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Delayed feedback control of self-mobile cavity solitons in a
wide-aperture laser with a saturable absorber

Tobias Schemmelmann, Felix Tabbert, Alexander Pimenov, Andrei G. Vladimirov,
Svetlana V. Gurevich

Abstract

We investigate the spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity
surface-emitting laser with saturable absorption subjected to time-delayed optical feedback. Using
a combination of analytical, numerical and path continuation methods we analyze the bifurcation
structure of stationary and moving cavity solitons and identify two different types of traveling lo-
calized solutions, corresponding to slow and fast motion. We show that the delay impacts both
stationary and moving solutions either causing drifting and wiggling dynamics of initially stationary
cavity solitons or leading to stabilization of intrinsically moving solutions. Finally, we demonstrate
that the fast cavity solitons can be associated with a lateral mode-locking regime in a broad-area
laser with a single longitudinal mode.

1 Introduction

The formation of dissipative localized structures was reported in various research fields ranging from
chemistry to ecology and social science [2,21, 25, 34,40, 46, 51]. Localized structures of light in the
transverse section of externally driven nonlinear resonators and lasers are often called cavity solitons
(CSs) [1,22,23, 37]. Since their experimental demonstration CSs in semiconductor cavities attracted
growing interest due to potential applications for information storage and processing [16,29]. CSs usu-
ally appear as bright and/or dark spots in the transverse plane of nonlinear cavities, which is orthogonal
to the propagation axis. Recently, Vertical-Cavity Surface-Emitting Lasers (VCSELSs) attracted consid-
erable interest in CSs studies and different experimental techniques of the CS generation in these
lasers have been reported. This includes coherent optical injection in combination with a narrow writ-
ing beam, frequency selective feedback and saturable absorption (see [6] for a review). In particular,
VCSELs with saturable absorption are of interest since they do not require an external holding beam
for the CS generation, which significantly simplifies the underlying system. Therefore, the formation of
CSs in VCSELs with a saturable absorber was widely studied both experimentally [3,4,8,11,14,15]
and theoretically [5,9, 10, 33,49].

Recently, much attention was paid to the investigation of the influence of delayed optical feedback
on the stability properties of CSs. The impact of delayed feedback on the dynamics of CSs has
been theoretically investigated in driven nonlinear optical resonators [13, 43, 47] and broad-area VC-
SELs [27, 30, 45]. In particular, it was shown that nontrivial instabilities resulting in the formation of
oscillons, CSs rings, labyrinth patterns, or moving CSs can develop. In addition, the influence of the
feedback phase and carrier relaxation rate on the CS drift instability threshold was investigated. The in-
fluence of the optical delayed feedback on the dynamics of CSs in the generic Lugiato-Lefever model,
describing the appearance of either spatial or temporal localized structures in nonlinear cavities was
studied in [26]. A detailed investigation of the bifurcation structure of time-delayed feedback induced
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complex dynamics in a VCSEL with saturable absorption was performed recently in [28, 35]. It was
demonstrated that the delayed optical feedback impacts the homogeneous lasing solution and the lo-
calized CS solutions in a similar way, causing oscillatory dynamics with either a period doubling or a
quasiperiodic route to chaos, as well as a multistability of stationary CSs. Furthermore, it was shown
that at large delays apart from the drift and phase instabilities the soliton can exhibit a delay-induced
modulational instability leading to a low-frequency switching of the CS motion.

In this paper we focus on the dynamical properties of CSs in the mean field model of a broad area
VCSEL with saturable absorption and the impact of the delayed feedback on these properties. Using
a combination of analytical, numerical, and path continuation methods we analyze the branches of
stationary and moving CSs in the absence of the delayed feedback and discuss two types of traveling
solutions, corresponding to slowly and fast moving CSs. We demonstrate that the fast moving CS
can be interpreted as a lateral mode-locking regime in a broad-area laser with a single longitudinal
mode and discuss how the delayed feedback impacts the dynamical behavior of the fast CS. We show
that in the presence of the delay term, in addition to the drift and phase instabilities, CS can exhibit a
delay-induced modulational instability associated with the translational neutral mode. A combination of
the modulational and drift instabilities can lead to complex dynamics of the moving localized solution.
Finally, we show that the delayed feedback can be effectively used to stabilize intrinsically moving
CSs.

2 Model system

The dynamics of the slowly varying mean electric field envelope £ = E(r, t) and carrier densities
N = N(r,t),n = n(r, t),r = (z, y) in active and passive part of the VCSEL subject to the
delayed feedback can be described by the following system of equations [5, 9, 33]

QE = [Q—ia)N+(1—if)n—1+(d+1i)Vi] E+

+ e Bt —71) (1)
OGN = b [p—N(1+|EP)] 2)
on = by[-y—n(l+s|E])] (3)

Here, o () is the linewidth enhancement factor and by (bs) is the ratio of photon lifetime to the carrier
lifetime in the active (passive) layer, 1+ depends on the normalized injection current in the active mate-
rial and y measures absorption in the passive material, s is the saturation parameter and d is the small
diffusion (spatial filtering) coefficient. Time and transverse space coordinates are scaled to the photon
life time and diffraction length, respectively. The optical feedback is modeled by single round trip de-
layed term characterized by the delay time 7, feedback strength 77 and phase ¢. We assume that the
external cavity is self-imaging, so that the diffraction of the feedback field can be neglected [19, 38].
This means that the parameters 1 and ¢ are independent of the transverse coordinates. Note that
the delay time 7 is proportional to the external cavity length and is measured in units of the photon
lifetime [28], whereas ¢ describes a phase shift on the time scale of the fundamental lasing frequency,
due to, e.g., shifting the mirror by a distance shorter than the wavelength of light.
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3 Bifurcation analysis of Cavity Solitons
In the absence of the optical feedback term, i.e. for n = 0, the model (1)-(3) was extensively investi-
gated in the literature [5,9, 32, 33,48]. It possesses the trivial laser-off solution

which becomes unstable at the lasing threshold (i1, = 14-. In the bistability region i1 < pt < fign,

(Vs =1+ 7)?

Mfold = , this solution co-exists with spatially homogeneous lasing solutions
j K Y
E:\/Telwty N:—7 ’[’L:——7 5
1+17 1+s1 ®)
corresponding to nonzero laser intensity [ = |E[2 In this region a non-trivial branch of CSs can

be found [5, 9, 33]. While the shape of the CS branch is determined by the values of both linewidth
enhancement factors «v and 3, the stability of CSs depends strongly on the ratio b; /by of the car-
rier lifetime in the active and in the passive medium [5, 9, 48]. Note that in the limit of instantaneous
medium response, b; 2 — 0o and for d = 0, linear operator describing the stability of the CS solu-
tion of Egs. (1-3) has three zero eigenvalues, corresponding to the translational, phase and Galilean
invariance. However, the Galilean transformation symmetry

E(ﬂ t) — E(r — ot t>eivx/27w2t/4

is typically broken for finite relaxation rates leading to a shift of the corresponding real eigenvalue
from the origin in the complex plane. As a result, for small non-vanishing values of bl_é, a CS can
loose the stability with respect to a drift bifurcation, giving rise to a CS moving with a constant velocity
v. We refer to these structures as slow moving CSs (SCS). Note that the non-vanishing diffusion
coefficient d also breaks the Galilean transformation symmetry leading to the shift of the corresponding
eigenvalue from the origin. In this case, however, it is shifted to the negative half plane of the real
axis, so that the linear stability of CSs is not affected by d. When b, b, are small enough, different
bifurcation scenario leading to various types of Andronov-Hopf bifurcations and their interactions can
be observed. Furthermore, numerical simulations performed in [9, 10] revealed the existence of CSs
moving with large velocities, the so-called fast CSs (FCS). These structures can coexist with either
stationary or slow moving CSs and are characterized by narrower intensity distribution and much
greater peak intensities and velocities than those of SCSs.

Bifurcation analysis in one dimension In this subsection, we perform detailed bifurcation analysis
of both SCSs and FCSs solutions in one spatial dimension. First, we consider the formation of sta-
ble stationary CSs. One can find them e.g., numerically by direct numerical integration of (1)-(3) with
some fixed value of . The result of the numerical simulations obtained after sufficiently long integra-
tion interval can be then used as an initial guess of the Newton method for the solution of nonlinear
stationary problem (1)-(3) with time derivatives set to zero and spatial derivatives discretized according
to some finite difference scheme. Since all the moving CSs in the system (1)-(3) have constant velocity
v, we can use almost the same Newton’s algorithm for continuation of their branches by looking for
the one-dimensional CS in the form

E(z, t) = B(&)e™", (6)

where £ = x — vt, v is the unknown speed and w is the unknown frequency shift. We note, however,
that for the FCS with v >> 1 direct numerical simulation of (1)-(3) does not provide suitable initial guess
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for the Newton method independently on the simulation time. Indeed, when the symmetry with respect
to the Galilean transformation is only slightly broken the phase of the FCS moving at high velocity
v > 1 changes very rapidly in space and time, which would require the use of very small discretization
step in the Newton’s algorithm. To eliminate this fast change of the phase, we estimate the velocity of
the FCS with the help of direct numerical simulation , v ~ © and perform the transformation of the
field E(z,t) := E(x,t)e?/2~#"*/4 Then we obtain the following system for the determination of
the amplitude of the FCS:

0 = (i+d)AE—(v—id6)a—E—(1+iw)E

73
+ ((1 —ia)N + (1 —if)n — (i + d)ﬁ;) E, 7)
ON
0 = —vgg b= A+IEPN), (8)
0 = —vg—Zerz(—v— (1+ s|E)n). 9)

We have solved Egs. (7)-(9) using the Newton method with the additional auxiliary condition F(%) =
E, where 7 is a point at half-maximum of the CS, and FE is the field obtained numerically at this
point. In this way, branches of both SCS and FCS can be reconstructed and the resulting bifurcation
diagram is presented in Fig. 1 (a) with a closeup in panel (b). One can see from Fig. 1 (b) that the
stability range of the stationary CS is limited by two bifurcation points, Andronov-Hopf point (H) at
i~ 2.08 and pitchfork drift bifurcation point (D) at &~ 2.07. One can continue the branch of an
unstable stationary CS by decreasing the parameter . below the drift bifurcation (see Fig. 1 (b)) to
observe that the branch of an unstable CS bifurcates from the laser-off state with zero laser intensity
at the lasing threshold 1 = i, = 3 (see Fig. 1 (a)). Further, by continuation of the branch of the SCS
near the drift bifurcation (see Fig. 1 (b)) one can see that they exist only in a small range of the pump
rates 2.03 < p < 2.07, and their velocity is an order of magnitude smaller than that of the FCS in the
same parameter range (see Fig. 1 (d), below the dashed line).

In addition, one can explore the origin of the branch of FCSs by following this branch from the same
region near 1 = 2.06 (see Fig. 1 (a), (c)) towards lower values of .. One can see that the FCS looses
stability at a saddle-node bifurcation at © ~ 1.9. After this bifurcation the unstable FCS branch can
be continued until it merges with the branch of the unstable stationary CS at a drift bifurcation point
D, at p ~ 2.2. Therefore, our continuation results indicate that the branch of the FCS originates
from the unstable part of the stationary branch of the CS. Furthermore, by increasing p we see that
FCSs can exist far above the lasing threshold (i, = 3, and their stability is lost at an Andronov-Hopf
bifurcation, where oscillating fast solutions can be observed [9]. Transverse intensity distributions of
stable and unstable solitons calculated for the same pump parameter value © = 2.05 (cf. Fig. 1
(b)) and corresponding spatial profiles of the gain and absorption are shown in Fig. 2 (a)-(c). Note
that the shape of both unstable stationary CSs S3, S4 shown in Fig. 2 is symmetric. On the other
hand, stable and unstable fast moving CSs S; and S, demonstrate a strong asymmetry of the soliton
profile, which reflects the movement direction. Furthermore, the stable FCS S; exhibits rather slow
gain and absorption recovery on the trailing tail of the soliton typical for the mode-locking regime.
Stable localized structures that stem from fundamental (or harmonic) mode-locking regime and coexist
with a stable laser off-state below the lasing threshold were recently reported in [24]. Similarly to the
situation presented here, the mode-locking regime corresponding to these structures becomes self-
starting above the lasing threshold. Finally, we decrease the ratio b; /by of the gain and the absorber
relaxation rates to the value typical for mode-locked semiconductor lasers [31,50], and observe that
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Figure 1: One-dimensional bifurcation diagram for a single CS (top, a-b) and its velocity on the corre-
sponding branches (bottom, c-d). Here, by = 1.0,b = 3.33,d = 0.01,a==0,7v=2,5s = 10
and p is varied in the full region of existence of stable CSs at the left (a,c) and in the zoomed region
(denoted by the dotted box at the insets (a,c) ) of stable stationary and SCSs at the right (b,d). I, D o,
and H denote fold, drift and Andronov-Hopf bifurcations, correspondingly, bold solid lines correspond
to stable moving CSs (top - to fast CSs, bottom - to slow CSs), thin solid line between points D and
H on (b) - to stable stationary CSs, and dashed lines correspond to unstable CSs. Dash-dotted line in
the inset (b) denotes the value ;1 = 2.05 where five coexisting solitons S;-S5 can be observed.

FCSs are preserved (see Fig. 2 (d)). Therefore, we conclude that stable fast solitons, which can exist
both below and above the lasing threshold, might be interpreted as a lateral mode-locking regime in a
broad-area laser with a single longitudinal mode.

FCSs in two dimensions In this subsection, we briefly discuss the results of numerical calculations
using the path-following algorithm of two-dimensional FCSs that were first predicted in [10] in the lim-
iting case b, = oco. We use the soliton calculated by direct numerical integration of Egs. (1)-(3) in
two spatial dimensions as an initial guess and perform the same continuation steps as in the one-
dimensional case. In this way a branch of FCSs can be found and continued till the lasing threshold
[ = [un, as it is shown in Fig. 3 (a). It can be seen from this figure that this branch exists only
below the threshold w1,. Using direct numerical integration of the system (1)-(3) we found that for
1 = 2.11 two-dimensional FCS is stable (see Fig. 3 (b)-(d)). However at slightly larger p it becomes
unstable with respect to an Andronov-Hopf bifurcation. Therefore, the most part of the branch shown
in Fig. 3 (a) corresponds to unstable FCSs. As one can see from Fig. 3 (c), the FCS profile remains
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Figure 2: (a) A field intensity |F(x)|?, (b) carrier densities N (z) (c) —n(x) for the solitons S;-S5
marked at the bifurcation diagram on Fig. 1 (b). (d) Maximal field intensity and velocity of the FCS S,
for various values of b; at u;, = 3. Other parameters are the same as in Fig. 1.

symmetric in the x-direction similarly to the stationary one-dimensional CS and it is strongly asym-
metric along the direction of the soliton motion (). In this direction the FCS demonstrates the same
mode-locking behavior as in the one-dimensional case discussed above (see Fig. 3 (d)). We note that
all the properties of the two-dimensional FCS strongly resemble the behavior of two-dimensional light
bullets observed in passively mode-locked semiconductor lasers [17] with the difference, however, that
for the FCS shown in Fig. 3 the mode-locking is associated with the transverse direction y instead of
longitudinal direction.

4 Delay-Induced Drift of Cavity Solitons

Solution structure Now let us switch to the case of nonzero feedback strength. In order to find
localized solutions of Egs. (1)-(3) for p # 0, we substitute the ansatz £ = Ey(z) e *“!, N = Ny(x),
n = no(x) into Egs. (1)-(3) and obtain the following set of ordinary differential equations for unknowns
Eo, No, No and w

+ (d+i)V:+nel Ey, (10)
= by (n— No(1+|Eo|)) , (11)
0 = —by(v+no(l+s|E)) . (12)
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Figure 3: (a) Peak intensity (solid) and velocity (dashed) corresponding to a branch of a two-
dimensional FCS as functions of the the pump rate p below the lasing threshold 1i;, = 3. (b) Intensity
profile of a two-dimensional FCS calculated at = 2.11. Panels (c) and (d) show typical cross-section
profiles of the FCS in x- and y-directions, respectively. Other parameter are the same as in Fig. 1.

2w is the frequency shift, whereas

where Ej is the complex amplitude with the field intensity | E
0 =wTt+ ¢ mod 27 (13)

denotes the effective feedback phase [35]. The system (10)-(12) defines a set of CS solutions parametrized
by the phase 6. Since Egs. (10)-(12) are ordinary differential equations, this set can be found with the
help of numerical continuation techniques in a similar way as in the system without delay. This yields
the sets of CSs corresponding to different fixed values of the phase 6 of the delayed field. Taken all
together they form a tube shaped manifold of all possible localized solutions of the system with a given
delay strength [35]. Then, for any given 7 and ¢ one can determine the actual branches by solving
equation (13) implicitly on this manifold. One can observe that this branch performs a number of turns
around the tube giving rise to multistability of CSs, so that at the fixed value of the pump parameter
1 and sufficiently large delay time 7, one obtains a discrete set of external cavity solitons, similarly to
the case of external cavity modes in a single-mode laser with delayed feedback [12, 36,42, 53]. Note
that a similar multistability effect was experimentally observed in a broad-area VCSEL with frequency-
selective feedback [44]. The existence of such a multistability follows explicitly from the form of Eq.
(13). In particular, in [35] it was shown that the number of solutions grows linearly with the delay time,
so that in the limit of large delay time, the solutions cover the whole range of the effective phases 6
with the distance between them of the order 1/7 [36,53].
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Linear stability analysis In order to analyze the stability of a CS solution in the presence of delayed
feedback, we linearize the system (10)-(12) around qo(z) = (Re(Fy), Im(Ey), No, no)” and arrive
at the transcendental eigenvalue problem:

(€(qo) = AI+nBe ") =0, (14)

where 1) is an eigenfunction, corresponding to the eigenvalue A, £'(qo) is the linearization operator,
B is a rotation matrix by the phase angle € and I is the identity matrix.

As we mentioned above, the linearization operator £’ possesses two zero eigenvalues corresponding
to the even phase shift neutral eigenfunction (Goldstone mode) 1,, = ¢ qg as well as to the odd
Goldstone mode ), = 0xqo. Note that the Galilean transformation symmetry is broken due to the
presence of diffusion d, delayed feedback term, and non-instantaneous medium response [9, 35, 49].

Either drift or phase bifurcation can occur when the critical real eigenvalue passes through zero at the
bifurcation point, so that the corresponding critical eigenfunction at this point is proportional to one of
the two neutral eigenfunctions 1y = wtr,ph. This critical eigenvalue can be either a delay-induced
branch of the corresponding neutral eigenvalue or, in the case of intrinsic drift bifurcation (i.e., drift
bifurcation in the absence of delayed feedback), correspond to a Galilean mode.

Since both drift and phase bifurcations occur when the eigenvalue corresponding to the correspond-
ing neutral mode becomes doubly degenerate with geometric multiplicity one, in the vicinity of the
bifurcation point we have A\ = 0+ ¢, ¥ = ¥y + €1y, € < 1 with some unknown function
/1. Substituting this ansatz into Eq. (14), expanding the resulting equation into power series in €, and
collecting first order terms one obtains

(£(qo) +1B) ¥1 = T+ n7B) .

The existence of a non-trivial solution of this equation is equivalent to the following solvability condition
leading to the general expression for the onset of drift and phase bifurcations [35] :

_ < lho > (15)

< P)Bapy >

Note that in the case when B = I, Eq. (15) reduces to the simple condition n7 = —1 first obtained
for the Swift-Hohenberg equation with delayed feedback term [13,47].

Drift Bifurcation The components of the real four-dimensional vector-function qg representing a
stationary localized solution of the system (1)-(3) obey the following relations

1 ¥
= T 95 9 qs = — )
1+qi+q3 1+ 5(qf +43)

q3

where we define qo = (q1, g2, 3, @) = (Re(Ey), Im(Ey), Ny, ng)T. Furthermore, one can
show that

o 2p(@itn + @)
YT T gt a? 1o

257 (q1 1 + q2109)
Py = ; (17)
! (1+ (2 +a3))?
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and

T i IIPA |
M _ QP+ @y +a (Vg — vy q)
’ bi (14 ¢+ ¢3)

ol = ] — i+ B (Wa — vl g
! by (1+ s (qt +¢3))

; (18)

; (19)

where ¥ = (11, 1o, 13, 14)7 is the neutral translational eigenfunction and 1!)8 = (zﬂ, @Z)g, w;, ¢1)T
is the corresponding adjoint neutral eigenmode. Hence, the threshold (15) of the drift bifurcation can

be written in terms of the first two components of the vectors 1), 1/)3:

4
21 <l >

" py cosO+ py sind

nr =
where 13 4 and 77/);4 are defined by Egs. (16)-(19) and

P =< Pilhy > + < |ty >, po =< Pl > — < iy >

Phase Bifurcation and Multistability Similar to the translational zero eigenvalue, the second zero

eigenvalue corresponding to the phase-shift symmetry can become doubly degenerate in the presence

of delayed feedback. While in the case of the drift bifurcation, a drift-pitchfork bifurcation takes place,

the phase bifurcation corresponds to a saddle-node bifurcation, where a pair of CS solutions merge

and disappear. Note that this fold condition follows directly from Eq. (13) and can be written as [35]
dw 1 1)
a0 T

Indeed, a differentiation of Egs. (10)-(12) with respect to 0 yields

Oq0 _ _dw
00  db

The solvability condition for this equation, which determines the onset of CS phase bifurcation, is
equivalent to the expression (15) with ¥y = 11,

(g(%) +iw + 77€i€) q;bph -0 BT:bph .

dw
< wgh’%'lpph >
<l Beppn >

That is, the multistability of CSs caused by time-delayed feedback is related to the presence of the
local saddle-node phase bifurcations of the localized CS solution.

n=- (22)

Delay-induced dynamics In order to analyze the delay-induced dynamical behavior of a single
CS, one-dimensional direct numerical integration of the system (1)-(3) has been performed using the
pseudospectral method for spatial derivatives on an equidistant mesh combined with the classical
Runge-Kutta time-stepping. As was mentioned above, increasing the product of the delay strength
1) and delay time 7 above the threshold given by Eqg. (15) leads to a drift pitchfork bifurcation when
the stationary CS loses stability, giving rise to a pair of branches of CSs moving uniformly along
the x-axis in opposite directions. Notice that since the rotation matrix B in Eq. (15) depends on the
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feedback phase ¢, the bifurcation threshold also depends on this phase. This means that similarly
to the case of a broad-area semiconductor cavity operating below the lasing threshold and subjected
to a coherent optical injection discussed in [30] the drift bifurcation exists only in a certain interval of
feedback phases. The region of the drift instability in the (o, 1) plane calculated numerically for two
delay times 7 = 70 and 7 = 150 is shown in Fig. 4 (a), (b) in light blue, whereas the dark blue
stays for the region, where CSs are stable. One can see that for both delay times the CS can become

oscillation
and drift

oscillation

drift

stationary

oscillation
and drift

oscillation

drift

stationary

0 2 4 6 0 0.01 0.02
¥ Ui

Figure 4: (a), (b) Bifurcation diagrams for an one-dimensional single CS of the model (1)—(3) in the
(p, n) plane, calculated for the fixed value of the delay time (a) 7 = 70, (b) 7 = 150. (c), (d)
Bifurcation diagrams in the (o, 7) and (7, 7) planes calculated for the fixed values 7 = 0.02 and
@ = 0, respectively. The region of stability of the CS is indicated in dark blue, whereas light blue,
yellow and red regions correspond to a delay-induced drift, modulational and drift and modulational
bifurcations, respectively. Other parameters are: o = 0.0, 5 = 0.0,b; = 0.9,b, = 1.0,7 = 2.0, s =
10.0, u = 2.06,d = 0.

unstable with respect to the drift bifurcation at relatively small values of delay strength 7). In addition,
when increasing the delay time 7 the region of the drifting CSs shifts in the direction of larger delay
phases.

In addition to the drift bifurcation leading to traveling solutions and the phase bifurcation giving rise
to the multistability of localized solutions, time-delayed feedback can also induce an Andronov-Hopf
bifurcation. In particular, in [28], it was shown that the inclusion of a feedback term in the model (1)-(3)
leads to the formation of breathing localized states as well as to a period doubling route to chaos. In
addition, a delay-induced modulational instability can be observed in the limit of large delay times [35].
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Indeed, while the drift instability can be associated with the discrete eigenvalues, an instability of the
pseudocontinuous part of the spectrum can induce a long-wavelength modulational instability, where
a set of eigenvalues belonging to a branch of a pseudocontinuous spectrum with the translational zero
eigenvalue at the origin becomes weakly unstable. At the modulational instability point the second
derivative of this branch becomes positive in the origin [20,41,52]. In [35] the threshold for the mod-
ulational instability for the case of instantaneous gain and absorption relaxation was derived. It was
shown that the modulational instability gives rise to a sequence of Hopf bifurcations taking place above
this threshold. Since the branch responsible for the modulational instability originates from a neutral
translational eigenvalue, the corresponding eigenfunctions are complex, odd and have morphology
similar to that of the translational Goldstone mode ;. That is, above the threshold of the modula-
tional instability, the CS position starts to oscillate, giving rise to wiggling dynamics (see Fig. 5 (a)). At

(a)

(b)

12000
0.64

10.56
10.48
10.40
10.32
10.24
0.16
0.08
0.00

8000

4000

0020 0 20 20 Y=40—20 0 20 40

X i

Figure 5: Space-time representation of the intensity field obtained by direct numerical simulation of
Egs. (1)—(3) for ¢ = 0. White line indicates the time step at which the time-delayed feedback is applied.
(a) Wiggling CS appearing above the modulational instability threshold for 7 = 150, 1 = 0.0072. (b)
Wiggling and drifting CS for 7 = 320, 1 = 0.005. Other parameters are the same as in Fig. 4.

larger delay times 7, drift and modulational instabilities can interact leading to a formation of a moving
and wiggling CS (see Fig. 5 (b)).

The regions in the (¢, 1) plane where CSs are modulationally unstable are indicated in Fig. 4 (a), (b)
in yellow, whereas the domain of simultaneously wiggling and traveling CSs are shown in red. One
can see that the regions of both instabilities move in the direction of smaller delay strength with in-
creasing 7. CS bifurcation diagrams in (i, 7) and (7, T) planes calculated for the fixed values of 7
and ¢ are depicted in Fig. 4 (c), (d), respectively. In both panels one observes the bands of unstable
regions, where instabilities leading to drift, wiggling or a combination of the two take place, separated
by parameter regions where the CS remains stable. The regions of drift become tiny with the increase
of 7, whereas the region of the modulation instability grows with 7. Note that with increasing delay
parameters, more and more complex eigenvalues from the pseudocontinuous spectrum may become
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unstable, leading to, e.g., a complex spatio-temporal behavior of the CS [35].

5 Stabilization of Spontaneous Motion

As mentioned above, in the absence of the feedback term the Galilean symmetry of the system (1)-(3)
is broken for the finite relaxation rates b; and bs. In general this leads to a shift of the corresponding
“Galilean” eigenvalue from zero. As a result, for sufficiently large values of b; and b, a CS can loose
its stability with respect to a drift bifurcation, giving rise to a formation of a SCS (cf. Fig. 1 ). A control
of the spontaneous motion of CSs with time-delayed feedback is a complicated issue and is still not
understood to a large extent. In particular, for the Pyragas-like time delayed feedback term it was
shown that a positive real eigenvalue generating a branch of delay-induced eigenvalues can never be
stabilized by the feedback term, i.e., the corresponding eigenvalue can only approach the imaginary
axis, but never cross it. Therefore, stabilization of solutions with real positive eigenvalues is in general
impossible with the chosen type of feedback force, whereas complex eigenvalues with positive real
part can be stabilized (see e.g., [7,18,39] for details). In this subsection we show that an intrinsically
moving SCS of the system (1)—(3) can be stabilized by delayed feedback with the aid of another
“inverse” drift bifurcation induced by the delay and discussed in the previous subsection.

(2) (b)

I0.72
4000 0.64
10.56

3000 10.48
- 10.40
2000 10.32
0.24

1000 0.16
0.08

0 0.00

—40 =20 0 20 40 —40 -20 O 20 40
x x

Figure 6: Stabilization of an intrinsically drifting CS. Space-time representation of the intensity field
obtained by direct numerical simulations of Egs. (1)—(3) for bl_1 =0.7, b;l = 0.3. After the feedback
is turned on at some time indicated by white line for ¢ = 3.032 the CS starts to follow a wiggling path
of motion (a), while for o = 2.094 the motion of the CS is suppressed (b). The feedback parameters
are 7 = 100, 1 = 0.02. Other parameters are the same as in Fig. 4.

Indeed, by choosing the feedback parameters to be in the region of the delay-induced drift (cf. Fig. 4),
one creates an additional branch of eigenvalues, generated by a real positive eigenvalue, responsible
for a delay-induced drift. The corresponding eigenfunction is real, odd and has the same shape as
the eigenfunction corresponding to the eigenvalue associated with an intrinsic drift. Hence, both real
eigenvalues can collide and and leave the real axis at some feedback parameters. The resulting pair
of complex conjugated eigenvalues can now be easily controlled by the feedback parameters. Figure 6
shows an example of stabilization of a moving CS using the delay phase ¢ as a control parameter.
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After the feedback term is turned on at the time moment indicated by a white line, an initially moving
CS starts to oscillate around a stationary position (Fig. 6 (a)). By changing the phase ¢, one can
shift the pair of complex conjugated eigenvalues to the left half plane, suppressing the intrinsic motion
completely (Fig. 6 (b)).

Figure 7 presents bifurcation diagrams of the intrinsically moving SCS in the (i, 1) plane calculated
using four different values of the delay time 7. The regions where stabilization of the intrinsic drift is

(2) (b)

0.03 oscillation
and drift
0.02 oscillation
S
001 drift
stationary
0.03 oscillation
and drift
0.02 oscillation
S
001 drift
stationary

Figure 7: Bifurcation diagram for an one-dimensional CS of the model (1)—(3) in the (i, 1) plane,
calculated for the fixed values of the delay time (a) 7 = 25, (b) 7 = 50, (c) 7 = 75, and (d) 7 = 100.
The regions where stabilzation of the intrinsic drift is successful are indicated in dark blue, whereas
light blue, yellow, and red regions correspond to the double drift, wiggling, and drift and wiggling
instabilities, respectively. Other parameters are the same as in Fig. 4.

successful are indicated in dark blue, whereas light blue corresponds to the double drift bifurcation,
where the stabilization fails and, depending on feedback parameters, SCS becomes either accelerated
or slowed down. One can see that for relatively small delay times (see Fig. 7 (a), (b)) the stabilization
is successful in a wide range of feedback phases. The regions of wiggling oscillations (yellow) or
wiggling and drift dynamics (red) are tiny and situated at large values of the delay strength 7). However,
for increasing delay times, these regions become more pronounced and are shifted in the direction of
smaller values of 1), while stable areas shrink. This can be explained by the fact that at sufficiently large
T a delay-induced modulational instability can take place, leading to complex oscillatory dynamics of
the underlying system.
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6 Delay-Induced Dynamics of Fast Cavity Solitons

Finally, in this section we discuss the influence of the time-delayed feedback on the dynamics of the
FCS. As mentioned in Sec. 3, FCSs are characterized by narrower intensity distribution and much
larger velocities and peak intensities as compared to SCSs and they can coexist either with stationary
or with slow moving CSs (cf. Fig 1). An example of a transition from a SCS to a FCS is presented
in Fig. 8 (a). Numerical continuation performed in Sec. 3 reveals that in the absence of time delayed

IO.8
0.7

(2) IO

2000 § 000
s 10.6
1500 1500 o5
s 10.4

1 1

000 § f 1000 103
500 500 0.2
0.1
074020 0 20 40 074020 0 20 40 00

€T €T

Figure 8: Left: In the absence of the delayed feedback, a SCS rapidly accelerates and a FCS is formed
for by = 0.9, by = 0.44. Right: The same SCS transforms into a wiggling CS in the presence of time-
delayed feedback. The transition to a FCS is arrested by the feedback. The feedback parameters are
7 =10, n=0.02, ¢ = 0.0 (turned on at time ¢ = 600 and indicated by white line).

feedback, the FCS bifurcates from the unstable part of a stationary CS in a subcritical pitchfork bi-
furcation and exists in a wide range of the gain parameter p. Due to this fact and since the velocity
of the FCS is much larger than the velocity of the SCS, a direct control of the motion of the FCS is
quite involved. However, one can arrest the transition to the FCS by applying to SCS time-delayed
feedback. An example of such stabilization is shown in Fig. 8 (b). As it is seen from this figure, turning
on the delayed feedback at the time, indicated by a white line, leads to a transformation of the SCS in
to a breathing CS, so that the transition to the FCS is inhibited. The obtained breathing solution can
be further controlled by changing the feedback parameters.

As mentioned in Sec. 4, the branches of stationary CSs form a tube shaped manifold in the presence
of the delayed feedback. The branch of a single CS makes a number of turns around this tube giving
rise to a multistability of CSs. Although the branches of slow and fast moving CSs are not easily
computable for non-vanishing delays, one can expect that they exhibit the same snaking structure as
stationary CS. That is, several stable and unstable moving CSs might coexist for some fixed parameter
values. Since a FCS exists only as a moving object, complete stabilization of this particular solution
is hardly possible. However, one can control the speed of the FCS by switching to another solution
branch with a lower drift velocity. An example of such a transition is presented in Fig. 9 (a). One can
see that after turning on the feedback, the solution jumps from initial FCS to another FCS moving at
much smaller velocity (see Fig. 9 (b)).
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Figure 9: Space-time representation of the intensity field of the FCS (a) and its velocity as a function
of time (b) obtained by direct numerical simulations of Egs. (1)—(3) for by = 0.34, b, = 1.0. The FCS
is slowed down by turning on delayed feedback at ¢ = 20 (white line). The feedback parameters are:
7=0.2, n=0.65 ¢ =1.113.

7 Conclusion

In this paper the influence of delayed optical feedback on the dynamical properties and stability of
CSs in a transverse section of a broad area VCSEL with saturable absorption has been discussed. In
the absence of the delayed term, the branches of stationary and moving CSs have been analyzed in
detail using numerical path continuation methods and the bifurcations responsible for the appearance,
stabilization, and destabilizarion of two types of moving CSs, “slow” and “fast” ones, have been inves-
tigated. In particular, we have demonstrated that the branch of fast moving CSs originating from the
unstable part of the stationary CS branch can remain stable above the linear lasing threshold where it
might be interpreted as a self-starting lateral-mode-locking regime in a single-longitudinal-mode laser
with one-dimensional transverse section. We have shown that the delayed optical feedback impacts
both stationary and moving localized solutions. In particular, we have demonstrated how the delayed
feedback induces drift and multistability of CSs. In addition, we have shown that apart from the drift and
phase instabilities, a CS can exhibit a delay-induced modulational instability associated with the trans-
lational neutral mode, which in a combination with the drift instability can cause oscillatory dynamics
and wiggling motion of the underlying solution. Furthermore, time delayed feedback has proved itself
to be an effective method to stabilize intrinsic motion of CSs using a secondary delay-induced drift
bifurcation.
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