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A comparison of delamination models:

Modeling, properties, and applications

Marita Thomas

Abstract

This contribution presents recent results in the modeling and the analysis of delamination

problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic

and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating

surface are discussed.

1 Continuum-mechanical modeling approaches to fracture

The creation and growth of cracks in a solid body corresponds to the formation of new (interior) sur-

faces. From a continuum-mechanical modeling point-of-view, the field variables describing the state of

the body may display discontinuities along these crack surfaces. To mathematically model an elastic

body with an evolving crack one may formulate the system of elasticity on a moving domain char-

acterized by the propagation of the crack surface, which, in turn, has to be described by a suitable

evolution law. Over the decades, in literature, many different criteria have been proposed to determine

the unknown direction for the extension of an existing crack, famous among them are the maximum

energy release rate criterion and the maximum stress criterion, see e.g. [58, 40] for a discussion. How-

ever, to handle the formation of discontinuities in general geometries in a mathematically rigorous way

requires the formulation of the problem in adequate function spaces, such as GSBV -spaces (GSBD-

spaces) of functions of generalized special bounded variations [4] (deformations [17]), as used e.g. in

the Francort-Marigo model for quasistatic brittle fracture [23]. Instead, many models make regularizing

assumptions on the discontinuity set. For this, often an additional internal variable is introduced in the

spirit of generalized standard materials [29], with the purpose to describe the changes in the elas-

tic behavior of the material caused by the evolving inelastic process. This is the basis for the phase

field approach to fracture, where the phase field variable regularizes the model by replacing the lower

dimensional crack surface by a damaged volume of controllable width, where the displacement field

displays no discontinuities as associated with an elastic solid. Starting from the Ambrosio-Tortorelli

phase field model, which was shown in [27] to approximate the Francort-Marigo model in the sense

of Γ-convergence, phase field models for facture have received much attention both in mathematical

analysis and numerical simulation, see e.g. [28, 12, 1, 55, 16, 15, 24]. Since they allow it to cap-

ture complicated geometric situations, such as crack initiation and branching, they have become a

well-established method in a wide range of engineering applications, cf. e.g. [35, 34, 30, 33, 3, 54, 59].

In case of compounds of elastic solids, with applications ranging from laminates to layers of rocks and

soil, fracture often occurs in terms of delamination, i.e. cracks form and propagate along the interface

between two material layers. In such a situation of delamination, one may resort to models, where

crack initiation and propagation are confined to a prescribed interface ΓC ⊂ Rd−1 between two parts

Ω+,Ω− of an elastic solid Ω ⊂ Rd . The domain of the internal variable, which then describes the

state of the bonding along the interface, is consequently confined to ΓC.
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This setup will be considered in the present contribution, which is devoted to the discussion of re-

cent results in modeling and mathematical analysis of delamination processes. Section 2 explains the

mathematical modeling at the example of adhesive contact and gives an overview on existence results

developed in this field. In Section 3, the modeling and analytical challenges of adhesive contact are

compared with those of brittle delamination and cohesive zone delamination.

2 Modeling of delamination processes via energy and dissipa-

tion functionals at the case of adhesive contact

Thermodynamically consistent modeling of adhesive contact via internal variables goes back to [25],

cf. also [26]. Therein, the internal delamination variable z : [0,T ]×ΓC → [0,1] describes the state of

the bonding along the interface ΓC between the two parts Ω+,Ω− ⊂R
d of the body, monitored during

a finite time interval [0,T ]. In what follows, z(t,x) = 1 will indicate that the bonding at the point x ∈ ΓC

at time t ∈ [0,T ] is fully intact, whereas z(t,x) = 0 means that the bonding is completely broken,

and z(t,x) ∈ (0,1) stands for an intermediate state of degradation. In this way, the set C(t) := {x ∈
ΓC, z(t,x) = 0} defines the crack at time t ∈ [0,T ].

In the isothermal setting at small strains the state of a viscoelastic body and an adhesive is thus

described by the pair of state variables (u,z) consisting of the displacement field u : [0,T ]×Ω\ΓC →
Rd and the delamination variable z : [0,T ]×ΓC → [0,1]. Their evolution is governed in terms of a

tuple (V,W,Z,V ,K ,R,E ) given by suitable state spaces V,W,Z, a stored energy E , the kinetic

energy K , a dissipation potential V accounting for viscosity in the bulk, and a dissipation potential

R accounting for the energy dissipated due to the delamination process.

The stored energy functional E := Ebulk + Eadh is composed of a bulk term defined on Ω\ΓC =
Ω+ ∪Ω− and a surface term defined on ΓC. Characteristically for adhesive contact models, which

additionally also account for non-penetration of the material along ΓC, the latter is given as follows:

Eadh : V×Z → [0,∞], Eadh(u,z) :=

∫

ΓC

(
k
2
z
∣∣[[u

]]∣∣2 + I[0,1](z)+ I[0,∞)(
[[

u
]]

n
)
)

dH
d−1

. (1)

Here, k > 0 is fixed and H d−1 denotes the (d −1)-dimensional Hausdorff-measure. Furthermore,

[[u]] := u+−u− denotes the jump of the displacements across ΓC calculated from the traces u+,u−
along ΓC of the functions u|Ω+ ,u|Ω−. In a similar manner, [[u]]

n
:= [[u]] ·n is the jump of the displace-

ments in normal direction to ΓC with the normal defined as the outward normal to the subdomain Ω+.

The constraint z ∈ [0,1] is ensured by the indicator function I[0,1] : R→ {0,∞} of the interval [0,1],
i.e., I[0,1](z) = 0 if z ∈ [0,1] and I[0,1](z) = ∞ otherwise. Finally, due to the term I[0,∞)([[u]]n), a finite

surface energy Eadh(u,z) corresponds to [[u]]
n
≥ 0 a.e. on ΓC, and thus forbids the penetration of

matter along ΓC.

For a linear elastic material the bulk energy may be considered as

Ebulk : [0,T ]×V →R, Ebulk(t,u) :=

∫

Ω\ΓC

(
1
2
Ce(u) : e(u)− f (t) ·u

)
dx (2)

with C ∈ Rd×d×d×d a symmetric, positively definite fourth-order tensor and e(u) := 1
2
(∇u+∇u⊤)

the small strain tensor. The evolution process is driven here by a time-dependent volume force f . The

kinetic energy K is given by

K : W → [0,∞), K (v) :=
1

2
‖v‖2

W
with ‖v‖2

W
:=

∫

Ω
ρ |v|2dx (3)
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for some given function ρ ∈ L∞(Ω) and a constant ρ∗ > 0 such that ρ > ρ∗ a.e. in Ω. In this way,

the space W is equivalent to L2(Ω;Rd).

The dissipation potential V : V → [0,∞) accounts for viscosity of the bulk material and is here for

simplicity assumed to be quadratic:

V : V → [0,∞), V (v) :=

∫

Ω\ΓC

1
2
De(v) : e(v)dx , (4)

again, with D ∈ Rd×d×d×d a symmetric, positively definite fourth-order tensor. Assuming here for

simplicity homogeneous Dirichlet conditions along the outer boundary ∂Ω, in view of (2) and (4), it is

V := {v ∈ H1(Ω\ΓC), v = 0 a.e. on ∂Ω}.

The dissipation potential R controls how much energy is spent on the progression of delamination. In

many materials, such as metals or rocks, fracture is a unidirectional progress, in the sense that cracks

can only grow but not heal; this feature may be encoded in the dissipation potential by considering

R : Z → [0,∞],

R(v) := R̃(v)+α
∫

ΓC

I(−∞,0](v)dH
d−1

with R̃(v) :=
∫

ΓC

R̃(v)dH
d−1

, (5)

where R̃ : R → [0,∞) is assumed to be convex with R̃(0) = 0 and where I(−∞,0] : R → {0,∞}
denotes the indicator function of (−∞,0] and α is a non-negative constant. Taking v = ż, in view on

the modeling assumptions on z, this captures that a growth of delamination corresponds to a decrease

of z in time (from the value 1 at most down to 0), so that, formally, its time-derivative always should be

non-increasing.

Formally, the evolution of the state variables (u,z) is then captured by the system

ρ ü−div
(
Ce(u)+De(u̇)

)
= f in [0,T ]×Ω\ΓC , (6a)

u = 0 on [0,T ]×∂Ω , (6b)[[
Ce(u)+De(u̇)

]]
·n = 0 on [0,T ]×ΓC , (6c)(

Ce(u)+De(u̇)
)
·n+ kz

[[
u
]]
+∂[[u]]I[0,∞)

([[
u
]]

n

)
∋ 0 on [0,T ]×ΓC , (6d)

∂ż

(
R̃(ż)+αI(−∞,0](ż)

)
+ k

2

∣∣[[u
]]∣∣2 +∂zI[0,1](z) ∋ 0 on [0,T ]×ΓC , (6e)

∇z ·n = 0 on [0,T ]×ΓC , (6f)

and supplemented by initial conditions for (u,z).

The indicator terms IK of the convex intervals K ∈ {[0,1],(−∞,0], [0,∞)} appearing in the function-

als (1) and (5) are highly non-smooth, which is why (6d) and (6e) are given in terms of subdifferential

inclusions and display the multivalued subdifferentials ∂ IK of the corresponding indicator function.

Here, the subdifferential ∂g(v) of a convex function g : R→ [0,∞] at v is given by the set of all sub-

derivatives v∗, i.e., ∂g(v) := {v∗ ∈ R, g(w)−g(v) ≥ v∗(w−v) for all w ∈ R}, which is the set of

“slopes” defining tangents to g in the point v. In particular, if a function is classically differentiable in a

point v, then the subdifferential is single-valued in v and coincides with the derivative in v. For example,

the subdifferential of I[0,1] is given by

∂ I[0,1](z) =





/0 if z ∈ (−∞,0)∪ (1,∞),
(−∞,0] if z = 0,

{0} if z ∈ (0,1),
[0,∞) if z = 1

, (7)
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i.e., the subdifferential is multivalued and, in general, given by an unbounded set. Exactly this bears

the main difficulty in the analysis of system (6) and suitable weak notions of solution in suitable func-

tions spaces as well as refined analytical tools have to be established in order to deduce suitable

bounds on each of the occuring terms. To be more precise, a first major difficulty comes with the mo-

mentum balance (6a) and the corresponding transmission condition (6d) along ΓC. A weak formulation

combines the acceleration term with elements of the unbounded subdifferential of the non-penetration

constraint and, in general, bounds needed for the analysis can be deduced only on the sum of the

two but not on each of the two terms separately. Many works dealing with adhesive contact and in-

volving the non-penetration constraint thus resort to a physical setting with external loadings varying

sufficiently slowly so that acceleration terms can be neglected, cf. e.g. [7, 8, 9, 10], or replace the

non-penetration constraint by less restrictive conditions, cf. e.g. [43], where tangential slip is admissi-

ble. Without the acceleration term it is possible, in particular, to give a weak formulation of (6a)–(6d)

in L2(0,T ;V) and to obtain suitable bounds on all terms in this setting, however, as indicated, at

the price of neglecting the acceleration term. Only recently, in a series of papers [11, 53, 51], it was

indeed possible to handle dynamics in combination with the non-penetration constraint using a weak

formulation in H1(0,T ;V), instead. This opens the door for a number of additional, refined estimates,

also using test functions, which incapacitate the element of the unbounded subdifferential, so that a

separate estimate on the acceleration term becomes accessible. The approach of resorting to smaller

spaces of admissible test functions, with properties tightly tailored to handle unbounded terms aris-

ing from non-smooth constraints seems to be the key to deal with rate-dependence and dynamics in

combination with non-smooth constraints.

Let us now discuss the difficulties related to the flow rule (6e). In literature, two major cases can be

distinguished for the density R̃ involved in the dissipation potential R from (5): The case, where R̃

contains a quadratic term and the case where R̃ is positively 1-homogeneous. As a first step, let us

assume for the moment that R̃ is quadratic, i.e., R̃(v) := 1
2
|v|2. Then, we may choose the space

Z := L2(ΓC) and the flow rule (6e) can be rewritten as follows:

ż+ k
2

∣∣[[u
]]∣∣2 +ξ ≤ 0 , (8a)

ż(ż+ k
2

∣∣[[u
]]∣∣2 +ξ ) = 0 , (8b)

ż ≤ 0 , (8c)

ξ ∈ ∂zI[0,1](z) . (8d)

For z = 1, by (7), it is ξ ∈ [0,∞). Thus, as long as ż = 0, by (8), it has to hold k
2

∣∣[[u]]
∣∣2 = ξ =

0. Delamination sets in, i.e., ż < 0, if and only if ξ = −(ż+ k
2

∣∣[[u]]
∣∣2). As soon as a weakening

of the bonds has taken place, so that z ∈ (0,1), according to (7), it is ξ = 0 and then, again by

(8), delamination remains static, i.e., ż = 0 as long as k
2

∣∣[[u]]
∣∣2 = 0 as well. In turn, delamination

will progress any further, i.e., ż < 0, if and only if ż = − k
2

∣∣[[u]]
∣∣2. Once the final state of rupture

z = 0 is reached, we see that also ż = 0 is feasible, because ξ ≤ − k
2

∣∣[[u]]
∣∣2 is admissible for any

value of k
2

∣∣[[u]]
∣∣2 thanks to ξ ∈ (−∞,0] by (7). In other words, the temporal evolution (considered

pointwise in ΓC) can be interpreted to stop once the value z = 0 is reached. An evolution of adhesive

contact of viscous kind has been treated e.g. in [52, 53] and also in [7, 9, 10], the latter works neglect

unidirectionality, i.e., α = 0 in (5) & (6e).

For comparison, let us now consider a positively 1-homogeneous density R̃, i.e. R̃(v) = a|v| with

a constant a > 0 and hence we now set Z := L1(ΓC). Clearly, this R̃ is convex but not classically

differentiable in v = 0 and its subdifferential in v = 0 is given by ∂R(0) = [−a,a]. In combination with
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the unidirectionality constraint with α = 1, we have that R = a|v|+ I(−∞,0](v) in (5). Accordingly, (6e)

amounts to the following conditions

(8c) & (8d) combined with k
2

∣∣[[u
]]∣∣2 +ξ ≤a , (9a)

and ż
(

k
2

∣∣[[u
]]∣∣2 +ξ −a

)
=0 . (9b)

For z = 1, by (7), ξ ∈ [0,∞) is possible. Condition (9a) then imposes a threshold, below which ż = 0

has to hold in order to fulfill (9b). When the threshold is reached, i.e., k
2

∣∣[[u]]
∣∣2 +ξ = a, delamination

may set in with ż ≤ 0. Once the bonds are weakened, z ∈ (0,1), it is ξ = 0. Then delamination may

propagate as soon as the displacement jump reaches the threshold k
2

∣∣[[u]]
∣∣2 = a. In the final state of

rupture z = 0, (7) yields ξ ∈ (−∞,0], so that k
2

∣∣[[u]]
∣∣2+ξ < a can be satisfied in (9a) for any value of

k
2

∣∣[[u]]
∣∣2. Thus, ż = 0 must be assumed to fulfill (9b), and hence the temporal evolution (pointwise in

ΓC) can be interpreted to stop once the value z = 0 is reached. Comparing the evolution conditions (9)

induced by a positively 1-homogeneous dissipation potential with (8) given by a quadratic potential,

one observes the following: In (9) the attainment of the threshold is independent of the rate ż and also

(9b) only distiguishes between ż = 0 and ż 6= 0, but the particular values of the rate ż do not play

any role. In contrast, in the corresponding equations of (8) the rate ż takes an explicit influence. In

this way, a quadratic dissipation potential describes a rate-dependent evolution, whereas a positively

1-homogeneous dissipation potential governs a rate-independent evolution of the internal variable.

From a mathematical point-of-view rate-independence entails that formulation (6e), resp. (9), cannot

provide any bounds on the rate ż in Lebesgue-Bochner spaces. Indeed, one observes that solutions

are measure-valued in time, so that, in fact, solutions may jump in time, see e.g. [38, 39, 56] for results

on the temporal regularity of rate-independent processes with quasistatic evolution of u and also [47]

for the coupled rate-dependent/rate-independent situation as in (6). Due to this lack of regularity in

time, in general, formulations (6e) and (9) are not well-defined and, instead, one has to resort to

an alternative notion of solution, which does not explicitly involve the time derivative. To motivate

this alternative notion of solution, observe that (9b) states a power balance, while (9a) defines a local

stability criterion of the form: 〈DzE (t,u(t),z(t)),v〉+R(v)≥ 0 for all suitable test functions v. Taking

v = z̃− z(t) and exploiting the convexity wrt. z of the energy functional E = Ebulk +Eadh with Eadh,

one arrives at the semistability condition for all t ∈ [0,T ]:

For all test functions z̃ : E (t,u(t),z(t))≤ E (t,u(t), z̃)+R(z̃− z(t)) . (10)

Here, the notion of semistability indicates that (10) is a stability condition only for z, whereas u is

determined by a weak formulation of the momentum balance (6a). In addition, formally, we may test

the weak formulation of (6a) by u̇. Note then, that the sum of this and the power balance (9b) state

a power balance for the full system. Then, formally, we may integrate by parts in time to obtain an

energy-dissipation balance for the system:

E (t,u(t),z(t))+
∫ t

0

∫

Ω\ΓC

De(u̇) : e(u̇)dxdτ +VarR(0, t;z)

= E (0,u(0),z(0))+
∫ t

0
∂τE (τ,u(τ,z(τ))dτ ,

(11)

with VarR(0, t;z) := suppartitions of [0,T ]∑i R(z(ti+1)− z(ti)) the total variation induced by R, which

defines an extended quasi-distance (’extended’ because R(v) = ∞ is possible, ’quasi’, because,

as in (5), R need not be symmetric). A pair (u,z) that satisfies a suitable weak formulation of the

momentum balance together with semistability (10) and the energy-dissipation balance (11) is called

a semistable energetic solution to the system defined by the tuple (V,W,Z,V ,K ,R,E ). Results

for adhesive contact, combined with further physical phenomena, based on this notion of solution can

be found e.g. in [43, 44, 45, 46].
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The notion of semistable energetic solutions for coupled rate-dependent/rate-independent systems

was for the first time studied in [48] and analyzed in [47] in a general, abstract setting, allowing for

non-convex energies and non-quadratic dissipation potentials V being convex and of general super-

linear growth. Then, in general, (11) holds only as an inequality ’≤’ with
∫ t

0

∫
Ω\ΓC

De(u̇) : e(u̇)dxdτ

replaced by
∫ t

0

(
V (u̇(τ))+V ∗(ρ ü(τ)−DuE (τ,u(τ),z(τ)))

)
dτ for V ∗ the convex conjugate of V .

In [48, 47] it is also proven that semistable energetic solutions to a system (V,W,Z,V ,K ,R,E )
can be obtained using a time-discrete scheme, alternating between u and z at each time-step. Indeed,

also in the fully rate-independent case, i.e., when all rate-dependent terms are elimianted from the

momentum balance so that the evolution of u is quasistatic, such an alternate time-discrete scheme,

results in a similar notion of solution that combines the semistability inequality (10) and an energy-

dissipation inequality with the condition that u(t) be a minimizer for E (t, ·,z(t)), see e.g. [50] in the

setting of adhesive contact. In fact, it has also been observed in [32, 52] that a vanishing-viscosity-

and-inertia limit for a system (V,W,Z,V ,K ,R,E ) results in a semistable energetic formulation

of the corresponding rate-independent, quasistatic limit system. Instead, if one uses in the rate-

independent, quasistatic setting a monolithic time-discrete scheme, which simultaneously minimizes

E (ti, ·, ·)+R(·− zi−1) in the pair (u,z), then one arrives at the well-studied notion of energetic so-

lutions, which consists of a quasistatic energy-dissipation balance akin to (11) and of a global stability

condition, i.e., E (t,u(t),z(t)≤ E (t, ũ, z̃)+R(z̃− z(t)) for all test functions (ũ, z̃). See e.g. [36, 37]

for abstract results on energetic solutions and [31] for adhesive contact. Energetic and semistable en-

ergetic solutions must not coincide: It is shown e.g. in [50] that energetic solutions tend to jump much

earlier than semistable energetic solutions.

3 Adhesive contact, brittle, and cohesive zone-type delamina-

tion

The adhesive contact surface energy Eadh from (1) allows for jumps [[u]] of the displacement field

even in points of the interface where the bonds of the adhesive are not completely broken, i.e.,

z ∈ (0,1). This may apply to a glue which allows the two parts of the body to slightly detach from

each other, but not to a brittle material. In particular, brittle Griffith-type delamination, where the

only surface energy is contributed by the energy dissipated due to crack-growth, cannot be mod-

eled via Eadh as long as the adhesive contact term
∫

ΓC

k
2
z
∣∣[[u]]

∣∣2 dH d−1 is involved. Delamina-

tion in a brittle material can rather be described by a surface energy involving the brittle constraint

I[z|[[u]]|=0]([[u]],z), being I[z|[[u]]|=0]([[u]],z) = 0 if z|[[u]]| = 0 and I[z|[[u]]|=0]([[u]],z) = ∞ otherwise.

This constraint ensures that the displacements are continuous across ΓC in points where no rup-

ture has occurred yet, i.e., z(t,x) ∈ (0,1] and allows the displacements to jump across the crack

set C(t) = {x ∈ ΓC, z(t,x) = 0}. Denoting by Ebrittle the surface energy given as in (1), but with

the adhesive contact term k
2
z
∣∣[[u]]

∣∣2 replaced by the brittle constraint I[z|[[u]]|=0]([[u]],z), it looks intu-

itive that Eadh approximates Ebrittle as k → ∞. In this spirit it was shown in [49], in the quasistatic,

rate-independent setting that energetic solutions of an adhesive contact problem approximate an

energetic solution of a brittle delamination problem as k → ∞. Analogous approximation results for

semistable energetic solutions in the quasistatic, rate-independent setting, resp. in the coupled rate-

dependent/rate-independent setting have been obtained in [50], resp. in [45] featuring non-penetration

but ρ = 0 in (6a), and in [46] for ρ > 0 but neglecting non-penetration. Indeed, in the coupled rate-

dependent/rate-independent setting the main challenge lies in the limit passage in the weak formu-

lation of the momentum balance. For z : [0,T ]×ΓC → [0,1] satisfying semistability (10) the brittle

constraint imposes a non-smooth constraint (alike the non-penetration condition), but which addition-
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ally depends on the properties of z. This is a clear increase of difficulty, because suitable test functions

vk have to be tailored to the properties of zk, in such a way as to, on the one hand, prevent in the weak

formulation of the momentum balance a blow-up of the term
∫

ΓC
kzk(t)[[uk(t)]][[vk]]dH d−1 and, on

the other hand, to recover all the information on the crack set of z(t), being the semistable limit func-

tion at time t ∈ [0,T ] of the solutions (zk(t))k of the adhesive problems. In particular [46] shows

that the evolution of rate-independent brittle Griffith-type delamination in a visco-elastic solid with dy-

namic effects, can be described in terms of a weak form of the momentum balance, semistability (10),

and an energy-dissipation balance. Thus, it contributes to the recent developments in the analytical

understanding of dynamic fracture [18, 19, 20].

Alike adhesive contact, also cohesive zone models, pioneered e.g. in [22, 6, 42], regard fracture as

a gradual phenomenon in which separation takes place across an extended crack ‘tip’, or cohesive

zone. Thus, they also contain finite surface energy terms involving the displacement jump across ΓC

and, possibly an internal variable. Yet, therein, the internal variable ζ rather has the role to keep track

of the history of the maximal opening displacement in normal direction. Thus, if ideally ζ (t,x) :=
sups∈[0,t] [[u(t,x)]]n, it always has to hold [[u]]

n
≤ ζ . This can be enforced by the indicator I[0,ζ (t,x)] of

the interval [0,ζ (t,x)]. Inspired by [41], to allow for a different loading and unloading behavior of the

surface energy, [57] considers

Ecoh(u,ζ ) :=

∫

ΓC

(φcoh(ζ )

2ζ 2

∣∣[[u
]]

n

∣∣2 + I[0,ζ ]
([[

u
]]

n

)
+ I[0,ζ ∗](ζ )+G(ζ )

)
dH

d−1
(12)

with φcoh a typical cohesive energy as proposed in [41] and G a gradient term (quadratic or Sobolev-

Slobodeckij-type). Due to its role, ζ monotonously increases in time. The indicator I[0,ζ ∗] then ensures

that the model is meaningful as long as the maximum opening displacements do not exceed an utter

maximum ζ ∗. [57] shows the existence of semistable energetic solutions for this model in the coupled

rate-dependent/rate-independent setting (without inertia); to accomodate the increasing nature of ζ ,
the rate-independent dissipation is of the form R(v) := a|v|+ I[0,∞)(v).

While [41] and consequently [57] consider the cohesive term and the constraint I[0,ζ (t,x)], keeping

track of the opening history, as a part of the surface energy, many other analytical works consider

them as part of the dissipation potential. In this setup, in [21], existence of energetic solutions in

the rate-independent, quasistatic setting was shown without any gradient term G, thus calling for a

different notion of convergence to overcome compactness issues. More recently, vanishing viscosity

techniques have been applied in cohesive zone models with respect to the internal variable, [14, 2], the

first also accounting for history dependence of the crack opening in a Young-measure setting. [13, 5]

study cohesive zone delamination for a visco-elastic solid without introducing an internal variable and

prove existence of solutions as well as a vanishing viscosity limit.
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[49] Roubíček, T., Scardia, L., Zanini, C.: Quasistatic delamination problem. Continuum Mech. Ther-

modynam. 21(3), 223–235 (2009)
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