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On convergences of the squareroot approximation

scheme to the Fokker�Planck operator

Martin Heida

Abstract

We study the qualitative convergence behavior of a novel FV-discretization scheme
of the Fokker-Planck equation, the squareroot approximation scheme (SQRA), that
recently was proposed by Lie, Fackeldey and Weber [31] in the context of confor-
mation dynamics. We show that SQRA has a natural gradient structure and that
solutions to the SQRA equation converge to solutions of the Fokker-Planck equation
using a discrete notion of G-convergence for the underlying discrete elliptic opera-
tor. The SQRA does not need to account for the volumes of cells and interfaces
and is taylored for high dimensional spaces. However, based on FV-discretizations
of the Laplacian it can also be used in lower dimensions taking into account the
volumes of the cells. As an example, in the special case of stationary Voronoi tes-
sellations we use stochastic two-scale convergence to prove that this setting satis�es
the G-convergence property.

Acknowledgement. This research has been funded by Deutsche Forschungsgemeinschaft
(DFG) through grant CRC 1114 �Scaling Cascades in Complex Systems�, Project C05
�E�ective models for interfaces with many scales�. I express my gratitude to a very
kind referee who pointed out to me the work by Mielke, Peletier and Renger on Markov
processes.

1 Introduction

In a recent work [31], the so-called squareroot approximation (SQRA) operator has been
introduced, based on earlier related works [17, 30]. The SQRA-scheme was introduced
as a �nite volume scheme on a random Voronoi discretization designed for numerical
simulation of large molecules in the framework of conformation dynamics. Hence it is
interesting to know whether the SQRA-operator converges in some sense to a physically
reasonable continuous operator as the discretization becomes �ner and �ner. A major
contribution of this work is a positive answer to that question, i.e. that the SQRA-operator
converges to the (physically expected) Fokker-Planck operator, which is also known as the
Smoluchowski operator in conformation dynamics. Furthermore, we will see below that
the SQRA scheme possesses a gradient structure which is a natural discretization of the
gradient structure behind the Fokker-Planck equation discovered in [29]. The convergence
behavior will be considered for Dirichlet and for periodic boundary conditions.

In order to introduce the SQRA operator, let Q ⊂ Rn be a bounded domain representing
the state space of a given molecule with a family of points (Pi)i=1,...m ⊂ Q. From these
points we construct a Voronoi tessellation of cells Gi that correspond to Pi for every i.
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M. Heida 2

We write i ∼ j if the cells Gi and Gj are neighbored. Thus, the �nite volume space for
the discretization (Gi)i=1,...m is isomorphic to Rm. Let ui(t) be the probability that the
state of the molecule lies in Gi at time t > 0 and consider the vector u(t) ∈ Rm. The
corresponding master equation reads

u̇(t) = uQ (1)

for a matrix Q ∈ Rm×m, the matrix of kinetic rates or simply rate-matrix. If the evolution
of the molecule is Markovian, we obtain the master equation of the form (see Section 5.2
in [24])

u̇i =∑
j∼i (Qjiuj −Qijui) , (2)

also known as the forward Kolmogorov equation of the molecule in the discrete phase
space Rm. The corresponding backward equation ṅ = Qn describes the evolution of an
ensemble of

´

Q
n particles in the state space and has been analyzed in [31]. It turns out

that for π ∶= exp (−βV ) the rate Qij is given by

Qij = 1

πi

ˆ

∂Gi∩∂Gj

Φπ , πi ∶= π(Pi) ≈ ˆ
Gi

π .

Here, Φ represents the �ux in case V ≡ 0. A crucial assumption for numerical e�ciency
in [31] is that the mass of Gi and of ∂Gi ∩ ∂Gj are approximately constant among i and(i, j). Since the problem in case V = 0 is isotropic, it is assumed that

ffl

∂Gi∩∂Gj
Φ ≈ Φ̂m

for some constant Φ̂m, which only depends on the �neness of the discretization. Finally,
it is assumed that π ≈ √

πiπj on ∂Gi ∩ ∂Gj, implying Qij = Φ̂m

√
πj/πi. Hence we may

reformulate (2) as

u̇i = Φ̂m∑
j∼i

√
πiπj ( 1

πj
uj − 1

πi
ui) ,

with ui = πi being the only stationary solution. The latter, in turn, is the classical
statement of Boltzmann statistics [24]. Since we may write the operator on the right
hand side as

(Fmu)i ∶= Φ̂m∑
i∼j (uj

√
πi√
πj

− ui√πj√
πi

) , Fmπ = 0,

this operator is called the Squareroot Approximation Operator. In this work, it will be
written as

(Fmu)i ∶= Φ̂m∑
i∼j (uj

vi
vj
− uivj

vi
) , (3)

where vi = √
πi = exp (−β2V (Pi)). As we will see below in Theorem 1.13, the natural

scaling of Φ̂m is Φ̂m ≈ Φ0ε−2, where ε is the characteristic length scale of the diameter of
the Voronoi cells. It turns out that Φ0 can in principle be estimated from the case V ≡ 0,
i.e. from the discrete Laplace operator Lm which is given as

(Lmu)i ∶= Φ̂m∑
j∼i (uj − ui) . (4)

More precisely, Theorem 1.6 states that the convergence behavior of Fm is mostly charac-
terized by the convergence behavior of Lm: If Lm is G-convergent (in the discrete sense)
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SQRA and Fokker�Planck 3

to Lu = ∇ ⋅ (Ahom∇u), the solutions um of the equation Fmum = fm converge to solu-
tions Fu ∶= ∇ ⋅ (Ahom∇u) + div (uAhom∇V ) = f , provided fm → f in a weak sense. Note
that the opposite direction is trivial: If the SQRA converges for all V ∈ C2(Q) thenLm → ∇ ⋅Ahom∇.
The derivation of (3) in [31] was done within the setting of conformation dynamics which
is an alternative approach to molecular dynamics. In molecular dynamics, the behavior
of a molecule is simulated using its Newtonian equations. Conformation dynamics uses a
�dual� approach: Instead of one single molecule, an ensemble of molecules is studied within
the energy landscape of the state space. Each region in the state space, corresponding to
one of the Voronoi cells Gi, is then occupied by a certain number ∣Gi∣ni of molecules and
Qijni is the �ux of molecules from Gi to Gj. The adjoint QT operates on the probabilities
ui introduced above. A conformation is a subregion of the state space such that it is very
unlikely the molecule will leave this region. Hence a change of conformation occurs on very
large time-scales compared to thermal oscillations. On the other hand, these long-time
changes of conformation are crucial for the understanding of many biochemical processes.
In the discrete setting, the conformations can be identi�ed from Q using Perron-Cluster
analysis [9]. The result is a set of conformations (Ci)i=1,...I , a reduced matrix Q̃ ∈ RI×I
and a linear equation Ċ = CQ̃, where usually I ≪m. With the reduced matrix Q̃, a large
time scale simulation is then feasible, which ignores thermal short term oscillations.

Let us note that in the 1-dimensional setting, the SQRA was already mentioned in [2]
and also more recently derived in [12, 11] from a completely di�erent point of view using
entropy minimization methods. The resulting formula shows some similarities to the
Boltzmann collision integral (see e.g. [21]), but was not derived in this setting. Also there
is a relation to the Butler-Volmer kinetics, which we will not carry out in detail at this
point, but refer to [40]. We only note that the electrical current between two states can

be recast into an expression that has the form j0 (ujπj − ui
πi
).

The SQRA scheme was originally introduced under the restrictions that the underlying
grid is given by a Voronoi discretization and that the volume of the cells and the interfaces
is neglected. This was done in order to break the curse of dimensionality. Remark that the
phase spaces of molecules are of very high dimension (order 103) and even after signi�cant
dimension reduction - already for dimension 6 - it is computationally not feasible to
estimate the respective volumes in reasonable time. However, the main theorems 1.6
and 1.8 only need that the underlying linear FV-operator G-converges and we could also
apply the convergence result to any �nite element discretization of −∆ where the volumes
are incorporated into the weights aεij in (9)�(10), which is interesting for low-dimensional
simulations (up to dimension 3). For the case of Voronoi-cells, there exists huge literature
[13, 15, 16, 38, 43] on the discretization of second order elliptic operators and the proofs
of convergence usually imply G-convergence.

1.1 The gradient structure of the SQRA equation

Interestingly, the SQRA possesses a gradient structure, which is asymptotically com-
patible with the gradient structure of the Fokker-Planck equation studied by Jordan,
Kinderlehrer and Otto [29]. In a recent work by Mielke, Peletier and Renger [37], it was
shown that (1) possesses a gradient structure for the energy potential Eεπ and dissipation

DOI 10.20347/WIAS.PREPRINT.2399 Berlin, May 9, 2017/rev. May 24, 2018
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potential Ψ∗
ε given through

Eεπ(u) = 1

2
∑
i

ui ln
ui
πi
, (5)

Ψ∗
ε(u, ξ) = 1

2
∑
i

∑
i∼j

√
uiujQijQji (cosh (ξj − ξi) − 1) , (6)

i� the process is weakly reversible (meaning Qij > 0 i� Qji > 0). In particular, this means
that

u̇(t) = uQ = ∂ξΨ∗
ε (u, −DEεπ(u)) .

In the setting of this work, the above gradient structure can be veri�ed from DuiEπ(u) =
1
2 ln ui

πi
+ 1 and

∂ξiΨ
∗
ε(u, ξ) = ε−2Φ0

1

2
∑
i∼j

√
uiuj (− exp (ξj − ξi) + exp (ξi − ξj)) ,

where we used that Φ̂m ≈ Φ0ε−2 and hence QijQji ≈ Φ2
0ε

−4. This yields

∂ξiΨ
∗
ε (u, −DEεπ(u)) = ε−2Φ0∑

i∼j
√
uiuj

⎛⎜⎝−
exp (−1

2 ln
uj
πj

)
exp (−1

2 ln ui
πi
) +

exp (−1
2 ln ui

πi
)

exp (−1
2 ln

uj
πj

)
⎞⎟⎠

= ε−2Φ0∑
i∼j

√
uiuj

⎛⎝−
√

ui
πi

√
uj
πj

−1 +√
uj
πj

√
ui
πi

−1⎞⎠
= (QTu)

i
.

The formal limits of Eεπ(u) and Ψ∗
ε as ε→ 0 are given by

E(u) = ˆ
Q

1

2
u ln

u

π
, Ψ∗

L (u, ξ) = 1

2

ˆ

Q

u ∣∇ξ∣2 , (7)

where we used that (formally)
√
uiuj → u and ε−2 cosh (ξj − ξi) ≈ ε−2 (ξj − ξi)2 → ∣∇ξ∣2 for

ever �ner discretizations of size ε. This is the setting in [29] but the chemical potential
lnu has already been used before by DiPerna and Lions [10] for analysis of the Boltzmann
equation. Hence, Theorem 1.8 can be interpreted in a sense that solutions to the gradient
�ows with respect to (5)�(6) converge to a solution of the gradient �ow with respect
to (7) provided the underlying linear operator G-converges. However, we do not prove
(evolutionary) Γ-convergence of (5)�(6) to (7).

A related ansatz for a discrete Fokker-Planck equation by Chow et.al. [6] and Maas[32]
uses the same energy but a di�erent dissipation potential. In the resulting discrete equa-
tion appear nonlinear terms which are not well suited in numerical calculations. A further
related approach by Mielke [35] in one space dimension comes up with the same discretized
equation as the SQRA.

1.2 The linear �nite-volume operator

Voronoi �nite volume schemes for Fokker�Planck equations are used widely in literature.
A �rst breakthrough for those methods was the Scharfetter-Gummel scheme [42], which
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has been used extensively in the simulation of semiconductor devices, though the idea even
goes back to a work by Macneal [33]. These approximation schemes use the knowledge
on the volumes of the cells and the interfaces, as their aim is a simulation in spaces of
low dimension (up to 3) while SQRA has been developed for high dimensions. Hence,
we cannot use the convergence behavior of the discrete linear operators derived for such
low dimension. In contrast, we will use methods from homogenization theory such as
G-convergence in the sense of Dal Maso [7]. However, as mentioned above, our result
can also be applied to the classical Voronoi discretization in the above sense, since these
discretizations also G-converge.

As an example for a non-classical discretization scheme without volumetric terms, we will
study the exemplary case of a stationary ergodic partition with Voronoi cells in Theorem
1.13 and show that this operator is G-convergent. The scheme in [14] suggests that Pm
sometimes is �reasonably close� to such a stationary ergodic process and the results in
[14] show that the discretization (3) has good properties in application. In the general
Theorem 1.6 we prove convergence of (3) under the assumption that the discrete Laplace
operator G-converges. Moreover, Theorem 1.6 tells us that the normalizing constants in
(4) and (3) should be the same. Hence, in numerical application, one can determine Cm
by comparing the �rst eigenvalue of Lm with the �rst eigenvalue of ∆. On the other hand,
this ansatz provides us with a practical criteria to qualitatively validate the convergence
of Fm apriori. More precisely, we can expect that the numerical approximation is good if−Lmu ≈ −C∆u for the �rst k eigenvectors of −∆ on Q.

The stochastic homogenization of the discrete Laplace operator (also known as homoge-
nization in the random conductance model) has been studied very well in recent years, as
it is of great interest for physicists (see [4]) and mathematicians (see [3]). The motivation
originally comes from random walk theory, where the elliptic operator is the generator of
the semigroup generated by the random walk.

In view of the vast literature on stochastic homogenization of elliptic problems, Theorem
1.13 is not a surprising result. However, we are not aware of a suitable proof in literature
that applies to this particular setting. The method used in order to proof Theorem 1.13
is a weak∗ convergence method called two-scale convergence. It is based on the two-scale
convergence introduced by Zhikov and Piatnitsky in [44] and generalized and applied in
the context of random walk theory in the works [18, 19]. In a slightly di�erent way,
two-scale convergence has also been applied in [34].

A novelty of the theory presented below is the application of two-scale convergence to
a grid that di�ers from Zn, which made it necessary to modify certain notions and con-
cepts. In this context, note that our spaces L2

pot and L
2
sol indeed di�er from the standard

de�nition in [3], as we drop for example the covariance condition. Another approach to
unstructured grids has recently been followed by Alicandro, Cicalese and Gloria [1]. They
study homogenization of nonlinear elasticity problems and in the quadratic case their
result could also be applied to the elliptic operator Lm, yielding somehow a di�erent con-
cept of notation (i.e. Γ-convergence) and a formally di�erent formulation of the limiting
matrix Ahom.

For further reference to the random conductance model, we refer to the aforementioned
review by Biskup [3].

Let us �nally comment on the convergence rate. We will only prove qualitative con-
vergence and the question of quantitative convergence is completely open. However, we
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know from literature on stochastic homogenization of the continuous and the discrete
Laplace operator that the best convergence rate we can expect is ε

1
2 in presence of Dirich-

let boundary conditions, see the above mentioned literature for Voronoi FV-methods, and
ε for unbounded domains or periodic boundary conditions, see the recent work [20] and
references therein. Since the Fokker-Planck equation is a linearly perturbed Laplace equa-
tion, we expect the same convergence rate for the SQRA-operator as for the underlying
discrete Laplace operator. However, for the discretization presented in this work, the
author is not aware of results for the convergence rate of the discrete Laplace operator.

1.3 Main results

We now formulate the major results of this article in a rigorous way. For a de�nition of
the notions stationarity and ergodicity, we refer to Section 2.

For every ε > 0 let P ε = ⋃i∈NP ε
i be a countable family of points in Rn with corresponding

Voronoi cells Gε ∶= ⋃iGε
i . We denote by Eε the set of all natural pairs (i, j) ∈ N2 such

that Gε
i and Gε

j are neighbored where we identify (i, j) with (j, i) and write i ∼ j. For(i, j) ∈ Eε we de�ne Γεij ∶= 1
2
(P ε

i + P ε
j ).

Notation 1.1. We denote by Sε the set of all functions (P ε
i )i∈N → R which is a Hilbert

space with the scalar product

⟨ϕ,ψ⟩Sε ∶=∑
i

ϕiψi .

For every u ∈ Sε we write uεi ∶= u(P ε
i ) and for every f ∶ Γε → R we write f εij ∶= f(Γεij).

Furthermore, we write ūεij ∶= 1
2
(uεi + uεj) such that ūεij ∶ Γε → R.

We de�ne Rε ∶ L2
loc(Rn)→ Sε and its adjoint R∗

ε ∶ Sε → L2
loc(Rn) through

(Rεφ)i = ∣Gε
i ∣−1

ˆ

Gε
i

φ , and (R∗
εu) [x] = u(P ε

i ) if x ∈ Gε
i ,

If (i, j) ∈ Eε, we denote ∂Gε
ij the interface between Gε

i and Gε
j and νij the unit vector

pointing from P ε
i to P ε

j . Hence, we �nd νij = −νji. Furthermore, we de�ne

Γε ∶= ⋃(i,j)∈Eε

Γεij and ∂Gε ∶= ⋃(i,j)∈Eε

∂Gε
ij .

The jump operator on ∂Gε
ij for a function u ∈ Sε is given through [u]ij ∶= (uj −ui). Then,

for every φ ∈ Sε and ψ ∈ C1
c (Rn)n it holds:

ˆ

Gε

(R∗
εφ) ∇ ⋅ ψ dL =∑

i

∑
i∼j
ˆ

∂Gε
ij

φiνij ⋅ ψdHn−1 = − ∑(i,j)∈Eε

ˆ

∂Gε
ij

⟦φ⟧ij ⋅ ψdHn−1 , (8)

where we introduced ⟦φ⟧ij = [φ]ijνij = [φ]jiνji, which is invariant under the transformation(i, j)→ (j, i). Hence, the operator ⟦φ⟧dHn−1 is a distributional gradient ofR∗
εφ. Moreover,

for φ ∈ Sε the quantity ⟦φ⟧ij can be equally interpreted as a function on Γεij.
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SQRA and Fokker�Planck 7

The general case

On a given bounded Lipschitz domain Q and for a given family of points Pε, strictly
positive numbers aεij and a bounded continuously di�erentiable function v ∈ C1(Q) with

v /= 0 on Q, we consider the following two operators on u ∈ Sε:
(Lεu)i ∶= 1

ε2 ∑(i,j)∈Eε

aεij (uεj − uεi) , (9)

(F εvu)i ∶= 1

ε2 ∑(i,j)∈Eε

aεij (uεj vεivεj − uεi
vεj
vεi

) , (10)

where we use the Notation 1.1.

Condition 1.2. For a bounded Lipschitz domain Q and every ε > 0 let (P ε
i )i∈N be a

family of points in Rn and let (Gε
i)i∈N be all Voronoi cells that intersect with Q. We say

that (P ε
i )i∈N is admissible if there exists α > 0 such that

∀ε > 0 ∶ αε ≤ inf
i∈N diamGε

i ≤ sup
i∈N diamGε

i ≤ ε , (11)

where diamGε
i and diamGε

i denote the minimal and the maximal diameter of the cell Gε
i ,

respectively.

Corollary 1.3. Let Q be a bounded domain and let supi diamGε
i < ε, then for every

u ∈ L2(Q) holds (R∗
εRεu)→ u in L2(Q) as ε→ 0.

In fact, Condition 1.2 is already su�cient to proof unique existence of solutions to the
SQRA scheme, as we will see in the proof of Theorem 1.6.

De�nition 1.4 (G-convergence). Let Q be a bounded Lipschitz domain. For every ε > 0,
let P ε be a family of points with strictly positive numbers aεij. We call (P ε)ε>0 and aεij
G-convergent if there exists a symmetric positive de�nite matrix Ahom such that for every
f ∈ L2(Q) the sequence of unique solutions uε ∈ Sε0(Q) to the problem

Lεuε =Rεf
satis�es R∗

εu
ε → u strongly in L2(Q) where u ∈H2(Q) ∩H1

0(Q) solves
∇ ⋅ (Ahom∇u) = f . (12)

De�nition 1.5. A sequence of functionals F ε ∶ L2(Q) → R is weakly (strongly) Γ-
convergent to a functional F ∶ L2(Q)→ R if

1. uε ⇀ u weakly (uε → u strongly) in L2(Q) implies

F (u) ≤ lim inf
ε→0

F ε(uε) ,
2. For every u ∈ L2(Q) there exists a weakly (strongly) convergent sequence uε ⇀ u

(uε → u) such that
F (u) = lim sup

ε→0
F ε(uε) .
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The notion of G-convergence comes from homogenization theory, see [7, 28, 39]. Our
de�nition coincides with the general de�nition of Dal Maso [7] applied to the particular
setting of this work. Note that the Dirichlet-version of Theorem 1.13 below guaranties that
the class of G-convergent point processes is not empty. As Dal Maso shows in Theorem
13.5 of his book [7], the G-convergence of P ε implies weak Γ-convergence of the functional
F ε to the functional F , where

F ε(u) ∶= ⟨Rεu, LεRεu⟩Sε , F (u) ∶= ˆ
Q

∇u ⋅Ahom∇u .
Furthermore, F ε strongly Γ-converges to F i� λ + Lε is G-convergent for some µ > 0
(Theorem 13.6).

Theorem 1.6. Let Q ⊂ Rn be a bounded Lipschitz domain and for every ε > 0 let P ε be a
distribution of points on Rn with strictly positive numbers aεij such that (P ε)ε>0 satis�es
Condition 1.2 and a−1 ≤ aεij ≤ a for some a > 0 and for every ε > 0, (i, j) ∈ Eε. Let

v(x) = exp (−1
2βV (x)) for some bounded and twice continuously di�erentiable function

V ∈ C2(Q). Then, for every ε > 0 and f ε ∈ Sε there exists a unique solution uε ∈ Sε0(Q)
to − (F εvuε)i = f εi ∀P ε

i ∈Q . (13)

satisfying the estimate

∥R∗
εu

ε∥2
L2(Q) + ∥R∗

ε (Lεuε)∥2
L2(Q) ≤ C (∥f ε∥2

P ε , ∥v∥2
C2(Q)) . (14)

If (P ε)ε>0 additionally is G-convergent and R∗
εf

ε ⇀ f weakly in L2(Q), then there exists
a function u ∈H1

0(Q) such that R∗
εu

ε → u strongly in L2(Q) and 1
ε⟦uε⟧dHn−1 → ∇u in the

sense of distribution as ε→ 0. Furthermore, u is a solution to the problem

−∇ ⋅ (Ahom∇u) −∇ ⋅ (Ahomuβ∇V ) = f . (15)

Remark 1.7. A critical point in our studies is the assumption of a bound on the potential
V , which might not exist in application. Note in this context, that the proof of The-
orem 1.6 formally remains the same for V bounded from below, but unbounded from
above. This holds since Step 3 of the proof holds for arbitrary v, as long as v is bounded
continuous. However, the transformed operator

1

ε2 ∑(i,j)∈Eε

aεijv
ε
i v
ε
j (U ε

j −U ε
i ) = f εi

becomes degenerate and one needs to spend more work in the derivation of proper apriori
estimates for U ε and uε = (vε)2

U ε. Note in particular, that this involves weighted discrete
Sobolev inequalities and, at least in the current version of the proof, also di�erent notion
of G-convergence, due to the lower regularity of U ε. This lies beyond the scope of the
present work, aiming at the presentation of the SQRA to a broader audience. On the
other hand, let us note that one can often reduce the problems of large molecules to a
problem in a few angles neglecting variations in the distances of neighbored atoms. In
these reduced spaces, V usually is bounded both from above and from below.

What we have found so far is that the solutions of

∂ξΨ
∗
ε (uε, −DEεπ(uε)) = f ε
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SQRA and Fokker�Planck 9

converge to solutions of
∂ξΨ

∗ (u, −DE(u)) = f .
However, we are interested in the homogenization limit of solutions of the full gradient
system (5)�(6) to solutions (7). This is given by the following result. However, note that
we will not discuss the evolutionary Γ-convergence of the gradient systems in the sense of
Sandier-Serfaty [41] or Mielke [36]. This is left to a future studies.

Theorem 1.8. Let Q ⊂ Rn be a bounded Lipschitz domain and for every ε > 0 let P ε

be a distribution of points on Rn with strictly positive numbers aεij such that (P ε)ε>0

satis�es Condition 1.2 and is G-convergent and a−1 ≤ aεij ≤ a for some a > 0 and for every

ε > 0, (i, j) ∈ Eε. Let v(x) = exp (−1
2βV (x)) for some bounded and twice continuously

di�erentiable function V ∈ C2(Q) and for every ε > 0 let f ε ∈ L2(0, T ;Sε) and uε0 ∈ Sε
with

sup
ε

(∥R∗
εu

ε
0∥2
L2(Q) + εn−2∑

i∼j(uε0,j − uε0,i)2) <∞ .

Then, there exists ε0 > 0 such that for every ε < ε0 there exists a unique solution uε to

∂tu
ε
i − (F εvuε)i = f εi . (16)

If R∗
εf

ε ⇀ f weakly in L2(0, T ;L2(Q)), then
sup
ε

(∥∂tR∗
εu

ε∥2
L2(0,T ;L2(Q)) + ∥R∗

ε (Lεuε)∥2
L2(0,T ;L2(Q)) +

ˆ T

0

εn−2∑
i∼j(uε0,j − uε0,i)2) <∞

and there exists a function u ∈ L2(0, T ;H1
0(Q)) with ∂tu ∈ L2(0, T ;L2(Q)) such thatR∗

εu
ε → u strongly in L2(0, T ;L2(Q)), ∂tR∗

εu
ε ⇀ ∂tu weakly in L2(0, T ;L2(Q)) and

1
ε⟦uε⟧dHn−1 → ∇u in the sense of distribution as ε → 0 and u is the unique solution
to the problem

∂tu −∇ ⋅ (Ahom∇u) −∇ ⋅ (Ahomuβ∇V ) = f . (17)

We will prove the Theorems 1.6 and 1.8 in Section 4.

Remark 1.9. Theorem 1.6 and 1.8 can also be formulated an proved with periodic bound-
ary conditions on a rectangular domain. The modi�cation of the proofs are minor and
straight forward.

The stationary ergodic case

Let (Ω,F ,P) be a probability space and let ω ↦ P (ω) = (Pi(ω))i∈N be a stationary
random point process on Rn. We then de�ne P ε(ω) ∶= εP (ω) and construct from P ε(ω)
the sets Gε

ij(ω), Γε(ω) and Eε(ω) according to the beginning of Section 1.3.

Condition 1.10. Using the notation of Condition 1.2, a Voronoi-tessellation (Gi)i∈N,
based on a point process (Pi)i∈N is admissible if there exists α > 0 such that

α ≤ inf
i

diamGi ≤ sup
i

diamGi ≤ 1 . (18)
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A similar condition has been imposed in [1]. Note that if P (ω) satis�es 1.10, this implies
that P ε(ω) satis�es the admissibility Condition 1.2.

IfQ is a cuboid, we denote P ε
per(Q, ω) the periodization ofQ∩P ε(ω). From theQ-periodic

point process P ε
per(Q, ω), we construct Gε

per(Q, ω), Γεper(Q, ω) and Eε
per(Q, ω) according

to the beginning of Section 1.3. Furthermore, we set Sεper(Q, ω) the set of all functions
P ε

per(Q, ω)→ R that are Q-periodic. The operators Rε and R∗
ε are de�ned on Sεper(Q, ω)

in an obvious way. Furthermore, we denote H1
per(Q) the set of all H1(Q)-functions with

periodic boundary conditions.
Remark 1.11. Note that for the periodized point process and the corresponding Voronoi
tessellation the Condition 1.10 is still satis�ed with α in inequality (18) being replaced
by α

2 .

For the stochastic results, we will need the following Assumption.

Assumption 1.12. The random positive numbers aij(ω) are such that the measure

µaΓ(ω) ∶= ∑(i,j)∈E(ω)aij(ω)δΓij(ω) (19)

is a stationary and ergodic random measure.

If aij(ω) ≡ 1 for all (i, j) and almost every ω, this implies that the point process (Pi(ω))i∈N
has to be stationary and ergodic. If we work on the periodized lattice, we set aij = 1 for
every (i, j) ∈ Eε

per(ω)/Eε(ω). Then, we de�ne the following discrete elliptic operator:

(Lεωu)i ∶= ∑(i,j)∈Eε
per(ω)

1

ε2
aij(ω) (uj − ui) . (20)

Since we work on periodic boundary conditions, we will restrict ourselves to the following
function space

Sεper,0(Q, ω) ∶= ⎧⎪⎪⎨⎪⎪⎩u ∈ S
ε
per(Q, ω) ∶ ∑

P ε
i ∈P ε

per(ω)
u(P ε

i ) = 0

⎫⎪⎪⎬⎪⎪⎭ .
The operator Lεω admits the following asymptotic behavior on Sεper,0(Q, ω).
Theorem 1.13. Let the point process P ε(ω) almost surely satisfy Condition 1.10 and let
the random numbers aij(ω) be such that 0 < c−1 ≤ aij(ω) ≤ c < ∞ almost surely for some
positive constant c and such that Assumption 1.12 holds. For such ω let f ε ∈ Sεper,0(Q, ω)
be a sequence of functions such that R∗

εf
ε ⇀ f weakly in L2(Q) for some f ∈ L2(Q).

Then for almost every ω the sequence uε ∈ Sεper,0(Q, ω) of solutions to the problems

−Lεωuε = f ε (21)

has the following properties: There exists a function u ∈ H1
per(Q) such that R∗

εu
ε → u

strongly in L2(Q) and 1
ε⟦uε⟧dHn−1 → ∇u in the sense of distribution and as ε → 0.

Furthermore, u ∈H1
per(Q) ∩H2(Q) is the unique solution to the problem

−∇ ⋅ (Ahom∇u) = f , ˆ

Q

u = 0 , (22)

where Ahom is de�ned below in (39).

Theorem 1.13 evidently implies G-convergence according to De�nition 1.4. Note that
it can also be formulated and proved for Dirichlet boundary conditions. In the latter
case, the proof turns out to be simpler which is why the Theorem was formulated for the
periodic case.
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2 Ergodic Theorems for Voronoi-tessellations

In this work, we rely on the following assumptions.

Assumption 2.1. Let (Ω,F ,P) be a probability space. We assume we are given a family(τx)x∈Rn of measurable bijective mappings τx ∶ Ω↦ Ω, having the properties of a dynamical
system on (Ω,F ,P), i.e. they satisfy (i)-(iii):

(i) τx ○ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rn, B ∈ F (Measure preserving)

(iii) A ∶ Rn ×Ω→ Ω (x,ω)↦ τxω is measurable (Measurability of evaluation)

We �nally assume that the system (τx)x∈Rn is ergodic. This means that for every measur-
able function f ∶ Ω→ R there holds

[f(ω) = f(τxω) ∀x ∈ Rn , a.e. ω ∈ Ω]⇒ [f(ω) = const for P − a.e. ω ∈ Ω] . (23)

In what follows, we recapitulate parts of the theory from [8]. Given a stationary point
process (Pi)i∈N, we de�ne Γεij(ω) ∶= 1

2
(P ε

i + P ε
j ) the midpoint of the straight line connecting

P ε
i and P ε

j and
Γε(ω) ∶= ⋃(i,j)∈Eε(Ω)Γ

ε
ij(ω) .

The measure µP ∶= ∑i δPi
is stationary and the mapping ω ↦ µP (ω)(B) is measurable for

every open set B ⊂ Rn. Similarly, we can de�ne µΓ(ω) ∶= ∑(i,j)∈E(ω) δΓij(ω) having the same
properties as µP . Hence, µP (ω), µΓ(ω) and µaΓ(ω) from (19) are random measures, i.e.
measurable mappings Ω→M, whereM is the set of all Radon measures on Rn equipped
with the vague topology and corresponding σ-algebra.

Hence, for �xed ω, the mapping ω ↦ µω ∶= µaΓ(ω) + µP (ω) is a random measure and
therefore (µ(Ω),µ(F ),µ#P) is a probability space with respect to the vague topology.
Due to this observation, we may assume that Ω ⊂M and P is a probability measure onM. This has the advantage that M with the vague topology is a complete separable
metric space. Hence the σ-Algebra F becomes separable and the set Cb(Ω) of bounded
continuous functions is dense in Lp(Ω, µ) for any 1 ≤ p <∞ and any �nite measure µ onM. Finally, we observe that the mapping Rn ×M→M, (x,ω)↦ τxω is even continuous
(see [22]).

Theorem 2.2 (Existence of Palm measure [8]). Let ω ↦ µω be a stationary random
measure. Then there exists a unique measure µP , called Palm measure of µ, on Ω such
that

ˆ

Ω

ˆ

Rn

f(x, τxω)dµω(x)dP(ω) = ˆ
Rn

ˆ

Ω

f(x,ω)dµP(ω)dx
for all L ⊗ µP-measurable non negative functions and all L ⊗ µP- integrable functions f .
Furthermore for all A ⊂ Ω, u ∈ L1(Ω, µP) there holds

µP(A) = ˆ
Ω

ˆ

Rn

g(x)χA(τxω)dµω(x)dP (24)
ˆ

Ω

u(ω)dµP = ˆ
Ω

ˆ

Rn

g(x)u(τxω)dµω(x)dP
for an arbitrary g ∈ L1(Rn,L) with

´

Rn g(x)dx = 1 and µP is σ-�nite.
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De�nition. We denote µP,P and µΓ,P the Palm measure of µP and µΓ respectively.

An application of the classical Radon-Nikodym theorem yields the following result. For
a proof, we refer to [22, Lemma 2.14].

Lemma 2.3. There exists a measurable set P̃ ⊂ Ω with IP (ω)(x) = IP̃ (τxω) for L + µP (ω)-
almost every x for P-almost every ω. Furthermore P(P̃ ) = 0 and µP,P(Ω/P̃ ) = 0. The
same applies to Γ(ω).
Lemma 2.3 will not be used below, but it highlights the strong interaction between a point
process and its Palm measure. However, the same proof also yields the following result,
which we will use frequently.

Lemma 2.4. Let ω → µ1,ω and ω → µ2,ω be two stationary random measures such that for
a.e. ω it holds µ1,ω ≪ µ2,ω. Then the corresponding Palm measure µ1,P and µ2,P satisfy
µ1,P ≪ µ2,P and there exists a measurable function f1,2 ∶ Ω→ R such that µ1,P = f1,2µ2,P .

Hence, if µP denotes the Palm measure for µω, we �nd µP,P = P̃µP . Furthermore, we
�nd existence of measurable functions a ∶ Ω → R such that aij(ω) = a(τΓij(ω)ω) and
µaΓ,P = aµΓ,P . Finally, the following theorem is essential for all following calculations.

Theorem 2.5 (Ergodic Theorem [8]). Let the dynamical System τx be ergodic and assume
that the Palm measure µP of the stationary random measure µω has �nite intensity. Then,
with µεω(B) ∶= εnµω(ε−1B), for all g ∈ L1(Ω, µP) it holds

lim
t→∞
ˆ

A

g(τx
ε
ω)dµεω(x) = ∣A∣ˆ

Ω

g(ω)dµP(ω) (25)

for P almost every ω and for all bounded Borel sets A that contain an open ball around
0.

From the last result, one can derive the following generalization.

Theorem 2.6 ([23], Section 2). Let the dynamical System τx be ergodic and assume
that the stationary random measure µω has �nite intensity. Then, de�ning µεω(B) ∶=
εnµω(ε−1B), it holds: for all g ∈ L1(Ω, µP) we �nd for P-almost every ω, and all ϕ ∈
Cc(Rn) that

lim
t→∞
ˆ

Rn

g(τx
ε
ω)ϕ(x)dµεω(x) =

ˆ

Rn

ˆ

Ω

g(ω)ϕ(x)dµP(ω)dx . (26)

Lemma 2.7. Let the point process P ε(ω) be stationary and such that Condition 1.10
holds almost surely and let Q be an open cuboid that contains 0. Then for P-almost every
ω it holds for all ϕ ∈ Cper(Q) that

lim
ε→0

εn ∑(i,j)∈Eε
per(ω)

ϕ(Γεper,ij) =
ˆ

Q

ˆ

Ω

ϕ(x)dµΓ,P dx . (27)

Proof. Let η > 0 and φη ∈ Cc(Q) such that 1 ≥ φη ≥ 0, φη = 0 on Q/(1− η)Q and φη = 1 on
Qη ∶= (1 − 2η)Q. De�ne µεω(B) ∶= εnµΓε(ω)(B) and µεper,ω(B) ∶= εnµΓε

per(ω)(B) .
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Since supi diamGi < ∞, we can �nd εη > 0 such that for all ε < εη it holds µεω = µεper,ω

on suppφη. Due to Condition 1.10, the integral µεper,ω ((1 + 2η)Q/Qη) is bounded from
above by Cη for some constant C that does not depend on η. Hence from Theorem 2.6
one obtains

∣lim
ε→0

ˆ

Q

ϕ(x)dµεper,ω(x) −
ˆ

Q

ˆ

Ω

ϕ(x)dµP dx∣
≤ ∣lim

ε→0

ˆ

Q

ϕφηdµ
ε
per,ω(x) −

ˆ

Q

ˆ

Ω

ϕφηdµP dx∣
+ ∥ϕ∥∞ lim sup

ε→0
µεper,ω ((1 + 2η)Q/Qη) + ∥ϕ∥∞ ∣(1 + 2η)Q/Qη∣

≤ ∥ϕ∥∞Cη ,
where C does not depend on η. As η > 0 was arbitrary, statement follows.

3 Function spaces and the e�ective matrix Ahom

3.1 The jump operator

Let u ∈ H1
loc(Rn) and φ ∈ C1

c (Rn;Rn). Then, φ and ∇ ⋅ φ are uniformly continuous on the
support of φ and for ε→ 0 we �nd in view of Corollary 1.3

−ˆ
∂Gε(ω)⟦Rεu⟧ ⋅ φdHn−1 = ˆ

Gε(ω) (R∗
εRεu)∇ ⋅ φ

→ ˆ
Rn

u∇ ⋅ φ = −ˆ
Rn

∇u ⋅ φ . (28)

This implies that ⟦Rεu⟧dHn−1 → ∇u in the sense of distributions as ε→ 0.

The convergence (28) requires more attention, as this is the convergence behavior we
expect for the solutions of equations (13) or (21). We start denoting γεij ∶= ε1−n∣∂Gε

ij ∣ and
quoting a Poincaré inequality due to Hummel.

Lemma 3.1 (Compactness property, see also [26]). Let Q be a bounded Lipschitz domain
in Rn with Lipschitz boundary and let the families of points (P ε

i )i∈N satisfy Condition 1.2.
Then, for every s ∈]0, 1

2[ there exists a constant Cs independent from ε such that for every
ε > 0 and every uε ∈ Sε0(Q):

∥R∗
εu

ε∥2
Hs

0(Q) ≤ Cs ⎛⎝εn−2 ∑(i,j)∈Eε

⟦uε⟧2
ijγij

⎞⎠ . (29)

If Q is a cube and uε ∈ Sεper(Q, ω), the following relation holds:

∥R∗
εu

ε∥2
Hs

per(Q) ≤ Cs ⎛⎝εn−2 ∑(i,j)∈Eε
per(ω)

⟦uε⟧2
ijγij(ω) + (ˆ

Q

R∗
εu

ε dL)2⎞⎠ . (30)

The constant Cs only depends on the constant α in (11) resp. (18) and the dimension.
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Sketch of proof. Inequality (29) is a direct consequence of [26, Proposition 3.16] (a peri-
odic version is given in [25]), noting that for functions uε ∈ S0(Q) it holds

εn−2 ∑(i,j)∈Eε

⟦uε⟧2
ijγij = ε−1

ˆ

∂Gε

⟦uε⟧2 dHn−1 .

Inequality (30) now follows from [26, Proposition 3.16] and Remark 1.11, since Γεper(ω)
and Gε

per(ω) satisfy Condition 1.10 with a α replaced by α
2 .

Using Lemma 3.1, we obtain the following result.

Lemma 3.2. Let Q be a cube, (Gε
i(ω))i∈N a random Voronoi-tessellation satisfying Con-

dition 1.10 and uε ∈ Sεper(Q, ω) a sequence such that

⎛⎝εn−2 ∑(i,j)∈Eε
per(Q,ω)

⟦uε⟧2
ijγ

ε
per,ij(ω) + (ˆ

Q

R∗
εu

εdL)2⎞⎠ ≤ C (31)

for some C independent from ε. Then there exists a subsequence, not relabeled, and
u ∈ H1

per(Q) such that R∗
εu

ε → u strongly in L2(Q) and ⟦uε⟧dHn−1 → ∇u in the sense of
distributions as ε→ 0. Furthermore, it holds

∥∇uε∥2
L2(Q) ≤ C lim inf

ε→0
εn−2 ∑(i,j)∈Eε

per(ω)
⟦uε⟧2

ijγ
ε
per,ij(ω) (32)

for C = µΓ,P(Ω) 1
2 supij ∣γij ∣ 12 .

Proof. Due to Lemma 3.1, we �nd u ∈ L2(Q) such that R∗
εu

ε → u strongly in L2(Q) along
a subsequence. Furthermore, for every φ ∈ C1

per(Q;Rn) we �nd
−ˆ

Q∩∂Gε
per(ω)

⟦uε⟧ ⋅ φdHn−1 = ˆ
Q∩Gε

per(ω)
(R∗

εu
ε)∇ ⋅ φ→ ˆ

Q

u∇ ⋅ φ . (33)

Using �rst the Cauchy-Schwarz inequality with (31) and then the boundedness of γij and
equicontinuity of φ we have

RRRRRRRRRRR
ˆ

Q∩∂Gε
per(ω)

⟦uε⟧ ⋅ φdHn−1

RRRRRRRRRRR ≤ C
1
2

⎛⎝ε
ˆ

∂Gε
per(ω)

φ2dHn−1
⎞⎠

1
2

≤ C 1
2 sup

ij
∣γij ∣ 12 ⎛⎝εn ∑(i,j)∈Eε

per

φ2
ij

⎞⎠
1
2 +Cη ,

where η as a modulus of continuity of φ is arbitrary small if ε is small enough. In the
limit ε→ 0, Lemma 2.7 and (33) applied to the last inequality becomes

∣ˆ
Q

u∇ ⋅ φ∣ ≤ C 1
2 sup

ij
∣γij ∣ 12 (µΓ,P(Ω)ˆ

Q

φ2)
1
2

. (34)

Since C1
per(Q) is dense in H1

per(Q) this implies ∇u ∈ L2(Q) and (32) (see Brezis [5,
Proposition 9.3]).

Equation (33) together with
´

Q
u∇ ⋅ φ = − ´

Q
∇u ⋅ φ proves ⟦u⟧dHn−1 → ∇u in the sense of

distributions as ε→ 0.
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Lemma 3.3. Let Q be a cube, (Gε
i)i∈N be a family of Voronoi-tessellations satisfying

Condition 1.2 and uε ∈ Sε0(Q) a sequence such that

⎛⎝εn−2 ∑(i,j)∈Eε

⟦uε⟧2
ijγ

ε
ij

⎞⎠ ≤ C
for some C independent from ε. Then there exists a subsequence, not relabeled, and
u ∈ H1

0(Q) such that R∗
εu

ε → u strongly in L2(Q) and ⟦uε⟧dHn−1 → ∇u in the sense of
distributions as ε→ 0. Furthermore, it holds

∥∇uε∥2
L2(Q) ≤ C lim inf

ε→0
εn−2 ∑(i,j)∈Eε

⟦uε⟧2
ijγ

ε
ij .

Proof. The proof follows the lines of the proof of Lemma 3.2, except for equation (34),
where µΓ,P(Ω) is replaced by nnα−n.
The distributional gradients ⟦⋅⟧dHn−1 are vector-valued. However, at every edge (i, j) ∈
Eε, the jump ⟦u⟧ of a function u ∈ Sε is oriented only along the direction νij = −νji. Hence,
for every (i, j) ∈ Eε the set {⟦u⟧ij ∶ u ∈ Sε} spans a 1-dimensional space, which suggests to
work with the scalar quantities ⟦u⟧ij ⋅νij instead of ⟦u⟧ij. However, the quantity ⟦u⟧ij ⋅νij
is not invariant under the permutation of i and j. Thus, we introduce the following
de�nition.

De�nition 3.4 (Normal Field). Let e0 = 0 and (ei)i=1,...,n be the canonical basis of Rn.
De�ne:

Dn−1 ∶= {ν ∈ Sn−1 ∣ ∃m ∈ {1,⋯, n} ∶ ν ⋅ ei = 0 ∀ i ∈ {0,1,⋯,m − 1} and ν ⋅ em > 0}
Thus, for every ν ∈ Sn−1 it holds ν ∈Dn−1 if and only if −ν /∈Dn−1.

For each (i, j) ∈ Eε let ν̃ij = νij if νij ∈ Dn−1 and ν̃ij = νji = −νij if νji ∈ Dn−1. Hence,
ν̃ij = ν̃ji is stationary and invariant under the transformation (i, j) → (j, i). Note that
νij and ν̃ij do not have an index ε for simplicity of notation as they will only be used in
context with other quantities having an index ε. In case Eε(ω) and Eε

per(ω) the normal
�eld is de�ned accordingly.

Using ν̃ we de�ne the invariant �eld ⟦u⟧∼ij ∶= ⟦u⟧ij ⋅ ν̃ij. The operator ⟦⋅⟧∼ then de�nes a
linear operator

Sε → L2
loc(Γε, µεΓ)

or Sεper(Q, ω)→ L2
loc(Γεper(Q, ω);µεΓ(ω),per)

with µεΓ de�ned in (36) below. We are interested in the adjoint operator (with respect to
the topological structure in Section 3.2), which we denote −divP ∶= (⟦⋅⟧∼)∗ and which can
be calculated as follows:

Given u ∈ Sε and φ ∶ Γε → R having compact support in Q, we use ⟦u⟧ij = ujνij + uiνji =⟦u⟧∼ij ν̃ij to get

∑(i,j)∈E⟦u⟧∼ijφij = ∑(i,j)∈E⟦u⟧∼ij ν̃ij ⋅ ν̃ijφij= ∑(i,j)∈E (ujνij + uiνji) ⋅ ν̃ijφij
=∑

i

ui∑
j∼i νji ⋅ ν̃ijφij = −∑i ui∑j∼i νij ⋅ ν̃ijφij .
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Hence, we obtain (divPφ)i =∑
j∼i νij ⋅ ν̃ijφij . (35)

The calculations for the case of periodic functions Sεper(Q, ω) and φ ∶ Γεper(ω) → R are
similar.

Remark 3.5. The de�nitions of the operators ⟦⋅⟧∼ and divP are coupled to the choice of
the point process P ε and also vary with scaling ε. However, they do not scale with the
parameter ε. More precisely, for u ∈ S1(ω) and uε ∶= u(xε ) we have uε ∈ Sε(ω) and

⟦u⟧∼(x
ε
) = ⟦uε⟧∼(x) ,

while for functions φ ∈ C1(Rn) and the usual gradient we have ∇φ(xε ) = ε∇φε(x).
3.2 Function spaces

In the rest of this paper, we will frequently use the following measures

µεP ∶= µP ε ∶= εn∑
i∈N δP ε

i
, µεΓ ∶= µΓε ∶= εn ∑(i,j)∈Eε

δΓε
ij
, (36)

and use them to introduce the following scalar products:

⟨u, v⟩P ε,Q = ⟨u, v⟩Sε,Q ∶ = εn ∑
P ε
i ∈Q

u(P ε
i ) v(P ε

i ) =
ˆ

Q

u(x)v(x)dµP ε(x)
⟨u, v⟩Γε,Q ∶ = εn ∑

Γε
ij∈Q

u(Γεij) v(Γεij) =
ˆ

Q

u(x)v(x)dµΓε(x)
with the corresponding norms ∥⋅∥P ε,Q and ∥⋅∥Γε,Q on Sε(Q) ∶= L2(Q;µP ε) and L2(Q;µΓε).
By an abuse of notation, we also write ⟨u, v⟩Sε,Q resp. ⟨u, v⟩Γε,Q for the pairing of L1-
and L∞ functions. We emphasize that due to the discrete character of the measures µP ε

and µΓε every integral with respect to one of these measures over a bounded domain
corresponds to a �nite sum and we will frequently make use of this duality. In particular,
we emphasize that for u ∈ C(Q):

εn ∑
P ε
i ∈Q

u(P ε
i ) =
ˆ

Q

u(x)dµP ε(x) , εn ∑
Γε
ij∈Q

u(Γεij) =
ˆ

Q

u(x)dµΓε(x) ,
and we choose the notation depending on what aspect seems suitable for presentation.

If the point process P (ω) is stationary, so is the measure ω ↦ µ∂G(ω) ∶= Hn−1(⋅ ∩ ∂G(ω))
and the measure µγΓ(ω) ∶= ∑(i,j)∈E(ω) γij(ω)δΓij(ω), where γij(ω) = ∣∂Gij(ω)∣. Then, by
Lemma 2.4 there exists a measurable function γ ∶ Ω → R such that γij(ω) = γ(τΓij(ω)ω).
Furthermore, by Condition 1.10, 0 < γij(ω) ≤ C < ∞ for some constant C independent
from ω. By Lemma 2.4 we �nd

ν̃ ∶ Ω→ Rn such that ν̃ij(ω) = ν̃(τΓij(ω)ω) . (37)

In the periodic case we similarly construct Γεper(Q, ω) ∂Gε
per and γ

ε
per,ij(ω), where γεper,ij(ω)

are the interface volumes of ε−1∂Gε
per on the torus Q/ε.
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For every f ∈ Cb(Ω) and �xed ω ∈ Ω for the functions fω(x) ∶= f(τxω) and fω,ε(x) ∶=
f(τx

ε
ω) it holds fω ∈ Cb(Rn). Furthermore, by the Ergodic Theorem, for every f ∈

Lp(Ω, µP,P) it holds fω,ε ∈ Lploc(Rn;µP ε(ω)) for almost every ω ∈ Ω and every ε. The same
holds for f ∈ Lp(Ω, µΓ,P) where fω,ε ∈ Lploc(Rn;µΓε(ω)) for almost every ω ∈ Ω and every ε.

Hence, for every f ∈ Cb(Ω) and �xed ω ∈ Ω and the expression ⟦f⟧∼Om(ω) = ⟦fω⟧∼(0) is well
de�ned provided 0 ∈ Γ(ω). Therefore, ⟦f⟧∼Om(ω) is µΓ,P-almost everywhere well de�ned.
In a similar manner, we may de�ne divOm as an operator on Cb(Ω;Rn) via the realizations
and equation (35). We observe that ⟦⋅⟧∼Om is a linear operator from Cb(Ω) to L2(Ω;µΓ,P)
and like for the operator ⟦⋅⟧∼ on Rn we claim that −divOm = (⟦⋅⟧∼Om)∗ also holds on Ω.

Similar to the above scalar products for function spaces on Rn, we de�ne the following
scalar products for function spaces on Ω:

⟨u, v⟩P,P ∶ =
ˆ

Ω

uv dµP,P , ⟨u, v⟩Γ,P ∶ =
ˆ

Ω

uv dµΓ,P .

Lemma 3.6. For every u ∈ Cb(Ω), f ∈ L1(Ω, µΓ,P ;Rn) with divOmf ∈ L1(Ω, µP,P) and
every ϕ ∈ Cc(Rn) it holds for almost every ω ∈ Ω

lim
ε→0

εn ⟨divP (fω,εϕ) , uω,ε⟩P ε(ω) =
ˆ

Rn

ϕ(x) ⟨divOmf, u⟩P,P dx .
The same holds if u ∈ L1(Ω, µP,P), f ∈ Cb(Ω;Rn).
Once Lemma 3.6 is proved, one easily obtains the following corollary.

Corollary. The operator −divOm ∶ L2(Ω, µΓ,P ;Rn)→ L2(Ω, µP,P) is the adjoint of ⟦⋅⟧∼Om.

Proof of Lemma 3.6. We de�ne fij(ω) ∶= f(τΓij(ω)ω) = f(τΓε
ij(ω)/εω) and ui(ω) ∶= u(τPi

ω)
as well as ϕεi(ω) ∶= ϕ(P ε

i (ω)) and ϕεij(ω) ∶= ϕ(Γεij(ω)). For readability, we omit ω whenever
possible and observe that

⟨divP (fω,εϕ) , uω,ε⟩P ε(ω) = εn ∑
P ε
i ∈Q

ui∑
i∼j fijνij ⋅ ν̃ijϕεij

= εn ∑
P ε
i ∈Q

ui∑
i∼j fijνij ⋅ ν̃ijϕεi + εn ∑P ε

i ∈Q
ui∑

i∼j fijνij ⋅ ν̃ij [ϕεij − ϕεi ] . (38)

For the �rst sum on the right hand side of (38) we obtain

εn ∑
P ε
i ∈Q

ui(ω)∑
i∼j fij(ω)νij ⋅ ν̃ijϕ(P ε

i ) = ⟨divP (fω,ε) , ϕuω,ε⟩P ε(ω) = ⟨(divOmf)ω,ε , ϕuω,ε⟩P ε(ω)
→ ˆ

Rn

ϕ(x) ⟨divOmf, u⟩P,P .
Thus it only remains to estimate the second term on the right hand side of (38).

Due to Condition 1.10 and the uniform continuity of ϕ, for every η > 0 there exists ε0

such that for all ε < ε0 and all i, j it holds ∣ϕ(Γεij) − ϕ(P ε
i )∣ ≤ η. We distinguish two cases.
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Case 1: Let u ∈ Cb(Ω), f ∈ L1(Ω, µΓ,P ;Rn). We write ūij ∶= 1
2(ui + uj) and f̃ij ∶= fij ν̃ij

and obtain (omitting the ω)

εn∑
i

ui∑
i∼j f̃ij ⋅ νij [ϕεij − ϕεi ]

= −εn ∑(i,j)∈Eε(ω) [ūij f̃ij ⋅ νij (ϕεj − ϕεi) +
1

2
(ui − uj) f̃ij ⋅ νij (2ϕεij − ϕεi − ϕεj)]

= −εn ∑(i,j)∈Eε(ω) [ūijfij⟦ϕε⟧∼ij −
1

2
⟦uω⟧∼ijfij (2ϕεij − ϕεi − ϕεj)] .

The �rst term on the right hand side becomes arbitrarily small since ⟦ϕε⟧∼ij < η and∥u∥∞ <∞. The second term on the right hand side becomes small since ∣2ϕεij − ϕεi − ϕεj ∣ < 2η

and ∥⟦u⟧∼ij∥∞ < 2 ∥u∥∞.
Case 2: Let u ∈ L1(Ω, µP,P), f ∈ C(Ω;Rn). For the limit of the second sum, we de�ne
P ε
ϕ(ω) = P ε(ω) ∩ suppϕ and obtain for ε > ε0 that

∣εn∑
i

ui(ω)∑
i∼j fij(ω) [ϕ(Γεij) − ϕ(P ε

i )]∣ ≤ ηC ∥f∥∞
ˆ

P ε
ϕ(ω)

∣u(τx
ε
ω)∣dµεP (ω)(x)

→ η ∣suppϕ∣C ∥f∥∞
ˆ

Ω

∣u∣ dµP,P .
Again, since η is arbitrarily small, the statement follows.

We use the de�nition of ⟦u⟧∼ to de�ne the following subspace of L2(Ω, µaΓ,P), where
dµaΓ,P(ω) = a(ω)dµΓ,P(ω):

L2
pot(Γ) = closureL2(Ω,µaΓ,P) {⟦f⟧∼ ∶ f ∈ Cb(Ω)} L2

sol(Γ) = L2
pot(Γ)�

and make the following observation:

Lemma 3.7. For every f ∈ L2
sol(Γ) it holds divOm (fa) = 0 µΓ,P-almost surely. Hence, for

almost every realization fω holds divP (aωfω) = 0 locally on P (ω).
Proof. Let f ∈ L2

sol(Γ) and let ϕ ∈ Cc(Rn). Then, for every u ∈ Cb(Ω) we obtain from
Theorem 2.6 and Lemma 3.6 for some ω ∈ Ω that

0 = ˆ
Rn

ϕ ⟨⟦u⟧∼Om , af ⟩Γ,P = lim
ε→0

⟨ϕfω,εaω,ε , (⟦u⟧∼Om)ω,ε⟩Γε(ω)
= − lim

ε→0
⟨divP (fω,εaω,εϕ) , uω,ε⟩P ε(ω) = −

ˆ

Rn

ϕ(x) ⟨divOm (fa) , u⟩P,P .
Since this holds true for every ϕ ∈ Cc(Rn) and every u ∈ Cb(Ω), the claim follows.

3.3 The homogenized matrix in the stationary ergodic setting

Let (ei)i=1,...n be an orthonormal basis of Rn, ν̃ from (37) and let χi ∈ L2
pot(Γ) be the

unique minimizers of the functional

Ei ∶ L2
pot(Γ)→ R

χ↦ ˆ
Ω

a ∣ei − χν̃∣2 dµΓ,P .
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We de�ne the matrix Ahom through

Ahom = (Ai,j)i,j=1,...,n

with Ai,j = ˆ
Ω

a (ei − χiν̃) ⋅ (ej − χj ν̃) dµΓ,P . (39)

As usual in random conductance theory, the matrix Ahom and the space L2
sol(Γ) satisfy

the following properties.

Lemma 3.8. The matrix Ahom is positive de�nite.

Proof. The proof is standard (see [19, Lemma 5.5]) and we provide it here for complete-
ness.

Step 1:Recall the de�nition of γij at the beginning of Section 3.1. We �rst prove that
every v ∈ L2

pot(Γ) satis�es
∀ξ ∈ Rn ∶ ˆ

Ω

vν̃ ⋅ ξγdµΓ,P = 0 . (40)

In order to prove (40) let u ∈ Cb(Ω) and choose a bounded open ball B around 0 with
normal vector νB. Let ũεω(P ε

i ) ∶= u(τP ε
i
ω) such that ũε ∈ Sε(ω). We obtain

∣B∣ ∣ˆ
Ω

⟦u⟧∼Omν̃ ⋅ ξγdµΓ,P ∣ = lim
ε→0

∣ˆ
B∩Γε(ω) (⟦u⟧∼Omγν̃) (τx

ε
ω) ⋅ ξdµεΓ(ω)∣

= lim
ε→0

∣εˆ
B∩∂Gε(ω)⟦R∗

ε ũ
ε
ω⟧ ⋅ ξdHn−1∣

= lim
ε→0

∣εˆ
∂B

R∗
ε ũ

ε
ωξ ⋅ νB dHn−1∣

≤ lim
ε→0

ε ∥u∥∞ ∣ξ∣ ∣∂B∣ = 0 .

Hence (40) follows from the density of ⟦u⟧∼ in L2
pot(Γ).

Step 2: Let ξ ∈ Rn/0. Using (40) and the Cauchy-Schwarz inequality we �nd with
Cγ = ´Ω γdµΓ,P > 0

ξ2
k = ξkC−1

γ

ˆ

Ω

ξ ⋅ ekγdµΓ,P
= ξkC−1

γ

ˆ

Ω

ek ⋅ n∑
i=1

(ξiei − ξiχiν̃)γdµΓ,P

≤ ∣ξk∣C−1
γ (ˆ

Ω

γ2a−1 dµΓ,P) 1
2 ( n∑

i,j=1

ξiξjAij)
1
2

.

Summing up the last inequality over k = 1, . . . , n yields

∣ξ∣22∣ξ∣1 ≤ C√
ξ ⋅Ahomξ .

The Lemma now follows from the equivalence of norms in Rn.

Lemma 3.9. It holds Rn = span{´
Ω
fν̃dµΓ,P ∶ f ∈ L2

sol(Γ)}.
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Proof. We follow the proof of [18, Lemma 4.5]. Due to the minimizing properties of χi in
L2

pot(Γ) we have (ei − χiν̃) ⋅ ν̃ ∈ L2
sol(Γ), i.e.

∀i, j ∶ ˆ
Ω

((ei − χiν̃) ⋅ ν̃)χjadµΓ,P = 0 . (41)

De�ning V ∶= span{´
Ω
fν̃dµΓ,P ∶ f ∈ L2

sol(Γ)} we choose ξ ∈ V �/{0}. Then, for all i =
1, . . . , n it holds

ˆ

Ω

ξ ⋅ ν̃ ((ei − χiν̃) ⋅ ν̃)adµΓ,P = 0 . (42)

Combining (41) and (42) implies that

ˆ

Ω

n∑
j=1

ξj (ej ⋅ ν̃ + χj) ((ei − χiν̃) ⋅ ν̃)adµΓ,P = 0 .

Multiplying the last equality by ξi and summing over i yields

ξAhomξ = 0 .

Due to Lemma 3.8 this implies ξ = 0, a contradiction.

4 Proof of Theorems 1.6 and 1.8

We �rst observe the following behavior.

Lemma 4.1 (L2 - G-convergence). Let the family (Pε)ε>0 be G-convergent in sense of
De�nition 1.4, a−1 ≤ aεij ≤ a uniformly in ε, i, j for some a > 0 and let Condition 1.2 be
satis�ed. Let fε ∈ Sε(ω) and f ∈ L2(Q) such that R∗

εf
ε ⇀ f weakly in L2(Q) and let the

sequence uε ∈ Sε0(Q) be solutions of the problems

ε−2∑
i∼j a

ε
ij (uεi − uεj) = f εi (43)

and let u ∈H1
0(Q) ∩H2(Q) be the unique solution to

−∇ ⋅ (Ahom∇u) = f . (44)

Then R∗
εu

ε → u strongly in L2(Q) and 1
ε⟦uε⟧dHn−1 → ∇u in the sense of distribution as

ε→ 0.

Proof. The operator −Lε is strictly positive de�nite and symmetric as follows from

− ⟨Lεuε, uε⟩ = εn−2∑
i∼j a

ε
ij (uεj − uεi)2

.

Due to Lemma 3.1, the family Lε is uniformly elliptic in ε and we obtain the apriori
estimate ∥uε∥2

P ε = εn∑
i

(uεi)2 ≤ Cεn−2∑
i∼j (uεj − uεi)

2 ≤ Ca ∥f ε∥P ε ∥uε∥P ε . (45)
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By the Lax-Milgram Lemma, the solution to (43) exists and is unique. Let ûε be the
unique solution of −Lεûε = R∗

εf . Then ûε satis�es (45) with f ε replaced by R∗
εf and we

�nd

∥R∗
ε (uε − ûε)∥2

L2(Q) ≤ εnC ∑(i,j)∈Eε(ω)
1

ε2
aεij⟦uε − ûε⟧2

ij = εnC∑
i

(f εi − (R∗
εf)i) (uε − ûε) .

Due to Lemma 3.1, R∗
εu

ε and R∗
ε û

ε are both precompact sequences in L2(Q). Since P ε

is G-convergent and

R∗
ε (Rεf) −R∗

εf
ε
i ⇀ 0 weakly in L2(Q) , (46)

we obtain from Lemma 3.3 and the above estimates that

lim
ε→0

⎛⎝∥R∗
ε (uε − ûε)∥2

L2(Q) + εn ∑(i,j)∈Eε(ω)
1

ε2
⟦uε − ûε⟧2

ij

⎞⎠ = 0

and hence R∗
εu

ε → u strongly in L2(Q) and 1
ε⟦uε⟧dHn−1 → ∇u in the sense of distribution.

Since P ε is G-convergent, we obtain that u solves (44).

Lemma 4.2. Let the family (Pε)ε>0 be G-convergent in sense of De�nition 1.4 and let
Condition 1.2 be satis�ed. Then, there exists a constant C > 0 such that for every ε > 0
and every φ,u ∈ Sε it holds

εn∑
i

∣vi∣∑
j∼i ∣uj − ui∣ ≤ C ∥v∥P ε ∥⟦u⟧∥Γε .

Proof. We obtain

εn∑
i

∣vi∣∑
j∼i ∣uj − ui∣ ≤ ∥v∥P ε (εn∑

i

2C∑
i∼j ∣uj − ui∣2)

1
2 ≤ 4C ∥v∥P ε (εn∑

i∼j ∣uj − ui∣2)
1
2

,

where C denotes the maximum number of neighbors of a cell, which is bounded due to
Condition 1.2.

Lemma 4.3. Let let the sequence uε ∈ Sε0(Q) satisfy R∗
εu

ε → u strongly in L2(Q) and

sup
ε>0

εn ∑(i,j)∈Eε(ω)
1

ε2
⟦uε⟧2

ij + εn∑
i

(ε−2∑
i∼j (uεj − uεi))

2 <∞ . (47)

Then u ∈H1
0(Q) and for every φ ∈ C1

c (Q) with φεi = φ(P ε
i ) it holds

εn ∑(i,j)∈Eε(ω)
1

ε2
aεij⟦uε⟧ij⟦φε⟧ij →

ˆ

Q

∇u ⋅ (Ahom∇φ) .
Proof. The regularity u ∈ H1

0(Q) follows from (47) and Lemma 3.1. Writing f ε ∶=
ε−2∑i∼j aεij (uεj − uεi) we �nd supε>0 ∥f ε∥P ε < ∞ and hence along a subsequence we �ndR∗
εf

ε ⇀ f ∈ L2(Q) and G-convergence implies f = ∇ ⋅ (Ahom∇u). Therefore
εn ∑(i,j)∈Eε(ω)

1

ε2
aεij⟦uε⟧ij⟦φε⟧ij = −εn∑

i

1

ε2
f εi φ

ε
i → −ˆ ∇ ⋅ (Ahom∇u)φ = ˆ

Q

∇u ⋅ (Ahom∇φ) .
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Proof of Theorem 1.6

We de�ne U ε
i ∶= uεi / (vεi )2 satisfying

− 1

ε2 ∑
j∼i v

ε
i v
ε
ja
ε
ij (U ε

j −U ε
i ) = f εi . (48)

For simplicity and readability of the proof, we assume aεij = 1.

Step 1: Apriori estimates on U ε. Testing (48) with U ε
i and using boundedness of

v ≥ C > 0 from below we obtain similar to the proof of Lemma 4.1 that

εn∑
i

(U ε
i )2 ≤ Cεn−2∑

i∼j (U ε
j −U ε

i )2 ≤ C ∥f ε∥2
P ε ,

and hence the sequence R∗
εU

ε is precompact and

1

ε2
∥⟦U ε⟧∼∥2

Γε + ∥U ε∥2
P ε ≤ C ∥f∥2

P ε . (49)

Next, we recall the de�nition of Lε and test (48) with φεi ∶= (LεU ε
i ) = ε−2∑j∼i (U ε

j −U ε
i )

and use ∑
i∼j v

ε
i v
ε
j (U ε

j −U ε
i ) = (vεi )2∑

i∼j (U ε
j −U ε

i ) + vεi ∑
i∼j (vεj − vεi ) (U ε

j −U ε
i )

and Lemma 4.2 to obtain

εn∑
i

(vεi )2 (LεU ε
i )2 ≤ −εn∑

i

f εi (LεU ε
i ) + ∥∇v∥∞ 1

ε
∥⟦U ε⟧∼∥Γε ∥LεU ε∥P ε

≤ ∥f∥P ε ∥LεU ε∥P ε + ∥∇v∥∞ 1

ε
∥⟦U ε⟧∼∥Γε ∥LεU ε∥P ε .

Using (49) we obtain that

1

ε2
∥⟦U ε⟧∼∥2

Γε + ∥U ε∥2
P ε + ∥LεU ε∥2

P ε ≤ C (∥f∥2
P ε , ∥v∥2

C2(Q)) . (50)

Step 2: Apriori Estimates on uε. In what follows, we write ṽεi ∶= (vεi )2. From uεi = ṽεiU ε
i

we obtain
uεj − uεi = 1

2
(ṽεj − ṽεi ) (U ε

j +U ε
i ) + 1

2
(ṽεj + ṽεi ) (U ε

j −U ε
i )

which gives an estimate on 1
ε2 ∥⟦uε⟧∼∥2

Γε . In order to proof the estimate on Lεuε, we
multiply Lεuε with an arbitrary test function φ ∈ C∞

c (Q) and obtain

− ⟨Lεuε, φ⟩P ε = εn−2∑
i∼j (ṽεjU ε

j − ṽεiU ε
i ) (φεj − φεi)

= εn−2∑
i∼j (

1

2
(ṽεj + ṽεi ) (U ε

j −U ε
i ) (φεj − φεi) + 1

2
(ṽεj − ṽεi ) (U ε

j +U ε
i ) (φεj − φεi))

= εn−2∑
i∼j

1

2
((U ε

j −U ε
i ) (ṽεjφεj − ṽεiφεi) + (ṽεj − ṽεi ) (φεjU ε

j − φεiU ε
i ))

+ εn−2∑
i∼j (ṽεj − ṽεi ) (U ε

j −U ε
i ) (φεj + φεi)

= εn∑
i

φεiU
ε
i

1

2ε2 ∑
j∼i (ṽεj − ṽεi ) + εn∑i φεi ṽεi

1

2ε2 ∑
j∼i (U ε

j −U ε
i )

+ εn−2∑
i∼j (ṽεj − ṽεi ) (U ε

j −U ε
i ) (φεj + φεi)
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Hence, we obtain with help of Lemma 4.2

∣⟨Lεuε, φ⟩P ε ∣ ≤ ∥φ∥P ε C (∥U ε∥P ε ∥v∥C2(Q) + ∥LεU ε∥P ε ∥v∥∞ + ∥∇v2∥∞ 1

ε
∥⟦U ε⟧∼∥Γε) ,

where C does not depend on ε. Together with (50), it follows

lim sup
ε→0

∥R∗
εLεuε∥L2(Q) ≤ lim sup

ε→0
C (∥f∥P ε + ∥v2∥

C2(Q)) ∥v2∥
C2(Q) ≤∞ .

This concludes the proof.

Step 3: Convergence. We use the above estimates in order to pass to the limit in (48).
We choose a countable dense family Φ ∶= (φk)k∈N ⊂ H1

0(Q) of functions φk ∈ C∞
c (Q) for

every k ∈ N and use these as test functions in (48).

We write vεij ∶= v(Γεij), recall (36) and de�ne

Iε1 ∶ = εn ∑(i,j)∈Eε

vεi v
ε
j

1

ε
⟦U ε⟧∼ij 1

ε
⟦φ⟧∼ij = εn ∑(i,j)∈Eε

(vεij)2 1

ε
⟦U ε⟧∼ij 1

ε
⟦φ⟧∼ij + Iε2 .

Since v is uniformly continuous, for every η > 0 there exists ε0 such that for ε < ε0 it holds∣(vεij)2 − vεi vεj ∣ < η for every (i, j) ∈ Eε. Hence with

∣Iε2 ∣ ≤ η ∥∇φ∥∞ ∥⟦U ε⟧∼∥Γε ≤ η ∥∇φ∥∞ sup
ε>0

∥⟦U ε⟧∼∥Γε ≤ ηC ∥∇φ∥∞ .

Due to Lemma 4.3, we obtain for every φ ∈ Φ that

εn ∑(i,j)∈Eε

1

ε
⟦U ε⟧∼ij 1

ε
⟦φ⟧∼ij →

ˆ

Q

∇φ ⋅ (Ahom∇U) . (51)

Furthermore, we note that

sup
ε>0

εn ∑(i,j)∈Eε

1

ε2
⟦U ε⟧2

ij

1

ε2
⟦φ⟧2

ij ≤ ∥∇φ∥2∞ sup
ε>0

εn ∑(i,j)∈Eε

1

ε2
⟦U ε⟧2

ij <∞ .

Hence, for every φ ∈ Φ, the pair (1
ε⟦U ε⟧∼ij 1

ε⟦φ⟧∼ij, µΓε) is a measure-function pair w.r.t. the
quadratic function in the sense of Hutchinson and we can apply [27, Theorem 4.4.2]. In
particular, since Φ is countable, we obtain from [27, Theorem 4.4.2] that

∀φ ∈ Φ ∶ εn−2∑
i∼j (vεij)

2 1

ε
⟦U ε⟧∼ij 1

ε
⟦φ⟧∼ij →

ˆ

Q

v2∇φ ⋅ (Ahom∇U) .
Furthermore, we obtain from the above apriori estimates and Lemma 3.2 that U ε → U
and uε → u strongly in L2(Q) and due to U ε

i ∶= uεi / (vεi )2 we �nd u = v2U . From the weak
convergence of f ε we �nally obtain that u solves

ˆ

Q

v2∇φ ⋅ (Ahom∇( u
v2

)) = ˆ
Q

fφ ,

or equivalently
ˆ

Q

∇φ ⋅ (Ahom∇u) − 2

ˆ

Q

u

v
∇φ ⋅ (Ahom∇v) = ˆ

Q

fφ .

Using that v = exp (−β2V ), we obtain that u solves (15).
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Proof of Theorem 1.8

Like in the previous proof, we assume aεij = 1 for simplicity and readability.

Due to the �rst part of Theorem 1.6 the operator F εv is invertible for ε small enough and
unique existence of solutions to (16) follows. Let us �rst note that writing V ε

i ∶= V (xεi)
and using the Taylor formula we obtain

vεi
vεj

= exp(−β
2
(V ε

i − V ε
j )) = ∞∑

k=0

1

k!

βk

2k
(V ε

j − V ε
i )k

and hence

(uεj vεivεj − uεi
vεj
vεi

) = ∞∑
k=0

1

k!

βk

2k
(uεj − (−1)k uεi) (V ε

j − V ε
i )k

= (uεj − uεi) + 1

2
(uεj + uεi)β (V ε

j − V ε
i )

+ ∞∑
k=2

1

k!

1

2k
((−1)k uεj − uεi)βk (V ε

i − V ε
j )k . (52)

Testing (16) with uε, using (52) and Lemma 4.2 yields

1

2
∥uε∥2

P ε ∣T
0

+ 1

ε2

ˆ T

0

∥⟦uε⟧∼∥2
Γε ≤ ˆ T

0

∥f ε∥2
P ε ∥uε∥2

P ε +C 1

ε
∥∇v∥∞

ˆ T

0

∥⟦uε⟧∼∥Γε ∥uε∥P ε

+Cε ∥∇v∥∞
ˆ T

0

1

ε
∥⟦uε⟧∼∥Γε (1

ε
∥⟦uε⟧∼∥Γε + ∥uε∥P ε) .

From this inequality, the apriori estimate on ∥uε∥2
P ε and 1

ε2

´ T

0
∥⟦uε⟧∼∥2

Γε follows using the
Gronwall inequality, provided ε is small enough. Furthermore, the last inequality yields
uε = 0 if f ε = 0 and uε0 = 0. Next, we test (16) with ∂tuε and use once more (52) and
Lemma 4.2 to obtain
ˆ T

0

∥∂tuε∥2
P ε + 1

ε2

1

2
∥⟦uε⟧∼∥2

Γε ∣T0 ≤ ˆ T

0

∥f ε∥2
P ε ∥∂tuε∥2

P ε +C 1

ε
∥∇v∥∞

ˆ T

0

∥⟦uε⟧∼∥Γε ∥∂tuε∥P ε

+Cε ∥∇v∥∞
ˆ T

0

1

ε
∥⟦uε⟧∼∥Γε (1

ε
∥∂t⟦uε⟧∼∥Γε + ∥∂tuε∥P ε) .

Hence the the apriori estimate on ∥∂tuε∥2
P ε follows from the Gronwall inequality. From the

apriori estimates, Lemma 3.1 and the Aubin-Lions Theorem, we obtain strong convergenceR∗
εu

ε → u in L2(0, T ;L2(Q)) for some u ∈ L2(0, T ;L2(Q)). From Lemma 3.2 we infer
that u ∈ L2(0, T ;H1

0(Q)) and 1
ε⟦uε⟧dHn−1 → ∇u in the sense of distribution. The weak

convergence ∂tR∗
εu

ε → ∂tu in L2(0, T ;L2(Q)) as well as ∂tu ∈ L2(0, T ;L2(Q)) is straight
forward.

Integrating the right hand side f ε and the solutions uε of (16) over time intervals (s, t) ⊂(0, T ) and applying Theorem 1.6 it follows that u solves (17).

5 Two-scale Convergence

We recall the notation (36). Since Cb(Ω) lies densely in the separable space L2(Ω;µΓ,P),
we can chose a countable dense family ΦΩ = (φi)i∈N ⊂ L2(Ω;µΓ,P) of Cb(Ω)-functions and
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a countable dense family of functions ΦQ = (ψi)i∈N ⊂ C0(Q) of functions ψi ∈ Cc(Q).
We furthermore assume that ΦΩ = Φpot ⊕Φsol for dense subsets Φsol ⊂ L2

sol(Γ) and Φpot ⊂
L2

pot(Γ) where Φpot is such that v ∈ Φpot if and only if v = ⟦u⟧∼Om for some u ∈ Cb(Ω).
Finally, let ΩΦ ⊂ Ω be the set of all ω such that the Ergodic Theorems 2.7�2.5 hold for all
v ∈ ΦΩ and φ ∈ ΦQ.

De�nition 5.1 (Two-scale convergence). Let Q be a bounded open domain, ω ∈ ΩΦ and
let vε ∈ L2(Q;µε

Γ(ω)) be a sequence such that

sup
ε>0

∥vε∥Γε(ω) <∞
and let v ∈ L2(Q;L2(Ω;µΓ,P)). We say that vε converges in two scales to v, written

vε
2s⇀ω v if for every φ ∈ ΦΩ and every ψ ∈ ΦQ it holds

lim
ε→0

⟨vε , φω,εψaω,ε⟩Γε(ω) =
ˆ

Q

⟨v(x, ⋅), φa⟩Γ,P ψ(x)dx .
This de�nition makes sense in view of the following result.

Lemma 5.2 (Existence of two-scale limits). For every ω ∈ ΩΦ it holds: Let vε ∈ L2(Q)
be a sequence of functions such that supε>0 ∥vε∥Γε(ω),Q ≤ C for some C > 0 independent

from ε. Then there exists a subsequence of (vε′)ε′→0 and v ∈ L2(Q;L2(Ω;µΓ,P)) such that

vε
′ 2s⇀ω v and ∥v∥L2(Q;L2(Ω;µΓ,P)) ≤ lim inf

ε′→0
∥vε′∥

Γε′(ω),Q . (53)

The proof of Lemma 5.2 is standard. However, we provide it here for completeness.

Proof. Let ω ∈ ΩΦ, let (φk)k∈N be an enumeration of ΦΩ and (ψj)j∈N an enumeration of ΦQ

and for ε > 0 we write φk,ω,ε(x) ∶= φk(τx
ε
ω). For �xed j, k ∈ N, we obtain from Theorem

2.6 that

lim sup
ε→0

∣⟨vε, ψjφk,ω,εaω,ε⟩Γε(ω)∣ = lim sup
ε→0

∣ˆ
Q

vε(x)ψj(x)φk,ω,ε(x)a(τx
ε
ω)dµεΓ(ω)(x)∣

≤ C lim sup
ε→0

(ˆ
Q

ψj(x)2 (φk(τx
ε
ω))2

a(τx
ε
ω)dµεΓ(ω))

1
2

= C ∥ψj∥L2(Q) ∥φk∥L2(Ω;µΓ,P) .
Therefore, we can use Cantor's diagonalization argument to construct a subsequence of
vε, not relabeled in the following, such that

∀j, k ∈ N ⟨vε, ψjφk,ω,εaω,ε⟩Γε(ω) → Lj,k as ε→ 0

and Lj,k is linear in ψjφk ∈ L2(Q;L2(Ω;µΓ,P)). Therefore, there exists v ∈ L2(Q;L2(Ω;µΓ,P))
such that

Lj,k = ˆ
Q

⟨v(x, ⋅) , ψj(x)φka⟩Γ,P dx ∀k ∈ N .
Since the span of the ψjφk is dense in L2(Q;L2(Ω;µΓ,P)), the function u is unique.
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The next result provides a kind of generalization of Theorem 2.6. It is needed in order to
proof the main result of this section.

Lemma 5.3. For a random tessellation (G(ω),Γ(ω)) that ful�lls the compactness prop-
erty 3.1 in Rn with Q ⊂ Rn bounded Lipschitz domain and �xed ω ∈ Ω let uε ∈ Sε(ω) and
u ∈ H1(Q) such that R∗

εu
ε → u strongly in L2(Q). Then for every b ∈ L2(Ω;µΓ,P) such

that the Ergodic Theorems 2.7�2.5 are valid for b it holds that for every φ ∈ C1
c (Q) and

ψ ∈ C(Q)
lim
ε→0

εn ∑(i,j)∈Eε(ω) ū
ε
ijbij(ω)ψij 1

ε
⟦φ⟧∼ij =

ˆ

Q

uψ∇φ ⋅ ˆ
Ω

bν̃dµΓ,Pdx , (54)

where ūεij ∶= 1
2
(uεi + uεj).

Remark 5.4. Lemma 5.3 is also valid for the space Sεper(ω,Q) and H1
per(Q) if Q is a

cuboid.

Proof. The proof follows closely the lines of Step 2a in the proof of Theorem 1.6. However,
we provide the full proof for completeness. For δ > 0 let ϕδ be a smooth molli�er with
support in Bδ(0) and let uεδ ∶= (R∗

εu
ε) ∗ ϕδ and u0

δ = u ∗ ϕδ. Since (R∗
εu

ε) → u strongly in
L2(Q) we obtain that for every �xed δ > 0 the family (uεδ)ε>0

together with u0
δ is uniformly

equicontinuous and uεδ → u0
δ in C(Q). This follows from the fact that uεδ ∈ C∞

c (2Q) and
∥∇uεδ∥∞ ≤ C ∥∇n+1uεδ∥L2 ≤ C ∥∇n+1ϕδ∥L1 ∥R∗

εu
ε
δ∥L2(Q) ,

due to the Sobolev inequality and the convolution inequality.

For shortness of notation, we write ∥⋅∥L2
ε
∶= ∥⋅∥Γε(ω),Q and de�ne

Iε1 = εn ∑(i,j)∈Eε(ω) ū
ε
ijψijbij

1

ε
⟦φ⟧∼ij .

For (i, j) ∈ Eε(ω) we introduce uδ,ij = uδ(Γεij(ω)) and ūδ,ij,ε = 1
2
(uεδ(P ε

i (ω)) + uεδ(P ε
j (ω))).

Then, we write

Iε1 = εn ∑(i,j)∈Eε(ω)uδ,ij,εbijψij
1

ε
⟦φ⟧∼ij + Iε2 , (55)

with

∣Iε2 ∣ ≤ C ∥∇φ∥∞ ∥ψ∥∞ ∥uδ − ūε∥L2
ε
∥b∥L2

ε≤ C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2
ε
(∥uδ − uεδ∥L2

ε
+ ∥uεδ − ūεδ∥L2

ε
+ ∥ūεδ − ūε∥L2

ε
)

Since ∥uδ − uεδ∥C(Q) → 0 as ε→ 0, we obtain from the Ergodic Theorem 2.5 that ∥uδ − uεδ∥L2
ε
→

0 as ε→ 0. Furthermore, uniform equicontinuity of (uεδ)ε>0
and the existence of a maximal

cell diameter from Condition 1.10 imply that for every η > 0 there exists ε0 > 0 such that
for all ε < ε0 we �nd ∥uεδ − ūεδ∥L2

ε
≤ η ∥1∥L2

ε
→ η∣Q∣µΓ,P(Ω). Furthermore, Condition 1.10

implies that the number of neighbors of a cell is bounded from above by nnα−n. Hence,
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we remain with

lim
ε→0

∣Iε2 ∣ ≤ lim
ε→0

C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2
ε
∥ūεδ − ūε∥L2

ε

≤ lim
ε→0

C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2
ε

⎛⎝εn ∑
Γε
ij∈ suppφ

[(uεδ,i − uεi)2 + (uεδ,j − uεj)2]⎞⎠
1
2

≤ lim
ε→0

C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2
ε

⎛⎝εn ∑
i∶Γε

ij∈ suppφ

(uεδ,i − uεi)2∑
j∼i 1

⎞⎠
1
2

= C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2(Ω;µΓ,P) ∥u0
δ − u∥L2(Q) .

For the �rst term on the right hand side of (55) we �nd by Theorem 2.6 that

− lim
ε→0

εn ∑(i,j)∈Eε(ω)uδ,ijψijbij
1

ε
⟦φ⟧∼ij = − lim

ε→0
εn ∑(i,j)∈Eε(ω)uδ,ijψijbij ν̃ij ⋅ ∇φ(Γεij(ω))

= −ˆ
Q

uδψ∇φ ⋅ ˆ
Ω

bν̃dµΓ,Pdx .

Hence we obtain

∣lim
ε→0

Iε1 +
ˆ

Q

uδψ∇φ ⋅ ˆ
Ω

bν̃dµΓ,Pdx∣ ≤ C ∥∇φ∥∞ ∥ψ∥∞ ∥b∥L2(Ω;µΓ,P) ∥u0
δ − u∥L2(Q) ,

which �nally yields (54).

The following proposition is our main two-scale convergence result and is at the heart of
the proof of Theorem 1.13.

Proposition 5.5. For a random tessellation (G(ω),Γ(ω)) that ful�lls Condition 1.10
with Q ⊂ Rn bounded and open cuboid and �xed ω ∈ ΩΦ let uε ∈ Sεper(ω,Q) with

1

ε2
∥⟦uε⟧∼∥2

L2(Q;µε
Γper(ω)) ≤ C

Then there are u ∈H1
per(Q) and v ∈ L2(Q;L2

pot(Γ)) such that:

R∗
εu

ε → u in L2(Q)
⟦uε⟧∼ 2s⇀ω ∇u ⋅ ν̃ + v

(56)

Proof. By Lemma 3.2 there exists u ∈ H1
per(Q) such that R∗

εu
ε → u strongly in L2(Q)

and ⟦uε⟧dHn−1 → ∇u in the sense of distributions along a subsequence as ε → 0. From
Lemma 5.2 it follows that there exists w ∈ L2(Q;L2(Γ, µΓ,P)) such that along a further
subsequence

1

ε
⟦uε⟧∼ 2s⇀ω w .
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Now take ψ ∶= φv with φ ∈ C∞
c (Q) and v ∈ L2

sol(Γ). Introducing the notation bij(ω) =
vij(ω)aij(ω) we obtain

1

ε
⟨⟦uε⟧∼, φvω,εaω,ε⟩Γε(ω),Q = −1

ε
⟨uε , (divPφvω,εaω,ε)⟩P ε(ω),Q

= −εn−1 ∑
P ε
i ∈Q

uε(P ε
i )∑

i∼j bij(ω)φ(Γεij)= −εn−1 ∑
P ε
i ∈Q

uε(P ε
i )φ(P ε

i )∑
i∼j bij(ω)ν̃ij ⋅ νij

− εn−1 ∑
P ε
i ∈Q

uε(P ε
i )∑

i∼j bij(ω)ν̃ij ⋅ νij (φ(Γεij) − φ(P ε
i )) .

Since divP b = 0 by Lemma 3.7, the �rst term on the right hand side vanishes. We denote
the second term as Iε1 and obtain

Iε = −εn−1 ∑
P ε
i ∈Q

uε(P ε
i )∑

i∼j bij(ω)ν̃ij ⋅ νij (φ(Γεij) − φ(P ε
i )) .

In what follows, we simplify notations. We write uεi ∶= uε(P ε
i ), ūεij ∶= 1

2(uεi +uεj), b̃ij ∶= bij ν̃ij,
φij = φ(Γεij) and φi = φ(P ε

i ) and obtain

ε1−nIε = − ∑
P ε
i ∈Q

uεi∑
i∼j b̃ij ⋅ νij (φ(Γεij) − φ(P ε

i ))
= − ∑(i,j)∈Eε(ω) [ūεij b̃ij ⋅ νij (φj − φi) +

1

2
(uεi − uεj) b̃ij ⋅ νij (2φij − φi − φj)]

= − ∑(i,j)∈Eε(ω) [ūεijbij⟦φ⟧∼ij −
1

2
⟦uε⟧∼ijbij (2φij − φi − φj)] . (57)

Due to the uniform size of the Voronoi-cells, we obtain that for every δ > 0

lim
ε→0

RRRRRRRRRRRε
n ∑(i,j)∈Eε(ω)

1

2ε
⟦uε⟧∼ijbij (2φij − φi − φj)RRRRRRRRRRR ≤ δ .

Using the last estimate and (57), Lemma 5.3 yields

lim
ε→0

Iε = −ˆ
Q

u∇φ ⋅ ˆ
Ω

bν̃dµΓ,Pdx .

Hence, we obtain in the limit:
ˆ

Q

ˆ

Γ

wψdµΓ,Pdx = −ˆ
Q

u∇φ ⋅ ˆ
Ω

bν̃dµΓ,Pdx .

Since u ∈H1
per(Q) we can apply integration by parts to obtain

ˆ

Q

ˆ

Γ

(wν̃ −∇u)φ ⋅ bν̃ a dµΓ,P dx = 0 .

This implies that for almost every x the function (w −∇u ⋅ ν̃) (x, ⋅) lies in L2
pot(Γ), i.e.

w −∇u ⋅ ν̃ ∈ L2(Q;L2
pot(Γ)).
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6 Proof of Theorem 1.13

Multiplying (20) by a function φ ∈ Sεper(ω,Q), and summing up over P ε
per,i(ω,Q), we

arrive at

− ∑
P ε
i,per(ω,Q)

(Lεωu)i φi = − ∑
P ε
i,per(ω,Q)

∑(i,j)∈Eε
per(ω)

1

ε2
aij(ω) (uj − ui)φi

= ∑(i,j)∈Eε
per(ω)

1

ε2
aij(ω) (uj − ui) (φj − φi) .

Hence, the equation (21) is equivalent with the discrete weak formulation

∀φ ∈ Sεper(ω,Q) ∑(i,j)∈Eε
per(ω)

1

ε2
aij(ω) (uεj − uεi) (φj − φi) = ∑

P ε
i,per(ω,Q)

f εi φi (58)

Let ω ∈ ΩΦ be �xed. Due to the Poincaré inequality (30) we �nd that

∥u∥2Sεper,0
∶= εn−2 ∑(i,j)∈Eε

per(ω)
⟦uε⟧2

ij

is a norm on the subspace Sεper,0. Since γ is bounded from above, this norm has the
property that

∥uε∥2
P ε(ω),Q ≤ ∥R∗

εu
ε∥2
Hs

per(Q) ≤ Cεn−2 ∑(i,j)∈Eε
per(ω)

⟦uε⟧2
ijγ

ε
per,ij(ω) ≤ C ∥uε∥2Sεper,0

. (59)

The Lax-Milgram Lemma hence yields a unique solution uε ∈ Sεper,0 to problem (58).
Testing (58) with φ = uε and using (59) and the lower bound on a yields the estimate

∥uε∥2
P ε(ω),Q ≤ C ∥uε∥2Sεper,0

≤ C ˆ
P ε

per(Q)
f εuε dµεP

and hence ∥uε∥2
P ε(ω),Q + εn−2 ∑(i,j)∈Eε

per(ω)
⟦uε⟧2

ij ≤ C ∥f ε∥2Sεper(Q) .

By Proposition 5.5 there exists a subsequence, not relabeled, and u ∈ H1
per(Q), v ∈

L2(Q;L2
pot(Ω)) such that

uε → u strongly in L2(Q) and
1

ε
⟦uε⟧∼ 2s⇀ω ∇u ⋅ ν̃ + v .

We choose ϕ ∈ ΦQ and w ∈ Φpot with ψw ∈ Cb(Ω) such that w = ⟦ψw⟧∼Om and de�ne
φε,ω(x) ∶= εϕ(x)ψw(τx

ε
ω). We use φε,ω as a test-function in (58) recall that ϕ ∈ Cc(Q)

and obtain for ε small enough that

∑(i,j)∈Eε
per(ω)

aij
1

ε
⟦uε⟧∼ij (ε 1

ε
⟦ϕ⟧∼ijψw(τPj

ω) + ϕ(P ε
i )w(τΓij

ω)) = ε ∑
P ε
i,per(ω,Q)

f εi ϕ(P ε
i )ψw(τPi

ω) .
As ε→ 0, we �nd that ε−1⟦ϕ⟧∼ij is uniformly bounded by ∥∇ϕ∥∞. Hence, the �rst term on
the left hand side vanishes as ε→ 0 and using two-scale convergence of 1

ε⟦uε⟧∼, we obtain
the following limit equation:

∀ϕ ∈ ΦQ, w ∈ Φpot ∶ ˆ

Q

⟨∇u(x) ⋅ ν̃ + v(x, ⋅) , awϕ(x)⟩Γ,P dx = 0 . (60)
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Given u ∈H1(Q), equation (60) admits the solution

v = n∑
i=1

∂iuχi , (61)

where χi are the same as in (39). Since ΦQ is dense in L2(Q) and Φpot is dense in L2
pot(Γ),

equation (60) also has to hold for all ϕ ∈ L2(Q) and w ∈ L2
pot(Q). The Lax-Milgram

Lemma then yields that the solution v is unique for given u ∈H1(Q).
Next, we use a test-function φ ∈ ΦQ in (58) and obtain the limit equation

∀φ ∈ ΦQ ∶ ˆ

Q

⟨∇u(x) ⋅ ν̃ + v(x, ⋅) , a∇φ(x) ⋅ ν̃⟩Γ,P dx = µP,P(Ω)ˆ
Q

fφ . (62)

We can use ∂iφχi as a testfunction in (60) and add the resulting equation to (62). Using
(61) and (39), this yields

ˆ

Q

ˆ

Ω

∇u ⋅Ahom∇φdµΓ,Pdx = µP,P(Ω)ˆ
Q

fφ ,

and hence u ∈H2(Q) and u is a strong solution of (22).
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