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Exit time risk-sensitive stochastic control problems
related to systems of cooperative agents

Paul Dupuis, Vaios Laschos, Kavita Ramanan

Abstract

We study sequences, parametrized by the number of agents, of exit time stochastic control problems with risk-sensitive
costs structures generate by unbounded costs. We identify a fully characterizing assumption, under which, each of them
corresponds to a risk-neutral stochastic control problem with additive cost, and also to a risk-neutral stochastic control
problem on the simplex, where the specific information about the state of each agent can be discarded. We finally
prove that, under some additional assumptions, the sequence of value functions converges to the value function of a
deterministic control problem.

1 Introduction

In this paper, we study many agent exit time stochastic control problems with risk-sensitive cost. The reader with back-
ground on physics or chemistry, can think of particles instead of agents. Each agent occupies states that take values in a
finite set X , and by controlling the transition rates between states for each individual, we try to keep the system away from
a “ruin” set K, for as long as possible and with the least cost. We prove, under suitable assumptions, that for every finite
number n of agents the control problem is equivalent to one with an ordinary (additive) cost. Moreover, whenK ⊂ Xn can
be identified with a subset of the simplex of probability measures P(X ) (in the sense that for every permutation σ ∈ Sn
we have σK = K), then we can replace the original problem by one on Pn(X ) = P(X ) ∩ 1

nZ
d, getting in this way a

control problem whose state is the empirical measure on the states of the individual agents. We also study the behavior as
n→∞ of the sequence of suitable renormalized value functions, and prove uniform convergence to the value function of
a deterministic control problem.

We first describe the model without control, which we call the “base” or “nominal” model. Let X = {e1, . . . , ed}, where
ei is the ith unit vector in Rd. Let also γ = {γxy}(x,y)∈X×X denote the rates of an ergodic Markov process on X . This
process has the generator

Llγ [f ](x) =
∑
y∈X

γxy [f(y)− f(x)] . (1.1)

For n ∈ N, consider n agents that independently and randomly take different states xni among the elements of X =
{e1, . . . , ed}, and let xn = (xn1 , . . . , x

n
n). This process takes values in Xn and has the generator

Lnγ [f ](xn) =

n∑
i=1

∑
y∈Zxn

i

γxni y

[
f(xn + vni,xni y)− f(xn)

]
, (1.2)

Here Z .
= {(x, y) ∈ X × X : γxy > 0}, Zx

.
= {y ∈ X : (x, y) ∈ Z} is the set of allowed transitions from x, and

vni,xy = (0, . . . , 0,vxy, 0, . . . , 0) is a d × n matrix with all columns equal to zero apart from the ith column, which is
identically equal to the vector vxy

.
= y − x. Since the process is ergodic, Z generates the hyperplane

H .
=

 ∑
(x,y)∈Z

axyvxy : axy > 0, (x, y) ∈ Z

 , (1.3)

which coincides with the hyperplane through the origin that is parallel to P(X ).

We claim that the set H does not change if the axy are allowed to be arbitrary real numbers. By ergodicity, for any
two states (x, y) ∈ Z there is a sequence of states x = x1, ..., xj = x with y = x2 and with the property that

(xi, xi+1) ∈ Z for i = 1, . . . , j − 1, and hence
∑j−1
i=1 vxixi+1

= 0. Repeating this for every possible (x, y) ∈ Z ,
there are strictly positive integers bxy such that

∑
(x,y)∈Z bxyvxy = 0, which implies the claim.
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P. Dupuis, V. Laschos, K. Ramanan 2

Next we introduce the empirical measure process. This process is obtained by projecting from Xn onto Pn(X ) =
P(X ) ∩ 1

nZ
d ⊂ P(X ), and has the generator

Mn
γ [f ](m) = n

∑
(x,y)∈Z

γxymx

[
f

(
m+

1

n
vxy

)
− f(m)

]
. (1.4)

One can interpret the model introduced above as a collection of independent agents with each evolving according to the
transition rates γ. This is the “preferred” or “nominal” dynamic, and is what would occur if no “outside influence” or other
form of control acts on the agents. If a controller should wish to change this behavior, then it must pay a cost to do so. We
would like to model the situation where limited information on the system state, and in particular information relating only
to the empirical measure of the states of all agents, is used to produce a desired behavior of the group of agents, which
again will be characterized in terms of their empirical measure (which is used to characterize how the collective “loads” the
system).

Thus we consider for each n ∈ N “reward” functions Rn : P(X )→ [0,∞), where we recall

P(X )
.
=

{
m ∈ RX : mx ≥ 0 for all x ∈ X and

∑
x∈X

mx = 1

}
(1.5)

is the simplex of probability measures on X . It is assumed that the Rn are continuous and that they converge uniformly
to some R∞. We also have a sequence of unbounded “cost” functions Cn = {Cnxy : [0,∞) → [0,∞]}(x,y)∈Z that
converge on (0,∞) to some C∞ in a sense that we are going to define in the sequel. In the controlled setting, the jump
rates of each agent can be perturbed from γ to u. Let χn denote the controlled state occupied by the collection of agents,
and for xn = {xni }i≤n ∈ Xn define

L(xn)
.
=

n∑
i=1

δxni . (1.6)

If the problem is of interest over the interval [0, T ] then there is a collective risk-sensitive cost (paid by the coordinating
controller) equal to

Exn

exp

∫ T

0

 n∑
i=1

∑
y∈Zχn

i
(t)

γχni (t)yC
n
χni (t)y

(
uχni (t)y(t, i)

γχni (t)y

)
− nRn(L(χn(t)))

 dt

 . (1.7)

Here the control process u takes values in a space that will be defined later, and for a collection of n|Z| independent Pois-
son random measures (PRM) {N1

i,xy}1≤i≤n,(x,y)∈Z with intensity measure equal to Lebesgue measure, the controlled
dynamics are given by

χni (t) = xni +
∑

(x,y)∈Z

vxy

∫
(0,t]

∫
[0,∞)

1[0,1x(χni (s−))uxy(s,i)](r)N
1
i,xy(dsdr). (1.8)

Thus χni changes from state x to y with rate uxy . The formulation of the dynamics in terms of a stochastic differential
equation will be convenient in the analysis to follow.

In this paper we present three results. The first is that, under additional assumptions on the cost Cn, for each n the
risk-sensitive control problem is equivalent to an ordinary control problem the cost function F n = {Fnxy}(x,y)∈Z , where
Fnxy is defined by

Fnxy(q)
.
= sup
u∈(0,∞)

Gnxy(u, q) and Gnxy(u, q)
.
=

[
u`
( q
u

)
− γxyCnxy

(
u

γxy

)]
, (1.9)

`(q)
.
= q log q − q + 1 for q ≥ 0. (1.10)

Under the additional conditions we do not end up with a stochastic game, as one might expect, but rather a control problem
with additive cost. Control problems are often substantially simpler than games, and in particular are often more tractable
from a computational perspective.

We also show under appropriate conditions that both the risk sensitive and the ordinary control problems are equivalent to
mean field control problems, which consider the projected process on the simplex, and for which costs depend only on the
dynamics of the empirical measure. From an analytical point of view, the benefit is that we provide sufficient conditions, in
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addition to convexity, that the cost function Cn should satisfy in order for the optimal choice of each agent at a specific
moment t to be the same for all particles that occupy the same state in X .

The last contribution, again under additional assumptions on the sequence of costs {Cn}n, is that the sequence of value
functions, suitably renormalized, converges to the value function of a deterministic control problem. This is also helpful in
the construction of controls.

1.1 Literature

In ordinary discrete-time (see [1, 19] for an exposition) and continuous-time (see [17] for an exposition) Markov Decision
Processes (MDP) problems, one is given the task to control a random processes in order to have an optimal expected
result. The most common optimality criteria are

JT (x0, π) = Eπ

[
T∑
n=0

βnC(Xn, Un) + βTR(XT )

]
, or J(x0, π) = lim sup

T→∞

1

T
Eπ

[
T∑
n=0

C(Xn, Un)

]
(1.11)

for the discrete, and

JT (x0, π) = Eπ

[∫ T

0

βtC(Xt, Ut)dt+ βTR(XT )

]
, or J(x0, π) = lim sup

T→∞

1

T
Eπ

[∫ T

0

C(Xt, Ut)dt

]
(1.12)

for the continuous time case respectively, where C is some cost function that depends on the state x ∈ X and the
control/action u ∈ U, and π is a policy/strategy (way of picking controls). On the LHS of either (1.11) or (1.12), when
β = 1, T < ∞ we have the Total Cost optimality condition, when β < 1, T = ∞ we have the Discounted Cost
optimality condition, and when β = 1, and T is a stopping time we have an Exit-Time optimality condition. On the RHS of
either (1.11) or (1.12), we have the Average Cost optimality condition.

In risk-sensitive MCP problems one deals with optimality conditions of the form

JT (x0, π) = Eπ

[
gλ

(
T∑
n=0

βtC(Xn, Un) + βTR(XT )

)]
, or

J(x0, π) = lim sup
T→∞

1

T
g−1
λ

(
Eπ

[
gλ

(
T∑
n=0

C(Xn, Un)

)]) (1.13)

for the discrete, and

JT (x0, π) = Eπ

[
gλ

(∫ T

0

βtC(Xt, Ut)dt+ βTR(XT )

)]
, or

J(x0, π) = lim sup
T→∞

1

T
g−1
λ

(
Eπ

[
gλ

(∫ T

0

C(Xt, Ut)dt

)]) (1.14)

for the continuous time case respectively, where gλ is a convex function, that may be dependent on a parameter λ. The
idea behind risk-sensitive cost structures, is that if gλ(y) has a Taylor expansion gλ(x) =

∑
n gλ,nx

n, then we have

JT (x0, π) =
∑
n

gλ,nEπ

[(
βn

T∑
n=0

C(Xn, Un) +R(XT )

)n]
,

therefore the optimality condition takes into account higher moments. By choosing g and λ, appropriately one can tune
how much weight to put in variation or higher moment, therefore seeking or avoiding risk.

One of the most studied cases is when gλ(x) = e−λx, (see [23, 22, 20, 18, 15, 11, 10, 9, 7, 6, 2] for the discrete and
[12, 13, 16] for the continuous time-case). In our problem λ is integrated in the choice of cost C and R.

In the recent year, following the seminal work of [25], new risk-sensitive criteria were studied [26, 8, 3].

2 Notation and definitions

For a locally compact Polish space S , the space of positive Borel measures on S is denoted byM(S). With the subscripts
f, c we denote, respectively, the space of finite measures, and the space of measures that are finite on every compact
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subset. LettingCc(S) denote the space of continuous functions with compact support, we equipMc(S), with the weakest
topology such that for every f ∈ Cc(S), the function ν →

∫
S
fdν, ν ∈ Mc(S), is continuous. B(S) is the Borel σ-

algebra on S and P(S) the set of probability measures on (S,B(S)). Finally, for a second Polish space S ′, we let

F(S;S ′) = {f : S → S ′ : f measurable} (2.1)

denote the space of measurable functions from S to S ′.

For the finite set X , let

P∗(X ) =

{
m ∈ RX : mx > 0 for all x ∈ X and

∑
x∈X

mx = 1

}
, (2.2)

and

Pa(X ) =

{
m ∈ RX : mx ≥ a for all x ∈ X and

∑
x∈X

mx = 1

}
. (2.3)

For a set K ⊂ P(X ), the closure K̄, the complement Kc and the interior K◦, will be considered with respect to
the restriction of the Euclidean topology on the set P(X ). D([0,∞);S) denotes the space of cadlag functions on S ,
equipped with the Skorohod toplogy (see [5, Section 16]), i.e., the Skorohod space. This space is separable and complete
[5, Theorem 16.3], and a set is relatively compact in D([0,∞);S), if and only if for every M <∞, its natural projection
on D([0,M ];S), is relatively compact [5, Theorem 16.4].

For M̄ =Mc([0,∞)2), let P be the probability measure on (M̄,B(M̄)), under which the canonical map N(ω) = ω
is a Poisson measure with intensity measure equal to Lebesgue measure on [0,∞)2... Let

Gt = σ{N((0, s]×A) : 0 ≤ s ≤ t, A ∈ B([0,∞))},

and let Ft be the completion of Gt under P. Let P be the corresponding predictable σ-field in [0,∞) × M̄. Similary,
for natural numbers k, k′ we similarly define a measure Pk,k′ on (M̄k′ ,B(M̄k′)) under which the maps Ni(ω) =
ωi, 1 ≤ i ≤ k′, are independent Poisson measures with intensity measure equal to k times the Lebesgue measure on

[0,∞)2. {Gk,k
′

t }, {Fk,k
′

t }, and Pk,k′ are defined analogously. Let A be the class of P \ B([0,∞)) measurable maps
φ : [0,∞) × M̄ → [0,∞), and Ab the subset of these functions that are uniformly bounded from below away from
zero and above by a positive constant. Similarly we define Ak,k′ to be the set of Pk,k′ \ B([0,∞)k

′
) measurable maps

φ : [0,∞) × M̄k′ → [0,∞)k
′
, and Ak,k

′

b the subset of these functions that all entries are uniformly bounded from
below and above by positive constants.

2.1 The many particle control problem

For a subset K of Xn, we define a risk-sensitive cost InK : Xn ×A1,n|Z|
b → [0,∞] that corresponds to cost/reward up

to the first time of hitting of K by

InK(xn,u)
.
= Exn

[
e

∫ TK
0

(∑n
i=1

∑
y∈Zχn

i
(t)

γχn
i
(t)yC

n
χn
i
(t)y

(
uχn
i
(t)y(t,i)

γχn
i
(t)y

)
−nRn(L(χn(t)))

)
dt

]
, (2.4)

where Exn denotes expected value given χn(0) = xn, the dynamics are given in (1.8), and

TK
.
= inf {t ∈ [0,∞] : χn(t) ∈ K} . (2.5)

We define the value functionWn
K : Xn → [0,∞] by

Wn
K(xn)

.
= inf
u∈A1,n|Z|

b

InK(xn,u). (2.6)

Similarly, for a setK ⊂ Xn we define the ordinary cost J nK : Xn×A1,n|Z|
b → [0,∞] and corresponding value function

VnK : Xn → [0,∞] by

J nK (xn, q)
.
= Exn

∫ TK

0

 n∑
i=1

∑
y∈Zχn

i
(t)

Fnχni (t)y(qχni (t)y(t, i)) + nRn(L(χn(t)))

 dt

 , (2.7)
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where F n is as in (1.9), and

VnK(xn)
.
= inf
q∈A1,n|Z|

b

J nK (xn, q), (2.8)

where the dynamics are given by (1.8) with u replaced by q, and the stopping time by (2.5). We remark that the reason for
two different notations for controls is to aid the reader, by associating one with the risk sensitive problem and one with the
regular control problem. Moreover, there are occasions that both variables appear at the same time, as in the definition of
F n or that of the Hamiltonian. Specific conditions on the cost functions will be given in Section 3.1, and properties of F n

will be proved in Lemma 4. Note that for the many particle systems there are n|Z| PRMs, each with intensity 1.

2.2 The mean-field control problems

Suppose that K can be identified with a subset of the simplex of probability measures P(X ), in the sense that for every
permutation σ ∈ Sn we have σK = K. Then we can replace a control problem on Xn by one on P(X ). In this case
Wn
K and VnK can be considered as functions on Pn(X ), in the sense that we can find Wn

K , V
n
K : Pn(X ) → [0,∞],

such thatWn
K(xn) = Wn

K(L(xn)) and VnK(xn) = V nK(L(xn)). To see this, pick a starting point xn ∈ Xn and some
permutation σ. Then for any admissible control u, the total cost generated starting at xn is the same as starting from xnσ
and picking uσ as control. Therefore, for every xn ∈ Xn, σ ∈ Sn, we have VK(xn) = VK(xnσ).

Define hn : D([0,∞);Pn(X ))×An,|Z|b × Pn(X )× M̄n,|Z| → D([0,∞);Rd) by

hn
(
µ,u,m,

1

n
Nn

)
(t)

.
= m+

∑
(x,y)∈Z

vxy

∫
(0,t]

∫
[0,∞)

1[0,µx(−s)uxy(s)](r)
1

n
Nn
xy(dsdr).

Sinceu ∈ An,|Z|b implies the rates uxy(s) are uniformly bounded, one can explicitly construct a uniqueD([0,∞);Pn(X ))-
valued process that satisfies

µ = hn
(
µ,u,m,

1

n
Nn

)
. (2.9)

[14]. Here µ is the controlled process, u is the control,m is an initial condition, andNn/n is scaled noise.

Now with TK
.
= inf {t ∈ [0,∞] : µ(t) ∈ K}, the functions InK , J

n
V : Pn(X ) × An,|Z|b → [0,∞] and Wn

K , V
n
K :

Pn(X )→ [0,∞] are given by

Wn
K(m)

.
= inf
u∈An,|Z|b

InK(m,u) (2.10)

InK(m,u)
.
= Em

[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt

: µ = hn
(
µ,u,m,

1

n
Nn

)]
, (2.11)

and
V nK(m)

.
= inf
q∈An,|Z|b

JnK(m, q) (2.12)

JnK(m, q)
.
= Em

∫ TK

0

 ∑
(x,y)∈Z

µx(t)Fnxy(qxy(t)) +Rn(µ(t))

 dt : µ = hn
(
µ,u,m,

1

n
Nn

) . (2.13)

For these control problems, there are |Z| PRMs, each with intensity n.

3 The equivalence of the control problems

In this section we prove that after a natural renormalization, the value functionWn
K defined in (2.6) is linked to VnK defined

in (2.8) which, as noted before, it is the value function of an ordinary stochastic control problem with a different cost function.
Specifically, we show that − log(Wn

K)/n equals VnK , and that the many particle and the mean field control problem are
equivalent:

− 1

n
log(Wn

K(L(xn))) = V nK(L(xn)) = VnK(xn) = − 1

n
log(Wn

K(xn)). (3.1)
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3.1 The cost functions

To motivate the main Assumption for the costs Cn, we will first discuss briefly the strategy we are going to use for the
proof of (3.1). The proof will use a related Bellman equation. Let Hn : P(X )× R|Z| → R be given by

Hn(m, ξ)
.
= inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxyξxy + Fnxy(qxy)

) , (3.2)

where

Fnxy(q)
.
= sup
u∈(0,∞)

Gnxy(u, q) and Gnxy(u, q)
.
=

[
u`
( q
u

)
− γxyCnxy

(
u

γxy

)]
. (3.3)

We will show that the equation

Hn (m,∆nV (m)) +Rn(m) = 0 in Pn(X ) \K, (3.4)

and boundary condition V (m) = 0 for m ∈ K has V nK as the unique solution, where by ∆nV (m) we denote the
|Z|−dimensional vector n

(
V (m+

vxy
n )− V (m)

)
, and by ∆n

xyV (m) the component n
(
V (m+

vxy
n )− V (m)

)
xy

,

(x, y) ∈ Z .

We are also going to prove that Wn
K is the unique solution to

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
W (m)−W

(
m+

vxy
n

)
W (m)

)
− γxyCnxy

(
uxy
γxy

)) = −Rn(m), (3.5)

with W (m) = 1, form ∈ K . In the sequel, we are going to use the following Lemma:

Lemma 1. If Ṽ : Pn(X ) → [0,∞) is a solution to (3.4) and Ṽ (m) = 0 for m ∈ K , then W̃ = e−nṼ : Pn(X ) →
(0,∞) is a solution of (3.5) and W (m) = 1 form ∈ K.

Lemma 1 guarantees that for every solution Ṽ of (3.4) e−nṼ is a solution (3.5). Since V nK is a solution to (3.4), the lemma
implies that − 1

n log(Wn
K) = V nK . However for Lemma 1 to hold true, we need the following equality to hold true:

Hn(m, ξ)
.
= inf
q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxyξxy + Fnxy(qxy)

)
= inf
q∈[0,∞)|Z|

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxyξxy +Gnxy(uxy, qxy)

)
= sup

u∈(0,∞)|Z|
inf

q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxyξxy +Gnxy(uxy, qxy)

)
= sup

u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
1− e−ξxy

)
− γxyCnxy

(
uxy
γxy

))
=

∑
(x,y)∈Z

mxγxy(Cnxy)∗
(
1− e−ξxy

)
,

(3.6)

where (Cnxy)∗ : (−∞, 1)→ R is given by (Cnxy)∗(z) = supu>0

[
zu− Cnxy(u)

]
. However for the equality to hold, we

need that the Isaac condition is satisfied, i.e., the supremum and infimum are exchangeable. For the proof of the exchange
between supremum and infimum, we will apply Sion’s Theorem (Corollary 3.3 in [27]), which states that if a continuous
F (u, q) is quasi-concave for every u is some convex set U and quasi-convex for every q in some convex setQ, and if one
of the two sets is compact, then we can exchange the supremum with the infimum. We would like to apply Sion’s Theorem
on

Lnxy(u, q) = qξ + u`
( q
u

)
− γxyCnxy

(
u

γxy

)
.
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Since ` is convex, Lnxy is convex with respect to q. It is easy to see that Lnxy(u, q) is not concave with respect to u,
however it is possible for Lnxy to be quasi-concave, with respect to u, for every q ≥ 0. Lnxy to be quasi-concave, with
respect to u, for every q, means that it changes monotonicity at most one time. By differentiating with respect to u we get

∂uL
n
xy(u, q) = − q

u
+ 1− (Cnxy)′

(
u

γxy

)
,

so what we need for every q ≥ 0, is the existence of a uq, such that,

∀u ≤ uq : − q
u

+ 1− (Cnxy)′
(
u

γxy

)
≥ 0 and ∀u ≥ uq : − q

u
+ 1− (Cnxy)′

(
u

γxy

)
≤ 0,

or after multiplying with u, and making a renormalization, for every q ≥ 0, it exists uq, such that,

∀u ≤ uq : u(Cnxy)′ (u)− u ≤ −q and ∀u ≥ uq : u(Cnxy)′ (u)− u ≥ −q.

If someone considers −q, as all the negative level sets, this will translate to the fact that

u(Cnxy)′ (u)− u is increasing until (Cnxy)′ (u) ≥ 1, (3.7)

and then, (Cnxy)′ (u) remains bigger than one. By taking another derivative, we have

(Cnxy)′ (u) + u(Cnxy)′′ (u)− 1 ≥ 0 until (Cnxy)′ (u) ≥ 1, , (3.8)

from which we further conclude, that while (Cnxy)′ (u) < 1, the function Cnxy is also convex. In fact, as it is apparent from
the last line in (3.6), the values ofCnxy, after (Cnxy)′ gets bigger than one, are irrelevant, and therefore we can assume that
(Cnxy) is convex on the whole [0,∞). In Remark 25, it is heuristically argued that (3.7), is actually the weakest condition
such that in the definition of the Hamiltonian (3.6) one can exchange the supremum with the infimum, and therefore the
application of Sion’s theorem is optimal (there is no better result that we could have used).

Now we provide the main assumption for Cnxy.

Assumption 2. For each n ∈ N, Rn : P(X ) → [0,∞) is a continuous function. Moreover, for every (x, y) ∈ Z,
Cnxy : [0,∞)→ [0,∞] is a convex function that satisfies the following:

1 there exist 0 ≤ un1,xy < 1 < un2,xy ≤ ∞ such that Cnxy is finite on (un1,xy, u
n
2,xy), continuous as an extended

function on [un1,xy, u
n
2,xy], and Cnxy(u) =∞ outside [un1,xy, u

n
2,xy]. In addition, it exists a ũ ∈ [0,∞], such that

∀u ≤ ũ : u(Cnxy)′ (u)− u is increasing and ∀u ≥ ũ : (Cnxy)′ (u) ≥ 1. (3.9)

2 Cnxy(1) = 0.

Assumption 2.2 is not necessary, but it simplifies the analysis and it is appropriate for the situation being modeled to have
zero cost when there is no change from the nominal rates. Now under the Assumption 2, in Lemma 24, we will prove that
the Isaac condition is actually satisfied, and therefore the equality (3.6) is true.

Lemma 3. Under Assumption 2, the cost functions Cnxy satisfy the following on (un1,xy, u
n
2,xy):

1 for every (x, y) ∈ Z we have (Cnxy)′(u) ≥ 1− 1
u for u > 1, and therefore

lim inf
u→∞

(Cnxy)′(u) ≥ 1,

2 for every (x, y) ∈ Z and u ∈ (0,∞) we have Cnxy(u) ≥ − log u+ u− 1.

Proof. It follows from the monotonicity that u(Cnxy)′(u)−u ≥ −1 for u > 1, which gives the first statement. The second

follows by comparing (Cnxy)′(u) with the integral
∫ u

1

[
1− 1

s

]
ds and using Cnxy(1) = 0.

Example 1. The family of functions Cnxy(u) = 1
pup + uq

q −
p+q
pq , where p ≥ 1 and q ≥ 1, satisfy Assumption 2. Taking

the derivative of Cnxy(u) gives − 1
up+1 + uq−1, and multiplying with u and subtracting u yields − 1

up + uq − u. Taking
the derivative again gives p

up+1 + quq−1 − 1, which is always bigger than zero, since p
up+1 and quq−1 are everywhere

positive and bigger than one on the intervals [0, 1] and [1,∞), respectively.
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Before proceeding with the proof, we state some properties of Fnxy .

Lemma 4. For every n ∈ N and for every (x, y) ∈ Z, let Fnxy be as in (1.9), where {Cnxy} satisfy Assumption 2. Then
the following hold.

1 Fnxy(q) ≥ γxy`
(

q
γxy

)
≥ 0.

2 Fnxy(γxy) = 0.

3 Fnxy is convex on [0,∞).

3.2 Equivalence of the stochastic problems

Theorem 5. Let n ∈ N, K ⊂ Xn, (resp. K ⊂ Pn(X )), and Cn, Rn be as in Assumption 2. Further assume that Rn

is bounded below in Kc by a positive constant Rnmin. Then

V nK(m) = − 1

n
log(Wn

K(m)) (3.10)

and

VnK(xn) = − 1

n
log(Wn

K(xn)). (3.11)

If in addition K ⊂ Xn is invariant under permutations, and therefore can be identified with a subset of Pn(X ), then

− 1

n
log(Wn

K(L(xn))) = V nK(L(xn)) = VnK(xn) = − 1

n
log(Wn

K(xn)). (3.12)

The proof of this result appears later in this section. Also, we will only prove the first equality and note that the third follows
in a similar manner.

Lemma 6. For a non-empty set K ⊂ Pn(X ), the equation (3.4) has at least one solution.

Proof. For the proof we use the equivalent discrete time stochastic control problem. Thus, with some abuse of notation,
we consider a feedback control q : Z × Pn(X )→ (0,∞). For such a control the probability of moving from statem to
statem+ 1

nvx̃,ỹ is given by
mx̃qx̃ỹ(m)∑

(x,y)∈Z mxqxy(m)
,

and the (conditional) expected cost till the time of transition is given by∑
(x,y)∈Z mxF

n
xy(qxy(m)) +Rn(m)

n
∑

(x,y)∈Z mxqxy(m)
.

Given controlled transition probabilities as above, let µ(i) be the corresponding controlled process. We define the value
function V̄ nK(m) : P(Rd)→ [0,∞) by

V̄ nK(m)
.
= inf
q:Z×Pn(X )→(0,∞)

Em

[
TK∑
i=1

∑
(x,y)∈Z µx(i)Fnxy(qxy(µ(i))) +Rn(µ(i))

n
∑

(x,y)∈Z µx(i)qxy(µ(i))

]
,

where Em denotes expected value given µ(0) = m and TK
.
= inf{i ∈ N : µ(i) ∈ K}.

To see that V̄ nK(m) is finite, we just have to use the original rates and note that the total cost is proportional to the expected
exit time, which is finite by classical results in Markov chains.

Then by [4, Proposition 1.1 in Chapter 3], we have that this value function satisfies

V̄ nK(m) = inf
q∈(0,∞)|Z|


∑

(x,y)∈Z mxF
n
xy(qxy) +Rn(m)

n
∑

(x,y)∈Z mxqxy
+

∑
(x̃,ỹ)∈Z

mx̃qx̃ỹ∑
(x,y)∈Z mxqxy

V̄ nK

(
m+

1

n
vx̃ỹ

) .
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Since Fnxy ≥ 0 (see Lemma 4) andRnmin > 0, the infimum in the last display can be restricted to q that are bounded away

from 0. It then follows that V̄ nK(m) satisfies the last display if and only if [with ∆n
xyV̄

n
K(m)

.
= n

(
V̄ nK(m+

vxy
n )− V̄ nK(m)

)
]

inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxy∆n

xyV̄
n
K(m) + Fnxy(qxy)

)+Rn(m) = 0.

Then using the definition (3.2) this is the same as

Hn
(
m,∆nV̄ nK(m)

)
+Rn(m) = 0,

and we also have the boundary condition V̄ nK(m) = 0 for allm ∈ K.

Proof of Lemma 1. Let Ṽ be a solution to (3.4). We then have Hn(m,∆nṼ (m)) + Rn(m) = 0, or by using the
second from the bottom line in (3.6),

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
1− e−n(Ṽ (m+

vxy
n )−Ṽ (m))

)
− γxyCnxy

(
uxy
γxy

))+Rn(m) = 0.

By making the substitution we have

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
1−

W̃ (m+
vxy
n )

W̃ (m)

)
− γxyCnxy

(
uxy
γxy

))+Rn(m) = 0,

which is the same as (3.5).

Lemma 7. Let f : Pn(X )→ R,m ∈ Pn(X ), and q ∈ An,|Z|b be given, and let µ solve (2.9). Then

f(µ(t))− f(m)−
∫ t

0

∑
(x,y)∈Z

µx(s)qxy(s)∆n
xyf(µ(s))ds,

f(µ(t ∧ TK))− f(m)−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)qxy(s)∆n
xyf(µ(s))ds,

f(µ(t ∧ TK))− f(µ(t′ ∧ TK))−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)qxy(s)∆n
xyf(µ(s))ds,

are martingales with respect to the filtration Ft.

Proof. By the construction of µ (also see Ito’s formula [21, Chapter 2, Theorem 5.1]), we have

f(µ(t))− f(m)−
∫

(0,t]

∑
(x,y)∈Z

∫
[0,∞)

1[0,µx(s−)qxy(s)](r)∆
n
xyf(µ(s−))Nn

xy(dsdr) = 0.

Indeed, the right hand side simply records each jump in f(µ(s)) for 0 < s ≤ t. Also by [21, Chapter 2, Theorem 3.1], for
each (x, y) ∈ Z∫ t

0

µx(s−)qxy(s)∆n
xyf(µ(s−))ds−

∫
(0,t]

∫
[0,∞)

1[0,µx(s−)qxy(s)](r)∆
n
xyf(µ(s−))Nn

xy(dsdr),

is a martingale. By combining the last two displays and using that s− in the ordinary integral can be replaced by s due to
left continuity,

f(µ(t))− f(m)−
∫ t

0

∑
(x,y)∈Z

µx(s)qxy(s)∆n
xyf(µ(s))ds

is a martingale. The second and third formulas then follow from standard properties of martingales.

DOI 10.20347/WIAS.PREPRINT.2407 Berlin 2017



P. Dupuis, V. Laschos, K. Ramanan 10

Lemma 8. Let g : Pn(X )→ (0,∞),m ∈ Pn(X ), and u ∈ An,|Z|b be given, and let µ solve (2.9). Then

g(µ(t))

g(m)
exp

−
∫ t

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds

 ,

g(µ(t ∧ TK))

g(m)
exp

−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds

 ,

g(µ(t ∧ TK))

g(µ(t′ ∧ TK))
exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds

 ,

(3.13)

are martingales with respect to the filtration Ft.

Proof. The proof is a direct application of the corollary in [24, Page 66].

Lemma 9. Let m ∈ Pn(X ) and u ∈ An,|Z|b . There exists a constant c > 0, that depends only on the bounds on u,
the dimension d, the constant Rnmax = max{Rn(m) : m ∈ Pn(X )}, and the number n of agents, such that for every
t ≥ t′ ≥ 0,

Em
[
e−nR

n
max(t∧TK−t′∧TK)

∣∣∣Ft′] > c.

Furthermore it is true that

TK <∞ a.s., and Em
[
e−nR

n
max(TK−t′∧TK)

∣∣∣Ft′] > c.

Proof. We claim there exists g such that for all s

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
≥ nRnmax. (3.14)

To show the existence of such a g we use the following procedure. Since the one particle process with generator given
in (1.1) is ergodic, we have that the process on Xn, with generator given in (1.2), as well as the one on Pn(X ), with
generator given in (1.4), are also ergodic. We split Pn(X ) into sets {Ki}0≤i≤imax

, where K0 = K, and Ki+1 is
generated inductively as the set of all points in Pn(X ) that do not belong to Ki but such that the process with generator
(1.4) can reach Ki in one jump. Since the original process has d states, it is easy to see that imax ≤ dn. Since u ∈
An,|Z|b there exist constants 0 < c1 ≤ c2 <∞ such that c1 ≤ uxy(t) ≤ c2 for all t ≥ 0 a.s. Let g be defined by

g(m)
.
=

(
nRnmax + nd2c2 + c1

c1

)imax−i

, for m ∈ Ki.

Let µ(·) be the process with control u... For 0 ≤ s ≤ t suppose that µ(s) ∈ Ki for some i ≥ 1. Then there exists at
least one (x̃, ỹ) ∈ Z such that µ(s) +

vx̃ỹ
n ∈ Ki−1. Therefore∑

(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
= µx̃(s)ux̃ỹ(s)

∆n
x̃ỹg(µ(s))

g(µ(s))
+ n

∑
(x,y)∈Z,(x,y)6=(x̃,ỹ)

g(µ(s) +
vxy
n )

g(µ(s))
µx(s)uxy(s)

− n
∑

(x,y)∈Z,(x,y)6=(x̃,ỹ)

g(µ(s))

g(µ(s))
µx(s)uxy(s) ≥ µx̃(s)ux̃ỹ(s)

∆n
x̃ỹg(µ(s))

g(µ(s))
− n

∑
(x,y)∈Z

µx(s)uxy(s)

≥ c1
(
nRnmax + nd2c2 + c1

c1
− 1

)
− nc2d2 ≥ nRnmax,

where in the next to last inequality we used the fact that µx̃(s) ≥ 1
n (because otherwise there is no particle at x̃ to move),

and that ∆n
xyV (m) = n

(
V (m+

vxy
n )− V (m)

)
.

Using the last martingale in Lemma 8, we have

Em

 g(µ(t ∧ TK))

g(µ(t′ ∧ TK))
exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds


∣∣∣∣∣Ft′

 = 1,
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from which we get

Em

exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds


∣∣∣∣∣Ft′

 ≥ c .= minPn(X ) g

maxPn(X ) g
.

By applying equation (3.14)

Em
[
e−nR

n
max(t∧TK−t′∧TK)

∣∣∣Ft′] ≥ c.
Now choose now τ > 0 such that e−nR

n
maxτ ≤ c

2 ... We claim that

(TK ≤ t′ + τ)⇔ (TK ∧ (t′ + 2τ)− t′ ∧ TK) ≤ τ.

Indeed if t′ ≥ TK , then both parts are trivially true. Let assume that t′ ≤ TK , and TK ≤ t′+ τ. Then TK ∧ (t′+ 2τ) =
TK , and t′ ∧ TK = t′, and therefore (TK ∧ (t′ + 2τ)− t′ ∧ TK) = TK − t′ ≤ τ. If on the other hand t′ ≤ TK and
(TK ∧ (t′ + 2τ)− t′ ∧ TK) ≤ τ, we get (TK ∧ (t′ + 2τ)) ≤ τ + t′, which gives that TK ≤ (t′ + 2τ), and therefore
TK = (TK ∧ (t′ + 2τ)) ≤ t′ + τ .

Using the claim

Pm(TK ≤ t′ + τ |Ft′) = Pm(TK ∧ (t′ + 2τ)− t′ ∧ TK ≤ τ |Ft′)

= Pm
(
e−nR

n
max(TK∧(t′+2τ)−t′∧TK) ≥ e−nR

n
maxτ |Ft′

)
.

Let E1
.
= {e−nR

n
max(TK∧(t′+2τ)−t′∧TK) ≥ e−nRmaxτ} and E2

.
= E1. Then since TK ∧ (t′ + 2τ)− t′ ∧ TK ≥ 0

Em
[
e−nR

n
max(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′] = Em
[
1E1

e−nR
n
max(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′]
+ Em

[
1E2

e−nR
n
max(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′] ≤ Em
[
1E1

∣∣∣Ft′]+ e−R
n
maxτ .

From this we get

Pm
(
e−nR

n
max(TK∧(t′+2τ)−t′∧TK) ≥ e−nR

n
maxτ |Ft′

)
≥ Em

[
e−nR

n
max(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′]− e−nRnmaxτ ≥ c− c

2
=
c

2
.

Since the probability depends only on the size of τ, an iteration argument gives that TK is finite almost surely. The
remaining inequality is just an application of the monotone convergence theorem.

Lemma 10. Givenm ∈ Pn(X ), ε > 0 and u ∈ An,|Z|b with

Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)Cnxy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt
]
<∞,

there exists ũ ∈ An,|Z|b and τ <∞, such that

∑
(x,y)∈Z

µ̃x(t)γxyC
n
xy

(
ũxy(t)

γxy

)
−Rn(µ̃(t)) ≤ 0

for every t > τ , and
InK(m, ũ) ≤ InK(m,u) + ε.

Proof. Let suchm ∈ Pn(X ), ε > 0, and u ∈ An,|Z|b be given, and let c > 0 from Lemma 9 be such that

Em
[
enR

n
max(TK−t′∧TK)

∣∣∣Ft′] > c (3.16)

for t′ ∈ [0,∞). Since by Lemma 9 TK is finite a.s., we can find τ <∞ such that

Em
[
I{TK≥τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt
]
≤ εc.
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Now set ũ(t) = u(t) for t ≤ τ, and ũ(t) = γ so that Cnxy (ũxy(t)/γxy) = 0 for t ≥ τ . Let µ̃ and T̃K be
the corresponding controlled process and stopping time. Then the first claim of the lemma follows. The remaining claim
follows from the following display, where the first inequality uses again that Cnxy (1) = 0, the following equality uses that

(ũ, µ̃, T̃K) had the same distribution as the original versions up till time τ , and the second inequality uses (3.16):

InK(m, ũ) = Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µ̃x(t)γxyC

n
xy

(
ũxy(t)

γxy

)
−Rn(µ̃(t))

)
dt
]

≤ Em
[
I{TK≤τ}e

n
∫ TK
0

(∑
(x,y)∈Z µ̃x(t)γxyC

n
xy

(
ũxy(t)

γxy

)
−Rn(µ̃(t))

)
dt
]

+ Em
[
I{TK≥τ}e

n
∫ TK∧τ
0

(∑
(x,y)∈Z µ̃x(t)γxyC

n
xy

(
ũxy(t)

γxy

)
−Rn(µ̃(t))

)
dt
]

= Em
[
I{TK≤τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt
]

+ Em

[
I{TK≥τ}e

n
∫ TK∧τ
0

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt

×
Em

[
e
n
∫ TK
TK∧τ

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt

∣∣∣∣∣Fτ
]

Em

[
e
n
∫ TK
TK∧τ

(∑
(x,y)∈Z µx(t)γxyCnxy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt

∣∣∣∣∣Fτ
]]

≤ Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)Cnxy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt
]

+
1

c
Em

[
I{TK≥τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyC

n
xy

(
uxy(t)

γxy

)
−Rn(µ(t))

)
dt

]
≤ InK(m,u) + ε.

Proof of Theorem 5. We are first going to prove that V nK is the unique solution to (3.4). Let Ṽ be any solution to (3.4), and

letm ∈ P(X ). Let also q ∈ An,|Z|b be given and let µ solve (2.9). By Lemma 7,

Ṽ (µ(t ∧ TK))− Ṽ (m)−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)qxy(s)∆nṼ (µ(s))ds

is a martingale. Taking expectation gives

Em
[
Ṽ (µ(t ∧ TK))

]
− Em

∫ t∧TK

0

∑
(x,y)∈Z

µx(s)qxy(s)∆nṼ (µ(s))ds

 = Ṽ (m)

and since Ṽ is a solution to (3.4) and by (3.2),

Em
[
Ṽ (µ(t ∧ TK))

]
+ Em

∫ t∧TK

0

 ∑
(x,y)∈Z

µx(s)Fnxy(qxy(s)) +Rn(µ(s))

 ds

 ≥ Ṽ (m).

By Lemma 9, TK <∞ almost surely. Letting t→∞, Lemma 4 and the monotone convergence theorem imply

JnK(m, q) = Em

∫ TK

0

∑
(x,y)∈Z

µx(t)Fnxy(qxy(s)) +Rn(µ(s)))ds

 ≥ Ṽ (m).

Since q ∈ An,|Z|b was arbitrary we get V nK(m) ≥ Ṽ (m).

For eachm ∈ Pn(X ) let q̄(m) satisfy∑
(x,y)∈Z

(
q̄xy(m)n

(
Ṽ

(
m+

1

n
vxy

)
− Ṽ (m))

)
+mxF

n
xy(q̄xy(m))

)
+Rn(m)) ≤ Rnminε (3.17)
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(note that q̄xy(m) will be bounded away from zero). We can construct a solution to (2.9) with u replaced by the feedback

control q̄(µ), and then obtain q̂ ∈ A|Z|b by setting q̂(t) = q̄(µ(t)). Then

Em
[
Ṽ (µ(t ∧ TK))

]
− Em

∫ t∧TK

0

∑
(x,y)∈Z

µx(s)q̄xy(µ(s))∆nṼ (µ(s))ds

 = Ṽ (m),

and therefore by (3.17)

Em
[
Ṽ (µ(t ∧ TK))

]
+ Em

∫ t∧TK

0

 ∑
(x,y)∈Z

µx(t)Fn(q̄xy(µ(s))) +Rn(µ(s))− εRnmin

 ds

 ≤ Ṽ (m).

Again using Lemma 9 and the monotone convergence theorem gives

(1− ε)Em

∫ TK

0

 ∑
(x,y)∈Z

µx(t)Fn(q̄xy(µ(s))) +Rn(µ(s))

 ds

 ≤ Ṽ (m),

and therefore V nK(m) ≤ JnK(m, q̂) ≤ 1
1−ε Ṽ (m). Since ε is arbitrary we get V nK(m) = Ṽ (m), which implies the

uniqueness of Ṽ .

We now proceed with the proof that Wn
K is the unique solution to

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

µx

(
uxy

(
W (µ)−W

(
µ+

vxy
n

)
W (µ)

)
− γxyCnxy

(
uxy
γxy

)) = −Rn(µ). (3.18)

Since V nK is a solution to (3.4), by Lemma 1 we get that 1
n log(V nK) is a solution to (3.18), and thus uniqueness will imply

1
n log(V nK) = Wn

K .

Let W̃ be any solution to (3.18), m ∈ Pn(X ), and u ∈ An,|Z|b , and let µ solve (2.9). Further assume that there exists
τ <∞ such that for t > τ ∑

(x,y)∈Z

µx(t)γxyC
n
xy

(
uxy(t))

γxy

)
−Rn(µ(t)) ≤ 0. (3.19)

To show JnK(m,u) ≥ W̃ (m) we can assume that JnK(m,u) < ∞, since otherwise there is nothing to prove. By
Lemma 8

W̃ (µ(t ∧ TK))

W̃ (m)
exp

−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆nW̃ (µ(s))

W̃ (µ(s))
ds


is a martingale. Taking expectations gives

Em

W̃ (µ(t ∧ TK)) exp

−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆nW̃ (µ(s))

W̃ (µ(s))
ds


 = W̃ (m),

and by (3.4) and the definition of ∆n

Em

W̃ (µ(t ∧ TK)) exp

n
∫ t∧TK

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
uxy(s)

γxy

)
−Rn(µ(s))

 ds


 ≥ W̃ (m).

We claim that

Em

W̃ (µ(t ∧ TK)) exp

n
∫ τ∧TK

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
uxy(s)

γxy

)
−Rn(µ(s))

 ds


 <∞. (3.20)

Since W̃ is uniformly bounded this term can be ignored. One can then bound what remains in (3.20) by using

∞ > JnK(m,u) = Em

exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
uxy(s)

γxy

)
−Rn(µ(s))

 ds


 ,
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breaking the integral over [0, TK ] into contributions over [0, τ ∧TK ] and [τ ∧TK , TK ], and then conditioning on Fτ and
using the lower bound on the term corresponding to [τ ∧ TK , TK ] provided by Lemma 9 (as in the proof of Lemma 10).
Since (by Lemma 9) TK is finite almost surely, and (3.19) holds for t ≥ τ , by dominated convergence theorem and (3.20)
it follows that

JnK(m,u) = E

exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
uxy(s)

γxy

)
−Rn(µ(s))

 ds


 ≥ W̃ (m).

By minimizing over all u that satisfy (3.19) and applying Lemma 10, we get Wn
K(m) ≥ W̃ (m).

Next let ε ∈ (0, 1/2). Form ∈ Pn(X ), t ≥ 0 we choose ū(m, t) such that

∑
(x,y)∈Z

mx

(
ūxy(m, t)

(
W̃ (m)− W̃

(
m+

vxy
n

)
W̃ (m)

)
− γxyCnxy

(
ūxy(m, t)

γxy

))
≥ −Rn(m)− ε

t2 + 1
. (3.21)

As before we can solve (2.9) and then generate a corresponding element u of An,|Z|b by composing ūxy(m, t) with the

solution. It is easy to see that u is an element of An,|Z|b , since very big or very small values of ūxy(m, t) will make the
left hand of (3.21) tend to −∞. Arguing as before, for fixed t <∞

Em

W̃ (µ(t ∧ TK)) exp

n
∫ TK∧t

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
ūxy(µ(s), s)

γxy

)
−Rn(µ(s))− ε

s2 + 1

 ds


 ≤ W̃ (m).

By sending t→∞ and using the boundary condition, Fatou’s lemma gives

Em

exp

(∫ ∞
0

− ε

s2 + 1
ds

)
exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyC
n
xy

(
ūxy(µ(s), s)

γxy

)
−Rn(µ(s))

 ds


 ≤ W̃ (m),

from which we get Wn
K(m) ≤ W̃ (m) exp[ε

∫∞
0

1/(s2 + 1)ds]. Sending ε to zero shows Wn
K(m) ≤ W̃ (m).

The proof that VnK(xn) = − 1
n log(Wn

K(xn)) is similar and thus omitted. It remains only to prove V nK(L(xn)) =
VnK(xn).

We have established that V nK is the only function that satisfies

inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxy∆n

xyV
n
K (m) + Fnxy(qxy)

) = −Rn(m), (3.22)

and that VnK is the only function that satisfies

inf
q∈(0,∞)n|Z|


n∑
i=1

∑
y∈Zxn

i

(
qxni y∆n

i,xni y
VnK (xn) + Fnxni y(qxni y)

) = −nRn(L(xn)). (3.23)

Since K ⊂ Xn is invariant under permutations, and therefore can be identified with a subset of Pn(X ), we have that
there exists a function V̄ : Pn(X )→ [0,∞) such that V̄ (L(xn)) = VnK(xn), and therefore (3.23) becomes

inf
q∈(0,∞)n|Z|


n∑
i=1

∑
y∈Zxn

i

(
qxni y∆n

i,xni y
V̄ (L(xn)) + Fnxni y(qxni y)

) = −nRn(L(xn)).

For ε > 0, let q̄ ∈ (0,∞)n|Z| satisfy

n∑
i=1

∑
y∈Zxn

i

[
q̄xni y∆n

i,xni y
V̄ (L(xn)) + Fnxni y(q̄xni y)

]
≤ −nRn(L(xn)) + ε.

Now pick q̃ ∈ (0,∞)|Z| by requiring nLx(xn)q̃xy =
∑n
i=1 Ixni =xq̄xni y , so that

∑
(x,y)∈Z

nLx(xn)q̃xy∆n
xyV̄ (L(xn)) +

n∑
i=1

∑
y∈Zxn

i

Fnxni y(q̄xni y) ≤ −nRn(L(xn)) + ε.
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By using convexity of Fnxy (see Lemma 4) we get∑
(x,y)∈Z

Lx(xn)
[
q̃xy∆n

xyV̄ (L(xn)) + Fnxy(q̃xy)
]
≤ −Rn(L(xn)) + ε/n,

and sending ε ↓ 0 gives

inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

Lx(xn)
[
qxy∆n

xyV̄ (L(xn)) + Fnxy(qxy)
] ≤ −Rn(L(xn)).

The other direction is trivial, and follows if in (3.23) one uses rates that are the same for all particles in the same position.

4 Discussion regarding convergence

Before we introduce the deterministic control problem, we define the set of admissible controls and controlled trajectories.

Definition 11. We define the space of paths and controls by

C .
=
{

(µ, q) ∈ D([0,∞);P(X ))×F
(
[0,∞); [0,∞)⊗Z

)
: µxqxy is locally integrable ∀(x, y) ∈ Z

}
, (4.1)

where F
(
[0,∞); [0,∞)⊗Z

)
was defined in (2.1). We define Λ : C × P(X )→ D([0,∞);H) by

Λ(µ, q,m)(t)
.
= m+

∑
(x,y)∈Z

vxy

∫
[0,t)

µx(s)qxy(s)ds. (4.2)

Also we define the set of all deterministic pairs that correspond to a solution of the equation µ = Λ(µ, q,m), i.e.,

Tm
.
= {(µ, q) ∈ C : µ = Λ(µ, q,m),µ(0) = m}

Finally we introduce the set of controls that generate controlled trajectories

Um
.
=
{
q ∈ F([0;∞); [0,∞)⊗Z) : ∃µ ∈ D([0,∞);P(X )) such that (µ, q) ∈ Tm

}
. (4.3)

Then the deterministic control problems are given by

VK(m)
.
= inf

(µ,q)∈Tm
JK(m,µ, q) (4.4)

JK(m,µ, q)
.
=


∫ TK

0

 ∑
(x,y)∈Z

µx(t)F̂∞xy (qxy(t)) +R∞(µ(t))

 dt

 , (4.5)

F∞(q)
.
= inf

{
lim inf
n→∞

Fn(qn) : {qn} sequence in [0,∞) with qn → q
}
, (4.6)

with

F̂∞(q)
.
= sup{F (q) : F convex and F ≤ F∞}. (4.7)

and

TK
.
= inf
t∈[0,∞]

{µ(t) ∈ K} .

In this section we consider sets K ⊂ P(X ) that satisfy the following assumption.

Assumption 12. K = K◦ 6= ∅.
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For such sets we show that the sequence of values functions V nK , where converges uniformly to the function VK . To
simplify the notation we will drop the index that corresponds to the set from the stopping time. We split the study of
the convergence in two parts. In the first part, without making any extra assumptions on the cost functions and in great
generality, we prove that for any sequence {mn}, withmn ∈ Pn(X ) converging inm ∈ P(X ),

lim inf
n→∞

V nK(mn) ≥ VK(m).

The other direction of the inequality, i.e.,
lim sup
n→∞

V nK(mn) ≤ VK(m),

is not as straightforward and its analysis can be quite involved. In order to avoid technical issues we will add some
assumptions.

Before we present the extra assumptions on {Cn} we discuss an almost trivial choice for the cost function that does
not depend on n and that will motivate these extra assumptions. As stated in Lemma 3, for every (x, y) ∈ Z we have
Cnxy(u) ≥ − log u+ u−u. Actually the function Cnxy(u) = − log u+u− 1 satisfies Assumption 2 and therefore is an
eligible cost function.

Setting Cnxy(u) ≡ C(u) = − log u+ u− 1, we get

Gnxy(u, q) = u`
( q
u

)
− γxyCnxy

(
u

γxy

)
= q log

q

u
− q + u+ γxy log

u

γxy
− u+ γxy (4.8)

= q log q + (γxy − q) log u− q + γxy

Examining (4.8) and referring to the definition of Fnxy in (1.9), we observe that if qxy > γxy then the “maximizing player”
(the one that picks u), can produce an arbitrarily large cost by making uxy as small as needed. If qxy < γxy , this
player can produce an arbitrarily large cost by making uxy as big as needed. Hence the minimizing player must keep
qxy = γxy , and the value function V (m) is infinite unless the solution of the equation ν̇(t) = ν(t)γ passes through K
for the specific choice of initial datam.

To resolve this difficulty we impose the following assumption on the cost.

Assumption 13. For every (x, y) ∈ Z

1
lim
u→0

sup
n∈N

u(Cnxy)′(u) = −∞.

2
lim inf
u→∞

inf
n∈N
{u(Cnxy)′(u)− u} ≥ 0.

Assumption 13 makes F̂∞ finite on (0,∞) and allows for some controllability. More specifically, if the first point of As-
sumption 13 holds true and if m, m̃ ∈ Pa(X ) for some a > 0, then one can observe (see the proof of Lemma 4) that
the total cost V{m̄}(m) for moving from point m to m̃ is uniformly bounded by ca‖m − m̃‖, where ca > 0 is an
appropriate constant, where the minimizing player picks q̃xy(t) to be uniformly bounded from above, but big enough to
reach the desired point. In particular, the maximizing player cannot impose an abritrarily large cost by taking uxy small. In
an analogous fashion, the second point of Assumption 13 implies the minimizer can choose controls so that the total cost
V{m̃}(m) for moving from point m to m̃ is uniformly bounded by c′a‖m − m̃‖ by picking q̃xy(t) bounded from below
but small enough.

However, if m̃ is in the natural boundary of the simplex P(X ) an additional complication arises, because to reach the
natural boundary it must be true that for at least one (x, y) ∈ Z the quantity q̃xy(t) will scale like 1/µ̃x(t). In that case,
the first point of Assumption 13 is not enough for a finite cost, since sending q̃xy(t) to infinity in order to reach the natural
boundary may result in an infinite total cost. Taking all these things into account we end up with the following assumption.

Assumption 14. For every n ∈ N let Cn, Rn be as in Assumption 2. Assume that there exist lower semicontinuous
functions C∞ : (0,∞)⊗Z → [0,∞], Rn : P(X )→ [0,∞), such that {Rn}n converges uniformly to R∞, and for all
(x, y) ∈ Z , the following are valid.
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1 There exist intervals (u1,xy, u2,xy) ⊂ (0,∞) containing 1, outside of which Cnxy, C
∞
xy are infinite, and for which

Cnxy, converges uniformly on compact subsets to C∞xy.

2 There exists p > 0 such that
lim
u→0

sup
n∈N

up+1(Cnxy)′(u) = −∞. (4.9)

3
lim inf
u→∞

inf
n∈N
{u(Cnxy)′(u)− u} ≥ 0. (4.10)

Now we state the second main theorem of the paper.

Theorem 15. Let {Cn}n, {Rn}n, C∞, andR∞ satisfy Assumptions 2 and 14. Let alsoK be a closed subset ofP(X )
that satisfies Assumption 12. Finally assume that in every compact subset ofKc, R∞, is bounded from below by a positive
constant. Then the sequence of functions V nK defined in (2.12) converges uniformly to VK defined in (4.4).

Before proceeding with the proof, we state some properties of Fnxy .

Lemma 16. For every n ∈ N and for every (x, y) ∈ Z, let Fnxy be as in (1.9), where {Cnxy} satisfy Assumption 14. Then
the following hold.

1 There exists a constant M ∈ (0,∞) and a decreasing function M̄ : (0,∞)→ (0,∞), such that for every ε > 0
and every q ≥ ε,

Fnxy(q) ≤ q log
q

min
{
γxy (γxy/q)

1/p
,M
} + M̄(ε).

2 Fnxy is continuous on the interval (0,∞), and continuous as an extended function on [0,∞).

3 Fnxy converges locally uniformly, on the set (0,∞), to the function

F̄xy(q) = sup
u∈(0,∞)

{
u`
( q
u

)
− γxyC∞xy

(
u

γxy

)}
.

Furthermore, we have F̄xy = F∞xy , where F∞ was defined in (4.6). Finally F∞xy is convex on the whole domain

[0,∞) and therefore F̄xy = F∞xy = F̂∞xy .

The proof of the Lemma 16 can be found in Appendix A. It is worth mentioning that it is possible that Fnxy(0) =∞.

In the sequel we will make use of the following remark, which states a property proved in [14, Proposition 4.14]

Remark 17. There exists D ≥ 1 and b1 > 0, b2 < ∞ such that for every m ∈ P(X), if ν(m, t) is the solution of
ν̇(t) = ν(t)γ with initial point ν(0) = m, then

1 ∀x ∈ X , νx(m, t) ≥ b1tD

2 ‖ν(m, t)−m‖ ≤ b2t.

Before proceeding with the proof of Theorem 15, we prove that the function V (m) is continuous. We will actually prove
something stronger. Recall that γ denotes the original unperturbed jump rates and the definitions of P∗(X ) and Pa(X )
in (2.2), (2.3).

Theorem 18. There is a constant c̄ that depends only the dimension d and the unperturbed rates γ, such that for every
m ∈ P∗(X ), m̃ ∈ P(X ) there exists a control q ∈ Um, that generates a unique µ with (µ, q) ∈ Tm, satisfying

1 µ is a constant speed parametrization of the straight line that connectsm and m̃,

2 the exit time T{m̃} is equal to ‖m− m̃‖,

3 γxy ≤ qxy(t) and µx(t)qxy(t) ≤ c̄.
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Furthermore, ifm, m̃ ∈ Pa(X ) then

γxy ≤ qxy(t) ≤ c1
a
, (4.11)

and we can find a constant ca <∞ such that the total cost for applying the control is bounded above by ca‖m− m̃‖.

Finally, for every ε > 0 there exists δ > 0, such that ‖m̄ − m̃‖ ≤ δ implies V{m̃}(m̄), V{m̄}(m̃) ≤ ε, and therefore
as a function of two variables V is continuous on P(X )× P(X ).

Proof. Let m ∈ P∗(X ), m̃ ∈ P(X ). We can find a positive constant c̄ that depend only the dimension d and on the
rates γ, and also rates q such that

1 qxy ≥ γxy,

2
∑

(x,y)∈Z mxqxyvxy = m̃−m
‖m̃−m‖ ,

3 max{mxqxy, (x, y) ∈ Z} ≤ c̄.

Indeed, since {axyvxy : axy ≥ 0, (x, y) ∈ Z} = H, we can find a constant c < ∞ such that for every point
m ∈ P∗(X ), there exist vectors qxymxvxy with qxymx ≤ c, and

∑
(x,y)∈Z mxqxyvxy = m̃−m

‖m̃−m‖ . Now, if for some

(x1, y1) ∈ Z we do not have qx1y1 ≥ γx1y1 , then by ergodicity we can pick x1, x2 = y1, . . . , xj , with j ≤ d, such

that
∑j−1
i=1 vxixi+1

= 0. If we pick the new qxixi+1
equal to maxxy{γxy}/mxi plus the original qxixi+1

, then property
2 is still satisfied, but we now also have qx1y1 ≥ γx1y1 . We have to repeat the procedure at most |Z| times to enforce
property 1, and can then set c̄

.
= max{mxqxy, (x, y) ∈ Z}.

Let µ̃(t) = [(m̃−m)t/‖m̃−m‖+m], and define q̃ ∈ Um by

µ̃x(t)q̃xy(t) = mxqxy ≤ c̄. (4.12)

Then automatically ∑
(x,y)∈Z

vxy

∫
[0,t)

µ̃x(s)q̃xy(s)ds = t
m̃−m
‖m̃−m‖

= µ̃(t)−m,

and thus (µ̃, q̃) ∈ Tm. This will lead to hitting {m̃} in time T{m̃} = ‖m− m̃‖. By the second point in Lemma 4 we get

inf
(µ,q)∈Tm

J{m̃}(m,µ, q) ≤ J{m̃}(m, µ̃, q̃) ≤
∑

(x,y)∈Z

∫ T{m̃}

0

µ̃x(t)F̂∞xy (q̃xy(t)) +RmaxT{m̃}

(4.12)

≤
∑

(x,y)∈Z

∫ T{m̃}

0

µ̃x(t)q̃xy(t) log
q̃xy(t)

min
{
γxy (γxy/q̃xy(t))

1/p
,M
} + max

(x,y)∈Z
M̄(γxy)

 dt+RmaxT{m̃}

≤
∑

(x,y)∈Z

∫ T{m̃}

0

|µ̃x(t)q̃xy(t) log q̃xy(t)| dt+
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣µ̃x(t)q̃xy(t) log (γxy/q̃xy(t))
1/p
∣∣∣ dt+

+
∑

(x,y)∈Z

∫ T{m̃}

0

|µ̃x(t)q̃xy(t) log γxy| dt+
∑

(x,y)∈Z

∫ T{m̃}

0

|µ̃x(t)q̃xy(t) logM | dt+ c′T{m̃}

(4.12)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

| log q̃xy(t)|dt+ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣log (γxy/q̃xy(t))
1/p
∣∣∣ dt+ c′′T{m̃}

(4.12)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣∣log
mxqxy
µ̃x(t)

∣∣∣∣ dt+ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣log (µ̃x(t)γxy/mxqxy)
1/p
∣∣∣ dt+ c′′T{m̃}

(4.12)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

|log µ̃x(t)| dt+ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

1

p
|log µ̃x(t)| dt+ c′′′T{m̃},

(4.13)

where the constants c′, c′′, c′′′ depend only on γ, c1 and Rmax.
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Now if m, m̃ ∈ Pa(X ), then all elements are bounded by a constant ca (that depends on γ, c1, Rmax, and a) times
T{m̃} = ‖m̃−m‖, and therefore the first part of the theorem. follows.

Let 1 > δ > 0, and m̄, m̃ ∈ P(X ), with ‖m̄ − m̃‖ < δ. We take m = ν(m̄, δ), where ν(m̄, t) is the solution of
ν̇(t) = ν(t)γ, with initial data ν(0) = m̄. Now by appropriate use of the inequality µ̃x(t) ≥ min{mx,mx(T{m̃}−t)}
and using the last display, we get

V{m̃}(m) ≤ c′′′′
 ∑

(x,y)∈Z

∫ T{m̃}

0

(
| logmx|+ | log(T{m̃} − t)|

)
dt+ T{m̃}

 .

By a simple change of variable and Remark 17, we have

V{m̃}(m) ≤ c′′′′
 ∑

(x,y)∈Z

∫ b2δ

0

(
| log b1δ

D|+ | log t|
)
dt+ b2δ

 . (4.14)

Therefore

V{m̃}(m̄) ≤ V{m}(m̄) + V{m̃}(m) ≤ δRmax + c′′′′

 ∑
(x,y)∈Z

∫ b2δ

0

(
| log b1δ

D|+ | log t|
)
dt+ b2δ

 ,

and the right hand side can be made as small as desired by making δ small enough. The estimate for V{m̄}(m̃) is proved
in a symmetric way. This proves the last statement of the theorem.

5 Lower bound

For the proof of Theorem 15, we first prove the lower bound: for every sequence mn ∈ Pn(X ) and m ∈ P(X ), with
mn →m, we have

lim inf
n→∞

V nK(mn) ≥ VK(m).

Without loss of generality we can assume that the liminf is actually a limit, otherwise we can just work with a subsequence.
If the limit is∞ then the conclusion is trivial, therefore we can assume that there is c ∈ R such that

sup
n∈N

V nK(mn) ≤ c. (5.1)

Let ε ∈ (0, 1). Recalling (2.12), let qn ∈ An,|Z|b be such that

Emn

∫ Tn

0

 ∑
(x,y)∈Z

µnx(t)Fnxy(qnxy(t)) +Rn(µn(t))

 dt

 < V nK(mn) + ε, (5.2)

where µn = hn (µn, qn,mn,Nn/n) and Tn
.
= inf {t ∈ [0,∞] : µn(t) ∈ K} . For δ > 0 such that

‖m̄− m̃‖ ≤ δ ⇒ Vm̄(m̃) ≤ ε, (5.3)

we define

Kδ
.
= {m : d(m,K) ≤ δ} and Tn,δ

.
= inf{t ∈ [0,∞] : µn(t) ∈ Kδ}. (5.4)

The existence of such a δ is given by Theorem 18. Now forµn, qn as in (5.2) and Tn,δ as above, we define the sequences
µn,δ(t) = µn(t ∧ Tn,δ),

qn,δ(t) =

{
qn(t) t ≤ Tn,δ

γ T > Tn,δ
... (5.5)
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We note that for t > T δ, qn,δ(t) does not actually generate µn, but we define it this way to simplify some technical
issues. We will show that

lim inf
n→∞

Emn

∫ Tn

0

 ∑
(x,y)∈Z

µnx(t)Fnxy(qnxy(t)) +Rn(µn(t))

 dt

 ≥
lim inf
n→∞

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

µn,δx (t)Fnxy(qn,δxy (t)) +Rn(µn,δ(t))

 dt

 ≥ VKδ(m),

(5.6)

and then by an application of Theorem 18 and (5.2) deduce limn→∞ V nK(mn) + 2ε ≥ VK(m). Since ε is arbitrary the
lower bound will follow.

Before proceeding we introduce some auxiliary random measures. For (x, y) ∈ Z, qxy ∈ F([0,∞); [0,∞)), and
t ∈ [0,∞), define

ηxy(dr; t)
.
= δqx,y(t)(dr)µx(t).

For each t ∈ [0,∞), (x, y) ∈ Z we have that ηxy(·; t) is a subprobability measure on [0,∞). Also we consider the
measures θxy(drdt) = ηxy(dr; t)dt on [0,∞) × [0,∞) as equipped with the topology that generalizes the weak
convergence of probability measures to general measures that have at most mass T on [0,∞) × [0, T ]. This can be
defined in terms of a distance (a generalization of the Prohorov metric) dT ,and the metric on measures on [0,∞)×[0,∞)
is ∑

T∈N
2−T [dT (µ|T ,ν|T ) ∨ 1] , (5.7)

where µ|T denotes the restriction to [0, T ] in the last variable.

Let θn,δ = {θn,δ}(x,y)∈Z be the random measures that correspond to µn,δ, qn,δ, according to the construction above.
We observe that

µn,δ(t) = mn +
∑

(x,y)∈Z

vxy

∫ t∧Tn,δ

0

∫ ∞
0

rθn,δxy (drds) + a martingale,

where the martingale will converge to zero as n→∞, and that for every (x, y) ∈ Z,

Emn

[∫ Tn,δ

0

Fnxy(qn,δxy (t))µn,δx (t)dt

]
= Emn

[∫ Tn,δ

0

∫ ∞
0

Fnxy(r)θn,δxy (drdt)

]
. (5.8)

We will split the proof of (5.6) in three parts. First we prove that (µn,δ,θn,δ, Tn,δ) is tight. Then we show that for every
limit point (µδ,θδ, T δ), θδxy has the decomposition θδxy(drdt) = ηδxy(dr; t)dt, with

∑
y∈X η

δ
xy([0,∞); t) = µδx(t),

and for qδ defined by µδx(t)qδxy(t) =
∫∞

0
rηδxy(dr; t), that

µδ(t) = m+
∑

(x,y)∈Z

vxy

∫ t∧T δ

0

∫ ∞
0

rθδxy(drds) = m+
∑

(x,y)∈Z

vxy

∫ t∧T δ

0

µδx(s)qδxy(s)ds.

Finally, by an application of Fatou’s Lemma, for such a qδ, we get

lim inf
n→∞

Emn

[∫ Tn,δ

0

∫ ∞
0

Fnxy(r)θn,δxy (drdt)

]
≥ Em

[∫ T δ

0

∫ ∞
0

F∞xy (r)θδxy(drdt)

]

≥ Em

[∫ T δ

0

∫ ∞
0

F̂∞xy (r)θδxy(drdt)

]
≥ Em

[∫ T δ

0

∫ ∞
0

F̂∞xy (r)ηδxy(dr; t)dt

]

≥ Em

[∫ T δ

0

F̂∞xy

(∫ ∞
0

r
ηδxy(dr; t)

ηδxy([0,∞); t)

)
ηδxy([0,∞); t)dt

]
= Em

[∫ T δ

0

F̂∞xy (qδxy(t))µδx(t)dt

]
,

where in the second inequality, we used the fact that F̂∞xy ≤ F∞xy , and for the fourth, we applied Jensen’s inequality.

Together with µn,δ → µδ and another application of Fatou’s Lemma, this gives (5.6).
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5.1 Tightness of (µn,δ,θn,δ, T n,δ)

First, we prove that (µn,δ(·), Tn,δ), which takes values in D([0,∞);P(X ))× [0,∞) ⊂ D([0,∞);Rd) × [0,∞), is
tight. For that, we introduce some auxiliary random variables µ̃n,δ in D([0,∞);Rd), to compare with µn,δ , given by

µ̃n,δ(t) = mn +
∑

(x,y)∈Z

vxy

∫ t∧Tn,δ

0

µnx(s)qnxy(s)ds. (5.9)

Since γxy` (·/γxy) ≤ Fnxy(·), recalling (5.1), (5.2) and that for sufficiently large n Rn is bounded away from zero in

Kδ = {m : d(m,K) ≥ δ} by a constant Rδmin, we get

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

µnx(t)γxy`

(
qnxy(t)

γxy

) dt+RδminT
n,δ

 ≤ c+ 1, (5.10)

which shows tightness of {Tn,δ}. By setting γmax = max{γxy : (x, y) ∈ Z}, we get

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

γmax
µnx(t)γxy
γmax

`

(
qnxy(t)

γxy

) dt+RδminT
n,δ

 ≤ c+ 1.

Using the fact that ` is convex and `(1) = 0, by Jensen’s inequality a`(b) ≥ `(ab+ 1− a) for a ∈ [0, 1] and b ≥ 0. By

setting a =
µnx (t)γxy
γmax

, the inequality above gives

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

γmax`

(
µnx(t)

γmax
qnxy(t) + 1− (µnx(t)γxy)

γmax

) dt+RδminT
n,δ

 ≤ c+ 1.

By applying Jensen’s inequality once more

Emn

∫ Tn,δ

0

|Z|γmax`

 1

|Z|γmax

∑
(x,y)

µnx(t)qnxy(t) +
∑

(x,y)∈Z

[
1− (µnx(t)γxy)

|Z|γmax

] dt+RδminT
n,δ

 ≤ c+ 1.

(5.11)

Now by multiplying with 1
|Z|γmax

, using (5.9) and the fact that q ≤ q′ implies `(q) ≤ `(q′) + 1, we get

Emn

[∫ Tn,δ

0

`

(
| ˙̃µn,δ(t)|
|Z|γmax

)
dt+

(
1

|Z|γmax
Rδmin − 1

)
Tn,δ

]
≤ c+ 1

|Z|γmax
. (5.12)

Finally, by using that for every c > 0 there exists c1 > 0, c2 <∞ such that `(cq) ≥ c1`(q)− c2, we get

Emn

[∫ Tn,δ

0

c1`
(
| ˙̃µn,δ(t)|

)
dt+

(
1

|Z|γmax
Rδmin − 1− c2

)
Tn,δ

]
≤ c+ 1

|Z|γmax
,

which implies

Emn

[∫ Tn,δ

0

`
(
| ˙̃µn,δ(t)|

)
dt+

1

|Z|γmaxc1
RδminT

n,δ

]
≤ c+ 1

|Z|γmaxc1
+

(c2 + 1)

c1
Emn [Tn,δ] ≤ c′,

where

c′ =
c+ 1

|Z|γmaxc1
+

(c+ 1)(c2 + 1)

c1
. (5.13)

It will follow from the following lemma that µ̃n,δ is a tight sequence in D([0,∞);Rd). Let S be the elements (µ, T ) of
C([0,∞);P(X ))× [0,∞) that satisfy µ(t) = µ(T ) for t ≥ T .
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Lemma 19. For every positive number a, the function

H(µ, T ) =

{∫ T
0
` (|µ̇(t)|) dt+ aT, µ ∈ AC([0,∞);Rd), T ∈ [0,∞)

∞, otherwise,
(5.14)

is a tightness function on S, where AC([0,∞);Rd) is the set of all absolutely continuous functions from [0,∞) to Rd.

The proof of this lemma is in Appendix 8 (Is better if we use a reference of some sort).

Now we have that

|µn,δ(t)− µ̃n,δ(t)| ≤
∑

(x,y)∈Z

∣∣∣∣∣
∫ t∧Tn,δ

0

µnx(s)qnxy(s)ds−
∫ t∧Tn,δ

0

∫ ∞
0

1[0,µnx (s)qnxy(s)](r)
1

n
Nn
xy(dsdr)

∣∣∣∣∣ ,
where the summands on the right side, denoted from now on by Qn,δxy,t, are all martingales with quadratic variation Qn,δxy,t
that is bounded above by

1

n2
Emn

[∫ t∧Tn,δ

0

∫ ∞
0

1[0,µnx (s)qnxy(s)](r)N
n
xy(dsdr)

]
=

1

n
Emn

[∫ t∧Tn,δ

0

µnx(s)qnxy(s)ds

]

≤ 1

n
Emn

[∫ t∧Tn,δ

0

(`(µnx(s)qnxy(s)) + e)ds

]
(5.13)

≤ c′ + eEmn [Tn,δ ∧ t]
n

≤ c′ + eEmn [Tn,δ]

n

(5.10)

≤

(
(c+1)e

Rδmin

+ c′
)

n
,

where in the first inequality of the last line, the estimate ab ≤ ea + `(b), with a = 1, b = µnx(s)qnxy(s) was used. By
using the Burkholder-Gundy-Davis inequality, for every T ∈ (0,∞)

Emn

[
sup
t∈[0,T ]

|Qn,δxy,t|

]
≤ cBGDEmn [Qn,δxy ]

1/2
T ≤ cBGD

√√√√( (c+1)e

Rδmin

+ c′
)

n
, (5.15)

from which we get that Emn [supt∈[0,T ] |Q
n,δ
xy,t|] converges to zero as n → ∞. By an application of Lemma 19, we

have proved that {µ̃n,δ} is tight in D([0,∞);Rd) and that Emn

[
d(µn,δ, µ̃n,δ)

]
→ 0. From this we conclude that

{(µn,δ, Tn,δ)} is tight as well.

To show that the variable θn,δ is tight, we combine (5.8) and (5.1), (5.2) to get

Emn

 ∑
(x,y)∈Z

∫ Tn,δ

0

∫ ∞
0

Fnxy(r)θn,δxy (drdt) +

∫ Tn,δ

0

Rn(µn,δ(t))

 < c+ 1.

Since, by part 1 of Lemma 4, we have γxy` (·/γxy) ≤ Fnxy(·), and qn,δ = γ for t > Tn,δ , we get

Emn

 ∑
(x,y)∈Z

∫ ∞
0

∫ ∞
0

γxy`

(
r

γxy

)
θn,δxy (drdt)

 = Emn

 ∑
(x,y)∈Z

∫ Tn,δ

0

∫ ∞
0

γxy`

(
r

γxy

)
θn,δxy (drdt)

 < c+1.

Now by using the fact that

H̃(θ) =

∫ ∞
0

∫ T

0

γxy`

(
r

γxy

)
θ(drdt),

is a tightness function on the space of measures on [0,∞) × [0, T ] with mass no greater than T , we conclude that for
every (x, y) ∈ Z, θn,δxy is tight with the topology introduced in (5.7).
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5.2 Distributional limits and and lower bound

From the previous two subsections we have that (µn,δ, µ̃n,δ,θn,δ, Tn,δ), is tight. For proving the lower bound, we
can assume without loss that the sequence has a distributional limit (µδ, µ̃δ,θδ, T δ). By using the Skorohod repre-
sentation theorem we can also assume the sequence of variables is on the same probability space (Ω,F ,P), and that
(µδ, µ̃δ,θδ, T δ) is an a.s. pointwise limit.

Consider any ω ∈ Ω for which there is convergence. Since by the definition of θn,δ

θn,δxy ([0,∞)×A) =

∫
A∩[0,Tn,δ]

µn,δx (t)dt, ∀A ∈ B(R),

for every continuity set A of θδxy([0,∞)× ·) we have

∣∣∣∣∣θδxy([0,∞)×A)−
∫
A∩[0,T δ]

µδx(t)dt

∣∣∣∣∣
≤
∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)

∣∣+

∣∣∣∣∣
∫
A∩[0,Tn,δ]

µn,δx (t)dt−
∫
A∩[0,T δ]

µδx(t)dt

∣∣∣∣∣
≤
∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)

∣∣+

∣∣∣∣∣
∫
A∩[0,T δ]

µn,δx (t)dt−
∫
A∩[0,T δ]

µδx(t)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
A∩[min{Tn,δ,T δ},max{T δ,Tn,δ}]

µn,δx (t)dt

∣∣∣∣∣
≤
∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)

∣∣+ d(µn,δx , µδx) + |T δ − Tn,δ| → 0.

Therefore for every continuity set A of θδxy([0,∞)× ·)

θδxy([0,∞)×A) =

∫
A∩[0,T δ]

µδx(t)dt,

from which we conclude that for all (x, y) ∈ Z, θδxy has the decomposition θδxy(drdt) = ηδxy(dr; t)dt,with ηδxy([0,∞); t) =

µδx(t). Also, since
∫∞

0

∫∞
0
`(r)θn,δxy (drdt) is uniformly bounded and ` is superlinear, we have convergence of the first

moments of the first marginal, i.e.,∫
R
f(t)rθn,δxy (drdt)→

∫
R
f(t)rθδxy(dt), ∀f ∈ Cb(R).

Hence for qδ defined by µδx(t)qδxy(t) =
∫∞

0
rηδxy(dr; t), we get that for all (x, y) ∈ Z∫ ∞

0

f(t)µn,δx (t)qn,δxy (t)dt→
∫ ∞

0

f(t)µδx(t)qδxy(t)dt, ∀f ∈ Cb(R). (5.16)

Using the fact that d(µn,δ, µ̃n,δ)→ 0 and (5.9), we get∣∣∣∣∣∣µn,δ(t)−mn −
∑

(x,y)∈Z

vxy

∫ Tn,δ∧t

0

µn,δx (s)qn,δxy (s)ds

∣∣∣∣∣∣ =
∣∣µn,δ(t)− µ̃n,δ(t)∣∣→ 0, (5.17)

for a.e. t. Applying (5.16) for suitable choices of f and using (5.17),

µδ(t) = m+
∑

(x,y)∈Z

vxy

∫ T δ∧t

0

µδx(s)qδxy(s)ds

for a.e. t, and since the left side is cadlag and the right side is continuous in the last display, equality holds for t ≥ 0.
We conclude that qδ is the control that generates µδ, and we also already noticed that µδx(t)qδxy(t) =

∫∞
0
rηδxy(dr; t).

Finally, since µn,δ(Tn,δ) ∈ Kδ and d(µn,δ,µδ) → 0, by continuity of µδ we get µδ(T δ) ∈ Kδ. As discussed below
(5.8), this concludes the lower bound proof.
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6 Upper bound

Before we proceed with the proof of the upper bound

lim sup
n→∞

V nK(mn) ≤ VK(m),

we establish some preliminary lemmas. In the following lemmas, we make use of Tm, Um and F̂∞xy , defined in (4.2), (4.3),

and (4.7) respectively. For the properties of F̂∞xy , see Lemma 4.

Lemma 20. Let m ∈ P∗(X ), and q ∈ Um be such that (µ, q) ∈ Tm. Given T < ∞ and ε > 0, we can find
a1, a2, a3 > 0 and q̃ ∈ Um, with (µ̃, q̃) ∈ Tm, such that

a1 ≤ inf
(x,y)∈Z,t∈[0,T ]

q̃xy(t) ≤ sup
(x,y)∈Z,t∈[0,T ]

q̃xy(t) ≤ a2, (6.1)

inf
x∈X ,t∈[0,T ]

µ̃x(t) > a3, sup
t∈[0,T ]

‖µ(t)− µ̃(t)‖ < ε, (6.2)

and ∑
(x,y)∈Z

∫ T

0

µ̃x(t)F̂∞xy (q̃xy(t))dt ≤
∑

(x,y)∈Z

∫ T

0

µx(t)F̂∞xy (qxy(t))dt. (6.3)

Proof. Recall that m ∈ P∗(X ) implies mx > 0 for all x ∈ X . Let ν(m, t) be the solution to the equation ν̇(t) =
γν(t), with initial data m. By Remark 17, we know that there exists 1 ≥ a > 0 such that ν(m, t) ∈ Pa(X ), for every
t ∈ [0, T ]. For ε2 ≥ δ > 0, let

µδ(·) .
= δν(m, ·) + (1− δ)µ(·), (6.4)

and note that µδx(t) > 0 for every t ∈ [0, T ] and x ∈ X . Therefore, for δ as above and (x, y) ∈ Z , we can define

qδxy(·) = γxy
δνx(m, ·)
µδx(·)

+ qxy(·) (1− δ)µx(·)
µδx(·)

. (6.5)

Then it is straightforward to check that (µδ, qδ) ∈ Tm. Moreover, since δνx(m,t)
µδx(t)

+ (1−δ)µx(t)
µδx(t)

= 1 for all t ∈ [0, T ], by

the convexity of F̂∞ we obtain

∑
(x,y)∈Z

∫ T

0

µδx(t)F̂∞xy
(
qδxy(t)

)
dt =

∑
(x,y)∈Z

∫ T

0

µδx(t)F̂∞xy

(
γxy

δνx(m, t)

µδx(t)
+ qxy

(1− δ)µx(t)

µδx(t)

)
dt

≤
∑

(x,y)∈Z

∫ T

0

µδx(t)
δνx(m, t)

µδx(t)
F̂∞xy (γxy) dt+

∑
(x,y)∈Z

∫ T

0

µδx(t)
(1− δ)µx(t)

µδx(t)
F̂∞xy (qxy(t)) dt

≤ (1− δ)
∑

(x,y)∈Z

∫ T

0

µx(t)F̂∞xy (qxy(t)) dt,

(6.6)

where in the second inequality, we used the fact that F̂∞(γxy) = 0 [see Lemma 4]. Therefore, we get a triplet (µδ, qδ) ∈
Tm with cost strictly less than the initial one, and with µδ that satisfies

µδx(t) ≥ δa and
(1− δ)µx(t)

µδx(t)
≤ (1− δ)
δa+ (1− δ)

≡ c < 1, (6.7)

for all t ∈ [0, T ].

However, since this triplet does not necessarily satisfy condition (6.1), we modify it even further. Specifically, we pick
M ∈ (2γmax,∞) big enough such that

∑
(x,y)∈Z

∫ T

0

µδx(t)
∣∣min

{
qδxy(t),M

}
− qδxy(t)

∣∣ dt ≤ aδ(1−
√
c)√

2
, (6.8)
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and define

µδ,M (t) =

∫ t

0

∑
(x,y)∈Z

µδx(t) min
{
qδxy(t),M

}
vxydt. (6.9)

Then

∣∣µδ,Mx (t)− µδx(t)
∣∣ ≤ ∥∥µδ,M (t)− µδ(t)

∥∥ (6.9)
=

∥∥∥∥∥∥
∑

(x,y)∈Z

∫ T

0

(
µδx(t)

(
qδxy(t)−min

{
qδxy(t),M

}))
vxydt

∥∥∥∥∥∥
≤

∑
(x,y)∈Z

∫ T

0

∣∣µδx(t)
(
qδxy(t)−min

{
qδxy(t),M

})∣∣ ‖vxy‖dt
≤
√

2
∑

(x,y)∈Z

∫ T

0

(
µδ,Mx (t)

(
qδxy(t)−min

{
qδxy(t),M

}))
dt

(6.8)

≤ aδ(1−
√
c),

(6.10)

and for t ∈ [0, T ],

µδ,Mx (t) ≥ µδx(t)−
∣∣µδ,Mx (t)− µδx(t)

∣∣ (6.7)

≥ aδ −
∣∣µδ,Mx (t)− µδx(t)

∣∣ (6.10)

≥ aδ
√
c. (6.11)

We also get ∣∣∣∣1− µδ,Mx (t)

µδx(t)

∣∣∣∣ (6.10)

≤ aδ(1−
√
c)

minx µδx

(6.7)

≤ (1−
√
c) (6.12)

or
µδx(t)

µδ,Mx (t)
≥ 1

2−
√
c

and
µδx(t)

µδ,Mx (t)
≤ 1√

c
=

√
c

c
. (6.13)

We deduce that µδ,M (t) ∈ P∗(X ), for all t ∈ [0, T ], and therefore can define

qδ,Mxy (t) =
min

{
qδxy(t),M

}
µδx(t)

µδ,Mx (t)
, (6.14)

which will give (µδ,M , qδ,M ) ∈ Tm. We can see that (6.1) is satisfied, since by (6.5) and the LHS of (6.13) for the bound
from below and the RHS of (6.13) for the bound from above we have

γxyδνx(m, ·)
2

≤ qδ,Mxy (t) ≤M
√
c

c
(6.15)

It is worth mentioning at this point that trying to get an estimate for the cost of (µδ,M , qδ,M ), with respect to the cost of
(µδ, qδ), would require some extra properties of F̂∞. However, we can obtain an estimate of the cost (µδ,M , qδ,M ) with
respect to the cost of the initial triplet (µ, q), by utilizing only the convexity of F̂∞xy , and choosing the right parameters.

Using the fact that F̂∞xy is increasing on [γxy,∞) in the first inequality,

F̂∞xy
(
qδ,Mxy (t)

) (6.14)
= F̂∞xy

(
min

{
qδxy(t),M

}
µδx(t)

µδ,Mx (t)

)
≤ F̂∞xy

(
qδxy(t)µδx(t)

µδ,Mx (t)

)
(6.5)
= F̂∞xy

(
µδx(t)

µδ,Mx (t)

(
γxy

δνx(m, t)

µδx(t)
+ qxy(t)

(1− δ)µx(t)

µδx(t)

))

= F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)

)
.

(6.16)

However, from (6.7) and (6.13), we have

(1− δ)µx(t)

µδ,Mx (t)
=

(1− δ)µx(t)

µδx(t)

µδx(t)

µδ,Mx (t)
≤ c
√
c

c
=
√
c < 1.
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Therefore using the convexity of F̂∞ we have

F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)

)

= F̂∞xy


(

1− (1−δ)µx(t)

µδ,Mx (t)

)
(

1− (1−δ)µx(t)

µδ,Mx (t)

)γxy δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)


≤

(
1− (1− δ)µx(t)

µδ,Mx (t)

)
F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)− (1− δ)µx(t)

)
+

(1− δ)µx(t)

µδ,Mx (t)
F̂∞xy (qxy(t)) .

(6.17)

Combining (6.16) and (6.17) and then using (6.4), we obtain

µδ,Mx (t)F̂∞xy
(
qδ,Mxy (t)

)
≤
(
µδ,Mx (t)− (1− δ)µx(t)

)
F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)− (1− δ)µx(t)

)
+ (1− δ)µx(t)F̂∞xy (qxy(t))

=
(
µδ,Mx (t)− µδx(t) + δνx(M, t)

)
F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)− µδx(t) + δνx(m, t)

)
+ (1− δ)µx(t)F̂∞xy (qxy(t)) .

(6.18)

We can make |µδ,Mx (t)−µδx(t)| uniformly as close to zero as desired and therefore we can make γxy
δνx(m,t)

µδ,Mx (t)−µδx(t)+δνx(m,t)

as close to γxy as desired by picking M sufficiently large. Since F̂∞xy (γxy) = 0 and F̂∞xy (·) is continuous on (0,∞) by
Lemma 4, we can pick M <∞ such that for every t ∈ [0, T ],

F̂∞xy

(
γxy

δνx(m, t)

µδ,Mx (t)− µδx(t) + δνx(m, t)

)
≤ 1

2T

∫ T

0

µx(s)F̂∞xy (qxy(s))ds. (6.19)

Then from (6.18) and (6.19) and the fact that νx(m, t) ≤ 1 and (6.10), for t ∈ [0, T ]∑
(x,y)∈Z

∫ T

0

µδ,Mx (t)F̂∞xy
(
qδ,Mxy (t)

)
dt

≤
∑

(x,y)∈Z

(∫ T

0

(2δ)

(
1

2T

∫ T

0

µx(s)F̂∞xy (qxy(s))ds

)
dt+

∫ T

0

(1− δ)µx(t)F̂∞xy (qxy(t)) dt

)

=
∑

(x,y)∈Z

∫ T

0

µx(t)F̂∞xy (qxy(t)) dt.

(6.20)

Next, we are going to prove the following result.

Lemma 21 (Law of large numbers). Let T ∈ (0,∞) be given. There exists a constant c <∞ such that if (µn,γ) ∈ T nm
(see (2.9)), and (ν,γ) ∈ Tm, then

P

(
sup
t∈[0,T ]

‖µn(t)− ν(m, t)‖ ≥ ε

)
≤ c

ε
√
n
. (6.21)

Proof. We have

‖µn(t)− ν(m, t)‖ ≤
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy ](r)dsdr

∣∣∣∣
≤
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)dsdr

∣∣∣∣
+
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy](r)dsdr −
∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy](r)ds

∣∣∣∣ .
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For a constant K that depends on d and the maximum of γxy,∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)dsdr −
∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy](r)ds

∣∣∣∣ ≤ K sup
0≤s≤t

‖µn(s)− ν(m, s)‖ .

Hence by Gronwall’s inequality, for r ∈ [0, T ]

‖µn(t)− ν(m, t)‖ ≤ eKT sup
0≤t≤r

∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx (s)γxy](r)dsdr

∣∣∣∣ .
Using the Burkholder-Gundy-Davis inequality as was done to obtain (5.15),

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx (s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx (s)γxy](r)dsdr

∣∣∣∣ ≥ ε
)
≤ c̄

ε
√
n
,

and hence

P

(
sup
t∈[0,T ]

‖µn(t)− ν(m, t)‖ ≥ ε

)
≤ d2 e

KT c̄

ε
√
n
,

which is (6.21).

We now obtain the following result.

Lemma 22. The sequence V n(m) bounded, uniformly in n andm ∈ Pa(X).

Proof. Let τ = diameter(P(X )). By Remark 17, there exists a > 0 such that ν(m, τ) ∈ P2a(X ) regardless of the
initial datam. We can further assume that Pa(X ) ∩K◦ 6= ∅, and in particular that there exists an element m̃ such that
B(m̃, a2 ) ⊂ Pa(X ) ∩K◦.

Since m̃ ∈ Pa, the first part of Theorem 18 implies that for every point m in Pa(X) we can find a control qm with the
following properties: there is a unique µ such that (µ, qm) ∈ Tboldsymbolm; µ is a constant speed parametrization of
the straight line that connectsm to m̃ in time T{m̃} = ‖m− m̃‖; and the control qm satisfies

γxy ≤ qm,xy(t) ≤ c1
a
, (6.22)

for t ∈ [0, T{m̃}], (x, y) ∈ Z, where c1 > 0 is a constant that does not depend on a. For everym, we let

qxy(m, t) =

{
qm,xy(t) t ≤ ‖m− m̃‖,
γxy t > ‖m− m̃‖,

(6.23)

denote the control that takes m to m̃ in time ‖m− m̃‖, in the sense that it was described above, and after that time is
equal to the original rates.

For i ∈ N we define a control for the interval iτ ≤ t < (i + 1)τ as follows. Let f(t−) denote the limit of f(s) from the
left at time t, and recall that µ(m, ·) is the straight line that connects m to m̃ in time T{m̃}, where m̃ is fixed and we
explicitly indicate the dependence onm. Then set

qnxy(t) =

{
qxy(m, t− iτ)

µnx (t−)
µx(m,t−iτ) , if

(
sups∈[iτ,t] ‖µ(m, t)− µn(t)‖ ≤ a

2

)
and (µn(iτ) = m ∈ Pa(X ))

γxy, otherwise.
(6.24)

The idea with these controls is that, within each time interval with length τ , the control considers the starting point m,
and then attempts to force the process to follow the straight line to m̃. If the process is very close to the boundary of the
simplex P(X ) \ P∗(X ), then we just use original rates to push the process inside Pa(X). Since all controls used are
bounded from above and below, the total cost is a multiple of E[Tn]. Thus we need only show this expected exit time is
uniformly bounded.

By using (5.15), we can find constant c <∞ such that

P

(
sup

t∈[iτ,(i+1)τ ]

‖µn(t)− µ(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m ∈ Pa(X )

)
≤ c 2√

na
, (6.25)
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from which we get

P (Tn > (i+ 1)τ |µn(iτ) ∈ Pa(X)) ≤ inf
m∈Pa(X )

P

(
sup

t∈[iτ,(i+1)τ ]

‖µn(t)− µ(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m

)

≤ c 2√
na
.

(6.26)

By Lemma 21, we have that for some c′ <∞

P

(
sup

t∈[iτ,(i+1)τ ]

‖µn(t)− ν(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m /∈ Pa(X )

)
≤ c′ 2

a
√
n
, (6.27)

which implies that

P
(
µn((i+ 1)τ) /∈ Pa(X )

∣∣∣∣µn(iτ) /∈ Pa(X )

)
≤ inf
m/∈Pa(X )

P

(
sup

t∈[iτ,(i+1)τ ]

‖µn(t)− ν(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m

)
≤ c′ 2

a
√
n
.

(6.28)

Thus the probability to escape in the next 2τ units of time has a positive lower bound that is independent of n and the
starting position. This implies the uniform upper bound on the mean escape time.

Now we proceed with the proof of the upper bound.

Proof of upper bound. We will initially assume that m is in Pa(X ), for some a > 0. Let ε > 0. By the definition of
VK(m), we can find a triplet (µ, q) ∈ Tm and a T ∈ [0,∞], such that

∫ T

0

 ∑
(x,y)∈Z

µx(t)F̂∞xy (qxy(t)) +R∞(µ(t))

 dt ≤ VK(m) + ε. (6.29)

Since we assumed that R∞ is bounded from below by a positive constant for every compact subset of Kc, we can
furthermore find a δ such that for finite time T δ ∈ [0,∞) we have

∫ T δ

0

 ∑
(x,y)∈Z

µx(t)F̂∞xy (qxy(t)) +R∞(µ(t))

 dt ≤ VK(m) + ε, (6.30)

and d(µ(T δ),K) ≤ δ. By the second part of Theorem 18, we can extend the path so it can reach a point m̃ of K, with
extra cost less than ε. Since K = (K◦), by a second application of Theorem 18, we can assume that m̃ is an internal
point of K, by again adding an extra cost less than ε.

Let r > 0 be such that B(m̃, r) ⊂ K◦. From Lemma 20, without any loss of generality, we can assume that there exist
a1, a2, a3 > 0 such that

a1 ≤ inf
(x,y)∈Z,t∈[0,T ]

qxy(t) ≤ sup
(x,y)∈Z,t∈[0,T ]

qxy(t) ≤ a2, (6.31)

and

inf
x∈X ,t∈[0,T ]

µx(t) > a3, ‖µ(T )− m̃‖ < r

2
. (6.32)

Finally, by applying the first part of Theorem 18, we can assume the existence of a r1 > 0 such that for every point m̄ in
the neighborhood B(m, r1), we can find a path like the one described above, by connecting m̄ with a straight line tom.
Of course this could generate different, though universal, a1, a2, a3 from the initial ones.
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Now let mn be a sequence that converges to m... For big enough n, we can assume that mn ∈ B(m, r1). By the
continuity of F̂∞ on compact subsets of (0,∞), we can find r2 > 0 such that ifm1,m2 ∈ P a3

2
(X ) and ‖m1−m2‖ ≤

r2, then for every q that satisfies (6.31), we have

∑
(x,y)∈Z

∣∣∣∣m1,xF̂
∞
xy (qxy)−m2,xF̂

∞
xy

(
qxy

m1,x

m2,x

)∣∣∣∣ ≤ ε

T
. (6.33)

Now for every n ∈ N, we define the following control for the time interval [0, T ],

qnxy(t) =

{
qxy(t)

µnx (t−)
µx(t) , if sups∈[0,t] ‖µ(t)− µn(t)‖ ≤ r2

γxy, otherwise.
(6.34)

For every n, we define an auxiliary stopping time T
n

= inf{t ∈ [0, T ] : ‖µn(t) − µ(t)‖ > r2}, and also we define
Rmax = supn∈N,m∈P(X )R

n(m). For sufficiently large n, by uniform convergence of Fn to F̂∞ on compact subsets
of (0,∞), and the uniform convergence of Rn to R∞, we can get an estimate of the cost accumulated up to time T, for
the triple (µn, qn) ∈ T nmn . Specifically,

E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fnxy
(
qnxy(t)

)
+Rn(µn(t))

 dt


≤ E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fnxy
(
qnxy(t)

)
+Rn(µn(t))

 dt · 1{| supt∈[0,T ] ‖µ(t)−µn(t)‖≤r2}


+ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
×E

∫ T
n

0

 ∑
(x,y)∈Z

µnx(t)Fnxy
(
qnxy(t)

)
+Rn(µn(t))

 dt

∣∣∣∣∣ sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

+ TRmax


(6.34)

= E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fnxy

(
qxy(t)

µnx(t−)

µx(t)

)
+Rn(µn(t))

 dt · 1{| supt∈[0,T ] ‖µ(t)−µn(t)‖≤r2}


+ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
×E

∫ T
n

0

 ∑
(x,y)∈Z

µnx(t)Fnxy

(
qxy(t)

µnx(t−)

µx(t)

)
+Rn(µn(t))

 dt

∣∣∣∣∣ sup
t∈[0,T ]

‖µ(t)− µn(t)‖ > r2

+ TRmax


≤ E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)F̂∞xy

(
qxy(t)

µnx(t−)

µx(t)

)
+R∞(µn(t))

 dt · 1{supt∈[0,T ] ‖µ(t)−µn(t)‖≤r2}

+ ε

+ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
×E

∫ T
n

0

 ∑
(x,y)∈Z

µnx(t)F̂∞xy

(
qxy(t)

µnx(t−)

µx(t)

)
+R∞(µn(t))

 dt

∣∣∣∣∣ sup
t∈[0,T ]

‖µ(t)− µn(t)‖ > r2

+ ε+ TRmax

 .

(6.35)

Then using (6.33) with m1,x = µx(t),m2,x = µnx(t−), for big enough n we can bound

E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fnxy
(
qnxy(t)

)
+Rn(µn(t))

 dt


above by
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VK(m) + 2ε+ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
(VK(m) + TRmax + 2ε). (6.36)

By using (5.15), the probability that there was no exit in the time interval [0, T ] is

P(Tn ≥ T ) ≤ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
≤ c 1√

nr2
.

Hence the total cost satisfies

V nK(mn) ≤ E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fnxy
(
qnxy(t)

)
+Rn(µn(t))

 dt+ V (µn(T ∧ Tn))


≤ VK(m) + 2ε+ P

(
sup
t∈[0,T ]

‖µn(t)− µ(t)‖ > r2

)
(VK(m) + TRmax + 2ε) + P(Tn ≥ T )Vmax

≤ VK(m) + 2ε+ 2(TRmax + Vmax + 2ε)
c√
nr2

(6.37)

where Vmax is the upper bound identified in Lemma 22. By sending n to infinity we get the upper bound if m ∈ Pa(X )
for some a > 0.

Next letm ∈ P(X ) \ P∗(X ). Let t0 ≤ ε be such that VK(ν(m, t0)) ≤ VK(m) + ε, where ν(m, t) is the solution to
the original equation after time t.We can find a r > 0 such that for every m̃ ∈ B(ν(m, t0), r), VK(m̃) ≤ VK(m)+2ε.
If qn(m̄, t) is an ε optimal control that corresponds to each m̄, we define the control

qnxy(t) =

{
γxy, t ≤ t0,
qnxy(µn(t0), t− t0), t > t0,

which gives

V nK(mn) ≤ E

∫ Tn

0

 ∑
(x,y)∈Z

µnx(s)Fnxy
(
qnxy(s)

)
+Rn(µn(s))

 dt


≤ E

∫ t0

0

 ∑
(x,y)∈Z

µnx(s)Fnxy
(
qnxy(s)

)
+Rn(µn(s))

 dt


+ E

∫ Tn

t0

 ∑
(x,y)∈Z

µnx(s)Fnxy
(
qnxy(s)

)
+Rn(µn(s))

 dt


≤ E

∫ t0

0

 ∑
(x,y)∈Z

µnx(s)Fnxy
(
γnxy(s)

)
+Rn(µn(s))

 dt


+ E

∫ Tn

t0

 ∑
(x,y)∈Z

µnx(s)Fnxy
(
qnxy(µn(t0), s− t0)

)
+Rn(µn(s))

 dt

 ≤ t0Rmax + E [V (µn(t0))]

Lemma 22
≤ εRnmax + P (µn(t0) ∈ B(ν(m, t0), r)) (VK(m) + 2ε) + P (µn(t0) /∈ B(ν(m, t0), r))Vmax

≤ VK(m) + (2 +Rnmax)ε+ P (µn(t0) /∈ B(ν(m, t0), r))Vmax.

(6.38)

Now by an application of Lemma 21, we get that the last term goes to zero as n goes to∞, and since ε is arbitrary, we
get that

lim supV nK(mn) ≤ VK(m).
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7 Appendix: Properties of F n
xy

Proof of Lemma 4. (1) We have

Fnxy(q) = sup
u∈(0,∞)

Gnxy(u, q) = sup
u∈(0,∞)

{
u`
( q
u

)
− γxyCnxy

(
u

γxy

)}
≥ γxy`

(
q

γxy

)
− γxyCnxy

(
γxy
γxy

)
≥ γxy`

(
q

γxy

)
≥ 0.

(2) We have

Fnxy(γxy) = sup
u∈(0,∞)

Gnxy(u, γxy) = sup
u∈(0,∞)

{
u`
(γxy
u

)
− γxyCnxy

(
u

γxy

)}
= sup
u∈(0,∞)

{
γxy log γxy − γxy log u− γxy + u− γxyCnxy

(
u

γxy

)}
,

but by applying part 2 of Lemma 3

γxyC
n
xy

(
u

γxy

)
≥ γxy log γxy − γxy log u− γxy + u.

Therefore Fnxy(γxy) ≤ 0. However, by part (1) of this lemma Fnxy(γxy) ≥ 0, and therefore the equality follows.

(3) By definition Fnxy(q) = supu∈(0,∞)G
n
xy(u, q). Let a ∈ (0, 1) and 0 ≤ q1 < q2 <∞, and let q = aq1 + (1−a)q2.

Using the convexity of Gnxy(u, q) for fixed u as a function of q, we have

Fnxy(aq1 + (1− a)q2) = sup
u∈(0,∞)

Gnxy(u, aq1 + (1− a)q2)

≤ sup
u∈(0,∞)

{
aGnxy(u, q1) + (1− a)Gnxy(u, q2)

}
≤ a sup

u∈(0,∞)

Gnxy(u, q1) + (1− a) sup
u∈(0,∞)

Gnxy(u, q2)

≤ aFnxy(q1) + (1− a)Fnxy(q2).

For the proof of Lemma 16, we are going to use the following auxiliary lemma. Recall the definition of Gnxy in (1.9).

Lemma 23. If {Cn} satisfies Assumption 14, then the following hold for every (x, y) ∈ Z .

1 There exists a positive real number M, that does not depend on x, y, such that for the decreasing function M1
xy :

(0,∞)→ [0,∞), given by

M1
xy(q)

.
= min

{
γxy

(
γxy
q

)1/p

,M

}
,

we have that Gnxy(u, q) is increasing as a function of u on the interval (0,M1
xy(q)].

2 There exists a decreasing function M2
xy : (0,∞) → [0,∞), with M2

xy(q) ≥ M1
xy(q), such that, Gnxy(u, q) is

decreasing as a function of u on the interval
[
M2
xy(q),∞

)
.

Proof. By taking the derivative with respect to u in the definition (1.9) we get

− q
u
− (Cnxy)′

(
u

γxy

)
+ 1. (7.1)

(1) By part 2 of Assumption 14 there exists M ∈ (0,∞) such that if u < M , then

− q
u
− (Cnxy)′

(
u

γxy

)
+ 1 ≥ − q

u
+
(γxy
u

)p+1

+ 1,
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and by taking u ≤ γxy (γxy/q)
1/p we get

− q
u

+
(γxy
u

)p+1

+ 1 ≥ − q
u

+
q

u
+ 1 > 0.

Therefore for

M1
xy(q) = min

{
γxy

(
γxy
q

)1/p

,M

}
,

we have − q
u − (Cnxy)′

(
u
γxy

)
+ 1 ≥ 0 on the interval (0,M1

xy(q)].

(2) By applying part 3 of Assumption 14, we get that there exists M̃2
xy(q) > 0, such that if u > M̃2

xy(q) then

u

γxy
(Cnxy)′

(
u

γxy

)
− u

γxy
≥ − q

γxy
. (7.2)

Then
M2
xy(q)

.
= max{M1

xy(q), M̃2
xy(q)},

is decreasing and bigger than M1
xy , and using (7.2) we get

− q
u
− (Cnxy)′

(
u

γxy

)
+ 1 ≤ − q

u
− γxy

u

(
u

γxy
(Cnxy)′

(
u

γxy

)
− u

γxy

)
≤ 0

on the interval [M2
xy(q),∞).

Proof of Lemma 16. (1) Let ε > 0, and q ≥ ε. By Lemma 23, we have that Gnxy (u, q) , as a function of u, is increasing
on the interval (0,M1

xy(q)]. Therefore for all u ∈ (0,M1
xy(q)] we have

u`
( q
u

)
− γxyCnxy

(
u

γxy

)
≤M1

xy(q)`

(
q

M1
xy(q)

)
− γxyCnxy

(
M1
xy(q)

γxy

)
≤M1

xy(q)`

(
q

M1
xy(q)

)
≤ q log

(
q

M1
xy(q)

)
+M1

xy(q) ≤ q log

(
q

M1
xy(q)

)
+M1

xy(ε)

≤ q log (q)− q log
(
M1
xy(q)

)
+M1

xy(ε)

M1
xy(ε)≤M2

xy(ε)

≤ q log (q)− q log
(
M1
xy(q)

)
+M2

xy(ε).

By the second part of Lemma 23, we have that Gnxy(u, q) is decreasing on the interval (M2
xy(ε),∞). Therefore for all

u ∈ (M2
xy(ε),∞)

u`
( q
u

)
− γxyCnxy

(
u

γxy

)
≤M2

xy(ε)`

(
q

M2
xy(ε)

)
− γxyCnxy

(
M2
xy(ε)

γxy

)
≤M2

xy(ε)`

(
q

M2
xy(ε)

)
≤ q log

(
q

M2
xy(ε)

)
+M2

xy(ε)

M2
xy(q)≤M2

xy(ε)

≤ q log (q)− q log
(
M2
xy(q)

)
+M2

xy(ε)

M1
xy(q)≤M2

xy(q)

≤ q log (q)− q log
(
M1
xy(q)

)
+M2

xy(ε).

..

Finally for the interval [M1
xy(q),M2

xy(ε)] we have

u`
( q
u

)
− γxyCnxy

(
u

γxy

)
≤ u`

( q
u

)
= q log q − q log u− q + u

≤ q log q − q log(M1
xy(q)) +M2

xy(ε).
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Now if we recall the definition of M1
xy given in Lemma 23 and set M̄(q)

.
= max{M2

xy(q) : (x, y) ∈ Z}, then

Gnxy(u, q) ≤ q log
q

min

{
γxy

(
γxy
q

)1/p

,M

} + M̄(ε),

and by taking supremum over u we end up with

Fnxy(q) ≤ q log
q

min

{
γxy

(
γxy
q

)1/p

,M

} + M̄(ε).

(2) This is straightforward since Fnxy is finite on the interval (0,∞), and convex.

(3) Let 1 > ε > 0. For every q ∈ [ε, 1
ε ] and n ∈ N, we have that u`

(
q
u

)
− γxyCnxy

(
u
γxy

)
is increasing on the interval

(0,M2
xy(ε)] and decreasing on [M1

xy

(
1
ε

)
,∞) and since Cnxy converges locally uniformly to Cxy, then the same con-

clusion holds for u`
(
q
u

)
− γxyCxy

(
u
γxy

)
. It is straight forward to conclude that in all cases, the supremum is achieved

on the interval [M2
xy(ε),M1

xy

(
1
ε

)
].

We define the sets

Aa,nε,xy =

{
u : γxyC

n
xy

(
u

γxy

)
≤ a sup

ε≤ũ≤ 1
ε ,M

2
xy(ε)≤q≤M1

xy( 1
ε )

ũ`
( q
ũ

)}
,

and

Aa,∞ε,xy =

{
u : γxyC

∞
xy

(
u

γxy

)
≤ a sup

ε≤ũ≤ 1
ε ,M

2
xy(ε)≤q≤M1

xy( 1
ε )

ũ`
( q
ũ

)}
.

By uniform convergence of Cnxy in C∞xy in compact subsets of (u1,xy, u2,xy), and the monotonicity properties of Cnxy, we
get that for large enough n, we have A3,∞

ε,xy ⊂ A2,n
ε,xy ⊂ A1,∞

ε,xy.

For every q ∈ [ε, 1
ε ], we have

Fnxy(q) = sup
u∈[M2

xy(ε),M1
xy( 1

ε )]

{
u`
( q
u

)
− γxyCnxy

(
u

γxy

)}

= sup
u∈[M2

xy(ε),M1
xy( 1

ε )]∩A
2,n
ε,xy

{
u`
( q
u

)
− γxyCnxy

(
u

γxy

)}

≤ sup
u∈[M2

xy(ε),M1
xy( 1

ε )]∩A
1,∞
ε,xy

{
u`
( q
u

)
− γxyC∞xy

(
u

γxy

)}

+ sup
u∈[M2

xy(ε),M1
xy( 1

ε )]∩A
1,∞
ε,xy

{∣∣∣∣γxyCnxy ( u

γxy

)
− γxyC∞xy

(
u

γxy

)∣∣∣∣}

≤ sup
u∈[M2

xy(ε),M1
xy( 1

ε )]

{
u`
( q
u

)
− γxyC∞xy

(
u

γxy

)}

+ sup
u∈[M2

xy(ε),M1
xy( 1

ε )]∩A
1,∞
ε,xy

{∣∣∣∣γxyCnxy ( u

γxy

)
− γxyC∞xy

(
u

γxy

)∣∣∣∣} .
By doing the same for F̂∞xy , we get

sup
q∈[ε, 1ε ]

|Fnxy(q)− F̂∞xy (q)| ≤ sup
u∈[M2

xy(ε),M1
xy( 1

ε )]∩A
1,∞
ε,xy

{∣∣∣∣γxyCnxy ( u

γxy

)
− γxyC∞xy

(
u

γxy

)∣∣∣∣} ,
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and therefore Fnxy converges locally uniformly to F̂∞xy on A1,∞
ε,xy. Now by the definition of F∞xy , i.e.

F∞xy (q) = inf
{

lim inf
n→∞

Fnxy(qn) : {qn} sequence in R with qn → q
}
,

it is easy to see that since Fnxy converges locally uniformly to F̂∞xy on (0,∞), and so F∞xy = F̂∞xy on (0,∞). Also F∞xy
as a pointwise limit of convex functions on (0,∞), is also a convex function there. It remains to investigate what happens
with F∞xy at zero. Let qn → 0 with Fnxy(qn)→ F∞xy (0). For a ∈ (0, 1), we have

aF∞xy (0) + (1− a)F∞xy (q)

= aFnxy(qn) + (1− a)Fnxy(q) + a(Fnxy(qn)− F∞xy (0)) + (1− a)(F∞xy (q)− Fnxy(q))

≥ Fnxy(aqn + (1− a)q) + a(Fnxy(qn)− F∞xy (0)) + (1− a)(F∞xy (q)− Fnxy(q))

Now if we take the limit, then by continuity of each Fnxy on (0,∞) and the uniform convergence on every compact subset
of that interval (also on [(1− a)q, q]), we have aF∞xy (0) + (1− a)F∞xy (q) ≥ F∞xy ((1− a)q).

8 Appendix: Tightness functionals.

Proof of Lemma 19. Let c2 > 0 and {(µn, Tn)} be a sequence in S with µn absolutely continuous such that∫ Tn

0

` (|µ̇n(t)|) dt+ c1T
n ≤ c2

and |µ̇n(t)| = 0 for t > Tn. Since all elements are positive, we have that Tn ≤ c2/c1... Let µ̄n denote the restriction
of µn to [0, c2/c1]. If we prove that µ̄n converges along some subsequence then we are done. Using the inequality
ab ≤ eca + `(b)/c, which is valid for a, b ≥ 0, and c ≥ 1, we have that

|µn(t)− µn(s)| ≤
∫ s

t

|µ̇n(r)|dr ≤ (t− s)ec +
c2
c
.

This shows that {µ̄n} are equicontinuous. Since µ̄n(t) takes values in the compact set P(X ), by the Arzela-Ascoli
theorem there is a convergent subsequence.

9 Appendix: Properties of Hamiltonians

Lemma 24. Under Assumption 2 the Isaac condition is satisfied, i.e.,

H−,n(m, ξ) = sup
u∈(0,∞)⊗Z

inf
q∈[0,∞)⊗Z

∑
(x,y)∈ Z

mx

{
qxyξxy +Gnxy(uxy, qxy)

}
=

inf
q∈[0,∞)⊗Z

sup
u∈(0,∞)⊗Z

∑
(x,y)∈Z

mx {qxyξxy +Gn(uxy, qxy)} = H+,n(m, ξ).

Proof. We have

H−,n(m, ξ) = sup
u∈(0,∞)⊗Z

inf
q∈[0,∞)⊗Z

∑
(x,y)∈Z

mx

{
qxyξxy +Gnxy(uxy, qxy)

}
=

∑
(x,y)∈Z

mx sup
uxy∈(0,∞)

inf
qxy∈[0,∞)

{
qxyξxy + uxy`

(
qxy
uxy

)
− γxyCnxy

(
uxy
γxy

)}
.

If we prove the exchange of sup and inf for each (x, y) ∈ Z, then we are done.

Since ` is convex

Lnxy(u, q) = qξ + u`
( q
u

)
− γxyCnxy

(
u

γxy

)
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is convex with respect to q. It is easy to see that Lnxy(u, q) is not concave with respect to u, however under Assumption
2, we can show that Lnxy is quasi-concave with respect to u (i.e., {u : Lnxy(u, q) ≥ c} is convex for every q ∈ [0,∞),
and c ∈ R.)

By differentiating with respect to u we get

∂uL
n
xy(u, q) = − q

u
+ 1− (Cnxy)′

(
u

γxy

)
.

If we prove that for each q the set of roots for ∂uLnxy(u, q) is an interval or a point we are done, because a real function
that changes monotonicity from increasing to decreasing at most once is quasi-concave. However ∂uLnxy(u, q) has the

same roots as u(Cnxy)′
(

u
γxy

)
− u+ q.. By part 1 of Assumption 1 u(Cnxy)′

(
u
γxy

)
− u+ q is increasing, which gives

what is needed.

To prove the exchange between supremum and infimum, we apply Sion’s Theorem (Corollary 3.3 in [27]), which states
that if a continuous F (u, q) is quasi-concave for every u is some convex set U and quasi-convex for every q in some
convex set Q, and if one of the two sets is compact, then we can exchange the supremum with the infimum. In our
case both sets are non-compact, and so this result cannot be applied directly, but it can be applied using the fact that
limq→∞ Lnxy(q, 1) =∞, as we now explain.

If we prove that
inf

q∈[0,∞)
sup

u∈(0,∞)

Lnxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lnxy(u, q),

then we are done, since by Corollary 3.3 in [27]

inf
q∈[0,∞)

sup
u∈(0,∞)

Lnxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lnxy(u, q) =

lim
r→∞

sup
u∈[r, 1r ]

inf
q∈[0,∞)

Lnxy(u, q) = sup
u∈(0,∞)

inf
q∈(0,∞)

Lnxy(u, q).

Let M
.
= infq∈[0,∞) supu∈(0,∞) L

n
xy(u, q). We will assume that M < ∞, and note that the case M = ∞ is treated

similarly. Since limq→∞ Lnxy(q, 1) =∞, we can find q̃ such that Lnxy(q, 1) > 2M for every q ≥ q̃. Now we have

inf
q∈[0,∞)

sup
u∈(0,∞)

Lnxy(u, q) = inf
q∈[0,q̃]

sup
u∈(0,∞)

Lnxy(u, q),

and
inf

q∈[0,q̃]
sup

u∈[r, 1r ]
Lnxy(u, q) = inf

q∈[0,∞)
sup

u∈[r, 1r ]
Lnxy(u, q),

which gives

inf
q∈[0,∞)

sup
u∈(0,∞)

Lnxy(u, q) = inf
q∈[0,q̃]

sup
u∈(0,∞)

Lnxy(u, q) = sup
u∈(0,∞)

inf
q∈[0,q̃]

Lnxy(u, q) =

lim
r→∞

sup
u∈[r, 1r ]

inf
q∈[0,q̃]

Lnxy(u, q) = lim
r→∞

inf
q∈[0,q̃]

sup
u∈[r, 1r ]

Lnxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lnxy(u, q).

Remark 25. By observingH+,n (m, ξ) andH−,n (m, ξ) we can see thatH+,n (m, ξ) is actually a concave function.
If the minmax theorem holds then H−,n (m, ξ) must be a concave function as well. By using the formula

H−,n (m, ξ) =
∑

(x,y)∈Z

mxγxy
(
Cnxy

)∗
(−`∗ (−ξxy))

we have that
(
Cnxy

)∗
(−`∗ (ξ)) =

(
Cnxy

)∗ (
1− eξ

)
is concave. By differentiating with respect to ξ we get,

e2ξ
((
Cnxy

)∗)′′ (
1− eξ

)
− eξ

((
Cnxy

)∗)′ (
1− eξ

)
≤ 0,

from which, by using the identity (f∗)′ = (f ′)−1, we get

e2ξ

(((
Cnxy

)′)−1
)′ (

1− eξ
)
− eξ

((
Cnxy

)′)−1 (
1− eξ

)
≤ 0.
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By substituting ũ = 1− eξ we get

(1− ũ)

(((
Cnxy

)′)−1
)′

(ũ)−
((
Cnxy

)′)−1

(ũ) ≤ 0, with ũ ≤ 1

(1− ũ) 1

(Cnxy)
′′
(
((Cnxy)

′
)
−1

(ũ)
) − ((Cnxy)′)−1

(ũ) ≤ 0, with ũ ≤ 1(
1−

(
Cnxy

)′
(r)
)

1

(Cnxy)
′′

(r)
− r ≤ 0, with

(
Cnxy

)′
(r) ≤ 1

1−
(
Cnxy

)′
(r)− r

(
Cnxy

)′′
(r) ≤ 0, with

(
Cnxy

)′
(r) ≤ 1

r
(
Cnxy

)′′
(r) +

(
Cnxy

)′
(r)− 1 ≥ 0, with

(
Cnxy

)′
(r) ≤ 1.
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