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Towards pressure-robust mixed methods for the incompressible
Navier–Stokes equations

Naveed Ahmed, Alexander Linke, Christian Merdon

Abstract

In this contribution, classical mixed methods for the incompressible Navier–Stokes equations
that relax the divergence constraint and are discretely inf-sup stable, are reviewed. Though the
relaxation of the divergence constraint was claimed to be harmless since the beginning of the
1970ies, Poisson locking is just replaced by another more subtle kind of locking phenomenon,
which is sometimes called poor mass conservation. Indeed, divergence-free mixed methods and
classical mixed methods behave qualitatively in a different way: divergence-free mixed methods
are pressure-robust, which means that, e.g., their velocity error is independent of the continuous
pressure. The lack of pressure-robustness in classical mixed methods can be traced back to a
consistency error of an appropriately defined discrete Helmholtz projector. Numerical analysis
and numerical examples reveal that really locking-free mixed methods must be discretely inf-
sup stable and pressure-robust, simultaneously. Further, a recent discovery shows that locking-
free, pressure-robust mixed methods do not have to be divergence-free. Indeed, relaxing the
divergence constraint in the velocity trial functions is harmless, if the relaxation of the divergence
constraint in some velocity test functions is repaired, accordingly.

1 Introduction

This paper studies the treatment of the divergence constraint in the discretization theory for the incom-
pressible Navier–Stokes equations

ut − ν∆u + (u · ∇)u +∇p = f , x ∈ D, (1)

∇ · u = 0, x ∈ D, (2)

u = 0, x ∈ ∂D, (3)

for a bounded Lipschitz domainD ⊂ Rd with d ∈ {2, 3}. The equations (1) and (2) model momentum
balance and mass conservation in a fluid with a constant density ρ.

The main focus of this paper is concerned with pressure-robustness that is related to the following
observation: arbitrarily large forces in the momentum balance do not influence the velocity field u,
if they are irrotational. Indeed, they are balanced by the pressure gradient, because the pressure
p is a Lagrangian multiplier for the divergence constraint (2). In the language of functional analy-
sis, this observation can be expressed in terms of the Helmholtz projector [Soh12]. According to the
Helmholtz decomposition, arbitrary L2 vector fields can be decomposed in a divergence-free and an
irrotational part. The Helmholtz projector is defined by the divergence-free part of a vector field. De-
fined appropriately, the Helmholtz projector of every gradient field is zero, i.e., for all φ ∈ H1(D),
it holds P(∇φ) ≡ 0 [Soh12]. In classical, discretely inf-sup stable discretizations of the incom-
pressible Navier–Stokes equations, a discrete Helmholtz projector Ph can be identified[LM16a], where
Ph(∇φ) = 0 holds only approximately. This leads to numerical issues, that have accompanied mixed
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N. Ahmed, A. Linke, Ch. Merdon 2

methods since their early beginnings [GLCL80, FF85, TS87, TTK88, PFC89, DGT94, GLBB97, Sch97,
Fro98, Cod99, GJ05, OR04, GMT07, Lin09, GLRW12, Lin14b, LM16c, JLM+16] and that are some-
times called poor mass conservation [PFC89, GJ05, GMT07, Lin09, GLRW12, Lin14b], because they
have their origin in the relaxation of the divergence constraint. Please note, that the relaxation of the
divergence constrained was introduced, in order to achieve discrete inf-sup stability more easily.

The significance of discrete inf-sup stability [BF91, GR86] was recognized in the early 1970ies and
nowadays the theory of discretely inf-sup stable mixed methods is a cornerstone of the discretization
theory for PDEs. Discretely inf-sup stable mixed methods introduce a space of discretely divergence-
free vector fields V0

h, the discrete counterpart of V0 = {v ∈ H1
0(D) : ∇ · v = 0}, in which the

velocity solution of the discrete Stokes problem is searched for. In general functions from V0
h are only

approximately divergence-free. If all discretely-divergence-free vector fields are divergence-free in L2

sense, then the inf-sup stable mixed method is called divergence-free. However, the construction of ef-
ficient divergence-free inf-sup stable mixed methods was regarded as nearly impossible in the 1970ies,
which is the reason, why classical inf-sup stable mixed methods like the Crouzeix–Raviart [CR73] and
the Taylor–Hood finite element methods that relax the divergence constraint were proposed. Indeed,
the first divergence-free inf-sup stable mixed method on unstructured, shape-regular triangulations
in 3D was only presented in 2005 in a seminal paper by S. Zhang [Zha05]. However, nowadays
many divergence-free mixed finite element methods are known [Qin94, Zha05, QZ07, Zha09, Zha11a,
Zha11b, GN14b, GN14a, Nei15, LS16].

Discrete inf-sup stability guarantees that any v ∈ V is approximated by the discrete Stokes projector

Sh(v) := arg min
vh∈V0

h

‖∇(v − vh)‖L2 (4)

with the same asymptotic approximation order, as if v would be approximated by constrained and
unconstrained discrete vector fields, together. The so-called (Poisson) locking phenomenon [BS92a,
BS92b], which was found in inappropriate discretizations of the Navier–Stokes equations in the 1960ies
and 1970ies, means just the lack of such an optimal approximation property for the space V0

h. With
the help of the discrete Stokes projector (4) and the discrete Helmholtz projector

Ph(v) := arg min
vh∈V0

h

‖v − vh‖L2 ,

the discrete velocity solution uh of classical inf-sup stable mixed methods for discretizations of the
Stokes problem can be represented as

uh = Sh(u)− 1

ν

(
PTh ◦∆h ◦ Ph

)−1
(Ph(∇p)) , (5)

where PTh ◦∆h◦Ph denotes a discrete vector Laplacian in V0
h. Exploiting the consequences of inf-sup

stability and the consistency of the discrete Helmholtz projector, one obtains that ‖∇(u− uh)‖L2 =
O(hmin(k,l+1)) for u ∈ V0 ∩ Hk+1(D), p ∈ H l+1(D). Note that typically, e.g. in the case of the
Crouzeix–Raviart and the Taylor–Hood finite element methods, the discrete pressure space in inf-
sup stable mixed methods is approximated with one order less than the discrete velocity space, i.e.,
l = k − 1, leading to an (asymptotically optimal) overall convergence order k.

The rather recently started investigation of pressure-robustness [LM16a, JLM+16] is motivated by the
disturbing finding that classical inf-sup stable mixed methods for the incompressible Stokes equations
that relax the divergence constraint are not really locking-free [ALM17]. In discretization theory, locking-
free means in general that a discretization scheme behaves in a robust way, if a critical parameter in
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Pressure-robust mixed methods for the Navier–Stokes equations 3

the PDE attains certain limit values [BS92b, BS92a] . Looking at (5), is is obvious that the expression
ν−1 (Ph(∇p)) can be made arbitrarily large on a fixed triangulation by varying p and/or ν in the
interval 0 < ν � 1. This becomes immediately clear in hydrostatic situations with f = ∇φ and
(u, p) = (0, φ), where φ is assumed not to be an element of the discrete pressure space. Then, the
relative error of the discrete velocity field uh from (5) is infinitely large, since it holds u = 0 = Sh(u).
Avoiding this locking phenomenon is possible by — but not only by as shown below — divergence-
free discretizations, for which the space of discretely divergence-free vector fields only contains vector
fields, which belong to L2 and are divergence-free in aL2 sense, i.e., where the so-called distributional
divergence of a vector field is in L2. For such schemes it holds exactly Ph(∇p) = 0, hence their
discrete velocity solution is just characterized by

uh = Sh(u). (6)

Here, no PDE parameter is involved and no locking behavior is observed. Obviously, this seems to be
the ultimate goal of discretization theory. But the reader may be reminded again, that only in 2005 the
first divergence-free and simultaneously inf-sup stable discretization was constructed for unstructured
3D triangulations [Zha05].

Historically, researchers focused on constructing better and better inf-sup stable discretizations that
relax the divergence constraint, and tried to apply and analyze them for more and more difficult
problems like the transient incompressible Navier–Stokes equations. However, simple benchmarks
[LM16c, JLM+16, LM16a, ALM17] demonstrate that classical mixed methods may suffer from — pos-
sibly extremely large — space-discretization errors, whenever the exterior force f , the time-derivative
ut or the nonlinear convection term (u ·∇)u are gradient fields, i.e., whenever P(f) = 0, P(ut) = 0
or P((u · ∇)u) = 0 hold.

A recent key observation that goes back to [Lin14a] is that pressure-robust discretizations of the incom-
pressible Navier–Stokes equations need not to be divergence-free. For example, in the incompressible
Stokes problem, pressure-robustness emanates exclusively from the L2-orthogonality between ∇p
and the velocity test function vh needed in exactly one term of the Stokes problem: the discretization
of the exterior force by (f ,vh). By replacing the velocity test function vh by a slightly modified one,
say Π(vh), one can restore pressure-robustness, if discretely divergence-free vh ∈ V0

h are mapped
by Π to divergence-free L2 vector fields. This simple idea introduces a new class of pressure-robust
discretizations for the incompressible Stokes and Navier–Stokes equations into the literature. In case
of the transient Navier–Stokes equations also the discretization of ut and (u ·∇)u has to be changed
to lead to a really locking-free discretization [LM16a, ALM17]. The consistency error that is introduced
by the application of the operator Π does not compromise the overall convergence rate of the method
and, which is the key feature, does not depend on the pressure or on ν. Moreover, also discrete
pressure estimates that are pressure-robust can be established.

The rest of this paper is structured as follows. Section 2.1 introduces the weak formulation of the
Stokes model problem and some fundamental mathematical preliminaries like the Helmholtz decom-
position and the concept of inf-sup stability. Section 3 studies the a priori velocity and pressure error of
the steady Stokes equations and explains how the discrete Helmholtz projector enters the estimates.
Section 4 elaborates on and demonstrates the locking behavior of classical finite element methods that
relax the divergence constraint. Section 5 extends the theory to the transient Stokes equations and
Section 6 explains what pressure-robustness means in case of the steady Navier-Stokes equations.
Finally, Section 7 explains a new approach to restore the pressure-robustness property of classical
schemes by some simple modification in the space discretization of certain terms.
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2 Mathematical preliminaries

This section collects some mathematical preliminaries connected to the analysis of the Navier–Stokes
equations.

2.1 Weak formulation of the Stokes equations and inf-sup stability

Here and throughout, V := H1
0(D) denotes the usual Sobolev space of weakly differentiable vector-

valued L2 functions with zero boundary data along ∂D and Q := L2
0(D) denotes the space of L2

functions with zero integral mean. These spaces are equipped with the norm ‖∇v‖2L2
:= (∇v,∇v)

for any v ∈ V and ‖q‖2L2 := (q, q) for any q ∈ Q, respectively, where (•, •) is the appropriate L2

scalar product.

Moreover, the subspace of weakly differentiable and divergence-free vector fields is denoted by

V0 := {v ∈ V : ∇ · v = 0}

and its orthogonal complement with respect to (V, ‖∇•‖L2) reads

V⊥ := {w ∈ V : (∇w,∇v) = 0 for all v ∈ V0}.

The weak formulation of the Stokes problem seeks (u, p) ∈ V×Q such that, for all (v, q) ∈ V×Q,

νa(u,v) + b(v, p) = (f ,v) (7)

b(u, q) = 0,

with the bilinear forms

a : H1(D)×H1(D)→ R, a(u,v) = (∇u,∇v),

b : H1(D)× L2(D)→ R, b(v, q) = (∇ · v, q).

The data is assumed to be in f ∈ L2(D) and, by classical PDE theory [GR86], the bilinear form
a(•, •) is continuous and coercive.

Furthermore, functional analysis reveals that the divergence operator∇· : V→ Q is continuous and
surjective, which is equivalent to the famous continuous inf-sup condition

inf
q∈Q

sup
v∈V\{0}

(q,∇ · v)

‖∇v‖L2‖q‖L2

=: β > 0, (8)

where β denotes the (positive) inf-sup constant for the Stokes problem with homogeneous Dirichlet
boundary conditions [GR86]. An immediate consequence of the inf-sup condition is:

Lemma 2.1. For every q ∈ Q, there is a v ∈ V such that

∇ · v = q holds with ‖∇v‖L2 ≤
1

β
‖q‖L2 .

Hence, the divergence operator∇· : V⊥ → Q is linear, continuous and bijective and also its inverse
mapping is continuous. This allows to prove existence of a unique solution (u, p) ∈ V × Q for the
continuous incompressible Stokes equations (7). Similarly, an appropriate discrete inf-sup stability was
found to be fundamental for the (optimal) convergence of the discrete Stokes problem [GR86].

DOI 10.20347/WIAS.PREPRINT.2402 Berlin 2017



Pressure-robust mixed methods for the Navier–Stokes equations 5

2.2 The Helmholtz projector and a fundamental orthogonality

We introduce the famous space of divergence-free resp. solenoidal L2
σ vector fields [Soh12] in a

bounded, polyhedral Lipschitz domain D ⊂ Rd with d ∈ {2, 3} by

L2
σ := {w ∈ L2(D) : for all ψ ∈ C∞(D) holds − (w,∇ψ) = 0}, (9)

Restricting ψ to ψ ∈ C∞0 (D) the mapping ψ → −(w,∇ψ) denotes the distributional divergence
of w [JLM+16]. Therefore, all vector fields in L2

σ(D) are weakly divergence-free. Further it holds
w · n = 0 everywhere on the boundary of D with outer normal n. A density argument shows the
following orthogonality.

Lemma 2.2 (L2 orthogonality of divergence-free vector fields and gradient fields). For all w ∈ L2
σ(D)

and for all ψ ∈ H1(D) it holds
(w,∇ψ) = 0.

Here, H1(D) denotes the Sobolev space of weakly differentiable scalar fields. One of the most im-
portant concepts in the functional analysis for the incompressible Navier–Stokes equations is stated
in the following lemma.

Lemma 2.3 (Helmholtz decomposition and Helmholtz projector). Every vector field f ∈ L2(D) is
uniquely decomposable as

f = ∇φ+ P(f),

into some φ ∈ H1(D)/R and the Helmholtz projector P(f) ∈ L2
σ(D).

Proof. The weak problem “search for φ ∈ H1(D)/R such that

(∇φ,∇ψ) = (f ,∇ψ) for all ψ ∈ H1(D)/R

is uniquely solvable. Hence, w := f −∇φ ∈ L2(D), satisfies (w,∇ψ) = 0 for all ψ ∈ H1(D)/R
which shows w ∈ L2

σ(D).

In order to show that the above Helmholtz decomposition is unique, assume two different decomposi-
tions

f = ∇φ1 + w1 = ∇φ2 + w2

with φ1, φ2 ∈ H1(D)/R and w1, w2 ∈ L2
σ(D). This is equivalent to

w1 −w2︸ ︷︷ ︸
∈L2

σ(D)

= ∇(φ2 − φ1︸ ︷︷ ︸
∈H1(D)/R

).

Lemma 2.2 shows w1 = w2 and φ1 = φ2. This concludes the proof.

A direct consequence of Lemma 2.2 are the following properties of the Helmholtz projector.

Lemma 2.4. For every vector field f ∈ L2(D), its Helmholtz projector satisfies

P(f) = arg min
w∈L2

σ(D)
‖f −w‖L2 .

In particular, for all ψ ∈ H1(D), it holds P(∇ψ) = 0.
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Another direct consequence of the Helmholtz decomposition and the Helmholtz projector is the follow-
ing fundamental invariance property:

Lemma 2.5 (Fundamental invariance property). Assuming homogeneous Dirichlet boundary condi-
tions for the velocity, a change of the exterior force according to f → f + ∇φ (with a potential
φ ∈ H1(D)/R) leads to a change of velocity and pressure by (u, p)→ (u, p+ φ).

Proof. Assuming that (u, p) and (ũ, p̃) solve (7) for the exterior forces f and f +∇φ, one concludes
that the velocity solutions u and ũ are completely determined by testing with divergence-free velocity
test functions v ∈ V0, i.e., it holds

ν(∇ũ,∇v) = (f +∇φ,v) = (f ,v) = ν(∇u,∇v),

i.e., it holds ũ = u. Further, the pressure p̃ is determined completely by testing with velocity functions
v ∈ V⊥ such that holds

−(p̃,∇ · v) = (f +∇φ,v)− ν(∇u,∇v)

= (f ,v)− ν(∇u,∇v)− (φ,∇ · v)

= −(p+ φ,∇ · v),

(10)

which proves p̃ = p+ φ and concludes the proof

In this contribution, the Helmholtz projector will also be applied to functionals, as it is common in
functional analysis for the incompressible Navier–Stokes equations [Soh12].

Definition 2.6. The Helmholtz projector P(f) : V0 → R is defined for all functionals f ∈ H−1(D)
by restriction to the space V0, i.e., it holds for all v ∈ V0

〈P(f),v〉 = 〈f ,v〉.

Remark 2.7. For all q ∈ Q it holds P(∇q) = 0, since testing the H−1(D)-functional ∇q by
divergence-free velocity test functions v ∈ V0 yields

〈P(∇q),v〉 = −(q,∇ · v) = 0,

and P(∇q) is identified with the functional 0 ∈ H−1(D).

For all u ∈ V, the functional −∆u ∈ H−1(D) is defined for all v ∈ V by

−〈∆u,v〉 = (∇u,∇v).

Then, the following lemma holds.

Lemma 2.8. For the solution of the incompressible Stokes problem (7) it holds

P(−∆u) =
1

ν
P(f),

where the Helmholtz projector on the left is understood in H−1-sense, and the Helmholtz projector on
the right is understood in the sense of L2.
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Proof. Indeed, for all v ∈ V0 it holds

νa(u,v)− (p,∇ · v) = (f ,v) ⇔
νa(u,v) = (P(f),v) ⇔

〈P(−∆u),v〉 =
1

ν
(P(f),v).

This concludes the proof.

Remark 2.9. It should be emphasized that though it holds P(−∆u) ∈ L2(D), it only holds −∆u ∈
H−1(D), in general.

2.3 Mixed finite element discretizations for the incompressible (Navier–)Stokes
equations

The discretization of (7) by mixed finite element methods is based on the existence of conforming finite
dimensional subspaces Vh ⊂ V and Qh ⊂ Q. In the following, the operator πQh defined by

πQh(q) := arg min
qh∈Qh

‖q − qh‖L2 for all q ∈ Q,

denotes the best approximation operator into the subspaceQh with respect to the norm ‖·‖L2 . Similar
best approximation operators for other spaces are introduced later analogously. The most important
concept in the mixed discretization theory of the incompressible (Navier–)Stokes equations is the
concept of the discrete divergence operator ∇h· : Vh → Qh which is defined for conforming dis-
cretizations by

∇h · vh := πQh(∇ · vh) for all vh ∈ Vh.

The space of discretely divergence-free vector fields reads

V0
h := {vh ∈ Vh : ∇h · vh = 0}.

Remark 2.10. If the pair of spaces (Vh, Qh) satisfies ∇ · Vh = Qh, then the discrete divergence
operator∇h· : Vh → Qh coincides with the continuous divergence operator∇· : V→ Q restricted
to Vh and the space V0

h is a subspace of V0.

In the following, we will assume that the pair of spaces (Vh, Qh) gives rise to a so-called Fortin
interpolator [GR86].

Definition 2.11 (Fortin interpolator). A Fortin interpolator πF : V→ Vh fulfills, for all v ∈ V,

1 (∇ · πF (v), qh) = (∇ · v, qh) for all qh ∈ Qh, and

2 ‖∇πF (v)‖L2 ≤ CS‖∇v‖L2 with CF ∈ R+.

The following two lemmas recall classical results of the theory of mixed formulations [GR86].

Lemma 2.12 (Discrete inf-sup stability). Assuming the existence of a Fortin interpolator πF , it holds

inf
qh∈Qh

sup
06=vh∈Vh

(∇ · vh, qh)
‖∇vh‖L2‖qh‖L2

=: βh > 0.

Indeed, it holds βh ≥ β
CS

. Consequently, the discrete divergence operator ∇h· : Vh → Qh is
surjective.
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Lemma 2.13. For all v ∈ V0 it holds

inf
vh∈V0

h

‖∇(v − vh)‖L2 ≤ (1 + CS) inf
vh∈Vh

‖∇(v − vh)‖L2 .

Lemma 2.12 and 2.13 guarantee the solvability and optimal convergence behavior of the mixed dis-
cretization of (7) that seeks (uh, ph) ∈ Vh ×Qh such that, for all (vh, qh) ∈ Vh ×Qh,

νa(uh,vh) + b(vh, ph) = (f ,vh) (11)

b(uh, qh) = 0.

3 A priori error analysis for the steady Stokes equations

This section deals with the a priori error analysis of the solution of (11). The analysis involves the
discrete Helmholtz projector, the discrete counterpart to P as introduced in [LM16b]. For f ∈ L2(D),
the discrete Helmholtz projector is defined by

Ph(f) := arg min
vh∈V0

h

‖f − vh‖L2 .

3.1 Consistency error from the discrete divergence operator

The nonconformity of V 0
h with respect to V 0 generates consistency errors that can be measured in

discrete H−1 norms defined by, for f ∈ H−1(D),

‖f‖V0,∗
h

:= sup
06=vh∈V0

h

〈f ,vh〉
‖∇vh‖L2

and ‖f‖V⊥,∗h
:= sup

06=vh∈V⊥h

〈f ,vh〉
‖∇vh‖L2

.

Remark 3.1. In the following, we will sometimes use the notation ∇q for an arbitrary q ∈ L2(D),
when the H−1-gradient of q is addressed. It is defined by

v ∈ H1(D)→ 〈∇q,v〉 = −(q,∇ · v).

For example, the expression ‖∇p‖V0,∗
h

means

‖∇p‖V0,∗
h

= sup
06=vh∈V0

h

−(p,∇ · vh)
‖∇vh‖L2

.

Lemma 3.2. For all φ ∈ Q, it holds

1 ∇ ·Vh = Qh⇒ ‖Ph(∇φ)‖V0,∗
h

= ‖∇(φ− πQh(φ))‖V⊥,∗h
= 0.

2 ∇ ·Vh 6= Qh⇒ ‖Ph(∇φ)‖V0,∗
h
≤ ‖φ− πQh(φ)‖L2 , and

‖∇(φ− πQh(φ))‖V⊥,∗h
≤ ‖φ− πQh(φ)‖L2 .

Proof. For all vh ∈ V0
h it holds

〈Ph(∇φ),vh〉 = −(φ,∇ · vh).
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In the first case, this term is 0, since it holds vh ∈ L2
σ(D). In the second case, one can estimate this

term by

−(φ,∇ · vh) = −(φ− πQh(φ),∇ · vh)
≤ ‖φ− πQh(φ)‖L2‖∇ · vh‖L2 ≤ ‖φ− πQh(φ)‖L2‖∇vh‖L2 .

Similarly, for all vh ∈ V⊥h , it holds

(φ− πQh(φ),∇ · vh) ≤ ‖φ− πQh(φ)‖L2‖∇ · vh‖L2 .

If∇ · vh ∈ Qh, the left-hand side vanishes due to the best approximation properties of πQh .

Remark 3.3. Lemma 3.2 constitutes the main difference between divergence-free resp. pressure-
robust mixed methods and classical mixed methods that relax the divergence constraint causing a
pressure-dependent consistency error. Many problems of classical mixed methods result from the fact
that their discrete Helmholtz projectors do not vanish for arbitrary gradient fields [JLM+16].

3.2 Velocity error

This section studies the distance of the discrete Stokes solution to the discrete Stokes projector of u
defined by

Sh(u) := arg min
vh∈V0

h

‖∇(u− vh)‖L2 ,

i.e. the best approximation of u in the space (V0,h, ‖∇•‖L2). Note, that the approximation prop-
erties of the Stokes operator are dependent on the existence of a discrete Fortin interpolator, see
Lemma 2.13.

Theorem 3.4 (Velocity error). For the continuous solution u of (7) and the discrete solution uh of (11)
it holds

uh = Sh(u) + eh

where the perturbation eh satisfies

a(eh,vh) =
1

ν
(p,∇ · vh) for all vh ∈ V0,h

with the error estimate

‖∇eh‖L2 ≤
1

ν
‖Ph(∇p)‖V0,∗

h
≤

{
0, for∇ · [Vh] = Qh,
1
ν
‖p− πQh(p)‖L2 , for∇ · [Vh] 6= Qh.

Proof. The best approximation property of Sh(u) and the Galerkin orthogonality show, for eh :=
uh − Sh(u) ∈ V0

h and any vh ∈ V0,h,

a(eh,vh) = a(uh − u,vh) =
1

ν
(p,∇ · vh).

To show the error estimate, set vh = eh in the last identity to obtain

‖∇eh‖2L2
= a(uh − u, eh) ≤

1

ν
‖Ph(∇p)‖V0,∗

h
‖∇eh‖L2 .

A division by ‖∇eh‖ concludes the proof.
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Remark 3.5. For divergence-free/pressure-robust mixed finite element methods Lemma 3.2 shows
1
ν
‖Ph(∇p)‖V0,∗

h
= 0, hence the discrete solution uh equals the Stokes projector of u. In particular,

the estimate is independent of 1
ν

and the discrete solution uh is just a linear function of u.

Classical mixed methods that relax the divergence constraint on the other hand show a locking phe-
nomenon for ν → 0. Here, the discrete solution uh is a linear function of u and 1

ν
p. In this sense, poor

mass conservation is a consistency error of the corresponding discrete Helmholtz projector. Moreover,
this shows that these methods violate the fundamental invariance property stated in Lemma 2.5 if∇q
with q /∈ Qh is added to the right-hand side.

3.3 Pressure error estimates

A similar result can be obtained for the pressure error, i.e. the distance of the discrete pressure ph to
the best approximation πQh(p) of the exact pressure p.

Theorem 3.6 (Pressure error). For the continuous solution p of (7) and the discrete solution ph of
(11), it holds

ph = πQh(p) + rh

where the perturbation rh ∈ Qh satisfies

(rh,∇ · vh) = νa(u− Sh(u)),vh) + (p− πQh(p),∇ · vh) for all vh ∈ V⊥h

with the error estimate

‖rh‖L2 ≤ ν

βh
‖∇(u− Sh(u))‖L2 + ‖∇(p− πQh(p))‖V⊥,∗h

≤ ν

βh
‖∇(u− Sh(u))‖L2 +

{
0 for∇ · [Vh] = Qh,

‖∇(p− πQh(p))‖V⊥,∗h
for∇ · [Vh] 6= Qh.

Proof. For rh = ph − πQh(p) and any vh ∈ V⊥h , Galerkin orthogonality shows

(rh,∇ · vh) = (ph − p,∇ · vh) + (p− πQh(p),∇ · vh)
= νa(u− uh,vh) + (p− πQh(p),∇ · vh).

Moreover, one can add νa(uh−Sh(u),vh) = 0 due to vh ∈ V⊥h and uh−Sh(u) ∈ V0
h. The error

estimate follows from the discrete inf-sup stability, where one tests the identity with the wh ∈ V⊥h
such that holds∇h ·wh = rh.

Remark 3.7. Note that for divergence-free/pressure-robust finite element methods, it holds (p −
πQh(p),∇ · vh) = 0, since ∇ · vh ∈ Qh. Hence, also the perturbation of the discrete pressure
from the exact pressure is pressure-independent, whereas the perturbation in classical finite element
methods that are not divergence-free depends on the pressure.

4 Locking behavior of classical finite element methods

The previous section intended to show that classical mixed methods suffer from a locking phenomenon
in the limit ν → 0, which does not appear in divergence-free/pressure-robust mixed methods. How-
ever, many researchers continue to claim that classical mixed methods, which are discretely inf-sup
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stable, would behave in an optimal manner. For such a statement, see e.g. [Ste90, p. 501]. This re-
sults in the belief, that classical mixed methods work well, in principle. This section argues against this
claim.

4.1 Optimality (only) for ν = 1

The argument for the optimality of classical mixed finite element methods seems to be based on the
following observation: for the viscosity ν = 1, one obtains by squaring and adding the results of
Theorems 3.4 and 3.6 the following — seemingly optimal — a-priori error estimate:

‖∇(u− uh)‖2L2 + ‖p− ph‖2L2 ≤ C(βh)
(
‖∇(u− Sh(u))‖2L2 + ‖p− πQh(p)‖2L2

)
. (12)

In other words, the claim is: the optimality of classical mixed methods would be revealed, if one an-
alyzes classical mixed methods in the ’right norm’. However, the corresponding — seemingly optimal
— error estimate for ν 6= 1 reads:

‖∇(u − uh)‖2L2 +
1

ν2
‖p − ph‖2L2 ≤ C(βh)

(
‖∇(u− Sh(u))‖2L2 +

1

ν2
‖p− πQh(p)‖2L2

)
with the same constant C(βh). Obviously, in the limit ν → 0, this error estimate does not give any
control over the velocity error. And indeed, numerical experience shows that the discrete pressure in
classical mixed methods is always quite accurate, even if the discrete velocity is inaccurate. However,
the corresponding error estimates for divergence-free/pressure-robust mixed methods in Theorems
3.4 and 3.6 deliver a reasonable control over pressure and velocity error separately, whatever small ν
may be.

But maybe the reader asks herself/himself, why not just rescaling the problem from ν 6= 1 to a problem
with ν = 1, in order to avoid this problem? In fact, such a scaling is always possible, but it only
reveals the real hidden problem in (12), its lack of pressure-robustness. Since the appropriate scaling
is (ũ, p̃) = (u, 1

ν
p), the estimate (12) only looks good, if one assumes that the physical variables u

and p are both of comparable order, say O(1) simultaneously. If the pressure is magnitudes larger
than the velocity, (12) still ensures only a good estimate for the pressure. However, the accuracy of
divergence-free/pressure-robust mixed methods would be unaffected by large pressures p.

4.2 Optimality of divergence-free/pressure robust mixed methods

In order to further show the improved robustness of divergence-free/pressure-robust mixed methods
compared to classical mixed methods, additional error estimates are presented in the following (dis-
crete) ’right norm’ (

‖∇(Sh(u)− uh)‖2L2 +
1

ν2
‖πQh(p)− ph‖2L2

) 1
2

(13)

for both kind of methods.

Lemma 4.1. For the solutions (u, p) of (7) and (uh, ph) of (11), it holds(
‖∇(Sh(u)− uh)‖2L2 +

1

ν2
‖πQh(p)− ph‖2L2

) 1
2

≤ 1

ν2
‖Ph(∇p)‖2V0,∗

h

+

(
1

βh
‖∇(u− Sh(u))‖L2 +

1

ν
‖∇(p− πQh(p))‖V⊥,∗h

)2
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Note, that for divergence-free/pressure-robust methods, all pressure-dependent terms on the right-
hand side disappear.

Proof. This follows directly from Theorems 3.4 and 3.6.

Example 4.2. To illustrate the locking behavior of classical finite element methods, consider a Stokes
problem with right-hand side f = −ν∆u + ∇p for p(x, y) = x5 + y5 − 1/3 and u = ∇ ×
(0, 0, x2(x − 1)2y2(y − 1)2) in the domain D = (0, 1)2. As depicted in Figure 1, the error of the
Taylor-Hood finite element method scales with 1/ν as predicted by Lemma 4.1, while the error of the
divergence-free Scott–Vogelius finite element method is ν-independent. All results were obtained on
the same mesh that was chosen such that both methods are guaranteed to be inf-sup stable.

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

10−2

100

102

ν

er
ro

r

Taylor–Hood

Scott–Vogelius

Figure 1: Best approximation error (13) of the Taylor–Hood and Scott–Vogelius finite element methods
versus ν on a fixed unstructured mesh with 201 vertices in Example 4.2.

5 The transient incompressible Stokes equations

This section investigates the transient incompressible Stokes problem

ut − ν∆u +∇p = f , (t,x) ∈ (0, T ]×D,
∇ · u = 0, (t,x) ∈ (0, T ]×D, (14)

u = 0, (t,x) ∈ (0, T )× ∂D,
u(0,x) = u0(x), x ∈ D.

For the numerical analysis, we assume that the solution (u, p) exists, that it is unique and that we
have the following regularities in appropriate Bochner spaces

1 u0 ∈ L2
σ(D),

2 u ∈ L2(0, T ;V),

3 ut ∈ L2(0, T ;L2(D)),

4 p ∈ L2(0, T ;Q).
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The norm in the space L2(0, T ;X) is denoted by

‖•‖L2(0,T ;X) :=

(∫ T

0

‖•(s)‖2X ds
)1/2

.

5.1 Weak formulation and discrete problem

Due to the regularity assumptions, the solution (u, p) fulfills the following weak formulation: we search
for (u, p) such that for all (v, q) ∈ V ×Q it holds for almost all t ∈ (0, T ],

(ut(t),v) + νa(u(t),v) + b(v, p(t)) = (f(t),v), (15)

b(u(t), q) = 0.

Further, we assume u(0, ·) = u0 and f ∈ L2(0, T ;L2(D)).

The discrete transient Stokes problem seeks (uh(t), ph(t)) ∈ Vh ×Qh such that, for all (vh, qh) ∈
Vh ×Qh and all t ∈ (0, T ], it holds

(u̇h(t),vh) + νa(uh(t),vh) + b(vh, ph(t)) = (f(t),vh), (16)

b(uh(t), qh) = 0,

and the discrete initial value is given by uh(0) = Ph(u0). The discrete solvability follows the standard
theory, see, e.g., [ALM17].

5.2 A priori error analysis

For the numerical analysis, we need Gronwall’s lemma [Joh16]:

Lemma 5.1 (Gronwall). For I = (0, T ] with 0 < T < ∞ and α, β ∈ C(I,R) it is assumed that
φ ∈ C1(I,R) fulfills for all t ∈ I the inequality

φ̇(t) ≤ α(t) + β(t)φ(t).

Then, it follows for all t ∈ I

φ(t) ≤ φ(0)e
∫ t
0 β(τ)dτ +

∫ t

0

α(s)e
∫ t
s β(τ)dτds .

Theorem 5.2 (Velocity error). For the continuous solution u of (14) and the discrete solution uh of
(16), the following statements hold, for almost all t ∈ (0, T ],

uh(t) = Ph(u(t)) + eh(t)

where eh(t) satisfies the discrete evolution equation, for all vh ∈ V0
h and t ∈ [0, T ],

(ėh(t),vh) + ν(∇eh(t),∇vh) = ν(∇(Sh(u(t))− Ph(u(t))),∇vh)
− (p(t)− πQh(p(t)),∇ · vh)

with the initial state eh(0) = 0. Furthermore, eh can be estimated either by

‖eh(t)‖2L2 + ν‖∇eh‖2L2(0,t;L2) ≤ 2ν‖∇(u− Ph(u))‖2L2(0,t;L2) +
2

ν
‖Ph(∇p)‖2L2(0,t;V 0,∗

h )

DOI 10.20347/WIAS.PREPRINT.2402 Berlin 2017



N. Ahmed, A. Linke, Ch. Merdon 14

or, assuming additionally∇p ∈ L2(0, t;L2), by

‖eh(t)‖2L2 + ν‖∇eh‖2L2(0,t;L2) ≤ eν‖∇(u− Ph(u))‖2L2(0,t;L2) + et‖Ph(∇p)‖2L2(0,t;L2).

Again, it holds for almost all t ∈ (0, T ]

‖Ph(∇p(t))‖V 0,∗
h

=

{
0, for∇ · [Vh] = Qh,

‖p− πQh(p)‖L2 , for∇ · [Vh] = Qh.

Proof. With wh := Ph(u) and eh := uh − wh, the discrete and the continuous weak formulations
imply

(ėh,vh) + ν(∇eh,∇vh) = (ut − ẇh,vh) + ν(∇u−∇wh,∇vh)− (p,∇ · vh).

Due to the special choice of wh and the regularity of ut, it holds (ut − ẇh, eh) = 0 which yields the
claimed evolution equation for the error function.

Tested with vh = eh, one gets

1

2

d

ds

(
‖eh(s)‖2L2

)
+ ν‖∇eh‖2L2 = ν(∇u−∇wh,∇eh)− (p,∇ · eh). (17)

To prove the first error estimate, one can exploit eh ∈ L2
σ, apply Young’s inequality, integrate in time,

and use eh(0) = 0 to obtain

1

2
‖eh(t)‖2L2 +

ν

2
‖∇eh‖2L2(0,t;L2) ≤ ν‖∇(u−wh)‖2L2(0,t;L2) +

1

ν
‖Ph(∇p)‖2L2(0,t;V 0,∗

h )
.

For the second estimate and t > 0, one starts again from (17) and estimates the pressure-dependent
term by

(∇p(s), eh(s)) ≤
t

2
‖Ph(∇p(s))‖2L2 +

1

2t
‖eh(s)‖2L2

for all s ∈ (0, t), yielding

d

ds

(
‖eh(s)‖2L2

)
+ ν‖∇eh(s)‖2L2

≤ ν‖∇(u(s)−wh(s))‖2L2 + t‖Ph(∇p(s))‖2L2 +
1

t
‖eh(s)‖2L2 . (18)

Finally, the differential version of Gronwall’s lemma (Lemma 5.1) leads to

‖eh(t)‖2L2 + ν‖∇eh‖2L2(0,t;L2)

≤ e
(
ν‖∇(u−wh)‖2L2(0,t;L2) + t‖Ph(∇p)‖2L2(0,t;L2)

)
. (19)

Remark 5.3. In the divergence-free/pressure-robust first case, we get a locking-free estimate. Optimal
convergence is verified on those meshes, where the L2 best approximation into V0

h converges with
optimal order in the V norm. In the classical case, we see a locking phenomenon for ν → 0, which is
only excited by large irrotational forces in the momentum balance, which are collected by the pressure
gradient. A (seemingly) better estimate without a locking phenomenon can be obtained by using the
second estimate. However, this estimate is only better for small time intervals, since the error grows
linearly with t.
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Theorem 5.4 (Pressure error). For the continuous solution p of (14) and the discrete solution ph of
(16), it holds for all t ∈ (0, T ]

ph(t) = πQh(p(t)) + rh(t)

with the error estimate

‖rh(t)‖L2 ≤ 1

βh

(
‖ut(t)− u̇h(t)‖L2 + ν‖∇(u(t)− uh(t))‖L2

+ ‖∇(p(t)− πQh(p(t)))‖V⊥,∗h

)
. (20)

Remark 5.5. Note that for divergence-free/pressure-robust mixed methods, the pressure-dependent
term in (20) drops out according to Lemma 3.2.

Proof. For rh = ph − πQh(p) and any vh ∈ V⊥h , the Galerkin orthogonality shows

(rh,∇ · vh) = (ph − p,∇ · vh) + (p− πQh(p),∇ · vh)
= (ut − uh,t,vh) + νa(u− uh,vh) + (p− πQh(p),∇ · vh).

The rest of the proof is similar to the steady case, see Theorem 3.6.

6 Pressure-robustness for the steady Navier–Stokes equations

The steady incompressible Navier–Stokes problem for f ∈ L2(D) reads

−ν∆u + (u · ∇)u +∇p = f , x ∈ D,
∇ · u = 0, x ∈ D, (21)

u = uD, x ∈ ∂D.

Here, uD denotes the Dirichlet velocity boundary data. Denoting the nonlinear convection trilinear
form by

c(a,u,v) = ((a · ∇)u,v), (22)

a weak formulation of (21) with homogeneous Dirichlet velocity boundary conditions uD = 0 is given
by: search for (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q holds

νa(u,v) + c(u,u,v) + b(v, p) = (f ,v), (23)

b(u, q) = 0.

Lemma 6.1 (Stability). For any velocity solution u ∈ H1
0(D) of the steady Navier–Stokes problem

(23), the following stability result holds:

‖∇u‖L2 ≤ CP
ν
‖P(f)‖L2 ,

where CP denotes the Poincaré-Friedrichs constant.

Proof. Testing (23) by v := u yields

ν‖∇u‖2L2 = (f ,u) = (P(f),u),

since c is skew-symmetric and it holds b(u, p) = 0. Cauchy and Friedrichs inequalities conclude the
proof.
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Remark 6.2. The velocity solution u does only depend on the Helmholtz projector P(f), but not on
the entire forcing f . This shows that the fundamental invariance property from Lemma 2.5 for the
incompressible Stokes equations holds for the steady incompressible Navier–Stokes equations, too.
Further, for every irrotational forcing f = ∇φ, one obtains the hydrostatic solution u = 0.

From a more mathematical viewpoint, this can be expressed equivalently as follows: for every f ∈
L2(D), the expression ‖P(f)‖L2 denotes a semi-norm, since for all φ ∈ H1(D) it holds ‖P(∇φ)‖L2 =
0. However, semi-norms induce naturally equivalence classes. Therefore, kinetic energy in the incom-
pressible Navier–Stokes equations with homogeneous energy is only excited by forces from the equiv-
alence class L2

σ(D), while forces from the orthogonal complement of L2
σ(D) in L2(D) (with respect

to the standard L2 scalar product) induce potential energy.

Employing an inf-sup-stable pair of spaces (Vh, Qh), the discrete steady Navier–Stokes problem
seeks (uh, ph) ∈ Vh ×Qh such that, for all (vh, qh) ∈ Vh ×Qh,

νa(uh,vh) + c(uh,uh,vh) + b(vh, ph) = (f ,vh), (24)

b(uh, qh) = 0.

Lemma 6.3 (Discrete stability). For any velocity solution uh ∈ Vh of the steady Navier–Stokes
problem (24), the following stability result holds:

‖∇uh‖L2 ≤ CP
ν
‖Ph(f)‖L2 ,

where CP denotes the Poincaré-Friedrichs constant.

Proof. See the proof of Lemma 6.1.

Lemma 6.4 (Nonlinear pressure-robustness for divergence-free methods). If it holds ∇ ·Vh = Qh,
the discrete scheme is also pressure-robust in the nonlinear discrete problem (24), which means: all
velocity solutions u ∈ V of (23), for which it holds u ∈ Vh are also discrete velocity solutions of
(24), completely independent of the pressure p. Indeed, in this case it further holds ph = πQh(p).

Proof. Testing with a divergence-free test function vh ∈ V0
h, the velocity results follows directly from

the Galerkin orthogonality of (24). Indeed, for the continuous velocity solution u holds

νa(u,vh) + c(u,u,vh) = (f ,vh),

while for the discrete velocity solution uh holds

νa(uh,vh) + c(uh,uh,vh) = (f ,vh).

From u ∈ V0
h follows at once that uh := u is a discrete velocity solution of (24). For the pressure

results, one obtains:

b(vh, ph) = (f ,vh)− νa(uh,vh)− c(uh,uh,vh)
= (f ,vh)− νa(u,vh)− c(u,u,vh)
= b(vh, p)

= b(vh, πQhp),

due to∇ ·Vh = Qh.
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Remark 6.5. It is emphasized that pressure-robustness in the sense of Lemma 6.4 for the steady
Navier–Stokes equations does not hold for classical mixed finite elements like the Taylor–Hood el-
ement. For numerical examples demonstrating this statement, see [LM16c, Sections 3.3-3.4] and
[LM16a, Sections 6.2-6.5].

Remark 6.6. An important class of benchmarks for the incompressible Navier–Stokes equations,
where this concept of (nonlinear) pressure-robustness applies, are steady potential flows, see [LM16a].
For a given domain D, we assume that h ∈ H2(D) is a harmonic potential, i.e., it holds −∆h = 0.
Then,

(u, p) = (∇h,−1

2
|∇h|2)

fulfills the steady incompressible Navier–Stokes equations with (inhomogeneous) Dirichlet boundary
data and right hand side f = 0. Note that the pressure p is (in the sense of approximability) more
difficult than the velocity field u: if h is a harmonic polynomial of order k + 1, then u is a polynomial
of order k, and p is a polynomial of order 2k.

The key feature of potential flows is that the nonlinear convection term (u · ∇)u is irrotational, i.e. it
holds P((u ·∇)u) = 0. This requires an accurate pressure-robust space-discretization of the nonlin-
ear convection term. Indeed, [LM16a] presents potential flow benchmarks, for which some pressure-
robust discretizations are much more accurate than similar classical mixed methods.

Remark 6.7. Also note that potential flows are not the only class of flows, for which it holds P((u ·
∇)u) = 0:

1 in Beltrami flows it holds ∇× u 6= 0, but nevertheless it holds (∇× u) × u = 0, leading to
(u · ∇)u = 1

2
∇(|u|2) as in potential flows;

2 in generalized Beltrami flows,∇×u 6= 0 and (∇×u)×u 6= 0 hold, but nevertheless it holds
(∇× u) × u = ∇χ for some potential χ. A linear, generalized Beltrami flow is given by rigid
body rotations [LM16c].

7 Pressure-robust siblings of non-divergence-free finite element
methods

This section reports on a rather novel approach to obtain pressure-robust finite element methods
without∇ ·Vh ⊆ Qh.

7.1 Divergence-free reconstruction operator

The idea is to repair the orthogonality between irrotational forces∇q and divergence-free vector fields
vh by replacing the scalar product

(f ,vh) by (f ,Πvh),

where Π is a linear operator with two important properties. The first one reads

∇ · (Πvh) = πQh(∇ · vh) = ∇h · vh for all vh ∈ Vh
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and ensures that discretely divergence-free functions vh ∈ V0
h are mapped to divergence-free func-

tions Πvh ∈ L2
σ(D). For this, Π maps into H(div)-conforming finite element spaces of Raviart–

Thomas or Brezzi–Douglas–Marini type [BF91]. The idea is that in the usual integration by parts for-
mula for (∇q,vh) not the divergence∇·vh, but the discrete divergence∇h ·vh should pop up, since
classical mixed finite element methods replace the continuous divergence by an appropriate discrete
divergence

(∇q,Πvh) = −(q,∇h · vh) for all vh ∈ Vh.

This also implies for all q ∈ H1(D) the desired orthogonality

(∇q,Πvh) = 0 for all vh ∈ V0
h.

Secondly, the introduced consistency error should be small and of optimal order, i.e.

‖f ◦ (1− Π)‖V 0,?
h

:= sup
06=vh∈V0

h

(f ,vh − Πvh)

‖∇vh‖L2

≤ O(hk)‖f‖Hk−1 .

Here, h denotes the mesh size, k denotes the optimal approximation order of the discrete pressure
space in the L2 norm, and ‖•‖Hk−1 denotes the L2-norm for k = 1 and the Sobolev semi norm
| • |k−1 for k ≥ 2.

Details on the design of appropriate reconstruction operators for various classical finite element meth-
ods can be found in the referenced literature, e.g. [LMT16, JLM+16, LM16b] for conforming finite
element methods with discontinuous pressure spaces, [LLMS16] for the Taylor–Hood or mini finite
element family or [Lin14a, BLMS15, LMW17] for the nonconforming Crouzeix–Raviart finite element.

7.2 Application to the steady Stokes equations

In case of the steady Stokes equations the modified method seeks (uh, ph) ∈ Vh × Qh such that,
for all (vh, qh) ∈ Vh ×Qh,

νa(uh,vh) + b(vh, ph) = (f ,Πvh) (25)

b(uh, qh) = 0.

Since only the right-hand side is modified, the inf-sup property of the pair Vh ×Qh is preserved.

Theorem 7.1 (Velocity error). For the continuous solution u of (7) and the discrete solution uh of (25)
it holds

uh = Sh(u) + eh

where the perturbation eh satisfies, for all vh ∈ V0,h,

a(eh,vh) = (P(−∆u),Πvh)− (∇u,∇v)

with the error estimate

‖∇eh‖L2 ≤ ‖∆u ◦ (1− Π)‖V0,∗
h
.
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Proof. The best approximation property of Sh(u) and the Galerkin orthogonality shows, for eh :=
uh − Sh(u) ∈ V0

h and any vh ∈ V0,h,

νa(uh,vh) = (f ,Πvh) ⇔

a(eh,vh) =

(
1

ν
P(f),Πvh

)
− a(u,vh) ⇔

a(eh,vh) = (−P(∆u),Πvh)− a(u,vh).

due to Πvh ∈ L2
σ(D) and due to Lemma 2.8. Setting vh = eh yields

‖∇eh‖2L2
≤ ‖∆u ◦ (1− Π)‖V0,∗

h
‖∇eh‖L2 ,

and a division by ‖∇eh‖ concludes the proof.

Example 7.2. Figure 2 shows the error in the norm (13) of the classical Bernardi–Raugel finite element
method and its modified sibling on the same mesh in the example specified in Section 4.2. For the
modified Bernardi–Raugel element, a first order method, the operator Π is chosen as the standard
interpolant of the BDM1 element, which is elementwise defined. The classical method shows the
expected locking behavior for ν → 0, while the modified method shows no error increase for smaller
ν. Plenty of further examples are studied in former publications, see e.g. [JLM+16, LM16b, LM16c].

Remark 7.3 (Application to the steady Navier–Stokes equations). In case of the steady Navier–Stokes
equations [LM16b] also the nonlinear convection form c from (22) can be discretised pressure-robustly
by

ch(ah,uh,vh) := ((a · ∇)u,Πvh).

or by a variant of the rotation form given by

ch(ah,uh,vh) := (rot ah × Πuh,Πvh). (26)

The latter choice has the advantage to be skew-symmetric, i.e. ch(uh,uh,vh) = − ch(uh,vh,uh),
which preserves the discrete kinetic energy and can be exploited in the analysis of (22).
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Figure 2: Best approximation error (13) of the classical and modified Bernardi–Raugel finite element
method versus ν on a fixed unstructured mesh with 277 vertices in Example 7.2.
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7.3 Application to the transient Stokes equations

Irrotational forces may not only appear in the right-hand side or the nonlinear convection term, but
also in the time derivative. Therefore, in case of the transient Stokes equations, one can also use the
reconstruction operator in the space discretization of the time derivative, i.e., replace

(ut,h,vh) by (Πut,h,Πvh).

Hence, the discrete transient Stokes problem seeks (uh(t), ph(t)) ∈ Vh × Qh such that, for all
(vh, qh) ∈ Vh ×Qh and all t ∈ (0, T ],

(Πu̇h(t),Πvh) + νa(uh(t),vh) + b(vh, ph(t)) = (f(t),Πvh) (27)

b(uh(t), qh) = 0,

and the discrete initial value is given by uh(0) = Ph(u0). Of course, u̇h(t) could be replaced by any
discrete approximation of the time derivative, see [ALM17] for details.

Under the additional assumption

C1‖vh‖L2 ≤ ‖Πvh‖L2 ≤ C2‖vh‖L2 for all vh ∈ ker(Π)⊥, (28)

where C1 and C2 denote constants, which depend on the shape-regularity of the mesh, but not on
the mesh size, optimal pressure-robust error estimates can be obtained [ALM17]. The validity of this
assumption is still under investigation, however, for several modified finite element methods studied in
[ALM17] it is at least verified numerically.

Example 7.4. To illustrate the benefits of pressure-robust space discretizations for the time-dependent
Stokes equations, we consider a last example, which considers the potential flow u := ∇h for the
time-dependent harmonic function h(x, t) := min(t, 1)(x3 − 3xy2) in the time interval [0, 2] on
the domain D := (−1, 1)2 and the viscosity ν = 1/20. No exterior forces are applied, in order to
concentrate on the influence of the space discretization of the time derivative which is approximated
by a backward Euler scheme with equidistant time steps of length τ = 0.01.

Table 1 lists the best approximation errors for the unmodified and modified P+
2 finite element method,

a second-order method that enriches the Taylor–Hood velocity ansatz space by cell bubbles to allow
for piecewise linear discontinuous pressures. For the modified scheme, a second order scheme, the
operator Π maps elementwise into BDM2, and Π is actually the standard interpolator of BDM2

[BF91]. The values show that the modified method produces the optimal best approximations (in case
of the velocity it is even the exact velocity, since in this example Sh(u(t)) = u(t)) in every time step,
while the classical method shows some deviations. Also note, that the errors suddenly go down after
the flow becomes stationary at t = 1 and go to to zero for t→∞. Hence, the error was only incited by
the lack of pressure-robustness in the space discretization of the time derivative. An easy calculation
shows that the exact pressure in this example reads p(t) = −ht(t) = x3 − 3xy2 for t ∈ (0, 1).
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