WeierstraB-Institut
fir Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A comparison of delamination models:
Modeling, properties, and applications

Marita Thomas

submitted: April 24, 2017

Weierstrass Institute

Mohrenstr. 39

10117 Berlin

Germany

E-Mail: marita.thomas@wias-berlin.de

No. 2393
Berlin 2017

I\
A\l

-

2010 Mathematics Subject Classification. 35Q74, 74H20, 74C05, 74C10, 49453, 74M15, 74R10.

Key words and phrases. Adhesive contact, cohesive zone delamination, brittle Griffith-type delamination, coupled rate-
independent/rate-dependent system.

The research of the author has been partially funded by the DFG (German Research Foundation) within Project Finite
element approximation of functions of bounded variation and application to models of damage, fracture, and plasticity of
the DFG Priority Programme SPP 1748 Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard
Discretisation Methods, Mechanical and Mathematical Analysis. This work was composed in the course of the International
Conference CoMFoS16 Mathematical Analysis of Continuum Mechanics and Industrial Applications Il held 2016 October
22th — 24th at Kyushu University, Fukuoka, Japan. The author warmly thanks the organizing committee and, in particular,
the organizers Masato Kimura, Patrick van Meurs, and Hirofumi Notsu (all Kanazawa University) for the invitation to the
conference and for their hospitality at this successful event.



Edited by

WeierstraB3-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstra3e 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias—-berlin.de

World Wide Web: http://www.wias-berlin.de/



A comparison of delamination models:
Modeling, properties, and applications

Marita Thomas

Abstract

This contribution presents recent results in the modeling and the analysis of delamination
problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic
and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating
surface are discussed.

1 Continuum-mechanical modeling approaches to fracture

The creation and growth of cracks in a solid body corresponds to the formation of new (interior) sur-
faces. From a continuum-mechanical modeling point-of-view, the field variables describing the state of
the body may display discontinuities along these crack surfaces. To mathematically model an elastic
body with an evolving crack one may formulate the system of elasticity on a moving domain char-
acterized by the propagation of the crack surface, which, in turn, has to be described by a suitable
evolution law. Over the decades, in literature, many different criteria have been proposed to determine
the unknown direction for the extension of an existing crack, famous among them are the maximum
energy release rate criterion and the maximum stress criterion, see e.g. [58, 40] for a discussion. How-
ever, to handle the formation of discontinuities in general geometries in a mathematically rigorous way
requires the formulation of the problem in adequate function spaces, such as GSBV -spaces (GSBD-
spaces) of functions of generalized special bounded variations [4] (deformations [17]), as used e.g. in
the Francort-Marigo model for quasistatic brittle fracture [23]. Instead, many models make regularizing
assumptions on the discontinuity set. For this, often an additional internal variable is introduced in the
spirit of generalized standard materials [29], with the purpose to describe the changes in the elas-
tic behavior of the material caused by the evolving inelastic process. This is the basis for the phase
field approach to fracture, where the phase field variable regularizes the model by replacing the lower
dimensional crack surface by a damaged volume of controllable width, where the displacement field
displays no discontinuities as associated with an elastic solid. Starting from the Ambrosio-Tortorelli
phase field model, which was shown in [27] to approximate the Francort-Marigo model in the sense
of I'-convergence, phase field models for facture have received much attention both in mathematical
analysis and numerical simulation, see e.g. [28, 12, 1, 55, 16, 15, 24]. Since they allow it to cap-
ture complicated geometric situations, such as crack initiation and branching, they have become a
well-established method in a wide range of engineering applications, cf. e.g. [35, 34, 30, 33, 3, 54, 59].

In case of compounds of elastic solids, with applications ranging from laminates to layers of rocks and
soil, fracture often occurs in terms of delamination, i.e. cracks form and propagate along the interface
between two material layers. In such a situation of delamination, one may resort to models, where
crack initiation and propagation are confined to a prescribed interface I~ C R?~! between two parts
Q. ,Q_ of an elastic solid Q C R<. The domain of the internal variable, which then describes the
state of the bonding along the interface, is consequently confined to I¢.
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M. Thomas 2

This setup will be considered in the present contribution, which is devoted to the discussion of re-
cent results in modeling and mathematical analysis of delamination processes. Section 2 explains the
mathematical modeling at the example of adhesive contact and gives an overview on existence results
developed in this field. In Section 3, the modeling and analytical challenges of adhesive contact are
compared with those of brittle delamination and cohesive zone delamination.

2 Modeling of delamination processes via energy and dissipa-
tion functionals at the case of adhesive contact

Thermodynamically consistent modeling of adhesive contact via internal variables goes back to [25],
cf. also [26]. Therein, the internal delamination variable z : [0, 7] X Iz — [0, 1] describes the state of
the bonding along the interface I~ between the two parts Q. ,Q_ C R of the body, monitored during
a finite time interval [0, 7']. In what follows, z(#,x) = 1 will indicate that the bonding at the point x € I
at time ¢ € [0,7] is fully intact, whereas z(¢,x) = 0 means that the bonding is completely broken,
and z(t,x) € (0, 1) stands for an intermediate state of degradation. In this way, the set C(¢) := {x €
I, z(t,x) = 0} defines the crack at time ¢ € [0, T].

In the isothermal setting at small strains the state of a viscoelastic body and an adhesive is thus
described by the pair of state variables (u, z) consisting of the displacement field u : [0, 7] x Q\I'z —
R and the delamination variable z : [0,T] x T — [0, 1]. Their evolution is governed in terms of a
tuple (V,W,Z, ¥, ¥, %,&) given by suitable state spaces V,W,Z, a stored energy &, the kinetic
energy %, a dissipation potential 7" accounting for viscosity in the bulk, and a dissipation potential
Z accounting for the energy dissipated due to the delamination process.

The stored energy functional & := &y + Eagn is composed of a bulk term defined on Q\I'. =
Q. UQ_ and a surface term defined on I.. Characteristically for adhesive contact models, which
additionally also account for non-penetration of the material along I, the latter is given as follows:

Gan: VX Z = [0,00], S (u,2) :Z/F (Sl [u] [+ o @ +How ([u] ) dr ™" )
C

Here, k > 0 is fixed and /7~ ! denotes the (d — 1)-dimensional Hausdorff-measure. Furthermore,
[u]] := uy — u_ denotes the jump of the displacements across I'- calculated from the traces u,u_
along I'c of the functions u|q, ,u|q . Ina similar manner, [u], := [u] - nis the jump of the displace-
ments in normal direction to I'- with the normal defined as the outward normal to the subdomain €2 .
The constraint z € [0, 1] is ensured by the indicator function /jg 1 : R — {0, 0} of the interval [0, 1],
i.e., Ijo,1)(z) = 0if z € [0, 1] and Ijg 1)(z) = oo otherwise. Finally, due to the term I ., ([u], ), a finite
surface energy &uan(u,z) corresponds to [ull, > 0 a.e. on I, and thus forbids the penetration of
matter along I'¢.

For a linear elastic material the bulk energy may be considered as

SEbulk - [O, T] xV =R, é”bulk(t,u) = /Q\F (%(Ce(u) : e(u) —f(t) . u) dx (2)

with C € R¥*d*dxd 5 symmetric, positively definite fourth-order tensor and e(u) := 4(Vu+Vu')
the small strain tensor. The evolution process is driven here by a time-dependent volume force f. The
kinetic energy . is given by

1 .
H W = [0,00), H(v):= EHVH%V with ”V”%V = /Qp|v|2dx (3)
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for some given function p € L*() and a constant p. > 0 such that p > p, a.e. in Q. In this way,
the space W is equivalent to L%(Q; R?).

The dissipation potential ¥ : V — [0,0) accounts for viscosity of the bulk material and is here for
simplicity assumed to be quadratic:

VIV 5 [0,00), V(v) = / 1De(v) : e(v)dy, @)

again, with D € R4*dxdxd 5 symmetric, positively definite fourth-order tensor. Assuming here for
simplicity homogeneous Dirichlet conditions along the outer boundary dQ, in view of (2) and (4), it is
V:={ve H(Q\It),v=0a.e.on dQ}.

The dissipation potential % controls how much energy is spent on the progression of delamination. In
many materials, such as metals or rocks, fracture is a unidirectional progress, in the sense that cracks
can only grow but not heal; this feature may be encoded in the dissipation potential by considering
X1 — (0,0,

R(V) = R(v)+ o /F (o) (v)d9" with Z(v) := g R(v)dor?d—", (5)
C C

where R : R — [0,00) is assumed to be convex with R(0) = 0 and where I—wp) : R — {0,00}
denotes the indicator function of (—eo,0] and & is a non-negative constant. Taking v = z, in view on
the modeling assumptions on z, this captures that a growth of delamination corresponds to a decrease
of z in time (from the value 1 at most down to 0), so that, formally, its time-derivative always should be
non-increasing.

Formally, the evolution of the state variables (u, z) is then captured by the system

pii —div (Ce(u) + De(it)) = fin[0,T]x Q\It, (6a)

u = 0on[0,7T]x3Q, (6b)

[Ce(u) +De(i)] ' n = 00n[0,T] x I, (6c)

(Ce(u) +De(@)) -n+kz[u] + Iuplio ) ([]) > 00n[0,7] x T, (6d)
0; (ﬁ(z') + ol (2)) + %‘ [u] ‘2 +3d.dp1(z) > 0on0,T] xTIk, (6e)
Vz:n = 0on[0,T] x Ik, (6f)

and supplemented by initial conditions for (u,z).

The indicator terms Ik of the convex intervals K € {[0, 1], (—eo, 0], [0,0)} appearing in the function-
als (1) and (5) are highly non-smooth, which is why (6d) and (6e) are given in terms of subdifferential
inclusions and display the multivalued subdifferentials dIx of the corresponding indicator function.
Here, the subdifferential dg(v) of a convex function g : R — [0, 0] at v is given by the set of all sub-
derivatives v*, i.e., dg(v) := {v* € R, g(w)—g(v) > v*(w—v) forall w € R}, which is the set of
“slopes” defining tangents to g in the point v. In particular, if a function is classically differentiable in a
point v, then the subdifferential is single-valued in v and coincides with the derivative in v. For example,
the subdifferential of 1[07]] is given by

0 if 7€ (—o0,0)U(1,00),

~J (=o,0] ifz=0,
M@ =93 "ro1 " itze(0,1), ’ v
[()7 oo) ifz=1
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i.e., the subdifferential is multivalued and, in general, given by an unbounded set. Exactly this bears
the main difficulty in the analysis of system (6) and suitable weak notions of solution in suitable func-
tions spaces as well as refined analytical tools have to be established in order to deduce suitable
bounds on each of the occuring terms. To be more precise, a first major difficulty comes with the mo-
mentum balance (6a) and the corresponding transmission condition (6d) along I'.. A weak formulation
combines the acceleration term with elements of the unbounded subdifferential of the non-penetration
constraint and, in general, bounds needed for the analysis can be deduced only on the sum of the
two but not on each of the two terms separately. Many works dealing with adhesive contact and in-
volving the non-penetration constraint thus resort to a physical setting with external loadings varying
sufficiently slowly so that acceleration terms can be neglected, cf. e.g. [7, 8, 9, 10], or replace the
non-penetration constraint by less restrictive conditions, cf. e.g. [43], where tangential slip is admissi-
ble. Without the acceleration term it is possible, in particular, to give a weak formulation of (6a)—(6d)
in L2(0,T;V) and to obtain suitable bounds on all terms in this setting, however, as indicated, at
the price of neglecting the acceleration term. Only recently, in a series of papers [11, 53, 51], it was
indeed possible to handle dynamics in combination with the non-penetration constraint using a weak
formulation in ' (0, T'; V), instead. This opens the door for a number of additional, refined estimates,
also using test functions, which incapacitate the element of the unbounded subdifferential, so that a
separate estimate on the acceleration term becomes accessible. The approach of resorting to smaller
spaces of admissible test functions, with properties tightly tailored to handle unbounded terms aris-
ing from non-smooth constraints seems to be the key to deal with rate-dependence and dynamics in
combination with non-smooth constraints.

Let us now discuss the difficulties related to the flow rule (6e). In literature, two major cases can be
distinguished for the density R involved in the dissipation potential X from (5): The case, where R
contains a quadratic term and the case where Ris posmvely 1-homogeneous. As a first step, let us
assume for the moment that R is quadratic, i.e., R(v) := |v|2 Then, we may choose the space
Z := L*(T¢) and the flow rule (6e) can be rewritten as foIIows.

e8| [ +E < o, (82)

e+ 5 [u]?+8) = o, (8b)

z <0, (8c)

§ € dlpy(a). (8d)

For z=1, by (7), itis £ € [0,). Thus, as long as z = 0, by (8), it has to hold %H[u]”z ==
0. Delamination sets in, i.e., z < 0, if and only if § = —(z+ %H[u]]]z) As soon as a weakening

of the bonds has taken place, so that z € (0, 1), according to (7), it is & = 0 and then, again by
(8), delamination remains static, i.e., z = 0 as long as %H[u]] ’2 = 0 as well. In turn, delamination
will progress any further, i.e., Z < 0, if and only if z = —%H[u]]}z Once the final state of rupture
z =0 is reached, we see that also z = 0 is feasible, because & < —%|[u] ’2 is admissible for any

value of %H[u]] ‘2 thanks to & € (—o0,0] by (7). In other words, the temporal evolution (considered
pointwise in I'-) can be interpreted to stop once the value z = 0 is reached. An evolution of adhesive
contact of viscous kind has been treated e.g. in [52, 53] and also in [7, 9, 10], the latter works neglect
unidirectionality, i.e., & = 0 in (5) & (6e).

For comparison, let us now consider a positively 1-homogeneous density R i.e. R( ) = alv| with
a constant @ > 0 and hence we now set Z := L! (I). Clearly, this R is convex but not classically
differentiable in v = 0 and its subdifferential in v = 0 is given by dR(0) = [—a, a]. In combination with
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the unidirectionality constraint with & = 1, we have that R = a|v| +1(_., g (v) in (5). Accordingly, (6e)
amounts to the following conditions

(8¢) & (8d) combined with MTe]|?+¢€ <a, (9a)
and (%] [u] |>+& —a) =0. (9b)
Forz=1, by (7), & € [0,00) is possible. Condition (9a) then imposes a threshold, below which z =0

has to hold in order to fulfill (9b). When the threshold is reached, i.e., &|[u] ‘2 + & = a, delamination
may set in with z < 0. Once the bonds are weakened, z € (0, 1), itis & = 0. Then delamination may

propagate as soon as the displacement jump reaches the threshold %H[u]] ]2 = a. In the final state of
rupture z =0, (7) yields & € (—eo,0], so that %‘ [u] ’2 + & < a can be satisfied in (9a) for any value of

%}[[u]] ]2. Thus, z = 0 must be assumed to fulfill (9b), and hence the temporal evolution (pointwise in
I'¢) can be interpreted to stop once the value z = 0 is reached. Comparing the evolution conditions (9)
induced by a positively 1-homogeneous dissipation potential with (8) given by a quadratic potential,
one observes the following: In (9) the attainment of the threshold is independent of the rate z and also
(9b) only distiguishes between z = 0 and z # 0, but the particular values of the rate z do not play
any role. In contrast, in the corresponding equations of (8) the rate 7 takes an explicit influence. In
this way, a quadratic dissipation potential describes a rate-dependent evolution, whereas a positively
1-homogeneous dissipation potential governs a rate-independent evolution of the internal variable.

From a mathematical point-of-view rate-independence entails that formulation (6e), resp. (9), cannot
provide any bounds on the rate 7 in Lebesgue-Bochner spaces. Indeed, one observes that solutions
are measure-valued in time, so that, in fact, solutions may jump in time, see e.g. [38, 39, 56] for results
on the temporal regularity of rate-independent processes with quasistatic evolution of u and also [47]
for the coupled rate-dependent/rate-independent situation as in (6). Due to this lack of regularity in
time, in general, formulations (6e) and (9) are not well-defined and, instead, one has to resort to
an alternative notion of solution, which does not explicitly involve the time derivative. To motivate
this alternative notion of solution, observe that (9b) states a power balance, while (9a) defines a local
stability criterion of the form: (D& (¢,u(t),z(t)),v) +Z%(v) > 0 for all suitable test functions v. Taking
v = Z —z(t) and exploiting the convexity wrt. z of the energy functional & = &y + Eadn With Sadn,
one arrives at the semistability condition for all 7 € [0, T']:

For all test functions 7 : & (¢,u(t),z(t)) < &(t,u(t),z) + Z(Z—z(t)) . (10)

Here, the notion of semistability indicates that (10) is a stability condition only for z, whereas u is
determined by a weak formulation of the momentum balance (6a). In addition, formally, we may test
the weak formulation of (6a) by u. Note then, that the sum of this and the power balance (9b) state
a power balance for the full system. Then, formally, we may integrate by parts in time to obtain an
energy-dissipation balance for the system:

#0,u(0),20)+ | t [ Deli)  eli)dxde + Vs (0,52
— £(0,u(0),2(0)) + /0 9.6 (v, u(z, (7)) de,

with Varz(0,2;2) := SUPyaritions of [0,7] 1i % ((ti+1) — z(t;)) the total variation induced by 22, which
defines an extended quasi-distance (‘extended’ because Z(v) = o is possible, 'quasi’, because,
as in (5), Z need not be symmetric). A pair (u,z) that satisfies a suitable weak formulation of the
momentum balance together with semistability (10) and the energy-dissipation balance (11) is called
a semistable energetic solution to the system defined by the tuple (V,W,Z, ¥, %" % ,&). Results
for adhesive contact, combined with further physical phenomena, based on this notion of solution can
be found e.g. in [43, 44, 45, 46].

(11)
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The notion of semistable energetic solutions for coupled rate-dependent/rate-independent systems
was for the first time studied in [48] and analyzed in [47] in a general, abstract setting, allowing for
non-convex energies and non-quadratic dissipation potentials 7" being convex and of general super-
linear growth. Then, in general, (11) holds only as an inequality *<’ with [ Jarre De(it) : e(i) dxde
replaced by [ (¥ (i(7)) +#* (pii(t) —Du& (7,u(7),2(7)))) dT for ¥'* the convex conjugate of ¥
In [48, 47] it is also proven that semistable energetic solutions to a system (V,\W,Z, 7V ,.% . %Z,&)
can be obtained using a time-discrete scheme, alternating between u and z at each time-step. Indeed,
also in the fully rate-independent case, i.e., when all rate-dependent terms are elimianted from the
momentum balance so that the evolution of u is quasistatic, such an alternate time-discrete scheme,
results in a similar notion of solution that combines the semistability inequality (10) and an energy-
dissipation inequality with the condition that u(¢) be a minimizer for &(z,-,z(t)), see e.g. [50] in the
setting of adhesive contact. In fact, it has also been observed in [32, 52] that a vanishing-viscosity-
and-inertia limit for a system (V,W,Z, % % ,&) results in a semistable energetic formulation
of the corresponding rate-independent, quasistatic limit system. Instead, if one uses in the rate-
independent, quasistatic setting a monolithic time-discrete scheme, which simultaneously minimizes
& (tiy-,-) +Z (- —zi—1) in the pair (u,z), then one arrives at the well-studied notion of energetic so-
lutions, which consists of a quasistatic energy-dissipation balance akin to (11) and of a global stability
condition, i.e., & (t,u(t),z(t) < &(t,i1,7) + % (Z —z(t)) for all test functions (i,Z). See e.g. [36, 37]
for abstract results on energetic solutions and [31] for adhesive contact. Energetic and semistable en-
ergetic solutions must not coincide: It is shown e.g. in [50] that energetic solutions tend to jump much
earlier than semistable energetic solutions.

3 Adhesive contact, brittle, and cohesive zone-type delamina-
tion

The adhesive contact surface energy &y, from (1) allows for jumps [[u] of the displacement field
even in points of the interface where the bonds of the adhesive are not completely broken, i.e.,
z € (0,1). This may apply to a glue which allows the two parts of the body to slightly detach from
each other, but not to a brittle material. In particular, brittle Griffith-type delamination, where the
only surface energy is contributed by the energy dissipated due to crack-growth, cannot be mod-
eled via &yan @s long as the adhesive contact term i, %z}[[u]]}zd,%”d_] is involved. Delamina-
tion in a brittle material can rather be described by a surface energy involving the brittle constraint
I [ug =0 ([u], 2), being I =0 ([u].2) = 0 if z|[u]| = 0 and Ij;,g=0)([u],z) = o otherwise.
This constraint ensures that the displacements are continuous across I in points where no rup-
ture has occurred yet, i.e., z(¢,x) € (0, 1] and allows the displacements to jump across the crack
set C(t) = {x € I, z(t,x) = 0}. Denoting by &rinle the surface energy given as in (1), but with
the adhesive contact term &z [u] }2 replaced by the brittle constraint i, =0 ([%],2), it looks intu-
itive that &,qn approximates Spyitie @s K —> oo. In this spirit it was shown in [49], in the quasistatic,
rate-independent setting that energetic solutions of an adhesive contact problem approximate an
energetic solution of a brittle delamination problem as k — . Analogous approximation results for
semistable energetic solutions in the quasistatic, rate-independent setting, resp. in the coupled rate-
dependent/rate-independent setting have been obtained in [50], resp. in [45] featuring non-penetration
but p = 0 in (6a), and in [46] for p > 0 but neglecting non-penetration. Indeed, in the coupled rate-
dependent/rate-independent setting the main challenge lies in the limit passage in the weak formu-
lation of the momentum balance. For z : [0,7] x I'. — [0, 1] satisfying semistability (10) the brittle
constraint imposes a non-smooth constraint (alike the non-penetration condition), but which addition-
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ally depends on the properties of z. This is a clear increase of difficulty, because suitable test functions
v, have to be tailored to the properties of zi, in such a way as to, on the one hand, prevent in the weak
formulation of the momentum balance a blow-up of the term [r. kz(t) [ux (¢) | [V d#?~1 and, on
the other hand, to recover all the information on the crack set of z(¢), being the semistable limit func-
tion at time 7 € [0,T] of the solutions (zx(¢))x of the adhesive problems. In particular [46] shows
that the evolution of rate-independent brittle Griffith-type delamination in a visco-elastic solid with dy-
namic effects, can be described in terms of a weak form of the momentum balance, semistability (10),
and an energy-dissipation balance. Thus, it contributes to the recent developments in the analytical
understanding of dynamic fracture [18, 19, 20].

Alike adhesive contact, also cohesive zone models, pioneered e.g. in [22, 6, 42], regard fracture as
a gradual phenomenon in which separation takes place across an extended crack ‘tip’, or cohesive
zone. Thus, they also contain finite surface energy terms involving the displacement jump across I
and, possibly an internal variable. Yet, therein, the internal variable { rather has the role to keep track
of the history of the maximal opening displacement in normal direction. Thus, if ideally {(z,x) :=
supgeo, [u(2,x)],, it always has to hold [[u],, < {. This can be enforced by the indicator Ijg ¢ ; v of
the interval [0, £ (¢,x)]. Inspired by [41], to allow for a different loading and unloading behavior of the
surface energy, [57] considers

Bean6) 1= /rc (¢c§2(2g) [Tl + o ([e],) + oz (§) +GO) &z 12

with ¢.on a typical cohesive energy as proposed in [41] and G a gradient term (quadratic or Sobolev-
Slobodeckij-type). Due to its role, { monotonously increases in time. The indicator 1[074*] then ensures
that the model is meaningful as long as the maximum opening displacements do not exceed an utter
maximum {*. [57] shows the existence of semistable energetic solutions for this model in the coupled
rate-dependent/rate-independent setting (without inertia); to accomodate the increasing nature of {,
the rate-independent dissipation is of the form R(v) := a[v| +Ijp «) (V).

While [41] and consequently [57] consider the cohesive term and the constraint I[O,C(t,x)]v keeping
track of the opening history, as a part of the surface energy, many other analytical works consider
them as part of the dissipation potential. In this setup, in [21], existence of energetic solutions in
the rate-independent, quasistatic setting was shown without any gradient term G, thus calling for a
different notion of convergence to overcome compactness issues. More recently, vanishing viscosity
techniques have been applied in cohesive zone models with respect to the internal variable, [14, 2], the
first also accounting for history dependence of the crack opening in a Young-measure setting. [13, 5]
study cohesive zone delamination for a visco-elastic solid without introducing an internal variable and
prove existence of solutions as well as a vanishing viscosity limit.
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