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On convergences of the squareroot approximation
scheme to the Fokker—Planck operator

Martin Heida

Abstract

We study the qualitative convergence behavior of a novel FV-discretization scheme
of the Fokker-Planck equation, the squareroot approximation scheme (SQRA), that
recently was proposed by Lie, Fackeldey and Weber [31] in the context of confor-
mation dynamics. We show that SQRA has a natural gradient structure and that
solutions to the SQRA equation converge to solutions of the Fokker-Planck equation
using a discrete notion of G-convergence for the underlying discrete elliptic opera-
tor. The SQRA does not need to account for the volumes of cells and interfaces
and is taylored for high dimensional spaces. However, based on FV-discretizations
of the Laplacian it can also be used in lower dimensions taking into account the
volumes of the cells. As an example, in the special case of stationary Voronoi tes-
sellations we use stochastic two-scale convergence to prove that this setting satisfies
the G-convergence property.

Acknowledgement. This research has been funded by Deutsche Forschungsgemeinschaft
(DFG) through grant CRC 1114 "Scaling Cascades in Complex Systems”, Project C05
"Effective models for interfaces with many scales”. 1 express my gratitude to a very
kind referee who pointed out to me the work by Mielke, Peletier and Renger on Markov
processes.

1 Introduction

In a recent work [31], the so-called squareroot approximation (SQRA) operator has been
introduced, based on earlier related works [17, 30]. The SQRA-scheme was introduced
as a finite volume scheme on a random Voronoi discretization designed for numerical
simulation of large molecules in the framework of conformation dynamics. Hence it is
interesting to know whether the SQRA-operator converges in some sense to a physically
reasonable continuous operator as the discretization becomes finer and finer. A major
contribution of this work is a positive answer to that question, i.e. that the SQRA-operator
converges to the (physically expected) Fokker-Planck operator, which is also known as the
Smoluchowski operator in conformation dynamics. Furthermore, we will see below that
the SQRA scheme possesses a gradient structure which is a natural discretization of the
gradient structure behind the Fokker-Planck equation discovered in [29]. The convergence
behavior will be considered for Dirichlet and for periodic boundary conditions.

In order to introduce the SQRA operator, let Q c R" be a bounded domain representing
the state space of a given molecule with a family of points (P;),_, , ¢ Q. From these
points we construct a Voronoi tessellation of cells G; that correspond to P; for every 1.
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M. Heida 2

We write ¢ ~ j if the cells G; and G; are neighbored. Thus, the finite volume space for
the discretization (Gi),., ,, is isomorphic to R™. Let u;(t) be the probability that the
state of the molecule lies in G; at time ¢ > 0 and consider the vector u(t) € R™. The
corresponding master equation reads

a(t) = u (1)

for a matrix Q € R™ ™ the matriz of kinetic rates or simply rate-matriz. If the evolution
of the molecule is Markovian, we obtain the master equation of the form (see Section 5.2
in [24])

i = ), (Qyiuy - Qijwi) | (2)

J~i

also known as the forward Kolmogorov equation of the molecule in the discrete phase
space R™. The corresponding backward equation n = Qn describes the evolution of an
ensemble of fQ n particles in the state space and has been analyzed in [31]. It turns out
that for 7 := exp (-4V') the rate 9;; is given by

Qi]:—/ O, 7TiI=7T(Pi)N/ .
T J8G,;ndG; G

Here, ® represents the flux in case V = 0. A crucial assumption for numerical efficiency
in [31] is that the mass of G; and of 0G; N 0G; are approximately constant among i and
(i,7). Since the problem in case V = 0 is isotropic, it is assumed that JfaGman P~ D,
for some constant <i>m, which only depends on the fineness of the discretization. Finally,
it is assumed that 7 ~ \/m7; on 0G; n 0G;, implying Q;; = @m\/ﬂj/m. Hence we may
reformulate (2) as

1

. 1 1
ui = (I)m Z\ /7TZ"/Tj (—Uj — —ul) y
j~i T i

with u; = m; being the only stationary solution. The latter, in turn, is the classical
statement of Boltzmann statistics [24|. Since we may write the operator on the right

hand side as
(u} VT
J

(Fnu), = P, Z

i~j

_
VY T
this operator is called the Squareroot Approximation Operator. In this work, it will be
written as

)7 ]:mﬂ':()’

(Fu), = d,, Z (u]% - uiﬂ) , (3)

where v; = \/T; = exp (—gV(PZ-)). As we will see below in Theorem 1.13, the natural

scaling of d,, is D, » Poe2, where ¢ is the characteristic length scale of the diameter of
the Voronoi cells. It turns out that ®4 can in principle be estimated from the case V =0,
i.e. from the discrete Laplace operator £,, which is given as

(Lo); =, 3 (=) (@)

More precisely, Theorem 1.6 states that the convergence behavior of F,, is mostly charac-
terized by the convergence behavior of L,,: If £,, is G-convergent (in the discrete sense)
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to Lu = V- (ApomVu), the solutions u,, of the equation F,,u,, = f, converge to solu-
tions Fu = V- (Apom V) + div (uApomVV') = f, provided f,, - f in a weak sense. Note
that the opposite direction is trivial: If the SQRA converges for all V e C2(Q) then
,Cm - V- Ahomv.

The derivation of (3) in [31] was done within the setting of conformation dynamics which
is an alternative approach to molecular dynamics. In molecular dynamics, the behavior
of a molecule is simulated using its Newtonian equations. Conformation dynamics uses a
“dual” approach: Instead of one single molecule, an ensemble of molecules is studied within
the energy landscape of the state space. Each region in the state space, corresponding to
one of the Voronoi cells G, is then occupied by a certain number |G;|n; of molecules and
Q;;n; is the flux of molecules from G; to G;. The adjoint QT operates on the probabilities
u; introduced above. A conformation is a subregion of the state space such that it is very
unlikely the molecule will leave this region. Hence a change of conformation occurs on very
large time-scales compared to thermal oscillations. On the other hand, these long-time
changes of conformation are crucial for the understanding of many biochemical processes.
In the discrete setting, the conformations can be identified from £ using Perron-Cluster
analysis [9]. The result is a set of conformations (C;),_, ;, a reduced matrix Q e RIX

and a linear equation C= C’{], where usually I << m. With the reduced matrix {], a large
time scale simulation is then feasible, which ignores thermal short term oscillations.

Let us note that in the 1-dimensional setting, the SQRA was already mentioned in [2]
and also more recently derived in [12, 11] from a completely different point of view using
entropy minimization methods. The resulting formula shows some similarities to the
Boltzmann collision integral (see e.g. [21]), but was not derived in this setting. Also there
is a relation to the Butler-Volmer kinetics, which we will not carry out in detail at this
point, but refer to [40]. We only note that the electrical current between two states can

be recast into an expression that has the form j, (:—7 - ﬂ).
J

Ur

The SQRA scheme was originally introduced under the restrictions that the underlying
grid is given by a Voronoi discretization and that the volume of the cells and the interfaces
is neglected. This was done in order to break the curse of dimensionality. Remark that the
phase spaces of molecules are of very high dimension (order 103) and even after significant
dimension reduction - already for dimension 6 - it is computationally not feasible to
estimate the respective volumes in reasonable time. However, the main theorems 1.6
and 1.8 only need that the underlying linear FV-operator G-converges and we could also
apply the convergence result to any finite element discretization of —A where the volumes
are incorporated into the weights af; in (9)—(10), which is interesting for low-dimensional
simulations (up to dimension 3). For the case of Voronoi-cells, there exists huge literature
[13, 15, 16, 38, 43| on the discretization of second order elliptic operators and the proofs
of convergence usually imply G-convergence.

1.1 The gradient structure of the SQRA equation

Interestingly, the SQRA possesses a gradient structure, which is asymptotically com-
patible with the gradient structure of the Fokker-Planck equation studied by Jordan,
Kinderlehrer and Otto [29]. In a recent work by Mielke, Peletier and Renger [37], it was
shown that (1) possesses a gradient structure for the energy potential ££ and dissipation

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin, May 9, 2017 /rev. May 24, 2018



M. Heida 4

potential ¥* given through
E(u) = Z U; ln — (5)
U (u,é) = Z > Vuiu; Q95 (cosh (& - &) - 1), (6)
i i~j

iff the process is weakly reversible (meaning 9;; > 0 iff Q;; > 0). In particular, this means
that
W(t) =uQ = 0 V; (u, —-DEZ(u)) .

In the setting of this work, the above gradient structure can be verified from D, &, (u) =
sIn 2+ 1 and
O, VI (u,€) = 572@0— > g (—exp (& - &) +exp (& =)

1“‘]

where we used that ®,, ~ ®oe~2 and hence 0Q;;Q;; » ®2e~*. This yields

exp (-2 1In =2 lipw
O, V: (u, ~DE(u)) = 72Dy Y. \Jusu; | - ( ? u) exp (3 W)
i~j eXP(—iln e exp( +1n Tr—)
_ U; Uj Uj U;
St WENERENEY
= (QTu)i.

The formal limits of ££(u) and UZ as € - 0 are given by
1 1
e [ gumZ. w3 [ ulvel, M
Q 4 Q

where we used that (formally) \/wu; - u and e2cosh (& - &) » £72 (& - &)* — |vE[* for
ever finer discretizations of size e. This is the setting in [29] but the chemical potential
Inu has already been used before by DiPerna and Lions [10] for analysis of the Boltzmann
equation. Hence, Theorem 1.8 can be interpreted in a sense that solutions to the gradient
flows with respect to (5)—(6) converge to a solution of the gradient flow with respect
to (7) provided the underlying linear operator G-converges. However, we do not prove
(evolutionary) I'-convergence of (5)—(6) to (7).

A related ansatz for a discrete Fokker-Planck equation by Chow et.al. [6] and Maas|32]
uses the same energy but a different dissipation potential. In the resulting discrete equa-
tion appear nonlinear terms which are not well suited in numerical calculations. A further
related approach by Mielke [35] in one space dimension comes up with the same discretized
equation as the SQRA.

1.2 The linear finite-volume operator

Voronoi finite volume schemes for Fokker-Planck equations are used widely in literature.
A first breakthrough for those methods was the Scharfetter-Gummel scheme [42|, which
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has been used extensively in the simulation of semiconductor devices, though the idea even
goes back to a work by Macneal [33]. These approximation schemes use the knowledge
on the volumes of the cells and the interfaces, as their aim is a simulation in spaces of
low dimension (up to 3) while SQRA has been developed for high dimensions. Hence,
we cannot use the convergence behavior of the discrete linear operators derived for such
low dimension. In contrast, we will use methods from homogenization theory such as
G-convergence in the sense of Dal Maso [7]. However, as mentioned above, our result
can also be applied to the classical Voronoi discretization in the above sense, since these
discretizations also G-converge.

As an example for a non-classical discretization scheme without volumetric terms, we will
study the exemplary case of a stationary ergodic partition with Voronoi cells in Theorem
1.13 and show that this operator is G-convergent. The scheme in [14] suggests that P,
sometimes is “reasonably close” to such a stationary ergodic process and the results in
[14] show that the discretization (3) has good properties in application. In the general
Theorem 1.6 we prove convergence of (3) under the assumption that the discrete Laplace
operator G-converges. Moreover, Theorem 1.6 tells us that the normalizing constants in
(4) and (3) should be the same. Hence, in numerical application, one can determine C,,
by comparing the first eigenvalue of L, with the first eigenvalue of A. On the other hand,
this ansatz provides us with a practical criteria to qualitatively validate the convergence
of F,, apriori. More precisely, we can expect that the numerical approximation is good if
—Lu~ —CAu for the first k£ eigenvectors of —A on Q.

The stochastic homogenization of the discrete Laplace operator (also known as homoge-
nization in the random conductance model) has been studied very well in recent years, as
it is of great interest for physicists (see [4]) and mathematicians (see [3]). The motivation
originally comes from random walk theory, where the elliptic operator is the generator of
the semigroup generated by the random walk.

In view of the vast literature on stochastic homogenization of elliptic problems, Theorem
1.13 is not a surprising result. However, we are not aware of a suitable proof in literature
that applies to this particular setting. The method used in order to proof Theorem 1.13
is a weak* convergence method called two-scale convergence. It is based on the two-scale
convergence introduced by Zhikov and Piatnitsky in [44] and generalized and applied in
the context of random walk theory in the works [18, 19]. In a slightly different way,
two-scale convergence has also been applied in [34].

A novelty of the theory presented below is the application of two-scale convergence to
a grid that differs from Z", which made it necessary to modify certain notions and con-
cepts. In this context, note that our spaces Lfm and L2 indeed differ from the standard
definition in [3], as we drop for example the covariance condition. Another approach to
unstructured grids has recently been followed by Alicandro, Cicalese and Gloria [1]. They
study homogenization of nonlinear elasticity problems and in the quadratic case their
result could also be applied to the elliptic operator L,,, yielding somehow a different con-
cept of notation (i.e. I'-convergence) and a formally different formulation of the limiting
matrix Aypom.

For further reference to the random conductance model, we refer to the aforementioned
review by Biskup [3].

Let us finally comment on the convergence rate. We will only prove qualitative con-
vergence and the question of quantitative convergence is completely open. However, we
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know from literature on stochastic homogenization of the continuous and the discrete
Laplace operator that the best convergence rate we can expect is 2 in presence of Dirich-
let boundary conditions, see the above mentioned literature for Voronoi F'V-methods, and
e for unbounded domains or periodic boundary conditions, see the recent work [20] and
references therein. Since the Fokker-Planck equation is a linearly perturbed Laplace equa-
tion, we expect the same convergence rate for the SQRA-operator as for the underlying
discrete Laplace operator. However, for the discretization presented in this work, the
author is not aware of results for the convergence rate of the discrete Laplace operator.

1.3 Main results

We now formulate the major results of this article in a rigorous way. For a definition of
the notions stationarity and ergodicity, we refer to Section 2.

For every € > 0 let P¢ = U,y P7 be a countable family of points in R™ with corresponding
Voronoi cells G¢ := U; G5. We denote by E¢ the set of all natural pairs (7,7) € N? such
that G and G5 are neighbored where we identify (4,7) with (j,i) and write i ~ j. For

(27]) € E¢ we define F;:J = % (PZ‘s +Pj§).

Notation 1.1. We denote by S¢ the set of all functions (F;), — R which is a Hilbert
space with the scalar product

(907 ¢>55 = Z (pzwz .

For every u € 8¢ we write uf := u(Fy) and for every f: I'* - R we write f7 = f(I7)).
Furthermore, we write uf; := % (ul8 + uj) such that g, : I'* - R.

We define R.: L? (R") — 8¢ and its adjoint R} : S - L7 (R") through
(Re), = !Gfll/ ¢,  and (Riw) [z] =w(P?) if zeGe,
o

If (i,7) € ¢, we denote JG7; the interface between Gf and G5 and v;; the unit vector
pointing from Pf to P;. Hence, we find v;; = —1j;. Furthermore, we define

ree= J TI§;  and  0G°:= |J 0Gj;.

(i,4)eEe (i,5)eE®

The jump operator on 9G;; for a function u € S¢ is given through [u];; := (u; —u;). Then,
for every ¢ € §¢ and ¢ € C}(R™)" it holds:

| ®oyvvic-2 3 [ onvae-- 5[ folgvaen,

i i~g BGZ‘ (i,j)eE® acfj
where we introduced [¢];; = [¢]i;vi5 = [¢];iv5i, which is invariant under the transformation
(i,7) = (4,7). Hence, the operator [¢]dH" ! is a distributional gradient of R ¢. Moreover,
for ¢ € §¢ the quantity [¢];; can be equally interpreted as a function on I}
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SQRA and Fokker—Planck 7

The general case

On a given bounded Lipschitz domain @ and for a given family of points F., strictly
positive numbers af; and a bounded continuously differentiable function v € C'(Q) with

v#0on Q, we consider the following two operators on u € S¢:

1

(Lou), = - . E):E ag; (uj - uf) , (9)
1,7)€b®
(Fu), = l Z as; usv—f—ug—i (10)
S e e T\ )

where we use the Notation 1.1.

Condition 1.2. For a bounded Lipschitz domain Q and every € > 0 let (Pf);ey be a
family of points in R” and let (G)y be all Voronoi cells that intersect with Q. We say
that (Pf);ey is admissible if there exists a > 0 such that

Ve>0: assingdiameSsupdiameéé, (11)
€ ieN

where diam G5 and diam G5 denote the minimal and the maximal diameter of the cell G5,
respectively.

Corollary 1.3. Let Q be a bounded domain and let sup;diamG; < e, then for every
ue L2(Q) holds (R:R-u) - uw in L*(Q) as e — 0.

In fact, Condition 1.2 is already sufficient to proof unique existence of solutions to the
SQRA scheme, as we will see in the proof of Theorem 1.6.

Definition 1.4 (G-convergence). Let Q be a bounded Lipschitz domain. For every € > 0,
let P¢ be a family of points with strictly positive numbers af;. We call (P?).., and ag;
G-convergent if there exists a symmetric positive definite matrix Ayo, such that for every
f € L2(Q) the sequence of unique solutions u¢ € S§(Q) to the problem

Lo =R f
satisfies Ru® — u strongly in L2(Q) where u e H2(Q) n Hj(Q) solves
VA (AhomVU) =f. (12)

Definition 1.5. A sequence of functionals F* : L?(Q) — R is weakly (strongly) I'-
convergent to a functional F': L?2(Q) — R if

1. u® — u weakly (u® — u strongly) in L?(Q) implies

F(u) < hmionf Fe(u®),

2. For every u € L?(Q) there exists a weakly (strongly) convergent sequence u® — u
(uf - u) such that
F(u) =limsup F*(u®) .

e—0
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The notion of G-convergence comes from homogenization theory, see [7, 28, 39]. Our
definition coincides with the general definition of Dal Maso [7]| applied to the particular
setting of this work. Note that the Dirichlet-version of Theorem 1.13 below guaranties that
the class of G-convergent point processes is not empty. As Dal Maso shows in Theorem
13.5 of his book [7], the G-convergence of P¢ implies weak I'-convergence of the functional
F# to the functional F, where

F(w) = (Reu, LRas . F(w)= [ Tu- AV
Q

Furthermore, F*¢ strongly ['-converges to F' iff A\ + L& is G-convergent for some p > 0
(Theorem 13.6).

Theorem 1.6. Let QQ c R™ be a bounded Lipschitz domain and for every e > 0 let P¢ be a
distribution of points on R™ with strictly positive numbers ag; such that (P#)..g satisfies
Condition 1.2 and a™' < af; < a for some a > 0 and for every e > 0, (i,j) € E°. Let
v(zx) = exp (—%BV(x)) for some bounded and twice continuously differentiable function
V € C2(Q). Then, for every e >0 and f¢ € S¢ there exists a unique solution u® € S5(Q)
to

-(Fu), = fi VP Q. (13)

satisfying the estimate
* 2 * 2 el12 2
IR:w T2 + IRE (L0 2y < C (115 Ivleag)) - (14)

If (P#)_., additionally is G-convergent and R} f¢ — f weakly in L?(Q), then there exists
a function uw e HY(Q) such that Riu® — u strongly in L*(Q) and [us]|dH" ' - Vu in the
sense of distribution as € - 0. Furthermore, u is a solution to the problem

-V (Apom V) = V- (AhomufBVV) = f . (15)

Remark 1.7. A critical point in our studies is the assumption of a bound on the potential
V', which might not exist in application. Note in this context, that the proof of The-
orem 1.6 formally remains the same for V' bounded from below, but unbounded from
above. This holds since Step 3 of the proof holds for arbitrary v, as long as v is bounded
continuous. However, the transformed operator

1
SN e (U7 -U5) = £

€7 (ij)ebe

becomes degenerate and one needs to spend more work in the derivation of proper apriori
estimates for U¢ and u = (v°)” U#. Note in particular, that this involves weighted discrete
Sobolev inequalities and, at least in the current version of the proof, also different notion
of G-convergence, due to the lower regularity of U¢. This lies beyond the scope of the
present work, aiming at the presentation of the SQRA to a broader audience. On the
other hand, let us note that one can often reduce the problems of large molecules to a
problem in a few angles neglecting variations in the distances of neighbored atoms. In
these reduced spaces, V usually is bounded both from above and from below.

What we have found so far is that the solutions of
eV (us, —DEL(u7)) = f°
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SQRA and Fokker—Planck 9

converge to solutions of

O™ (u, -DE(u)) = f .

However, we are interested in the homogenization limit of solutions of the full gradient
system (5)—(6) to solutions (7). This is given by the following result. However, note that
we will not discuss the evolutionary I'-convergence of the gradient systems in the sense of
Sandier-Serfaty [41] or Mielke [36]. This is left to a future studies.

Theorem 1.8. Let Q c R™ be a bounded Lipschitz domain and for every € > 0 let P¢
be a distribution of points on R™ with strictly positive numbers a;; such that (P9) g
satisfies Condition 1.2 and is G-convergent and a™! < a;; < a for some a >0 and for every

e>0, (1,7) € E5. Let v(x) = exp (—%ﬁV(l‘)) for some bounded and twice continuously
differentiable function V e C2(Q) and for every ¢ > 0 let f € L2(0,T;S5¢) and uf € S¢
with

sup IR0l gy 27 20, = 16,0 < o

Then, there exists €9 > 0 such that for every € < eq there exists a unique solution u¢ to
Ou; — (Fyus); = f - (16)

If Ry fe — f weakly in L*(0,T; L*(Q)), then

T
* 2 % 2 n—
Slip (]@Rgf HLQ(O,T;LQ(Q)) +|R: (ﬁaus)HLQ(O,T;LQ(Q)) +/0 en? Z(Ug,j - Uf),i)Q) <o

i~j

and there exists a function u € L2(0,T; Hj(Q)) with Ou € L2(0,T;L*(Q)) such that
Riuf — w strongly in L?(0,T;L*(Q)), O:R:u® — 0w weakly in L*(0,T;L*(Q)) and
Hus]dH ™ - Vu in the sense of distribution as ¢ -~ 0 and u is the unique solution
to the problem

at'LL -V- (Ahomvu) -V- (Ahomuﬁvv) = f . (17)

We will prove the Theorems 1.6 and 1.8 in Section 4.

Remark 1.9. Theorem 1.6 and 1.8 can also be formulated an proved with periodic bound-
ary conditions on a rectangular domain. The modification of the proofs are minor and
straight forward.

The stationary ergodic case

Let (£2,.#,P) be a probability space and let w —» P(w) = (P;(w)),n be a stationary
random point process on R”. We then define P?(w) := eP(w) and construct from P¢(w)
the sets Gj;(w), I'*(w) and E*(w) according to the beginning of Section 1.3.

Condition 1.10. Using the notation of Condition 1.2, a Voronoi-tessellation (G;);en,
based on a point process (F;);n is admissible if there exists a > 0 such that

a < infdiam G; < supdiam G; < 1. (18)

¢ i
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A similar condition has been imposed in [1]. Note that if P(w) satisfies 1.10, this implies
that P¢(w) satisfies the admissibility Condition 1.2.

If Q is a cuboid, we denote Ps,., (Q,w) the periodization of QnP?(w). From the Q-periodic
point process Ps..(Q,w), we construct G5,.(Q,w), I'5..(Q,w) and Ef,. (Q,w) according
to the beginning of Section 1.3. Furthermore, we set St..(Q,w) the set of all functions

P:.(Q,w) - R that are Q-periodic. The operators R. and R are defined on S5..(Q,w)
in an obvious way. Furthermore, we denote H}. (Q) the set of all H'(Q)-functions with

periodic boundary conditions.
Remark 1.11. Note that for the periodized point process and the corresponding Voronoi

tessellation the Condition 1.10 is still satisfied with « in inequality (18) being replaced
by §

For the stochastic results, we will need the following Assumption.

Assumption 1.12. The random positive numbers a;j(w) are such that the measure
HaT (w) *= Z ai]’(w)éru(w) (19)
(t.3)eB(w)

1$ a stationary and ergodic random measure.

If a;;(w) = 1 for all (¢, j) and almost every w, this implies that the point process (P;(w) ),y
has to be stationary and ergodic. If we work on the periodized lattice, we set a;; = 1 for

every (i,7) € E5..(w)\E*(w). Then, we define the following discrete elliptic operator:
1

(Low)= 20 Zay(w) (u-w). (20)
(i,§)€Efer (w)
Since we work on periodic boundary conditions, we will restrict ourselves to the following
function space

Sper (@, w) = {u €Su(Quw) ) u(F)= 0} :

PfePs, (w)

The operator L, admits the following asymptotic behavior on §;_ 1(Q,w).

Theorem 1.13. Let the point process P(w) almost surely satisfy Condition 1.10 and let
the random numbers a;;(w) be such that 0 < ¢! < a;;(w) < ¢ < 0o almost surely for some
positive constant ¢ and such that Assumption 1.12 holds. For such w let f€ € Sger’O(Q,w)
be a sequence of functions such that R:f¢ — f weakly in L*>(Q) for some f € L*(Q).

Then for almost every w the sequence uf € SgerO(Q,w) of solutions to the problems

Lo = f° (21)

has the following properties: There exists a function u € H}., (Q) such that Riu® — u
strongly in L2(Q) and [uf]dH"™' — Vu in the sense of distribution and as € — 0.
Furthermore, ue H}, (Q) n H?(Q) is the unique solution to the problem

per
Vv = [ uso, (22)
Q
where Apom 18 defined below in (39).

Theorem 1.13 evidently implies G-convergence according to Definition 1.4. Note that
it can also be formulated and proved for Dirichlet boundary conditions. In the latter
case, the proof turns out to be simpler which is why the Theorem was formulated for the
periodic case.
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2 Ergodic Theorems for Voronoi-tessellations

In this work, we rely on the following assumptions.

Assumption 2.1. Let (2, %, P) be a probability space. We assume we are given a family
(72 )zern of measurable bijective mappings 1, : 2 — ), having the properties of a dynamical
system on (Q, F,P), i.e. they satisfy (i)-(iii):

(1) Ty © Ty = Tywy » To = id (Group property)
(ii)) P(t_.B)=P(B) VreR" BeF (Measure preserving)
(iii)) A: RPxQ - Q (z,w) = 1w is measurable (Measurability of evaluation)

We finally assume that the system (T, )zern 1s ergodic. This means that for every measur-

able function f:Q — R there holds
[f(w) = f(T,w) Yz e R" [ a.e. we Q] = [f(w) =const for P—a.e.weQ]. (23)

In what follows, we recapitulate parts of the theory from [8]. Given a stationary point
process (1), we define I';; (w) := L(Pr+ pjs) the midpoint of the straight line connecting

P¢f and P?f and
! J 1 1)
(w):= U Fij(w).
(4,3)eE=(Q)

The measure pp = ), dp, is stationary and the mapping w = pp(.)(B) is measurable for
every open set B c R". Similarly, we can define ur) = ¥(; j)ep(w) or;; (») having the same
properties as pp. Hence, ppy, pire) and pare from (19) are random measures, i.e.
measurable mappings 2 - M, where M is the set of all Radon measures on R” equipped
with the vague topology and corresponding o-algebra.

Hence, for fixed w, the mapping w = p, = farw) + fpw) s a random measure and
therefore (u(2), u(.%), u#P) is a probability space with respect to the vague topology.
Due to this observation, we may assume that {2 ¢ M and P is a probability measure on
M. This has the advantage that M with the vague topology is a complete separable
metric space. Hence the o-Algebra .# becomes separable and the set C,(§2) of bounded
continuous functions is dense in LP(£, 1) for any 1 < p < oo and any finite measure p on
M. Finally, we observe that the mapping R” x M - M, (z,w) = 7,w is even continuous
(see |22]).

Theorem 2.2 (Existence of Palm measure [8]). Let w — w, be a stationary random
measure. Then there exists a unique measure jip, called Palm measure of u, on €2 such
that

/Q Rnf(w,uw)dﬂw(x)dp(w):/"/Qf(x’w)dup(w)dx

for all L ® pp-measurable non negative functions and all L ® up- integrable functions f.
Furthermore for all Ac ), ue LY, up) there holds

i) = [ [ a@ratra)dn)ap 1)
/Qu(w)d,up :/Q/n g(z)u(rew)dp,(x)dP
for an arbitrary g € L*(R™, L) with [, g(x)dx =1 and pp is o-finite.
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Definition. We denote ppp and prp the Palm measure of j1p and pr respectively.

An application of the classical Radon-Nikodym theorem yields the following result. For
a proof, we refer to |22, Lemma 2.14].

Lemma 2.3. There exists a measurable set P c Q with Ip)(x) = Ip(1ow) for L+ pipe-

almost every x for P-almost every w. Furthermore P(P) = 0 and ,up,p(Q\]s) =0. The
same applies to T'(w).

Lemma 2.3 will not be used below, but it highlights the strong interaction between a point
process and its Palm measure. However, the same proof also yields the following result,
which we will use frequently.

Lemma 2.4. Let w — ji1,, and w — pa,, be two stationary random measures such that for
a.e. w it holds i1, << pio. Then the corresponding Palm measure j1np and pop satisfy
pp < pop and there exists a measurable function fio: 2 — R such that pyp = fi2p2.p.

Hence, if pp denotes the Palm measure for p,,, we find ppp = Pup. Furthermore, we
find existence of measurable functions a : € — R such that a;;(w) = a(mr,w)w) and
tar p = aprp. Finally, the following theorem is essential for all following calculations.

Theorem 2.5 (Ergodic Theorem [8]). Let the dynamical System 7, be ergodic and assume
that the Palm measure up of the stationary random measure p,, has finite intensity. Then,
with ps,(B) = e™u,(e71B), for all g € L1 (2, pup) it holds

lim [ g(reduc (@) = 14 | a()aun() (25)

for P almost every w and for all bounded Borel sets A that contain an open ball around
0.

From the last result, one can derive the following generalization.

Theorem 2.6 (|23|, Section 2). Let the dynamical System 1, be ergodic and assume
that the stationary random measure p,, has finite intensity. Then, defining ps (B) =
e, (e71B), it holds: for all g € L'(Q, up) we find for P-almost every w, and all ¢ €
C.(R™) that

lim [ g(roe@ii() = [ [ g)pdune)de. (20

Lemma 2.7. Let the point process P¢(w) be stationary and such that Condition 1.10
holds almost surely and let Q be an open cuboid that contains 0. Then for P-almost every

w it holds for all ¢ € Cper(Q) that

e Y o) = | [ e@)dunpds. (27)
QJao

0 L.
TV (1)eES e (w)

Proof. Let n >0 and ¢, € C.(Q) such that 1 > ¢, >0, ¢, =0 on Q\(1-7)Q and ¢, =1 on
Q, = (1-2n)Q. Define p,(B) := £" ir=(w)(B) and e, (B) = €"pre, () (B) -
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Since sup; diamG; < oo, we can find g, > 0 such that for all ¢ < g, it holds u, = ps,, ,

on supp¢,. Due to Condition 1.10, the integral us,, , ((1+ Qn)Q\Qn) is bounded from
above by Cn for some constant C' that does not depend on 7. Hence from Theorem 2.6
one obtains

iy | (@) [ [ pla)dup do
=vJQ QJQ

<ty [ ¢0,diiere) - [ [ condup do
=vJa QJQ
+ el limsup e, (1+20)Q\Q,) + oo, [(1+20)Q\Q, |
< el Cn,
where C' does not depend on 7. As n >0 was arbitrary, statement follows. m

3 Function spaces and the effective matrix Ay,

3.1 The jump operator

Let ue H. (R") and ¢ € C}(R";R"). Then, ¢ and V- ¢ are uniformly continuous on the

support of ¢ and for € > 0 we find in view of Corollary 1.3

- / [Reu]- pdH™ = / (RIRA) V-
0G= (w)

G*(w)

—>/nuv-¢=—/nvu'¢- (28)

This implies that [R.u]dH"! - Vu in the sense of distributions as € - 0.

The convergence (28) requires more attention, as this is the convergence behavior we
expect for the solutions of equations (13) or (21). We start denoting v;; := £![0G?;| and
quoting a Poincaré inequality due to Hummel.

Lemma 3.1 (Compactness property, see also [26]). Let Q be a bounded Lipschitz domain
in R™ with Lipschitz boundary and let the families of points (Pf)en satisfy Condition 1.2.
Then, for every s €]0, %[ there exists a constant Cy independent from e such that for every
e >0 and every uf € S§(Q):

| Rz

(@) < Cs (gn2 > [[ue]]?j%j)' (29)

(1’7])EE€

If Q is a cube and u® € S5, (Q,w), the following relation holds:

per

| Rz

2
%fser(Q) < Cs (5n_2 Z ( )[uaﬂgj%j(“}) + (/QREU‘5 dﬁ) ) . (30)

(i.5)eEy
The constant Cs only depends on the constant « in (11) resp. (18) and the dimension.
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Sketch of proof. Inequality (29) is a direct consequence of |26, Proposition 3.16] (a peri-
odic version is given in [25]), noting that for functions u® € Sp(Q) it holds

g”_2 Z [uaﬂw,yz] —1 [[ua]]Q den—l )
(i-j)eb oG*

Inequality (30) now follows from [26, Proposition 3.16] and Remark 1.11, since I'{_ (w)
and G¢,,(w) satisfy Condition 1.10 with a a replaced by §

per

Using Lemma 3.1, we obtain the following result.

Lemma 3.2. Let Q be a cube, (G5(w))ien a random Voronoi-tessellation satisfying Con-
dition 1.10 and u® € S§5..(Q,w) a sequence such that

2
( S [T ( [ Revie] )s c 1)
(1,)eE5 e (Qw) Q

for some C independent from €. Then there exists a subsequence, not relabeled, and
ue H (Q) such that Riu® — u strongly in L?>(Q) and [u]|dH" ' — Vu in the sense of

per
distributions as € - 0. Furthermore, it holds
) . n—

”VU HLZ(Q) < ChIEILIOIlf€ 2 Z [U }]m’Yper 2]( ) (32)

(1) €Brer ()
for C = pur p ()7 supy; ;7.

Proof. Due to Lemma 3.1, we find u € L?(Q) such that R*u® — u strongly in L?(Q) along

a subsequence. Furthermore for every ¢ € CJ.,(Q;R™) we find

—/ [u] - pdH™ " =/ (REuF)V - ¢ —>/ uVv-o. (33)
QNIGE, (w) QNG5 (w) Q

Using first the Cauchy-Schwarz inequality with (31) and then the boundedness of 7;; and
equicontinuity of ¢ we have

/ (0] G
QnIGS, (w)

<(C3 (5 / ¢2dH"‘1)
G0 ()

1
2
sc%supmﬁ(s” > cb?j) +C,
iJ

(7)€ B er

where 7 as a modulus of continuity of ¢ is arbitrary small if ¢ is small enough. In the
limit £ - 0, Lemma 2.7 and (33) applied to the last inequality becomes

/uV-qb
Q
Since C

1.(Q) is dense in H, (Q) this implies Vu € L*(Q) and (32) (see Brezis [5,
Proposition 9.3]).

Equation (33) together with fQ uv-¢=- fQ Vu- ¢ proves [u]dH" ! - Vu in the sense of
distributions as € = 0. O]

< O3 sup )2 (ur,p(Q) /Q ¢2) : (34)
ij
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Lemma 3.3. Let Q be a cube, (G5)ien be a family of Voronoi-tessellations satisfying
Condition 1.2 and u® € S5(Q) a sequence such that

(8"‘2 >, [[ue]]zﬂm)
(if)e e

for some C independent from €. Then there exists a subsequence, not relabeled, and
ue H}(Q) such that Rius — u strongly in L?>(Q) and [uf]dH"' - Vu in the sense of
distributions as € - 0. Furthermore, it holds

HVuEHiQ(Q) < Climinfe™2 g [[uﬂ]ljfy”
e—0 (i.))eE
1,7 JEEE

Proof. The proof follows the lines of the proof of Lemma 3.2, except for equation (34),
where pp p(€2) is replaced by n*a ™. O

The distributional gradients [-]dH" ! are vector-valued. However, at every edge (i,7) €
E#, the jump [u] of a function u € §¢ is oriented only along the direction v;; = —v;;. Hence,
for every (i,7) € E¢ the set {[u];; : we 8¢} spans a 1-dimensional space, which suggests to
work with the scalar quantities [u];;-v;; instead of [u];;. However, the quantity [u];; - vy
is not invariant under the permutation of i and j. Thus, we introduce the following
definition.

Definition 3.4 (Normal Field). Let ey = 0 and (e;);-1..» be the canonical basis of R™.
Define:

={veS" | 3Ime{l,n}:v-e=0Vie{0,1,,m-1} and v-e,, >0}
Thus, for every v € S*~! it holds v € D" if and only if —v ¢ D71

For each (i,j) € E° let 0;; = vy if v;; € D*! and 0 = vj; = —v;; if vj; € D1, Hence,
U;; = Uy; is stationary and invariant under the transformation (i,j) - (j,4). Note that
v;; and 7;; do not have an index ¢ for simplicity of notation as they will only be used in
context with other quantities having an index e. In case E¢(w) and E%, (w) the normal
field is defined accordingly.

per

Using 7 we define the invariant field [u]j; == [u]i; - #;. The operator [-]* then defines a
linear operator

SE e L?OC(F€7/’L%)

or per(va) loc(Fper(va);Mi‘(w%per)

with 5 defined in (36) below. We are interested in the adjoint operator (with respect to
the topological structure in Section 3.2), which we denote —divp := ([-]*)" and which can
be calculated as follows:
Given u € 8¢ and ¢ : I'* - R having compact support in Q, we use [u];; = ujv;; + wvj; =
[u];;7i; to get
o [ulsoiy = Y0 [uls;v - v
(i,)eE (i,j)eE
= D (Wi +wvy) - U
(i,j)eE

= D Ui ) Vi ygdig = = Y i ) vig - Uiy
% J~ i J~i
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Hence, we obtain

(divpo), Z Vij - Vij®ij - (35)

The calculations for the case of periodic functions S5..(Q,w) and ¢ : I's, (w) - R are
similar.

Remark 3.5. The definitions of the operators [-]~ and divp are coupled to the choice of
the point process P°¢ and also vary with scaling e. However, they do not scale with the
parameter €. More precisely, for u € §'(w) and u* := u(%) we have uf € §(w) and

[u]"(2) = v ().

while for functions ¢ € C*(R") and the usual gradient we have V@(Z) = eVe©(z).

3.2 Function spaces

In the rest of this paper, we will frequently use the following measures

,Ui: = Jupe i= en Zépis , M%‘ = lUre = cn | Z 5F§j ) (36)
€N (4.4)eE®

and use them to introduce the following scalar products:

(1,00 pe g = (1, 0) g g =" Y u(PE) u(PF) = / w(w)o(e) dup- (z)

PfeQ

(U, V)pe g :=€" > w(Ts;) o) = /u(x)v x) dpr-(x)

FS eQ

with the corresponding norms || p. o and ||| o on S5(Q) := L*(Q; pp-) and L*(Q; pure).
By an abuse of notation, we also write (u,v)s. 5 resp. (u,v)p. o for the pairing of L!-
and L* functions. We emphasize that due to the discrete character of the measures pp-
and pre every integral with respect to one of these measures over a bounded domain
corresponds to a finite sum and we will frequently make use of this duality. In particular,
we emphasize that for u e C(Q):

e" > u(Pr) = /u(w)d,ups(x) en Y u(F%)z/Qu(x)dups(x),

PFeQ I5eQ

and we choose the notation depending on what aspect seems suitable for presentation.

If the point process P(w) is stationary, so is the measure w = Lyc(w) == H* (- N 0G(w))
and the measure fi,rw) = i j)epw) Vi (W)Or, w), Where v;(w) = [0G;(w)|. Then, by
Lemma 2.4 there exists a measurable function v : Q — R such that v;;(w) = 7(71,;(w)w)-
Furthermore, by Condition 1.10, 0 < v;;(w) < C < oo for some constant C' independent
from w. By Lemma 2.4 we find

7:Q—-R" such that 7y(w) = (7, @wyw) - (37)

In the periodic case we similarly construct I';, (Q, w) 0G5, and 75, .. (w), where 77 +(w)

per
are the interface volumes of e710G¢,, on the torus Q/e.
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For every f e Cp(f2) and fixed w € § for the functions f,(z) := f(rw) and f,.(z) :=
f(rzw) it holds f, € Cy(R"). Furthermore, by the Ergodic Theorem, for every f €
Lr(Q2, ppp) it holds f, . € L] (R™; ppe(.)) for almost every w € © and every . The same

loc

holds for f e LP(2, pur p) where f, . € L} (R™; ure(,)) for almost every w € Q and every e.

Hence, for every f e C,(€2) and fixed w € 2 and the expression [ f]g,, (w) = [f.]7(0) is well
defined provided 0 € I'(w). Therefore, [f], (w) is prp-almost everywhere well defined.
In a similar manner, we may define divp,, as an operator on Cy,(€2;R") via the realizations
and equation (35). We observe that [-]g, is a linear operator from C,(£2) to L*(2; purp)
and like for the operator [-]~ on R™ we claim that —divom, = ([-]5,,)" also holds on Q.

Similar to the above scalar products for function spaces on R”, we define the following
scalar products for function spaces on €

(U,U)P’,PZZ/UUd/LPJD, (U,U)FVPZZ/'UJ'UCZ,LLF;]).
Q Q

Lemma 3.6. For every u € Cp(2), f € LY(Q, urp; R™) with divonf € LY (Q, upp) and
every ¢ € C.(R™) it holds for almost every w e Q

hIIOl " (diVP (fw,a%a) ) uw,e)ps(w) = / QO(ZL') (diVOmfa u)P,P dz .
& Rn
The same holds if ue LY(Q, ppp), fe Co(;R™).

Once Lemma 3.6 is proved, one easily obtains the following corollary.

Corollary. The operator —divoy, : L2(Q, prp; R™) — L2(Q, pupp) is the adjoint of [-]5,,-

Proof of Lemma 8.6. We define fi;(w) := f(7r,@ww) = f(Trgj(w)/Ew) and u;(w) = u(Tpw)
as well as ¢f (w) = o(Ff (w)) and ¢f;(w) := o(I'j;(w)). For readability, we omit w whenever
possible and observe that

(diVP (fw,s%f?) ) uw,E)ps(w) =" Z U; Z fijyij : ﬁij@fj

PfeQ  i~j

=" ) wi ) figviy Vgl € 3 wi ) figvii v [ - ei] o (38)

PfeQ  i~j PfeQ  i~j

For the first sum on the right hand side of (38) we obtain

e Z u;(w) Zfij(w)yij : Dij‘P(Pz‘e) = (divp (fw,s) ) (Puw,z:‘)Pe(w) = <(diVOmf)w,ga quw,s>pa(w)

PFeQ i~

- /n o(r) (divomf, U)P,P .

Thus it only remains to estimate the second term on the right hand side of (38).

Due to Condition 1.10 and the uniform continuity of ¢, for every n > 0 there exists gg
such that for all € < &y and all 4, j it holds |g0(F§j) - gp(Pf)‘ <n. We distinguish two cases.
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Case 1: Let u e Cy(Q), f € LY(Q, purp;R™). We write w;; := 3(u; +u;) and fij = fitns
and obtain (omitting the w)

e" Z U; Z ﬁj * Vij [@?j - %Of]

i i
n ~ 7 € € 1 r € 5 €
=-€ [Uijfij " Vij (Sﬁj - 802') + 5 (wi —uy) fij vy (QS% P - Sﬁj)]
(i,5)eBe (w)
n _ o1 .
=€ Z [Uz‘jfij[wsﬂij - 5[[uw]]ijfij (290% o 2 805)] .
(i.4)eEe (w)

The first term on the right hand side becomes arbitrarily small since [[gpﬂ];j < n and
|ul,, < oo. The second term on the right hand side becomes small since |2gp§j - f - g0§| <2n
and H[{u}];
Case 2: Let ue LY(Q,pupp), f € C(Q2;R"). For the limit of the second sum, we define
Pe(w) = P#(w) nsuppy and obtain for € > &y that

o <2 ulo-

S u(w) Y figw) [(T5) — o (P)]

i~

<nClfl /P )| i ()

go(

= lsuppelC 11, [ Il dirp-
Q
Again, since 7 is arbitrarily small, the statement follows. O]

We use the definition of [u]~ to define the following subspace of L?(€, fi,rp), where
dptar,p(w) = a(w)dpr,p(w):

Lgot(r) = ClOSUIeLQ(QMQF,P) {[fﬂN : f € Ob(Q)} Lgol(r) = L;Q)ot(r)l

and make the following observation:

Lemma 3.7. For every f € L2 (T") it holds divow (fa) = 0 pr p-almost surely. Hence, for

almost every realization f,, holds divp (a, f,) =0 locally on P(w).

Proof. Let f e L% (T') and let ¢ € C.(R™). Then, for every u € Cy(€2) we obtain from
Theorem 2.6 and Lemma 3.6 for some w € () that

0= [ oAl af e =y (ofictne ([0l

= —liI% (diVP (fw,aaw,sw) ) Uw,g)ps(w) = _/ (,0(1’) (diVOm (fa) ) U>P77D :
e Rn

Since this holds true for every ¢ € C.(R") and every u € Cy(2), the claim follows. O

3.3 The homogenized matrix in the stationary ergodic setting

Let (e;);_; ., be an orthonormal basis of R", & from (37) and let x; € L3, (") be the
unique minimizers of the functional

pot

X - / ale; = x| dprp.
Q
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We define the matrix Ay, through

.....

. _ ) (39)
with AiJ = / a (ei - XZV) . (Bj - ij) dlun’p.
Q

As usual in random conductance theory, the matrix Ay,, and the space Lfol(F) satisfy
the following properties.

Lemma 3.8. The matriz Anom s positive definite.

Proof. The proof is standard (see [19, Lemma 5.5]) and we provide it here for complete-
ness.

Step 1:Recall the definition of «;; at the beginning of Section 3.1. We first prove that

every v e L2 (T') satisfies

VEeR"™ : / v -Eydprp =0. (40)
Q

In order to prove (40) let u € Cy(€2) and choose a bounded open ball B around 0 with
normal vector vg. Let 4 (Fy) = u(p:w) such that 4 € S¢(w). We obtain

BI| [ 1ot €2durp| =ty [ (19 (r20) -,
Q &=V |J Bars(w)

e—0

lim |e / [REE] - €dm-!
BnoGe (w)

e—0

=lim e / RIGEE - vp dH™ !
0B

<lime |luf, [¢]|0B] = 0.

Hence (40) follows from the density of [u]~ in L2 (T).

Step 2: Let £ € R*\0. Using (40) and the Cauchy-Schwarz inequality we find with
¢, = Jovdprp >0

& = fko§1/f'6k7dMF,P
0

= &C ) er- Y, (&ei—&ixil) ydprp
i

<ot ( /Q 72a‘1dur,7>) (Z@-@Aij) |
ig=1

Summing up the last inequality over k =1,...,n yields

%chg'fqhomg‘
1

The Lemma now follows from the equivalence of norms in R”™, O

Lemma 3.9. It holds R™ = sp&m{fQ fodurp : feL? (F)}

sol
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Proof. We follow the proof of [18, Lemma 4.5]. Due to the minimizing properties of x; in
L2, (") we have (e; - x;7) -7 € L2 (T'), i.e.

sol

2V E /((ei_XiD)'D)XjadHRP:O- (41)
Q

Defining V := span{ [;, fodurp : f e L2,(T')} we choose & € V1\{0}. Then, for all i =
1,...,n it holds

/Qﬁ-ﬁ((ei—xiﬂ)-ﬂ)adur,p=0- (42)

Combining (41) and (42) implies that

Y. & (e -v+x;5) ((ei = xiv) - 7)) adprp = 0.
Q1

Multiplying the last equality by & and summing over ¢ yields

§Apom€ = 0.

Due to Lemma 3.8 this implies £ = 0, a contradiction. O

4 Proof of Theorems 1.6 and 1.8

We first observe the following behavior.

Lemma 4.1 (L? - G-convergence). Let the family (P.).., be G-convergent in sense of
Definition 1.4, a™! < a;; < a uniformly in €,i,j for some a >0 and let Condition 1.2 be
satisfied. Let f. € S5(w) and f e L?2(Q) such that R:f¢ — f weakly in L?>(Q) and let the
sequence u® € S§(Q) be solutions of the problems

S, (i - 05) = i (1)

i~
and let ue HY(Q) n H?(Q) be the unique solution to
-V (ApomVu) = f. (44)

Then Riuf — u strongly in L*(Q) and [uf]dH" - Vu in the sense of distribution as
e—0.

Proof. The operator —L¢ is strictly positive definite and symmetric as follows from
2
—(Luf uf) = "2 Za% (uj - uf) .
i~j

Due to Lemma 3.1, the family £¢ is uniformly elliptic in € and we obtain the apriori
estimate

. (45)

PE

Ju e = " 3 (u)? < Cem2 Y (5~ uf)” < Ca | f°

i~
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By the Lax-Milgram Lemma, the solution to (43) exists and is unique. Let ¢ be the
unique solution of —£4° = Ry f. Then 4° satisfies (45) with f¢ replaced by R} f and we
find

~E n 1 € € ~E n £ * 1> ~E
IR: (uf — )”iQ(Q) <eg"C Z _Qaz‘j[[u —u ?j =€ CZ(fz _(Rsf)z) (u® —ar) .

(i5)eEe (w)

Due to Lemma 3.1, R:uf and R:uf are both precompact sequences in L?(Q). Since P¢
is G-convergent and

R:(R-f)-R:ff ~0 weakly in L*(Q), (46)
we obtain from Lemma 3.3 and the above estimates that

. ) o2 . 1 )
ggg(ms (=g +e” Y - %j)=o

and hence R:u® — u strongly in L?(Q) and 1[u]dH"! - Vu in the sense of distribution.
Since P¢ is G-convergent, we obtain that u solves (44). O

Lemma 4.2. Let the family (P.).., be G-convergent in sense of Definition 1.4 and let
Condition 1.2 be satisfied. Then, there exists a constant C' > 0 such that for every ¢ >0
and every ¢,u € 8¢ it holds

& ol Xy — el < C ol pe [l -
% J~i

Proof. We obtain

1 1
2 2
& Y foil Xty = il < ol (enzwzm - |) <4C o] ( > - |) ,
i j~i i i~j

i~j

where C' denotes the maximum number of neighbors of a cell, which is bounded due to
Condition 1.2. O

Lemma 4.3. Let let the sequence u® € S§(Q) satisfy Riuc — u strongly in L*(Q) and

l[[uf ?j+5";(5‘22(u§—u§))2<oo. (47)

i~j

supe” Z

S0 (i)eBe(w) €
Then u e HY(Q) and for every ¢ € CL(Q) with ¢ = ¢(P?) it holds

1
") E—zaij[[uﬂ]ij[[(bs]]ij»/QVu-(Ahongzb).

(4,7)eE= (w)

Proof. The regularity v ¢ Hj(Q) follows from (47) and Lemma 3.1. Writing f¢ :=
€2 Y0, @ (uj —uf) we find sup,,q | f¢]p- < oo and hence along a subsequence we find
R:fe — feL?(Q) and G-convergence implies f =V - (ApomVu). Therefore

1 1
e ) gafjﬂuaﬂij[[¢5ﬂij = —5"25—2ff¢f - —/V (ApomVu) ¢ = /QVu' (Ao Vo)

(4,7)eEs (w)

[]
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Proof of Theorem 1.6

We define U := u¢/ (vF)? satisfying

1
-5 ]Z vivsal; (U5 -Us) = f . (48)

For simplicity and readability of the proof, we assume a; =

Step 1: Apriori estimates on U¢. Testing (48) with UF and using boundedness of
v > C >0 from below we obtain similar to the proof of Lemma 4.1 that

Y (U) < CemY (Us - UF) < C | f# e

i~j

and hence the sequence R}U*® is precompact and
1 T2 c112 2
S U e + U pe < C U1 1 - (49)

Next, we recall the definition of £* and test (48) with ¢¢ == (L°Uf) = e2 %, (U5 - Uf)

and use
S vt (UF - Uf) = () 33 (UF - UF) o 3 (05 - 00) (U - U7)

i~] i~j i~g
and Lemma 4.2 to obtain

1 ~ 3 (3]

”Z(Ua) (L°U7) < €”Zf6(£5U6 IVoleo Z ITUFT Nee €50 pe
1 ~ 3 €

<l LU pe + 1V 0o Z MU e 1L°U% e -

Using (49) we obtain that
1 ~ 3 & (3
LT 0+ 12U < O (11 Iy - (50)

Step 2: Apriori Estimates on u°. In what follows, we write ¢ := (’UZ‘«E)2. From u¢ = 0Uf

we obtain ) 1
5t = (550 (U5 +U) + 3 (35 4 88) (05 - 1)

J 7

which gives an estimate on % |[us]~|?.. Tn order to proof the estimate on Lfuf, we
multiply £5u® with an arbitrary test function ¢ € C=(Q) and obtain

(Lo, @) pe =" Y (U — 0707 (65 - 65)

i~j

_ nzz(_@)+U)@g—Uﬂ(@—¢ﬂ+%Uﬁ—ﬁ)U?+Uﬂ(@‘¢ﬂ)

~\2
- “Z%(( U) (1565 - 565) + (55 - 50) (6505 - 607)
( ) (U5 - U7) (65 + 5)
—a”zwwzw ) e Y oint
+5n2Z(“j‘6i)( i i)(¢§+¢f)

]

1
i 9.2

% (05-0)
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Hence, we obtain with help of Lemma 4.2
1 .
KE07, ) el € 1681 © (107 e Wy + 1650 e ol + 902, 2 MUYl )
where C' does not depend on e. Together with (50), it follows
: * PE, E : 2 2
lim sup [RE L] 12(q) < limsupC (1F1pe + 07 gy ) [0 ey < o0

This concludes the proof.

Step 3: Convergence. We use the above estimates in order to pass to the limit in (48).
We choose a countable dense family @ := (¢*), ¢ H}(Q) of functions ¢* € C=(Q) for
every k € N and use these as test functions in (48).

We write vf; := v(I'5;), recall (36) and define
[ n 1> E]' g~ 1 ~ n (S
Ii:=¢ Z U; j—[[U ﬂij_[¢ﬂij =€ Z ( ) —[[U ﬂzj_[¢] +15.
(i,g)eEe € € (i,j)eEe
Since v is uniformly continuous, for every n > 0 there exists gq such that for € < gy it holds

|(vfj)2 —vjv5| <n for every (7,7) € E°. Hence with

51 <0 1V 0] IUT p <0 [V @loo sup |LUF]" e < nC [V,

Due to Lemma 4.3, we obtain for every ¢ € ® that
1

oY U Tlel; - /Q V6 (ApomVU) (51)

(i.j)eEs ©

Furthermore, we note that

1
swpe" T ST I0l < Ivollpe § S0 <oo

0 (ij)eke £ (i,§)eE*

Hence, for every ¢ € @, the pair ( [U=];; 6[[gzﬂ]2], ,upe) is a measure-function pair w.r.t. the
quadratic function in the sense of Hutchinson and we can apply |27, Theorem 4.4.2]. In
particular, since ® is countable, we obtain from |27, Theorem 4.4.2] that

Voed: Y (vf) é[[UE]]Zj%Wﬂ?j ~ / vV (AhomVU) -
i~j Q

Furthermore, we obtain from the above apriori estimates and Lemma 3.2 that U¢ - U
and uf — u strongly in L2(Q) and due to U := u¢/ (v5)” we find u = v2U. From the weak
convergence of f€ we finally obtain that u solves

/Q 0290 (Aronv (55) / f6.

/Qvaﬁ-(AhomVu)—2/@%%-(Ahomw)=/Qf¢.

Using that v = exp (—gV), we obtain that u solves (15).

or equivalently
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Proof of Theorem 1.8

Like in the previous proof, we assume a; = 1 for simplicity and readability.

Due to the first part of Theorem 1.6 the operator F¢ is invertible for € small enough and
unique existence of solutions to (16) follows. Let us first note that writing V¢ := V(z%)
and using the Taylor formula we obtain

: = 1
% exp (< (V- V7)) = 2 g (V-

and hence

Testing (16) with v, using (52) and Lemma 4.2 yields

T 1 T 5 T
+— u 7|5 < fe
e[S [

Tl e~ 1 Efl~ €
+Ce |Vl [ = Iu ] e { = [T (pe + [wllpe ) -
0o € £

1
5 el

2

u® u

2 1 .
pe +C= Vol [ [[w]
€ 0

2
j==

Ie Pe

From this inequality, the apriori estimate on |u¢|%. and % fOT |[us]~||?. follows using the
Gronwall inequality, provided ¢ is small enough. Furthermore, the last inequality yields
uf =0 if f¢ =0 and u§ = 0. Next, we test (16) with d;u® and use once more (52) and
Lemma 4.2 to obtain

Pz L L1 2
| 100t 53 1T IR

T T ) , 1 T
0 S/ 121 pe 10pupe + C2 |Vv|oo/ [w 17 e 00 pe
0

0
Tl e~ 1 e~ €
+Ce |WHDO/ |20 I (— [0:[wf]" e + (| O Hps) :
o € €

Hence the the apriori estimate on |9,u¢|%. follows from the Gronwall inequality. From the
apriori estimates, Lemma 3.1 and the Aubin-Lions Theorem, we obtain strong convergence
Riuf — w in L?(0,T;L?(Q)) for some u e L2(0,7;L*(Q)). From Lemma 3.2 we infer
that u € L2(0,T; H}(Q)) and 1[us]dH"' - Vu in the sense of distribution. The weak
convergence O, R:uf — Oyu in L2(0,7T; L?(Q)) as well as dyu € L2(0,T; L*(Q)) is straight
forward.

Integrating the right hand side f¢ and the solutions u¢ of (16) over time intervals (s,t) c
(0,7") and applying Theorem 1.6 it follows that u solves (17).

5 Two-scale Convergence

We recall the notation (36). Since C,(€2) lies densely in the separable space L2(§; urp),
we can chose a countable dense family ®q = (¢;),y € L?(£2; urp) of Cp(2)-functions and
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a countable dense family of functions ®¢q = (), € Co(Q) of functions ¢; € C.(Q).
We furthermore assume that ®q = @, ® Py, for dense subsets Py, Lgol(F) and @y ©
L2,(T") where @, is such that v € @, if and only if v = [u]g,, for some u € Cy(2).
Finally, let Qg c €2 be the set of all w such that the Ergodic Theorems 2.7-2.5 hold for all
UGCI)Q and ¢€(I)Q.

Definition 5.1 (Two-scale convergence). Let @ be a bounded open domain, w € Qg and
let v® e L2(Q; ,uf,(w)) be a sequence such that

SUP [|0° | pey < 00
e>0

and let v e L2(Q; L*(Qurp)). We say that v converges in two scales to v, written
Ve ﬁw v if for every ¢ € @ and every 1 € ®¢ it holds

lim <U€7 gbw,awaw,e)r\s(w) = /Q (U($, ')7 gba)FJD %U(x) dx .

e—0

This definition makes sense in view of the following result.

Lemma 5.2 (Existence of two-scale limits). For every w € Qg it holds: Let v® € L*(Q)
be a sequence of functions such that sup.., |v® re@y. S € for some C' > 0 independent

from . Then there exists a subsequence of (v°')er—o and v e L2(Q; L*(Q; urp)) such that

; 2s
ve =, v and

19l 22(@sr2(uur ) < liminf | (53)

e'-0

re'(w),Q °
The proof of Lemma 5.2 is standard. However, we provide it here for completeness.

Proof. Let w € Qq, let (¢r) 4y be an enumeration of ®q and (1), an enumeration of ®q
and for € > 0 we write ¢y () = ¢p(72w). For fixed j,k € N, we obtain from Theorem
2.6 that

lim SSJp |(1;57 ¢j¢k,w,eaw75>rs(w) | = lim soup
E—> E—>

/Q V() () e ()2 0) i ()

e—0

< C'limsup (/ij(%)2 (¢k(T§W))2 a(rzw)d/@(w))

= Clsll 2 gy 106 L2 ) -

Therefore, we can use Cantor’s diagonalization argument to construct a subsequence of
ve, not relabeled in the following, such that

Vj, keN (Uaa ¢j¢k,w,€aw,£>Fs(w) - Lj,k ase—0

and L; j is linear in ¢; ¢y, € L2(Q; L?(2; urp)). Therefore, there exists v € L2(Q; L*(2; urp))
such that

Ljak = / (U(QJ, ) y 2/}j(:C)Qzﬁka)r,'p dx VkeN.
Q
Since the span of the ;¢ is dense in L2(Q; L2(€2; ur p)), the function w is unique. O
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The next result provides a kind of generalization of Theorem 2.6. It is needed in order to
proof the main result of this section.

Lemma 5.3. For a random tessellation (G(w),T'(w)) that fulfills the compacitness prop-
erty 8.1 in R™ with Q c R™ bounded Lipschitz domain and fized w € Q) let u® € S*(w) and
ue HY(Q) such that Riu® — u strongly in L*(Q). Then for every b e L2(§; urp) such
that the Ergodic Theorems 2.7-2.5 are valid for b it holds that for every ¢ € CH(Q) and

Ve (Q)

0 (ig)eBe(w)

where g, = : (uf + uj)
Remark 5.4. Lemma 5.3 is also valid for the space S5, (w,Q) and H], (Q) if Q is a

cuboid.

Proof. The proof follows closely the lines of Step 2a in the proof of Theorem 1.6. However,
we provide the full proof for completeness. For § > 0 let 5 be a smooth mollifier with
support in Bs(0) and let u§ := (R:u®) * s and u§ = u * 5. Since (R;uf) — u strongly in
L2(Q) we obtain that for every fixed § > 0 the family (ug) , together with uY is uniformly

e>

equicontinuous and u§ - u$ in C(Q). This follows from the fact that u € C*(2Q) and

| VU5l < C |V g, < C V™ s IRZUS (g -

[,
due to the Sobolev inequality and the convolution inequality.

For shortness of notation, we write |- 2 = |- (,) ¢ and define

n vl 1 =
Ii=¢ Z Ui ¥ijbi=[ 0135 -
(1)) €% () c

For (i,7) € E5(w) we introduce us;; = us(I'5;(w)) and s = i (ug(Pf(w)) + ug(Pj(w)))
Then, we write

1 ~ €
IT=¢" Z Ué,ij,sbij¢ij_[¢ﬂij +15, (55)
(i.)E= () <
with
(1< OVl |1P] oo s = 2 [0] 12
< CITG) 10l 18] g2 (s =051 g2 + 1§ 551 2 + g 7] 2)
Since HU§ - ugHC(@ — 0 as e — 0, we obtain from the Ergodic Theorem 2.5 that HU5 - ugHLg -

0 as € » 0. Furthermore, uniform equicontinuity of (ug)E>O and the existence of a maximal
cell diameter from Condition 1.10 imply that for every n > 0 there exists g > 0 such that

for all £ < g9 we find |us —ﬁgHLQ <[tz = 7lQlurp(2). Furthermore, Condition 1.10
implies that the number of neighbors of a cell is bounded from above by n"a~". Hence,
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we remain with

lim 15| < 1im © |96, [].. 1Bl 175~ ]

<m C[Vo), [¢] . B, ( > (g - us) + (us, - u;)z])

Ffj €supp¢

1
2
: n € e)\2
< C Vo] [0l 02 e D0 (w5 —uf) 21
& % Ffj €suppe¢ g~

= C 190l 1o 100 20110, 163 = ] 2y -

For the first term on the right hand side of (55) we find by Theorem 2.6 that

. n 1 ~ . n ~ 154
—lime Y usitibi—[¢];; = ~lime Y. usitbibigi - V(D5 (w))
£ e

0 (ig)eBe (w) 0 (i j)eBe(w)

—~ [ uswvo- [ voducpde.
Q Q

Hence we obtain

< C ”V¢Hoo HwHoo ||b||L2(Q;MF,’P) Hug - UHLQ(Q) )

lim[1€+/u5wv¢-/bﬁd,up,pdx
e—=0 Q 0

which finally yields (54). O

The following proposition is our main two-scale convergence result and is at the heart of
the proof of Theorem 1.13.

Proposition 5.5. For a random tessellation (G(w),I'(w)) that fulfills Condition 1.10
with Q c R™ bounded and open cuboid and fixred w € Qg let u® € S5, (w, Q) with

per
! H |I EIIN H 2] < C
c€2 u Q(Q;M?per(w)) -

Then there are u € H!, (Q) and v € L?>(Q; L?,,(T")) such that:

per pot

Riu® —u in L*(Q)
(56)

[u]~ X Vu-p+v

Proof. By Lemma 3.2 there exists u € H}. (Q) such that Riu® — u strongly in L*(Q)
and [uf]dH" ! — Vu in the sense of distributions along a subsequence as ¢ - 0. From
Lemma 5.2 it follows that there exists w € L?(Q; L*(T', ur p)) such that along a further
subsequence

lus“ 2 w.
6 w
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Now take ¢ := ¢v with ¢ € C(Q) and v € L? (I"). Introducing the notation b;;(w) =
v;j(w)a;;(w) we obtain

1 . 1 .
g <[[u8]] ) gbvw,eaw,e)ps(w)’q = _g (ua’ (leP¢Uw,5aw,e)>ps(w)yQ

-1 Z uE(Pf)sz‘j(wW(Ffj)

PeQ img
e"” ! Z E(P€)¢(P£ wa(w Vz] Vi
PfeQ
—emh YW Pia)zbij(w)yij’yij(qb(rij)_gb(Pia)) :
PreQ i

Since divpb =0 by Lemma 3.7, the first term on the right hand side vanishes. We denote
the second term as I{ and obtain

If = —gnt Z u®(Pr) Zbij(w)ﬁij “Vij (¢(Ffj) - Cb(Pf)) :

PFeQ i~j

In what follows, we simplify notations. We write u§ := u*(F;), ug; := %(uf+u§), Bij = by,
Pij = (rb(Ffj) and ¢; = ¢(Pf) and obtain

I = = Y s Yby v (6(T5) - 6(FF))

PfeQ i~j

3 [abs 000+ 5 (- 05 by oy (265 -6 6)]

(i,4)eE=(w)

== Z [ﬁfjbij [Wﬂ;g - %[Ueﬂ;jbij (2¢ij - i - ¢j)] : (57)

(1.3)eB" (w)

Due to the uniform size of the Voronoi-cells, we obtain that for every § >0

lim
e—0

1
e Z 2_5[[u€]i~jbij (205 — i — Pj)| <6

(1,7)eEs (w)

Using the last estimate and (57), Lemma 5.3 yields

hm[s— /uv¢ /bl/d,uppdx

Hence, we obtain in the limit:

//W¢dﬂp’pd$=—/ quzS-/bﬁd,up,pdx.
QJT Q Q

Since u € H!  (Q) we can apply integration by parts to obtain

per

//(WD—VU)(b-bﬁaduppda::O.
QJr

This implies that for almost every x the function (w—Vu-7)(x,-) lies in L2 (T), i.e.
w—Vu-veL2(Q; L3, (T)). O
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6 Proof of Theorem 1.13

Multiplying (20) by a function ¢ €
arrive at

Str(w,Q), and summing up over pem(w,Q)

1
- Z (Lou);di=— ), Y, Sai(w) (uj —u;) ¢
e o (@.Q) P (@.Q) (if)eE5e(w) ©
1

- Y ) (- w) (6 0)
(i,5)eEfer (W)
Hence, the equation (21) is equivalent with the discrete weak formulation

Vo e 8o, Q) S la@ (o) (6-0)= S fie (59)

(i) €Bger (w) € P (0.Q)

Let w € Qg be fixed. Due to the Poincaré inequality (30) we find that

||UH$s =g Z [u 12]

,0 .
(i) €Eer (w)

is a norm on the subspace S;. . Since 7 is bounded from above, this norm has the
property that

< Rzwf|

Jufl;

Pe(w),Q ?‘Iger(Q) < CEn_2 Z [[U’ ]]z]’yper ij ((,U) <C Hu<€

(6:5)€ B er (w)

i‘;er,o . (59)

The Lax-Milgram Lemma hence yields a unique solution u® € St , to problem (58).
Testing (58) with ¢ = «® and using (59) and the lower bound on «a yields the estimate

2 2
o<y, <0 [ pucdig
e Ser (Q)

and hence

2 n—
[ e+ X [T <Clf s -
(1,5)€Efer (W)

By Proposition 5.5 there exists a subsequence, not relabeled, and u ¢ Hl, (Q), v
L2(Q; L2,,(2)) such that

u® — u strongly in L*(Q) and —[u "2, vu-v+v.

We choose ¢ € &g and w € Py with ¢y, € Cp(Q) such that w = [¢y ]y, and define
Pew() = ep(x)thy(Tzw). We use ¢, as a test-function in (58) recall that ¢ € C.(Q)
and obtain for € small enough that

S apzluly (s Zlelun(ree) + ePOw(m,e)) == F fre(Pu(ne).

(1.0)e By () e, (@,Q)

As € — 0, we find that e7'[]7; is uniformly bounded by |V¢|,,. Hence, the first term on
the left hand side vanishes as € — 0 and using two-scale convergence of %[[ua]]N, we obtain
the following limit equation:

Voe®qg, wedpyy - / (Vu(z) -v+v(x,), awp(x))p pdr=0. (60)
Q

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin, May 9, 2017 /rev. May 24, 2018



M. Heida 30

Given u € H(Q), equation (60) admits the solution
v = Z dux; , (61)
izl

where y; are the same as in (39). Since ®q is dense in L*(Q) and @ is dense in L2 (T'),
equation (60) also has to hold for all ¢ € L2(Q) and w € L2 (Q). The Lax-Milgram
Lemma then yields that the solution v is unique for given u € H'(Q).

Next, we use a test-function ¢ € ®g in (58) and obtain the limit equation
Voedg : / (Vu(z) v +v(x,), aVe(x) U)ppdr = ,upvp(Q)/ fo. (62)
Q Q

We can use 0;¢x; as a testfunction in (60) and add the resulting equation to (62). Using
(61) and (39), this yields

//VU'AhomVCﬁd/LF,PdiﬂZMP,P(Q)/f(b,
QJQ Q

and hence u € H?(Q) and u is a strong solution of (22).
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