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Abstract: We analyse the low temperature phase offerromagnetic Kac-Ising models in dimensions 
d ~ 2. We show that if the range of interactions is ,-1 , then two disjoint translation invariant 

Gibbs states exist, if the inverse temperature /3 satisfies f3 - 1 ~ 'Yf;,, where "' = ( 2d~~)(~~l), for 
any € > 0. The prove involves the blocking procedure usual for Kac models and also a contour 
representation for the resulting long-range (almost) continuous spin system which is suitable for 
the use of a variant of the Peierls argument. 

1. Introduction 

In 1963 Kac et al. [KUH] introduced a statistical mechanics model of particles interacting via 
long, but finite range interactions, i.e. through potentials of the form J1 (r) = 1dJ(rr), there J is 
some function of bounded support or rapid decrease (the original example was J(r) = e-r) and 'Y 

is a small parameter. These models were introduced as microscopic models for the van der Waals 
theory of the liquid-gas transition. In fact, in the context of these models it proved possible to derive 
in a mathematically rigorous way the van der Waals theory including the Maxwell constructi<?n in 
the limit 'Y-!. 0. In mathematical terms, this is stated as the Lebowitz-Penrose theorem[LP]: The 
distribution of the density satisfies in the infinite volume limit a large deviation principle with a 
rate function that, in the limit as 'Y tends to zero, converges to the convex hull of the van der Waals 
free energy. For a review of these results, see e.g. the textbook by Thompson [T]. 

Only rather recently there has been a more intense interest in the study of Kac models that 
went beyond the study of the global thermodynamic potentials in the Lebowitz-Penrose limit, 
but that also considers the distribution of local mesoscopic observables. This program has been 
carried out very nicely in the case of the Kac-Ising model in one spatial dimension by Cassandra, 
Orlandi, and Presutti [COP]. A closely related analysis had been performed earlier by Bolthausen 
and Schmock [BS]. These analysis can be seen as a rigorous derivation of a Ginzburg-Landau type 
field theory for these models. Very recently, such an analysis was also carried out in a disordered 
version of the Kac Ising model, the so-called Kac-Hopfield model by Bovier, Gayrard, and Picco 
[BGP1,BGP2]. 

An extension of this work to higher dimensional situations would of course be greatly desirable. 
This turns out to be not trivial and, surprisingly, even very elementary questions about the Kac 
model in d ~ 2 are unsolved.. One of them is the natural conjecture that the critical inverse tem-
perature f3c( 1) in the Kac model should converge, as 'Y -!-0, to the mean-field critical temperature. 
This conjecture can be found e.g. in a recent paper by Cassandra, Marra, and Presutti [CMP]. In 
that paper a lower bound f3c (r) ~ 1 + lry2 I ln 11 is proven. A corresponding upper bound is only 
known in a very particular case where reflection positivity can be used [BFSJ. 
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In addressing this question one soon finds the reason for this unfortunate state of affairs. All 
the powerful modern methods for analyzing the low-temperature phases of statistical mechanics 
models, like low-temperature expansions and the Pirogov-Sinai theory, have been devised in view 
of models with short range (often nearest neighbor) interactions, with possible longer range parts 
treated as some nuisance that can be shown to be quite irrelevant. To deal with the genuinely 
long-range interaction in Kac models, that is to exploit their long range nature, these methods 
require substantial adaptation. The purpose of the present paper is to help to develop adequate 
techniques to deal with this problem - that beyond proving the conjecture of [CMP] will, hopefully, 
also provide a basis for the analysis of disordered Kac models. (Together with possible other .means 
not touched by the presented article : most notably with suitably developed expansion techniques 
for long range models). 

The model we consider is defined as follows. We consider a measure space (S, :F) where 
S = {-1, l}zd is equipped with the product topology of the discrete topology on {-1, 1} and :Fis 
the corresponding finitely generated sigma-algebra. We denote an element of S by O" and call it a 
spin-configuration. If A C ::zd, we denote by O" A the restriction of O" to A. For any finite voluI]le A 
we define the energy of the configuration O" A (given the external configuration O" Ac) as 

(1.1) 
iEA,j<f.A 

where J-y(i) = l'dJ('yi) and J: IRd--+ IR is a function that satisfies f m,d dxJ(x) = 1. For simplicity 
we will assume that J has bounded support, but the extension of our proof to more moderate 
assumptions on the decay properties of J is apparently not too difficult. To be completely specific 
we will even choose J(r) = cdlilxl:::;l where cd normalizes the integral of J to one1 ; Here I· I is most 
conveniently chosen as the sup-norm on IRd. 

Finite volume Gibbs measures ("local specifications") are defined as usual as 

(1.2) 

where z~,/3,A is the usual partition function. Note that under our assumptions on J the local 
specifications for given A depend only on finitely many coordinates of 'T/· An infinite volume Gibbs 
state µ-y,/3 is a probability measure on (S, :F) that satisfies the DLR-equations 

(1.3) 

Our first result will be the following 

1 The generic name Cd will be used in the sequel for various finite, positive constants that only depend on 

di~ension. 
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Theorem 1: Let d ~ 2. Then there exists a function f (r) with lim.y.1-o f (r) = 0 such that 

for all f3 > 1 + f ( /), there exist at least two disjoint extremal infinite volume Gibbs states with 
1-E 

local specifications given by {1.2). Moreover, for 'Y small enough, f(r) ::; 1<2d+2><1+1/d) for arbitrary 

E>O 

Remark: This theoreI? shows that the conjecture of [CMP] is correct. Together with Theorem 1 
of [CMP] it implies that lim.y.1-0 f3c(r) = 1 in the Kac model. While completing this work we have 
received a paper by M. Cassandra and E. Presutti [CP] in which the conjecture of [CMP] is also 
proven, but no explicit estimate on the asymptotics of the function f ( 'Y) is given. Their proof is 

rather different from ours. Although at the moment we make use of the spin flip symmetry of the 
model, the contour language we introduce is also intended as a preparatory step for future use of 
the Pirogov-Sinai theory for non-symmetric long range models. 

We will in fact get more precise information on the infinite volume Gibbs measures in the 
course of the proof. This will be expressed in terms of the distribution of "local magnetization", 
mx(CT), defined on some suitable length scale 1 « f, « ,-1 . Given such scale l, we will partition 
the lattice 7Ld into blocks, denoted by x of side length l. We set Identifying the block x with its 

label x E 7L, we could thus set 

x = {i E 7Ld I Ii - lxl ::; l/2} (1.4) 

We then define 
1 

m (CT) = - "'CT· x - f, ~ '£ 

iEx 
(1.5) 

In the sequel we will assume that all finite volumes we consider are compatible with these blocks, 
that is are decomposable into them. We will also assume that 1l is an integer. For any volume A 
compatible with the block structure, we denote by MA C :FA the sigma-algebra generated by the 
family of yariables {mx(CT)}xEA· The block variables will be instrumental in the proof of Theorem 
1. However, they are also the natural variables to characterize the nature of typical configurations 
w.r.t. the Gibbs measure. We should note that this first step of passing to the variables mx(CT) is 
also used in [CP], in fact it is used in virtually all work on the Kac model. 

The remainder of this article is organized as follows. In Section 2 the distribution of the block 
spins are formally introduced and the block-spin approximation of the Hamiltonian is discussed. 
In Section 3 we introduce our notion of Peierls contours and prove our theorem through variant of 
the Peierls argument [P]. 

Acknowledgements: We thank Errico Presutti and Marcio Cassandro for sending us a copy of 
their paper [CP] prior to publication. M. Zahradnik also acknowledges useful discussions with E. 
Presutti on Kac models in general and about their recent preprint in particular. We would like to 
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thank also the home institutions of the authors and the Erwin Schrodinger Institute in Vienna for 
hospitality that made this collaboration possible. 

2. Block spin approximation 

All the questions we want to answer in our model will after all concern the probabilities of 
events that are elements of the sigma-algebras M v for finite volumes V. If A E M v is such an 
event and A ~ V, we have the following useful identity 

rn:i:,:i:EV 
{rn:i: }CA 

(2.1) 

The sum over mx runs of course over the values { -1, -1 + u-d, ... , 1- 2.e,-d, 1} Note that we ]Ilay, 
if J has compact support, assume without loss of generality that A is sufficiently large so that the 
local specification µu11.f3\vv,TJ11.c does not depend on 'T/· We will therefore drop the 'TJ in this expression. 

'Y' ' 

The main point which makes the Kac-model special, is that the Hamiltonian is "close" to a 
function of the block spins. Namely, we may write 

x,yEV iEx,jEy xEV,yEVc iEx,jEy 

x,yEV iE:z:,jEy 

(2.2) 

x,yEV iE:z:,jEy 

= H~~1,v(mv(O"v ), mvc (O"vc )) + AH-y,t.,v(O"v, O"yc) 

where we have set (recall that J'Y(.f.x) = .e,-dJt.'Y(x)) 

x,yEV :z:EV,yEYc 

and 
AH-y,t.,V(O"v, O"yc) = -~ L L [J-y(i - j) - J'Y(.f.(x - y))] O"iCJj 

x,yEV iEx,jEy 

L L [J'Y(i - j) - J'Y(.e.(x - y))J O"iO"j 
(2.4) 

xEV,yEVc iE:z:,jEy 

4 



Lemma 2.1: For any V c zzd, 

suplAH7 ,t,v(crv,crvc)I:::; cdrllVI (2.5) 
(j 

where cd is some numerical constant that depends only on the dimension d. 

Proof: This fact is well-known and simple for all Kac models. In our case it follows from the 
observation that [17 (i - j) - 17 (£(x -y))] = 0, unless Ix - yj ~ l/(1l).<) 

As consequence of Lemma 2.1 we get the following useful upper and lower bounds for the 
distribution of the block spins: 

Of course 

-/3ldH(o~v(mv,.mvc)IT IE 1f 
O"J\\ v ( ) < . e ,, I :z:EV O" m:z:(u)=m:z: ±/3cd-yljVI 

µ /3 v mv <o> e -y, ' > ~ -f3£dH (mv,mvc) IT IE 1f 6mv e -y,l,V xEV o- m:i:(o-)=m:i: 

if f.d /mx/2 E zt 
else 

and thus, by Sterling's formula, 

where I(m), form E [-1, 1] is 

l+m 1-m 
I(m) = -

2
-ln(l + m) + -

2
-ln(l- m) 

Therefore we define 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

E-y,/3,£,v(mv,mvc) = -~ L 17 t(x-y)mxmy- L 1-yt(x-y)mxmy+(3-1 L I(mx) (2.10) 
x,yEV xEV,yEVc xEV 

to get 

Lemma 2.2: For any finite volume V and any configuration mv, we have 

< e-/3ld E1 ,/3,l, v (mv,mvc (o-vc )) 
o-A\v (m ) e±/3cn£1VI 

µ-y,/3,V V > ~ e_,f3£dE1 ,13,e,v(mv,mvc(uvc)) 
6mv 

(2.11) 

Remark: £will be chosen as tending to infinity as')' tends to zero. The idea is that that E 7 ,/3,l,V is 
in a sense a "rate function"; that is to say, E-y,/3,l,V alone determines the measure since the residual 
entropy is only of the order di~l IVI· The problem is that this is only meaningful when we consider 
events A for which the minimal E-y,/3,l,V is of order !VI above the ground state to make sure that 
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neither the residual entropy nor the error terms in (2.11) may invalidate the result. We will have 
to work in the next section to define such events. 

It is instructive to rewrite the functional E'Y,/3,l,V in a slightly different form using that 
-mxmy = ~(mx - my) 2 - Hm; + m~) (we drop the indices (, (3, f, henceforth but keep this 
dependence in mind). We set 

(2.12) 

where f 13 is the well-known free energy function of the Curie-Weiss model, 

(2.13) 

Then 

Ev(mv,mvc) = Ev(mv,mvc) - Cv(mvc) (2.14) 

where 

(2.15) 

depends only on the variables on vc. 
The form· Ev makes nicely evident the fact that the energy functional favours configurations 

that are constant and close to the minima of the Curie-Weiss function f /3 ( m). 

3. Peierls contours 

In this Section we define an appropriate notion of Peierls-contours in our model and use this to 
proof Theorem 1 by a version of the Peierls argument2 • The general spirit behind the definition of 
Peierls contours can be loosely characterized as follows: We want to define a family of local events 
that have the property that at least one of them has to occur, if the effect of boundary conditions 
does not propagate to the interior of the system. Then one must show that the probability that 
any of these events occurs is small. We will define such events in terms of the block spin variables 
m~ (a). More precisely, since it is crucial for us to exploit that the new interaction is still long 

2 While the proof of [CP] is also based on a Peierls argument, their definition of Peierls contours is completely 

different from ours. 
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range3
, contours will be defined in terms of the local averages, c/Jx ( m), and the local variances, 

'l/Jx(m), defined through 

ef>x(m) = L J71,(x - y)my (3.1) 
y 

'l/Jx(m) = L J71,(x - y) (my - ef;y(m)) 2 ·(3.2) 
y 

Then define the sets 

f = { x 11 lef>x(m)I - m*(B)I > (m*({3) or 'l/Jx(m) > ((m*(/3)) 2 } (3.3) 

where m*({3) is the largest solution of the equation x = tanh{3x, that is the location of the non-
negative minimum of the function f /3. We recall (see e.g [E]) that m * ({3) = 0 if {3 ::; 1, m * ({3) > O if 
{3 > 1, lim/3too m* ({3) = 1 and lim13i1 (-;(~~W = 1. To simplify notation we will write m* = m* ({3) in 
the sequel. (, .2 < 1 will be chosen in a suitable way later. Note that if the boundary conditions are 
such that say ef>x(m(77)) :=::::: +m*, then, if the configuration near the origin is such that c/Jo(m(u) < 0, 
there must be a region enclosing the origin on which cjJ takes the value zero and thus belongs to 
f. For a reason that will become clear later, in a first step we will regularize this set. For this we 
introduce a second blocking of the lattice, this time on the scale of the range of the interaction. 

The points u of this lattice are identified with the blocks 

u = { x E ::zdj Ix - u/(1l)I ::; 1/(21£)} (3.4) 

just as in (1.4). We write in a natural way u(x) for the label of the unique block that c~:mtains x. 
We will call sets that are unions of such blocks u regular sets. We put 

ro = {xlu(x)nf,t:0} (3.5) 

For some positive integer n 2:: 1 to be chosen later, we now set 

(3.6) 

where dist is the metric induced by the sup-norm on !Rd. n will depend on {3 and diverge as {3 + 1. 
The precise value of n will be specified later in (3.48). Notice that this definition assures that the 
set £ is a regular set in the sense defined above.. Connected components of the set set £ together 
with the specification of the values of mx, x E £ are called contours and are denoted by I'. For 
such a contour, we introduce the notion of its boundary ar, in the following sense: 

ar = { x Er I dist(x, re) ::; n('Yl)-1} (3.7) 

3 For that reason it is not possible to directly use the methods developed in [DZ] for studying low temperature 

phases of short range continuous spin models, although some of the ideas in that paper are used in our proof. 
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Note that by our definition of r we are assured that ar n r_0 = 0. We denote by 

n± = {x I 14>x(m) =1= m*I ~Cm*} n re (3.8) 

and call these regions ±-correct. Each connected component of the boundary of r connects either 
to n+ or n-. We will denote such connected components by art and 8I'i, respectively. 

For a connected set r. we denote by int r. the simply connected set obtained by "filling up the 
holes" of r.. This set is called the interior of a contour. The boundary of int r. will be referred to 
as the exterior boundary of r.. The connected component of ar that is also the boundary of int r. 
will be called exterior boundary of r and denoted by arext. 

The strategy to prove Theorem 1 is the usual one. First we observe that if boundary conditions 
are strongly plus, then in order to have that, say, lef>o(m) - m*I > (m*, it must be true that there 
exists a contour r such that 0 E int r. . Thus it suffices to prove that the probability of contours 
is sufficiently small. This will require a lower bound on the energy of any configuration compatible 
with the existence of r., and an upper bound on a carefully chosen reference configuration in which 
the contour is absent. We will show later (Lemma 3.8) that a lower bound on the energy can easily 
be given in terms of the functions 4> and 'lj;, a fact that motivates the definition of r.. The long 
range nature and of the interaction and the fact that the mx are essentially continuous yariables 
require the construction of the extensive "safety belts" around this set in order to assure an effective 
decoupling of the core of a contour from its exterior. The crucial reason for the definition of contours 
through the nonlocal functions ef> and 'ljJ is however the fact that these are "slowly varying" functions 
of x for any configuration m. Therefore, even if the core f. is very "thin" (e.g. a single point), 
one can show that on a much larger set I ef>o ( m) - m *I or 'l/;x ( m) must still be quite large (e.g. half 
of what is asked for in f). This guarantees that in spite of the very thick "safety belts" we must 
construct around f, the energy of a contour compares nicely with its volume lr.I · 

We wiil now establish the "decoupling" properties. For this we must establish some properties 
of the configuration m on ar that minimizes Ear for given boundary conditions. 

Defi.nition 3.1: A configuration m'{;t is called optimal if m 0 Pt minimizes Ev(mv, mvc) for a 

given configuration mvc. 

An important point is that away from f, due to our definition of contours configurations must 
be close to constant in the following sense: 

Lemma 3.2: Assume that dist(x,f) > 1/("(£). Then 

{i) 
L J11.(x -y) (my± m*)2 ~ 4(2(m*)2 (3.9) 

y 
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and 

(ii) for any V C f 
L J-y1.(x - y)jmy ± m*I:::; 2(m* L J-r1.(x - y) (3.10) 
yEV 

where the sign depends on whether <Px ( m) is positive or negative in the region. 

Proof: The proof of (3.9) is straightforward from the definition off in (3.3) and (3.10) follows 
from (3.9) by the Schwartz inequality. O 

We will now establish properties of an optimal configuration on regular sets with boundary 
conditions that satisfy properties (3.9) and (3.10). 

Lemma 3.3: Let V be a regular set. Then there exists (d > 0 depending only on the dimension 

d such that if mvc is a boundary conditions of+ type for which (3.9) and {3.10) hold with (:::; (d, 

then for all x E Vj lm~pt - m* I :::; m* /2. The corresponding statement holds for - type boundary 
, conditions. 

Proof: We see from (2.10) that we must have4for y E V 

(3.11) can be written as 

0 = dd Ev(mv,mvc) = /r 1I'(my) -<f;y(m) my 

my= tanh ((3rpy(m)) 

(3.11) 

(3.12) 

We may tacitly assume that <f;y(m) is positive (this assumption will be shown to be consistent). 

Since m * is a stable fixpoint of the function tanh (3m that attracts all points on the positive half 

line, it follows that jtanh((3ef;y(m)) - m*I :::; jef;y(m) - m*I and in particular, if ef;y{m) < m*, 
tanh((3ef;y(m)) > rpy(m), while for <f;y(m) > m*, tanh((3rpy(m)) < rpy(m). We will first show that 
m~pt ~ m* /2. Let x E V denote a point where 

mx = inf {my lmy:::; m*} yEV (3.13) 

If mx = m*, there is nothing to proof. But if mx < m*, then (3.13) can only be satisfied if 

dist(x, 8V) < 1/(rf.}. For such points we can write 

mx - m* ~ L J-y1.(x -y)(my - m*) + L J-y1.(x -y)(my - m*) 
yEV yEVc 

~ (mx - m*) L J-y1.(x - y) - 2(m* L J-y1.(x - y) 
(3.14) 

yEV 

4 We ignore the fact that mx takes only discrete values and look for the optimal solution in the space of real-

valued m. The point is that given such a solution, a discrete valued approximation can be constructed that differs 

in energy by less than lr.I / gd which is negligibly small. 
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where the second line follows by (3.10). Hence 

2(m* 
(3.15) 

On the other hand, (3.14) holds for any other point y E V as well, and inserting this into the first 
line of (3.14) we get 

mx - m* ~ (mx - m*) L L 111.(x - y)J11.(Y - z) - 4(m* 
yEV zEV 

Clearly we have won if either 

1 - L L 11 1.(x -y)J1 1.(Y - z) ~ 8( 
yEV zEV 

or 

L 1,1.(x - y) ~ 4( 
yEVc 

(3.16) 

(3.17) 

(3.18) 

Due to the fact that V is composed of cubes· of sidelength of the range of the interaction, this 
follows from simple considerations if ( is smaller than some dimension dependent constant. (Here 
is the reason for our definition of £0). In fact, 

1 - L L 11 1.(x - y)J,1.(Y - z) = L 111.(x - y) + L L 11 1.(x - y)J1 1.(Y - z) (3.19) 
yEV zEV 

The point is that the second term on the right hand side of (3.19) cannot be too small as long as 
dist(x, vc) ::; 1/(r£), for regular V (if V is not regular, this statement does not hold, of course; 
just consider a thin long spike entering into V and let x be near the tip of the spike!). In fact, the 
worst situatio~ here occurs if x is at a distance r / ( 1£) from a "corner" of vc. One easily verifies 
that even in this case 

L L J"fl(x - y)J"fl(Y - z) 2': r{d+i) 11 
ds (r + s)d-1(1- s)d 

yEV zEVc 0 

> 2-(d+l} {
1 

ds sd-1(1- s)d = 2-(d+2) ((d - 1)!)
2 

- lo (2d - _1)! 

(3.20) 

so that (3.18) is verified if 4( is smaller than this number. The numerical value of that bound can 
of course be improved, but we do not seek to do that. 

Having established that mx ~ m* /2 in V, a trivial computation shows that our starting 
assumption that ef>x(m) > 0 is also verified. Thus we have proven that m~Pt ~ m* /2. In the same 
way one shows also that m~Pt ::; 3m* /2 which concludes the proof of the lemma.O 
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In the sequel the notion of n-layer set defined in the following definition will be convenient. 

Defi.nition 3.4: A regular set V is called a n-layer annulus, if there it is of the form 

V = { x E vc I dist(x, V) :::; n(1'£)-1 } (3.21) 

for some connected set V that is composed of blocks u. The sets 

(3.22) 

are called the k - th layers of V. 

Note that the sets 8I' are by their definition n-layer sets. 

We are interested in some properties of optimal configurations on n-layer sets. For this we will 
use the following simple fact about the function f f3, that may be found e.g. in [BG] 

Lemma 3.5: Let f(3(m) = (3-1 I(m) - ~m2 . Then, for all m E [-1, 1] 

f {3(m) - f {3(m*) 2:: c({3) (lml - m*)2 

where 
c({3) = ln cosh({3m *) _ ~ 

{3(m*) 2 2 

has the property that c({3) > 0 for all (3 > 1 and 

lim c({3) = __!__ 
f3.p (m*)2 12 

(3.23) 

(3.24) 

(3.25) 

From this we will derive the following Lemma (The analog of this Lemma for short range and 
purely quadratic Hamiltonians appeared already in [DZ]). 

Lemma 3.6: Let V be an n-layer set with n 2:: r/c({3). Then there exists a layer Vk in V such 
that 

L (m~pt) 2 
::S: 2-r ~(m*)2(1Vil + IVnl) 

xEVk ·· 
(3.26) 

Proof: Let us set Ux = lmxl - m* and and use the abbreviation 

lluvk II~ = L ( Ux)
2 (3.27) 

xEVk 

and analogously for other functions. Then it is obvious from (2.12) that for any configuration, 

n-1 

Ev\Vi\v2 (mvw1 \vn,mv1 uvJ2:=Lc({3)lluvkll~+ L ff3(m*) (3.28) 
k=2 xEV\Vi\Vn 

11 



On the other hand, we may consider a configuration that equals m opt on Vi and Vn and has 
mx = m* for all x E V\ Vi\ Vn. For this configuration 

Ev\Vi\v2 (mv\V1\Vn =m*,m~~vJ = ~ L J'Y1.(x-y) (m~pt _m*) 2 + L f{3(m*) 
xEV\ V1 \ Vn xEV\ V1 \ Vn yEV1UVn 

(3.29) 
By the definition of m 0 Pt, it must thus be true that 

Q > E ( opt opt ) E ( opt _ * opt ) 
- V\Vi\Vi mV\V1\Vn,mV1UVn - V\Vi\V2 mV\V1\Vn - m ,mViUVn 

n-1 

2:: L c(,B)lluvk II~ - ~ L J'Y1.(x - y) (m~pt - m*) 2 

k=2 xEV\ V1 \ Vn 
yEV1UVn 

(3.30) 

n-1 

2:: L c(,B)lluvk II~ - ~ (llu~~1ll~ + llu~tll~) 
k=2 

Thus, for any q < n/2, we have 

from where 
(3.32) 

If q is chosen as the smallest integer greater than 1 / c(,B) this shows that there exist 2 ::; k ::; q + 1 
such that 

(3.33) 

Iterating this construction, and using that by Lemma 3.3 

(3.34) 

we arrive at the assertion of the lemma. O 

We are now ready to construct our reference configuration and give an upper bound on its 
energy. For given contour r and compatible external configuration m on [c we call m 0 Pt the 
configuration on [ that minimizes the energy for a given core [. Clearly such a configuration is 
also an optimal configuration on ar in the sense of Definition 3.1. Thus by Lemma 3.2 we know 
that in each connected component art of the boundary of r there exists a layer .et of thickness 
1/(1£) in art such that limit =t= m*ll~ ::; 2-r ~(m*)2~[1Vi(art)I + IVn(art)I] For given .et we 
decompose art into the two sets 

(3.35) 
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and 

(3.36) 

Without loss of generality we assume that the exterior boundary of our contour is attached to 
the +-correct region. We now define the reference configuration mref 

m ref = 
x -

mopt 
x ' -mopt 

x ' 
m*, 
mx, 
-mx< 

if x E 8Atou.t 
' if X E 8Aiout 

for all oth~r x E [ 
for x En+ 
for x En-

(3.37) 

Lemma 3. 7: Let mref be defined in {3.37). Then for any compatible external configuration we 
have that . 

EI. H:.ef, mr_;1) :o; L Eart
0
., ( m~';.L;mr0) + L r" k(m*)2[jVi(8rf)I + IVn(arf)ll 

i,± I i,± 

+ L 1{3(m*) 
xE.[\8rout 

(3.38) 

Proof: The proof of this estimate is obvious from the definition of mref and Lemma 3.6. Note 

that in the terms Eartout ( martout, mrc) the interaction energy between artout and artin is not 
counted. 0 

Of course the configuration mref does not contain the contour r. It remains to find a lower 
bound on the energy of any configuration m that does contain a contour with given f. 

To do this, we use the following observation. 

Lemma 3.8: Let U, V, W C 7Ld be any three disjoint sets such that for all y E U U W, 
2=xEUuwuv J--r;_(x - y) = 1. and for any y E'U 2=xEUUW J--r1.(x - y) = 1 Then 

- 1 "'"' 1 "'"' Evuuuw(mvuuuw,m(Vuuuw)c) 2:: 4 L-J 7/Jx(m) + 2 L-J [f{3(mx) + ff3 (cf>x(m))] 
xEU xEUUW 

+ L f{3(m*) 
(3.39) 

xEV 

Proof: The proof of this lemma is a simple, but, mainly because of boundary effects, somewhat 
lengthy computation that we do not wish to reproduce here. To get the idea, note that in infinite 
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volume we have (formally) 

x,y x 

(3.40) 
x x 

= _L [ (m, - ~,(m))2 - ~~ - (</>.~m))2 + ~/3-1 I(m,) + ~/3-1</>.(I(m))] 
x 

where we have put cPx(I(m)) = l:Y J-y1.(x - y)I(my)· The last line is obtained by inserting the 
identity 1 = I:Y J-y1.(x -y) in the J(m) term and changing the order of summation in the resulting 
double sum. Using the same trick for the first term in the last line of (3.40), and using that, since 
I is a convex function, cf;x(I(m)) ~ I(cfJx(m), one gets that 

(3.41) 

is a lower bound for (3.40). Trying to repeat this computation in finite volume and carefully dealing 
with the boundary terms leads to the more complicated looking formula (3.39). () 

The main point in the estimate (3.39) is that it allows to bound the energy of a configuration 
from below in terms of cPx ( m) and 'l/Jx ( m) alone. Namely, taking for "V and U U iv the layers Lt 
and the regions "within" .et, we see that for any configuration 

+ L ff3(m*) 
xE£\or out 

:i:E.[\8I'out 
dist(:i: ,ar out)> 1/(-yl) 

Next we show that bot c/Jx(m) and 'l/Jx(m) has nice continuity properties. 

(3.42) 

Lemma ,3.9: There exists a finite constant ~d depending only on the dimension d such that for 
any contour r' if f denotes the set 

r = {v 1 dist(y,f):::; (~:~n (3.43) 

then for ally E f, llc/Jy(m)I - m*I ~er;·, or 'l/Jx(m) ~ «n;*)2
• 

Proof: Since lmx I :::; 1, it is a simple geometric fact that 

(3.44) 
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and 

(3.45) 

for some geometry depe.ndent constant cd. Sin~e on r., l<Px(m)I ~ (m* or 'l/Jx(m) ~ ((m*)2, the 
assertion of the lemma follows. O 

Remark: The estimates of Lemma 3.9 are very crude. We expect .that they can be improved 
considerably. 

A further simple geometric consideration shows on the other hand that f cannot be too small 
compared tor., namely 

Lemma 3.10: There exists a numerical constant c~ depending only on the dimension d such 

that for any contour r' we have that 

lr1 < ' (n + l)d 1r1 
- - cd ((m*)2d - (3.46) 

Proof: Note that ~ is maximal if f consists of a single point in which case (3.46) is obvio~s.<) 

Combining the upper bound on the energy of mref from Lemma 3. 7 with the lower bound 
(3.42) obtained from Lemma 3.8 applied for the optimal configuration, using the fact that that E 
and E differ only by a constant that depends only on boundary conditions, and finally employing 
Lemma 3.10 we arrive at 

Proposition 3.11: Let r = (r_, m) be a contour with fixed r.. Then there exists a reference 

configuration mref in which r does not occur such that 

E (m m c) - E (mref mref) > ~ c(f3) ((m*)2d+2 jrj - l(m*)22-nc(,8) jI'j 
£ r_, r_ £ £ ' r_c - 8 Cd ( n + l)d - B - (3.47) 

where cd is a finite dimension-dependent constant and c(f3) is the constant from (3.24). 

Proof: We bound Er.(mr_, mr_c) from below by the the the corresponding energy of the configura-
tion m of lowest energy for given r_; on the belt of the contour this provides a optimal configuration 
in the sense of Definition 3.1. The same configuration is used in the construction of mref. After 
the obvious cancelations and using (3.46) and the fact that c(f3) :::; 1, we get the assertion of the 
proposition. O 

We must now begin to choose our parameters. We want the Peierls condition, i.e. that the 
coefficient of lr.I in (3.4 7) is positive and as large as possible. The most convenient choice appears 
to choose n in such a way that 

2-nc(/3) = ~ c((3)((m*)2d 
2 cd(n + l)d 

15 
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Calling the solution5of this equation n*, we get the Peierls estimate 

E ( ) E ( 
ref ref) > 1 c({3)((m*)2d+2 

r. mr_, mr_c - r. mr_ 'mr_c - 16 cd(n + l)d (3.49) 

It is not difficult to verify that 

* 1 [c(/3)((m*)2d] 
n ~ C c(f3) ln .··· 2cd (3.50) 

for some numerical constant C, if c(/3) is sufficiently small. 

This estimate on the energy difference will only be useful for us if it is large compared to the 
error terms arising from the block approximation. That is to say, we must make sure that 

(3.51) 

(the two cd in this formula are a priori not the same quantities). This gives a relation between 
temperature dependent quantities on the one hand and rl on the other. It does not impose· any 
choice on the parameter£. This arises from the last condition, the comparison between the energy 
of a contour and the entropy, i.e. the number of configurations m on r. and of shapes r. with fixed 
volume ir.I. Even the crudest estimate shows that this number is smaller than f,dlr.I Cdlr.I so that 

(3.51) is complemented by the condition 

which requires f, to be sufficiently large. In fact we may choose f, as 

-1 1 1 c(f3)((m*)2d+2 
l=r -------

cd 32 cd(n + l)d 

(3.52) 

(3.53) 

which inserted into (3.52) gives the final condition of f3 in terms of r· It is clear that for any f3 > 1, 
i.e. c(f3) > 0 and m* > 0, this condition can be verified by choosing r sufficiently small. Thus 
using Lemma 2.2 we proved the analog of the Peierl's argument here, namely that the probability 
of a given contour r is smaller than exp( -cir.I I ln £1) which in turn implies that the probability that 
the origin is in the interior of a contour is close to zero (in fact of the order exp(-cf3ndl lnll)). 

Moreover, by inserting the asymptotic behaviour of m * and c(/3), one verifies easily that if we put 

l-<! f3 _ 1 = , c2d+2)(i+1/d) (3.54) 

for arbitrary € > 0, then (3.52) is verified when r is sufficiently small. This gives thus the claimed 
bound on the behaviour of the critical temperature as r tends to 0. 

5 By this we will of course understand the smallest integer larger than or equal to the "real" solution 
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This concludes the proof of Theorem LOO 

Remark: Let us recall some consequences of what we have just proven: if V denotes the union of 
the interiors of a.11 the contours of a given configuration than the Gibbs probability of the event 

<list( i, vc) 2: r (3.55) 

is independent of the choice of the point i E 7£d and behaves like exp(-Cr) where C = C(/3, 1 ). 
This implies for example the following statement: The probability of the event that the support 
of all contours surrounding a given point is infinite is equal to zero. One could even refine such 
a statement, giving a more precise meaning to the intuitive idea that "almost all configurations 
(of the mesoscopic observables m) in the translation invariant + Gibbs ensemble have their local 
averages (in the sense of the variables <Px(m)) in the vicinity of m* except of some (rare, but 
uniformly distributed throughout the lattice) "islands". (This is the appropriate rephrasing of the 
statement in Sinai's book [S]). 
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