂tu∗
)
H

ds

∣∣∣∣∣
≤ δ ‖v∗τ‖L∞(0,T ;H)

(
K−1∑
i=1

∫ (i+1)τ

iτ

∥∥∥∥u∗(s+ τ)− u∗(s)
τ

− ∂tu∗
∥∥∥∥2

H

ds

)1/2

≤ Cτδ1/2 ‖u∗‖H2(0,T ;H) ≤ Cτ

and, by definition of udisc
τ ,

δ
K−1∑
i=1

∫ (i+1)τ

iτ

(
∂tu

disc
τ ,

udisc
τ (s+ τ)− udisc

τ (s)

τ
− ∂tudisc

τ

)
H

ds

= δ

K−1∑
i=1

∫ (i+1)τ

iτ

(
v∗,iτ ,

1

τ

(
v∗,i+1
τ (s− iτ) + ui+1

τ − v∗,iτ (s− iτ)− uiτ
)
− v∗,iτ

)
H

ds

= δ

K−1∑
i=1

∫ (i+1)τ

iτ

(
v∗,iτ ,

(s− iτ)

τ
v∗,i+1
τ − v∗,iτ

)
H

ds

≤ Cδτ ‖v∗τ‖L∞(0,T ;H) ‖w
∗
τ‖L2(0,T ;H) ≤ Cτ.

Finally, the right-hand side in the above estimate, containing the external forces, vanishes with an
order of at least τ due to the assumptions made on giτ .

Combining the above estimates, we have for all t = Kτ,K ∈ {1, ..., N},

δ ‖∂tU∗τ ‖
2
L2(0,t;H) +

1

2
‖U∗τ (t)‖2

H ≤ Cτ
(
1 + ‖U∗τ ‖L2(0,t;H)

)
+ δ
(
∂tU

∗
τ (t), U∗τ (t)

)
H
. (3.36)
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Note that the same formula holds true for every t < T (after suitably modifying the constant C). In-
deed, for every t < T , let K be the biggest integer smaller than t/τ . Thanks to the uniform estimates
(3.32)-(3.33), each term in (3.36) evaluated at time t can be replaced by the same term at time Kτ
plus an error of order τ .

Starting from the above estimate and arguing as in [Mel17, Section 3.2], we deduce the estimate
‖U∗τ ‖L2(0,T ;H) ≤ Cτ 1/2. Substituting in (3.36) with t = T , and recalling that ∂tU∗τ (T ) = 0, we also

have δ1/2 ‖∂tU∗τ ‖L2(0,T ;H) = O(τ 1/2).

3.3.2 Proof of the convergence rates

Since δ > 0 is fixed throughout this section we will omit this index of the WED functionals and of their
minimizer.

We start by recalling that in the case of λ-convex energies and quadratic dissipation potentials the
functionals Iδ,ε and Iδ,0 admit unique minimizers u∗ε and u∗ over K(u0

ε) and K(u0) respectively for
all δ sufficiently small. Moreover, they satisfy the bounds [MS11]

‖u∗ε‖H2(0,T ;H)∩Lm(0,T ;X) + ‖η∗ε‖L2(0,T ;H) ≤ Cδ,

and ‖u∗‖H2(0,T ;H)∩Lm(0,T ;X) + ‖η∗‖L2(0,T ;H) ≤ Cδ,
(3.37)

for some Cδ depending on δ, but independent of ε, where η∗ε (and η∗ are the selection of the sub-
differentials ∂Hφε(u∗ε) and ∂Hφ0(u∗), respectively, such that u∗ε and u∗ solve the respective Euler-
Lagrange equations a.e. in (0, T ), see [MS11].

Our strategy to prove Theorem 2.7 consists in checking that Iε and I0 satisfy the assumptions (3.26)-
(3.29) of Lemma 3.3. To do this, we explicitly build the sequences uRε and uSε starting from the recovery
and smoothing operators Rε and Sε as well as the minimizers u∗ and u∗ε of the time-discrete WED
functionals Iτ0 and Iτε defined above.

It is worth noting that although we need to build the sequences ûε and ũε in Lemma 3.3 just for
the minimizer of the functionals, we however need informations on the convergence rates for the
operators Rε and Sε for the static functionals at any point (cf. (R1)-(R6)). This is due to the fact that
the minimizers of the static functionals are not related in any obvious way to the minimizers of the
corresponding dynamic WED functionals.

Proof of (3.26)-(3.27) We start by additionally assuming φε to be convex for all ε ≥ 0, i.e. λ = 0. Let
u∗ ∈ H2(0, T ;H) ∩ Lm(0, T ;X) be the minimizer of the limiting WED functional Iδ,0 over K(u0).
We fix a time step τ = T/N , N ∈ N and define the nodal values u∗,iτ = u∗(iτ). As before, we
consider the piecewise affine and piecewise constant interpolants û∗τ and u∗τ for the nodes {u∗(iτ)}.
Let udisc

τ denote the (piecewise affine interpolant of the) minimizer of the discrete WED functional Iτδ,0.

We introduce the following sequence

uRτ,ε(t) =

{
α0
τ (t)u

0
ε + (1−α0

τ (t))Rεu
disc,1
τ t ∈ [0, τ),

αiτ (t)Rεu
disc,i
τ + (1−αiτ (t))Rεu

disc,i+1
τ t ∈ [iτ, (i+ 1)τ), i = 1, . . . , N−1,

where αiτ (t) = 1− (t− iτ)/τ .

Remark 3.6 The idea of the proof of (3.26)-(3.27) is to construct the recovering sequence Rεu
∗ by

using the good properties of the recovering operator Rε for the energy functional. The naive idea
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would be to define (Rεu
∗) (t) = Rε(u

∗(t)). However, note that this cannot be done rigorously, since
Rε is defined only over X and u∗ is not pointwise well defined in X (but just in H) (see also the
Section 4).

Moreover, since in general Rε is not differentiable in time, we would have no informations on the time
derivative of (Rεu

∗) (t). Thus, a natural idea would be then to take a time discretization of u∗, where
nodal values are average on small intervals (this way nodal values are well defined in X) compute
Rεu

∗ on the nodal values and finally interpolate. This, would provide a good estimate in condition
(3.26). However, in order to get some good estimates in (3.27) we need a control of Iε(Rεu

∗)−I(u∗).
If we defineRεu

∗ in terms of the time piecewise affine interpolant û∗τ of u∗, since we cannot estimate
how good is the approximation I(û∗τ ) of I(u∗) (more precisely, we have no control on the ∂Hφ(û∗τ )
since it does not solve any equation) estimates of Iε(Rεu

∗)− I(u∗) seems hard to obtain.

Then, using the assumptions in (2.18), (2.24), and the bound in (3.34), we estimate

1

2

∥∥u∗ − uRτ,ε∥∥2

L2(0,T ;H)
≤
∥∥u∗ − udisc

τ

∥∥2

L2(0,T ;H)
+
∥∥udisc

τ − uRτ,ε
∥∥2

L2(0,T ;H)

≤
(
ρdtc
τ

)2
+ 2

N∑
i=1

τ
∥∥Rεu

disc,i
τ − udisc,i

τ

∥∥2

H
+ τ

∥∥u0
ε − u0

∥∥2

H

≤
(
ρdtc
τ

)2
+ 2

(
rRε
)2

sup
i
`
( ∥∥udisc,i

τ

∥∥
H

)
+ 2

(
rRε
)2

N∑
i=1

τ
∥∥udisc,i

τ

∥∥m
X

+ τ
(
r0
ε

)2

≤ C
(
rRε + τ 1/2r0

ε + ρdtc
τ

)2
. (3.38)

The rate ρdtc
τ is the rate of convergence of the discrete to continuous approximation, computed in the

previous subsection (see (3.34)). We now decompose

Iε(uRτ,ε)− I0(u∗) =

∫ T

0

e−t/δ
(
ψε
(
∂tu

R
τ,ε

)
− ψ0 (∂tu

∗)
)

dt+
1

δ

∫ T

0

e−t/δ
(
φε
(
uRτ,ε
)
− φ0 (u∗)

)
dt

+
1

δ

∫ T

0

e−t/δ
(
(gε, u

R
τ,ε)H − (g, u∗)H

)
dt =:

∫ T

0

[
∆ψ
τ,ε + ∆φ

τ,ε + ∆g
τ,ε

]
dt.

We will treat each term on the right-hand side separately. Concerning ∆ψ
τ,ε we introduce the auxiliary

variable Uε,τ via

∂tu
R
τ,ε =

Rεu
disc,i+1 −Rεu

disc,i

τ
= ∂tu

disc
τ + Uε,τ .

Using assumption (2.18) for the recovery operator we obtain for all t ∈ [0, τ)

‖Uε,τ (t)‖H ≤
rRε
τ

(
`
(∥∥udisc,1

τ

∥∥
H

)
+
∥∥udisc,1

τ

∥∥m
X

)1/2
+
r0
ε

τ
,

and for all t ∈ [iτ, (i+1)τ), i = 1, . . . , N−1,

‖Uε,τ (t)‖H ≤
rRε
τ

(
`
(∥∥udisc,i+1

τ

∥∥
H

)
+ `
(∥∥udisc,i

τ

∥∥
H

)
+
∥∥udisc,i+1

τ

∥∥m
X

+
∥∥udisc,i

τ

∥∥m
X

)1/2
.
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By using these estimates, as well as (2.20), (3.34), we get∫ T

0

∆ψ
τ,ε dt ≤

∫ T

0

C
(∥∥∂tuRτ,ε∥∥H + ‖∂tu∗‖H

)
·
∥∥∂tudisc

τ − ∂tu∗ + Uτ,ε
∥∥
H + rR,ψε ‖∂tu∗‖2

B dt

≤ C

(
rRε
τ

+ rR,ψε +

∫ τ

0

r0
ε

τ
dt

)
+ C

∥∥∂tudisc
τ − ∂tu∗

∥∥
L2(0,T ;H)

≤ C

(
rRε
τ

+ rR,ψε + ρdtc
τ + r0

ε

)
. (3.39)

Here we used that ∂tu∗ is bounded in L2(0, T ;B) as a consequence of (2.17).

Next, we treat the energetic part. Note that as before, we have to treat the case i = 0 differently. By
using the convexity of φε and assumption (2.19), we obtain∫ T

τ

∆φ
τ,ε dt ≤ C

N−1∑
i=1

∫ (i+1)τ

iτ

e−t/δ
[
αiτ (t)φε(Rεu

disc,i
τ ) + (1−αiτ (t))φε(Rεu

disc,i+1
τ )− φ0(u∗)

]
dt

≤ CrR,φε

N∑
i=1

τ
(
`
(∥∥udisc,i

τ

∥∥
H

)
+
∥∥udisc,i

τ

∥∥m
X

+
∥∥ηdisc,i

τ

∥∥2

H

)
+ C

N−1∑
i=1

∫ (i+1)τ

iτ

e−t/δ
[
αiτ (t)φ0(udisc,i

τ ) + (1−αiτ (t))φ0(udisc,i+1
τ )− φ0(u∗)

]
dt.

The last term on the right-hand side can be estimated as follows: Consider ηdisc,i
τ ∈ ∂Hφ0(udisc,i

τ ),
then∫ T

τ

∆φ
τ,ε dt

≤ CrR,φε + C
N−1∑
i=1

∫ (i+1)τ

iτ

e−t/δ
[
φ0(udisc,i+1

τ )− φ0(u∗) + αiτ (t)
∥∥ηdisc,i

τ

∥∥
H

∥∥udisc,i
τ −udisc,i+1

τ

∥∥
H

]
dt

≤ C
(
rR,φε + τ

)
+ C

N−1∑
i=0

∫ (i+1)τ

iτ

∥∥ηdisc,i+1
τ

∥∥
H

∥∥udisc,i+1
τ − u∗

∥∥
H

dt

≤ C
(
rR,φε + τ

)
+ C

N−1∑
i=1

∫ (i+1)τ

iτ

∥∥ηdisc,i+1
τ

∥∥
H

(
∥∥udisc − u∗

∥∥
H

+
∥∥udisc,i+1

τ − udisc
∥∥
H

) dt

≤ C
(
rR,φε + τ

)
+ C

∥∥udisc − u∗
∥∥
L2(0,T ;H)

≤ C
(
rR,φε + τ + ρdtc

τ

)
.

Here, we used the estimates for ηdisc,i
τ and the fact that

∑N−1
i=0

∫ (i+1)τ

iτ

∥∥udisc,i
τ − udisc,i+1

τ

∥∥2

H
dt ≤

Cτ 2 and
∑N−1

i=0

∫ (i+1)τ

iτ

∥∥udisc,i+1
τ − ud

∥∥2

H
≤ Cτ 2. Moreover, since φε(u0

ε) is uniformly bounded,

then
(
φε
(
uRτ,ε
)
− φ0 (u∗)

)
is bounded in L1(0, T ) independently of ε, thus∫ τ

0

∆φ
τ,ε dt =

∫ τ

0

e−t/δ
(
φε
(
uRτ,ε
)
− φ0 (u∗)

)
dt ≤ Cτ.

Finally, concerning the external forces we use (2.24) and estimate

∆g
τ,ε ≤

∫ T

0

e−t/δ
(
gε − g, uRτ,ε

)
H + (g, uRτ,ε − u∗)H

≤ C ‖gε − g‖L2(0,T ;H) + C
∥∥uRτ,ε − u∗∥∥L2(0,T ;H)

= C(rgε + ρdtc
τ + rRε + τ 1/2r0

ε). (3.40)
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The case of λ-convex energies can be handled similarly by repeating the above procedure with φε(·)
replaced by φε(·)− λ ‖·‖2

H /2 and by estimating additionally∫ T

0

e−t/δ
(
−λ
∥∥uRτ,ε∥∥2

H
+ λ ‖u∗‖2

H

)
dt ≤ C

∫ T

0

∥∥uRτ,ε + u∗
∥∥
H

∥∥uRτ,ε − u∗∥∥H dt

≤ C
(
rRε + ρdct

τ + τ 1/2r0
ε

)
.

Summarizing we have∥∥uRτ,ε − u∗∥∥L2(0,T ;H)
≤ C(rRε + ρdtc

τ + τ 1/2r0
ε),

Iε(uRτ,ε)− I(u∗) ≤ C
(
rRε /τ + ρdtc

τ + rR,φε + rR,ψε + τ + rgε + rRε + r0
ε + τ 1/2r0

ε

)
.

We now choose τRε as the minimizer of τ 7−→ r1
ε/τ + ρdtc

τ + τ + τ 1/2r0
ε , and we easily check that

τRε → 0 as ε→ 0. Note that this is the choice of τ (as a function of ε) that optimizes the convergence
rates. In particular, by defining uRε := uRτRε ,ε we see that conditions (3.26)-(3.27) follow from the above
estimates where

ρ1
ε = rRε + ρdtc

τRε
+
(
τRε
)1/2

r0
ε ,

ρ2
ε = rRε /τ

R
ε + ρdtc

τRε
+ rR,φε + rR,ψε + τRε + rgε + rRε + r0

ε +
(
τRε
)1/2

r0
ε .

Proof of (3.28) A proof of (3.28) can be obtained by following the proof of (3.26) and (3.27) described
above and exchanging the role of φ0 and φε, of ψ0 and ψε, of udisc and udisc

ε , and of u∗ and u∗ε. More
precisely, let udisc

ε be the minimizer of the discrete WED functional Iτε associated with φε, ψε, and gε,
and defined with respect to the partition {iτ}Ni=0. Let u∗ε be the minimizer of the WED functional Iε.
For all τ , let us define uSτ,ε as the piecewise affine interpolant with respect to the family of nodes
{u0,Sudisc,1

ε , . . . ,Sudisc,N
ε }. Note that, by using assumptions (2.21), and arguing as for (3.38), we

can prove that ∥∥uSτ,ε − u∗ε∥∥L2(0,T ;H)
≤ C(rSε + ρdtc

τ + τ 1/2r0
ε).

Computations analogous to the ones used in (3.39)-(3.40) combined with assumptions (2.21)-(2.24)
give us ∫ T

0

e−t/δ
(
ψ0

(
∂tu

S
τ,ε

)
− ψε(∂tu∗ε)

)
dt ≤ C

(
rSε
τ

+ rS,ψε + ρdtc
τ + r0

ε

)
,

1

δ

∫ T

0

e−t/δ
(
φ0(uSτ,ε)− φε(u∗ε)

)
dt ≤ C

(
rS,φε + τ + ρdtc

τ

)
,

1

δ

∫ T

0

e−t/δ
(
(g(t), uSτ,ε)H − (gε(t), u

∗
ε)H
)

dt ≤ C(rgε + ρdtc
τ + rSε + τ 1/2r0

ε).

Here, we also used the uniform coercivity and growth assumptions such that all the bounds on u∗ε and
udisc
ε and the convergence rates for udisc

ε → u∗ε as τ → 0 are uniform in ε.

Summarizing we have

I(uSτ,ε)− Iε(u∗ε) ≤ C(rSε /τ + ρdtc
τ + rSε + rS,φε + rS,ψε + τ + rgε + r0

ε + τ 1/2r0
ε).

We can now choose τ = τSε := arg minτ (r
S
ε /τ + ρdtc

τ + τ + τ 1/2r0
ε), and define uSε := uSτSε ,ε.

Then, condition (3.28) is satisfied with

ρ3
ε = rSε /τ

S
ε + ρdtc

τSε
+ rS,φε + rS,ψε + τSε + rgε + rSε + r0

ε +
(
τSε
)1/2

r0
ε .
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Proof of (3.29). Finally, we want to check that (3.29) holds true for γ = 2 and ρ4
ε = 0. We first recall

that the minimizer u∗ε of Iε solves the elliptic equation (Pδ,ε). By testing the Euler–Lagrange equation
for Iε with v = u∗ε − uRε we get

0 =

∫ T

0

e−t/δ
[ (

Aε∂tu
∗
ε, ∂t(u

∗
ε−uRε )

)
H

+
1

δ

(
η∗ε − gε, u∗ε−uRε

)
H

]
dt.

where η∗ε ∈ ∂Hφε (u∗ε) a.e. in [0, T ]. We use the equation above to calculate

Iε(uRε )− Iε(u∗ε)

=

∫ T

0

e−t/δ
[
ψε(∂tu

R
ε )− ψε(∂tu∗ε) +

1

δ

(
φε(u

R
ε )− φε(u∗ε)

)
− 1

δ

(
gε, u

R
ε − u∗ε

)
H

]
dt

=

∫ T

0

e−t/δ
(
ψε(∂tu

R
ε )− ψε(∂tu∗ε) +

(
Aε∂tu

∗
ε, ∂t(u

∗
ε−uRε )

)
H

)
dt

+
1

δ

∫ T

0

e−t/δ
(
φε(u

R
ε )− φε(u∗ε) +

(
η∗ε , u

∗
ε − uRε

)
H

)
dt

By using λ-convexity of φε, we get

1

δ

∫ T

0

e−t/δ
(
φε(u

R
ε )− φε(u∗ε) +

(
η∗ε , u

∗
ε − uRε

)
H

)
dt ≥ λ

2δ

∫ T

0

e−t/δ
∥∥uRε − u∗ε∥∥2

H
dt.

We now exploit that ψε is quadratic to obtain

Iε(uRε )− Iε(u∗ε) ≥
∫ T

0

e−t/δ
(
ψε(∂tu

R
ε ) + ψε(∂tu

∗
ε)−

(
Aε∂tu

∗
ε, ∂tu

R
ε

)
H

)
dt

=

∫ T

0

e−t/δ
(
ψε(∂tu

R
ε − ∂tu∗ε)

)
dt

≥ c

∫ T

0

e−t/δ
∥∥∂tuRε − ∂tu∗ε∥∥2

H
dt+

λ

2δ

∫ T

0

e−t/δ
∥∥uRε − u∗ε∥∥2

H
dt.

By arguing as in [MS11, Prop. 2.1], recalling that v(0) = 0, for all δ > 0 sufficiently small we obtain,
after suitably renaming the constant c,

Iε(uRε )− Iε(u∗ε) ≥ c

∫ T

0

e−t/δ
∥∥uRε − u∗ε∥∥2

H
dt,

which implies (3.29). We conclude the proof of Theorem 2.7 by applying the abstract Lemma 3.3 with
V = L2(0, T ;H).

4 Homogenization of a 1D parabolic equation

Evolutionary Γ-convergence via WED functionals. In this section we provide an example of appli-
cation of the above abstract theory. In the 1-dimensional domain Ω = (0, 1) we consider the equation

aε(x)u̇− ∂x (Dε(x)∂xu) + bε(x)u− cε(x)|u|q−2u = gε(t, x) in Ω× (0, T ), (4.1)

DOI 10.20347/WIAS.PREPRINT.2411 Berlin 2017



The WED principle and E-convergence for doubly nonlinear problems 29

equipped with homogeneous Neumann boundary conditions ∂xu(0, t) = ∂xu(1, t) = 0. Here, 1 <
q ≤ 2 and aε(x) = a(x/ε), bε(x) = b(x/ε), Dε(x) = D(x/ε), cε(x) = c(x/ε) for some 1-
periodic continuous functions a, b,D, c : [0, 1] → [1/M,M ] with M > 0. The initial data u0

ε is
assumed to be uniformly bounded in H1(Ω) and the external forces satisfy gε ∈ L2([0, T ]× Ω).

Setting H = L2(Ω) and X = H1(Ω) the equation can be rewritten in the form

dψε(u̇) + ∂Hϕ
1
ε(u)− ∂Hϕ2

ε(u) = gε(t) in H∗,

where

ψε(v) =
1

2

∫
Ω

aε(x)|v|2 dx and φε(u) = ϕ1
ε (u)− ϕ2

ε (u) with

ϕ1
ε(u) =

{ 1
2

∫
Ω
Dε(x)|∂xu|2 + bε(x)|u|2 dx if u ∈ H1(Ω),

∞ else,
and

ϕ2
ε(u) =

1

q

∫
Ω

cε(x)|u|q dx.

It is not hard to check that assumptions (A1)-(A7) are satisfied with p = m = 2 and that the elliptic-
in-time regularization given by

− δaε(x)ü+ aε(x)u̇− ∂x (Dε(x)∂xu) + bε(x)u− cε(x)|u|q−2u = gε(t, x) in Ω× (0, T ),
(4.2)

with additional final condition δu̇(x, T ) = 0 for a.e. x ∈ Ω, corresponds to the Euler-Lagrange
equation of the WED functional (cf. Theorem 2.1)

Iδ,ε(u) :=

{ ∫ T
0

e−t/δ
(
ψε(u̇) + 1

δ
φε(u)− 1

δ
(gε(t), u)H

)
dt if u ∈ K(u0

ε),

∞ else.

We will apply the theory developed in the previous sections to show that the functionals Iδ,ε Γ-
converge to the limiting WED functional Iδ defined by the static Γ-limits φ0 and ψ0. The latter are
given by

ψ0(v) =
1

2

∫
Ω

aarith|v|2 dx and φ0(u) = ϕ1
0(u)− ϕ2

0(u) with

ϕ1
0(u) =

{ 1
2

∫
Ω
Dharm|∂xu|2 + barith|u|2 dx if u ∈ H1(Ω),

∞ else,

ϕ2
0(u) =

1

q

∫
Ω

carith|u|q dx,

where aarith, barith, carith denote the arithmetic means of a, b, c respectively and Dharm denotes the
harmonic mean of D, namely Dharm = (

∫ 1

0
1/D(y) dy)−1. We refer the reader to [Mie16] to check

that ϕ1
ε
M→ ϕ1

0 in L2(Ω) (in particular, ϕ1
ε

Γ→ ϕ1
0 weakly in H1(Ω)), and that ψε

C→ ψ0 with respect
to strong convergence in L2(Ω). Moreover, note that for every sequence uε with ϕ1

ε(uε) ≤ C , we
have uε → u weakly in H1(Ω), uε → u strongly in Lq(Ω) and, as a consequence of the Sobolev
embeddings,

|uε(x)|q ≤ ‖uε‖qL∞(Ω) ≤ C ‖uε‖qH1(Ω) ≤ C
(
ϕ1
ε(uε)

)q/2 ≤ 1/2ϕ1
ε(uε) + C ≤ C for a.a. x ∈ Ω.
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Thus, by using the dominated convergence theorem and the convergence cε → carith weakly* in
L∞(Ω) we get

ϕ2
ε(uε)−ϕ2

0(u) =
1

q

∫
Ω

cε|uε|q− carith|u|q dx =
1

q

∫
Ω

cε (|uε|q−|u|q) + (cε−carith) |u|p dx→ 0.

In particular, it holds that φε
M→ φ0 in L2(Ω) (or, equivalently, φε

Γ→ φ0 weakly in H1(Ω)). Finally, we
assume that u0

ε → u0 strongly in L2(Ω) and that the external force terms satisfy gε → g0 weakly in
L2(0, T ;H).

By applying Theorem 2.2 and Theorem 2.5, we arrive at the following homogenization result.

Theorem 4.1 (Homogenization) Let u∗δ,ε be a minimizer of the WED functional Iδ,ε. Then, u∗δ,ε solves
(4.2) and converges to u∗δ , a minimizer of the WED functional Iδ,0 which is in turn a solution to the
homogenized equation

− δaarithü+ aarithu̇− ∂x (Dharm∂xu) + barithu− carith|u|q−2u = g0(t, x) in Ω, (4.3)

for ε→ 0. Moreover, if additionally gε satisfies (2.14)-(2.15) and the initial data are well prepared, i.e.
φε(u

0
ε) → φ(u0), then, up to (not relabeled) subsequences the following convergences in the weak

topology of H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and in the strong topology of C ([0, T ];L2(Ω))
hold true

(i) limε→0 u
∗
δ,ε = u∗δ where u∗δ ∈ arg min Iδ and solves (4.3),

(ii) limδ→0 u
∗
δ,ε = uε where uε solves (4.1)

(iii) limδ+ε→0 u
∗
δ,ε = u where u solves the following homogenized equation

aarithu̇− ∂x (Dharm∂xu) + barithu− carith|u|q−2u = g0 in Ω× [0, T ].

Rates of convergence. We are now interested to establish some convergence rates. More precisely,
we want to estimate the rate of convergence of

∥∥u∗δ,ε − u∗δ∥∥L2(0,T ;L2(Ω))
, where u∗δ,ε, u

∗
δ are defined

in Theorem 4.1 (other norms can be considered as well due to interpolation). We obtain these rates of
convergence by applying Theorem 2.7. To do this, we restrict ourselves to the case of a convex energy
potential, i.e. c(x) = 0 for all x ∈ Ω (i.e. ϕ2

ε = 0, ϕ1
ε = φε for all ε ≥ 0).

Let us start to check the assumption of Theorem 2.7. Let us define the recovery operator Rε :
H1(Ω)→ H1(Ω) for the functionals φε as

Rεu(x) =

∫ x

0

D−1
ε (y)Dharm∂xu(y)dy + u(0) for a.a. x ∈ Ω.

We start by observing that

‖Rεu− u‖L2(Ω) = εC
(

1 + ‖u‖H1(Ω)

)
.

Moreover, we write

φε(Rεu)− φ0(u) =

∫
Ω

(
Dε(x) (∂xRεu(x))2 −Dharm (∂xu(x))2) dx

+

∫
Ω

(
bε(x) (Rεu(x))2 − barithu

2(x)
)

dx.
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Recalling that ∂xRεu = D−1
ε Dharm∂xu, we get∫

Ω

(
Dε(x) (∂xRεu(x))2 −Dharm (∂xu(x))2) dx

≤ C
∥∥D−1

ε Dharm − 1
∥∥

(H1(Ω))∗

∥∥(∂xu)2
∥∥
H1(Ω)

≤ εC ‖u‖2
H2(Ω)

≤ εC
(
‖η‖2

L2(Ω) + ‖u‖2
H1(Ω)

)
for η ∈ ∂Hφ0(u).

Here we used that, since Ω is 1-dimensional, ∂xu ∈ H1(Ω) implies ∂xu ∈ L∞(Ω) and hence
(∂xu)2 ∈ H1(Ω).

Moreover, we have that∫
Ω

(
bε(x) (Rεu(x))2 − barithu

2(x)
)

dx

=

∫
Ω

(bε(x)− barith) (Rεu(x))2 dx+

∫
Ω

barith (Rεu(x)− u(x)) (Rεu(x) + u(x)) dx

≤ ‖bε − barith‖H−1(Ω)

∥∥(Rεu)2
∥∥
H1(Ω)

+ C ‖Rεu− u‖L2(Ω) ‖Rεu+ u‖L2(Ω)

≤ Cε ‖u‖2
H1(Ω) .

Combining these estimates, we get

φε(Rεu)− φ0(u) ≤ εC
(
‖u‖2

H1(Ω) + ‖η‖2
L2(Ω)

)
for η ∈ ∂L2(Ω)φ0(u).

Let us define B := H1(Ω) and prove that it satisfies condition (2.17). Thanks to the first estimate
in (3.37), we have that u∗δ,ε is uniformly bounded in H2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). Moreover,
since ∂Hφε, ε ≥ 0, are second-order uniformly coercive elliptic operators, we also have that u∗δ,ε is
uniformly bounded in L2(0, T ;H2(Ω)). By interpolation we have that u∗δ,ε is uniformly bounded in
H1(0, T ;H1(Ω)). We now estimate

|ψε(v)− ψ0(w)| = 1

2

∫
Ω

|aarithw
2(x)− aε(x)v2(x)|dx

≤ 1

2

∫
Ω

|aarith − aε(x)|w2(x) + |w2 (x)− v2 (x) |aε(x)dx

≤ 1

2
‖aarith − aε(x)‖(H1(Ω))∗

∥∥w2(x)
∥∥
H1(Ω)

+
1

2
‖aε‖L∞(Ω) ‖w − v‖L2(Ω) ‖w + v‖L2(Ω)

≤ Cωε ‖w‖2
H1(Ω) + C ‖v − w‖L2(Ω) . (4.4)

This proves that Rε satisfies (2.18)-(2.20) with

rRε = rR,φε = rR,ψε = ε.

We now define the operator Sε : H1(Ω)→ H1(Ω) by setting it to the piecewise affine interpolant of
the nodes {uiε = u(εi)} over the partition [0, 1] = ∪N−1

i=0 [iε, (i + 1)ε]. Note that for all u ∈ H1(Ω)
we have

‖Sεu− u‖L2(Ω) ≤ εC
(

1 + ‖u‖H1(Ω)

)
.

DOI 10.20347/WIAS.PREPRINT.2411 Berlin 2017



M. Liero, S. Melchionna 32

Furthermore,

φ0(Sεu) ≤ φε(u) + εC
(

1 + ‖u‖2
H1(Ω) + ‖η‖2

L2(Ω)

)
. (4.5)

Indeed, by convexity, we have that

φ0(Sεu) =
N−1∑
i=0

1

2

∫ (i+1)ε

iε

(
Dharm

(
ui+1
ε − uiε
ε

)2

+ barith(Sεu(x))2

)
dx

≤
N−1∑
i=0

1

2

∫ (i+1)ε

iε

(
Darith

(
ui+1
ε − uiε
ε

)2

+ barith(u(x))2

)
dx+ rS,φ,1ε

≤
N−1∑
i=0

1

2

∫ (i+1)ε

iε

(
Darith (∂xu(x))2 + barith(u(x))2

)
dx+ rS,φ,1ε

=
N−1∑
i=0

1

2

∫ (i+1)ε

iε

(
Dε(x) (∂xu(x))2 + bε(x)(u(x))2

)
dx+ rS,φ,1ε + rS,φ,2ε = φε(u) + rS,φε .

Here, we have

rS,φ,1ε =
N−1∑
i=0

1

2

∫ (i+1)ε

iε

barith

(
(Sεu(x))2 − u2(x)

)
dx ≤ εC

(
1 + ‖u‖2

H1(Ω)

)
and

rS,φ,2ε =
N−1∑
i=0

1

2

∫ (i+1)ε

iε

(∂xu(x))2 (Darith −Dε) dx ≤ εC
(

1 + ‖u‖2
H2(Ω)

)
= εC

(
1 + ‖η‖2

L2(Ω) + ‖u‖2
H1(Ω)

)
.

Combining the above estimates, we deduce (4.5). Finally, by arguing as in (4.4), we get

|ψε(v)− ψ0(w)| = 1

2

∫
Ω

∣∣aarithw
2(x)− aε(x)v2(x)

∣∣ dx
=

1

2

∫
Ω

aarith

∣∣w2(x)− v2(x)
∣∣+ |aarith − aε(x)| v2 (x) dx

≤ Cδε ‖v‖2
H1/2(Ω) + C ‖v − w‖L2(Ω) .

Hence, Sε satisfies (2.21)-(2.23) with

rSε = rS,φε = rS,ψε = ε.

In order to estimate convergence rates we additionally assume

‖gε − g0‖L2(Ω×[0,T ]) ≤ rgε and
∥∥u0

ε − u0
∥∥
L2(Ω)

≤ r0
ε

for some rgε = o(1), r0
ε = o(1). Moreover, we assume that u0

ε is uniformly bounded in H1(Ω). This
guaranties uniform boundedness of the initial energies φε(u0

ε). Note that, here we do not need well
preparedness of initial data. With this preparation, a straightforward application of Theorem 2.7 gives
us the following estimate on the convergence rates.
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Theorem 4.2 (Convergence rates for the homogenization problem) Let u∗δ,ε and u∗δ be the mini-
mizers of Iδ,ε and Iδ,0, respectively. Then, for all δ > 0 sufficiently small there exists a constant Cδ
independent of ε such that∥∥u∗δ,ε − u∗δ∥∥L2(0,T ;L2(Ω))

≤ Cδ
(
r0
ε + rgε + ε

)1/2
.

Moreover, by interpolation one can prove the following

‖u‖2
L2(0,T ;H1/2(Ω)) ≤ C‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;L2(Ω)) for all u ∈ L2(0, T ;H1(Ω)),

‖u‖2
H1(0,T ;L2(Ω)) ≤ C‖u‖H2(0,T ;L2(Ω))‖u‖L2(0,T ;L2(Ω)) for all u ∈ H2(0, T ;L2(Ω)).

As a consequence, we can get convergence rates also in a stronger norm.

Corollary 4.3 (Convergence rates in a stronger norm) Let u∗δ,ε and u∗δ be the minimizers of Iδ,ε
and of Iδ, respectively. Then, for all δ > 0 sufficiently small∥∥u∗δ,ε − u∗δ∥∥H1(0,T ;L2(Ω))∩L2(0,T ;H1/2(Ω))

≤ Cδ
(
r0
ε + rgε + ε

)1/4
,

for some positive constant Cδ.

5 Appendix

Lemma 5.1 (Diagonal extraction for weakly converging sequences) Let un → uweakly in a sep-
arable and reflexive Banach space B and, for all n, let um,n → un weakly in B. Moreover, assume
that ‖um,n‖B ≤ C , where C is a positive constant independent of m and n. Then, there exists a
subsequence umk,nk → u weakly in B.

Proof. As B is separable and reflexive, so is its dual B∗. Let {bj}∞j=1 be a dense subset of B∗.
Choose umk,nk such that

| 〈bj, umk,nk − u〉B | ≤ 1/k for all j ≤ k.

Thus, the sequence umk,nk → u weakly in B. Indeed, let b ∈ B∗, then for all ε > 0 there exists
j ∈ N such that

‖bj − b‖B∗ ≤
ε

2(C + ‖u‖B)

and k ∈ N such that k ≥ j and 1/k ≤ ε/2. Thus,

| 〈b, umk,nk − u〉B | ≤ | 〈bj, umk,nk − u〉B |+ | 〈b− bj, umk,nk − u〉B |

≤ 1

k
+ ‖b− bj‖B∗ ‖umk,nk − u‖B

≤ ε

2
+

ε

2(C + ‖u‖B)

(
‖umk,nk‖B + ‖u‖B

)
≤ ε.
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