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On a Cahn–Hilliard system with convection

and dynamic boundary conditions

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

This paper deals with an initial and boundary value problem for a system coupling equation

and boundary condition both of Cahn–Hilliard type; an additional convective term with a forced

velocity field, which could act as a control on the system, is also present in the equation. Either

regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and

pure Cahn–Hilliard cases are investigated, and a number of results is proven about existence

of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions,

strict separation property. A complete approximation of the problem, based on the regularization of

maximal monotone graphs and the use of a Faedo–Galerkin scheme, is introduced and rigorously

discussed.

1 Introduction

This paper is concerned with the following Cahn-Hilliard system with convection:

∂tρ+∇ρ · u−∆µ = 0 and τΩ∂tρ−∆ρ+ f ′(ρ) = µ in Q := Ω× (0, T ), (1.1)

where Ω denotes a bounded three-dimensional domain and T > 0 is a fixed final time. The unknowns

are ρ, the order parameter, and µ, the chemical potential; f ′ stands for the derivative of a double-well

potential f , u is a given velocity field and τΩ is a nonnegative constant. According to whether τΩ is

positive or zero, we speak of viscous Cahn–Hilliard or pure Cahn–Hilliard system, respectively.

The equations in (1.1) provide a description of the evolution phenomena related to solid-solid phase

separations with convection leaded by the term ∇ρ · u, for some fixed velocity vector u. Let us refer

to [1,5,21,22,35] for some pioneering contributions on the class of Cahn–Hilliard problems. In general,

an evolution process goes on with diffusion; however, for the process of phase separation there is a

structural difference since each phase concentrates and the so-called spinodal decomposition occurs.

A discussion on the modeling approach for phase separation, spinodal decomposition and mobility of

atoms between cells can be found in [8,16,23,29,36]).

Typical and important examples of f are the so–called classical regular potential and the logarithmic

double-well potential . They are given by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.2)

flog(r) := ((1 + r) ln(1 + r) + (1− r) ln(1− r))− cr2 , r ∈ (−1, 1), (1.3)

where c > 1 is such that flog is nonconvex. Another example is the following double obstacle potential :

f2obs(r) := −cr2 if |r| ≤ 1 and f2obs(r) := +∞ if |r| > 1, (1.4)
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where c > 0. In cases like (1.4), one has to split f into a non-differentiable convex part (the indicator

function of [−1, 1] in the present example) and a smooth perturbation. Accordingly, one has to re-

place the derivative of the convex part by the subdifferential and interpret the second identity in (1.1)

as a differential inclusion. In order to incorporate cases like (1.4) in our analysis, we allow f ′ to be

expressed by the sum β + π, where β is the subdifferential of a convex and lower semicontinuous

function β̂ : R → [0,+∞] such that β̂(0) = 0, and π is the Lipschitz continuous derivative of the

concave perturbation π̂ : R → R. Thus, we have that f = β̂ + π̂ represents a possibly non-smooth

double-well potential.

In order to set an initial-boundary value problem for (1.1), we have to specify initial and boundary

conditions. As far as the latter are concerned, the classical ones are the homogeneous Neumann

boundary conditions, namely

∂νµ = 0, ∂νρ = 0 on Σ := Γ× (0, T ), (1.5)

where Γ stands for the smooth boundary of Ω and ∂ν denotes the outward normal derivative. In the

present work, on the contrary we tackle two dynamic boundary conditions for µ and ρ so to obtain a

system of Cahn–Hilliard type also on the boundary. Namely, we complement (1.1) with

∂tρΓ + ∂νµ−∆ΓµΓ = 0 and τΓ∂tρΓ + ∂νρ−∆ΓρΓ + f ′
Γ(ρΓ) = µΓ on Σ, (1.6)

where µΓ and ρΓ are the traces of µ and ρ, respectively, ∆Γ is the Laplace-Beltrami operator on the

boundary, τΓ is a nonnegative constant, and f ′
Γ = βΓ + πΓ comes out from another potential fΓ =

β̂Γ+ π̂Γ with the same behavior as f , the two potentials being not completely independent but related

by a suitable growth condition. Then, it turns out that initial conditions should be prescribed both in the

bulk and on the boundary.

Therefore, by considering everything, the resulting initial and boundary value problem reads

∂tρ+∇ρ · u−∆µ = 0 in Q, (1.7)

τΩ∂tρ−∆ρ+ β(ρ) + π(ρ) ∋ µ in Q, (1.8)

ρΓ = ρ|Σ, µΓ = µ|Σ and ∂tρΓ + ∂νµ−∆ΓµΓ = 0 on Σ, (1.9)

τΓ∂tρΓ + ∂νρ−∆ΓρΓ + βΓ(ρΓ) + πΓ(ρΓ) ∋ µΓ on Σ, (1.10)

ρ(0) = ρ0 in Ω and ρΓ(0) = ρ0|Γ on Γ. (1.11)

Up to our knowledge, in the case of a pure Cahn–Hilliard system, that is, with τΩ = τΓ = 0, and

without convective term (u = 0), the problem (1.7)–(1.11) has been firstly formulated by Goldstein,

Miranville and Schimperna [27] and analyzed from various viewpoints in other contributions (see [7–

9, 28]); moreover, in the case of general potentials, the problem has been deeply investigated in [15]

from the point of view of existence, uniqueness and regularity of the weak solution (see also [24]

for an optimal control problem) by using an abstract approach. Here, instead, we face with the full

system (1.7)–(1.11) by a complete approximation procedure, which involves not only a regularization

of graphs but the setting of a precise Faedo–Galerkin scheme. Moreover, in the viscous case with both

τΩ and τΓ positive, we can prove the uniform boundedness of both the chemical potential and the order

parameter, up to the boundary, and we are even able to show the strict separation property in the case

of logarithmic potentials like flog in (1.3). In addition to this, we did our best to try to keep minimal

assumptions on the velocity field u, concerning summability and time derivation (see the later (2.21)

and (2.47)). So, we think that our contribution could be a useful tool for studying other problems, which

possibly involve other equations with coupled terms, and in particular for investigating optimal control

problems.
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Let us now review some related literature. It turns out that some class of Cahn–Hilliard system, possibly

including dynamic boundary conditions, has collected a noteworthy interest in recent years: we can

quote [10, 32, 34, 37, 38, 43] among other contributions. In case of no convective term in (1.7), and

assuming the homogeneous boundary condition ∂νµ = 0 (i.e., the first condition in (1.5)) and the

condition (1.10) with τΓ > 0 and µΓ as a given datum, the problem has been first addressed in [25]:

the well-posedness and the large time behavior of solutions have been studied for regular potentials

f and fΓ, as well as for various singular potentials like the ones in (1.3) and (1.4). One can see

[25, 26]: in these two papers the authors were able to overcome the difficulties due to singularities

using a set of assumptions for β, π and βΓ, πΓ that gives the role of the dominating potential to f and

entails some technical difficulties. The subsequent papers [17–19] follow a different approach (firstly

considered in [6] to investigate the Allen–Cahn equation with dynamic boundary conditions), which

consists in letting fΓ be the leading potential with respect to f : by this the analysis turns out to be

simpler. The paper [17] contains many results about existence, uniqueness and regularity of solutions

for general potentials that include (1.2)–(1.3), and are valid for both the viscous and pure cases, i.e.,

by assuming just τΩ ≥ 0. Moreover, the optimal boundary control problems for the viscous and pure

Cahn–Hilliard equation are discussed in [19] and [18], respectively, in analogy with the corresponding

contributions [13, 20] for the Allen–Cahn equation. The paper [14] deals with the well-posedness of

the same system, but in which also an additional mass constraint on the boundary is imposed. In

addition, we aim to emphasize that Cahn–Hilliard systems have been rather investigated from the

viewpoint of optimal control. In this connection, we point out the contributions [44, 45] dealing with

the convective Cahn–Hilliard equation; the case with a nonlocal potential is studied in [39]. We also

refer to [11, 30, 42, 46] and quote the paper [12] investigating the second-order optimality conditions

for the state system considered in [19]. There also exist articles addressing some discretized versions

of general Cahn–Hilliard systems, cf. [31,41].

The present paper is organized as follows. In the next two sections, we list our assumptions and

notations, state our results and give the relations between weak solutions and the above boundary

value problem. Sections 4 is devoted to continuous dependence and uniqueness, while the existence

of a solution is shown in Section 6 by taking the limit of suitable approximating problems studied in

Section 5. Finally, Section 7 is devoted to our regularity results.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First of all, the set

Ω ⊂ R
3 is assumed to be bounded, connected and smooth. As in the Introduction, ν is the outward

unit normal vector field on Γ := ∂Ω, and ∂ν and ∆Γ stand for the corresponding normal derivative

and the Laplace-Beltrami operator, respectively. Furthermore, we denote by ∇Γ the surface gradient

and write |Ω| and |Γ| for the volume of Ω and the area of Γ, respectively.

If X is a Banach space, ‖ · ‖X denotes both its norm and the norm of X3. Moreover, X∗ is the

dual space of X , and 〈 · , · 〉X is the dual pairing between X∗ and X . The only exception from the

convention for the norms is given by the spaces Lp constructed on Ω, Γ, Q, and Σ, for 1 ≤ p ≤ ∞,

whose norms are denoted by ‖ · ‖p. Furthermore, we put

H := L2(Ω) , V := H1(Ω) and W := H2(Ω), (2.1)

HΓ := L2(Γ) , VΓ := H1(Γ) and WΓ := H2(Γ), (2.2)

H := H ×HΓ , V := {(v, vΓ) ∈ V × VΓ : vΓ = v|Γ}

and W :=
(
W ×WΓ

)
∩ V . (2.3)
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In the sequel, we work in the framework of the Hilbert triplet (V,H,V ∗). Thus, we have 〈(g, gΓ),
(v, vΓ)〉V =

∫
Ω
gv +

∫
Γ
gΓvΓ for every (g, gΓ) ∈ H and (v, vΓ) ∈ V. Next, we introduce the

generalized mean value, the related spaces and the operator N we widely use throughout the paper.

The former is defined by

mean g∗ :=
〈g∗, (1, 1)〉V
|Ω|+ |Γ|

for g∗ ∈ V ∗ (2.4)

and reduces to

mean g∗ =

∫
Ω
v +

∫
Γ
vΓ

|Ω|+ |Γ|
if g∗ = (v, vΓ) ∈ H . (2.5)

Of course, the components of the pair (1, 1) in (2.4) are the constant functions 1 on Ω and Γ, respec-

tively. We stress that the function

V ∋ (v, vΓ) 7→ ‖∇v‖2H + ‖∇ΓvΓ‖
2
HΓ

+ |mean(v, vΓ)|
2

yields the square of a Hilbert norm on V that is equivalent to the natural one. In particular, we have,

for every (v, vΓ) ∈ V,

‖(v, vΓ)‖V ≤ CΩ

(
‖∇v‖H + ‖∇ΓvΓ‖HΓ

+ |mean(v, vΓ)|
)
, (2.6)

where CΩ depends only on Ω. Now, we set

V∗0 := {g∗ ∈ V ∗ : mean g∗ = 0}, H0 := H ∩ V∗0 and V0 := V ∩ V∗0. (2.7)

Notice the difference between V∗0 and the dual space V ∗
0 = (V0)

∗. At this point, it is clear that the

function

V0 ∋ (v, vΓ) 7→ ‖(v, vΓ)‖V0
:=

(
‖∇v‖2H + ‖∇ΓvΓ‖

2
HΓ

)1/2
(2.8)

is a Hilbert norm on V0 which is equivalent to the usual one. This has the following consequence: for

every g∗ ∈ V∗0, there exists a unique pair (ξ, ξΓ) ∈ V0 such that

∫

Ω

∇ξ · ∇v +

∫

Γ

∇ΓξΓ · ∇ΓvΓ = 〈g∗, (v, vΓ)〉V for every (v, vΓ) ∈ V. (2.9)

Indeed, the right-hand side of (2.9), restricted to the pairs (v, vΓ) ∈ V0, defines a continuous linear

functional on V0 with respect to its natural norm (V0 is a subspace of V ⊂ V × VΓ), and thus also

with respect to the norm (2.8). Therefore, by the Riesz representation theorem, there exists a unique

pair (ξ, ξΓ) ∈ V0 such that

∫

Ω

∇ξ · ∇v +

∫

Γ

∇ΓξΓ · ∇ΓvΓ = 〈g∗, (v, vΓ)〉V for every (v, vΓ) ∈ V0.

On the other hand, the same relation holds true for (v, vΓ) = (1, 1), since mean g∗ = 0. As V =
V0 ⊕ span{(1, 1)}, we obtain (2.9). This allows us to define N : V∗0 → V0 by setting:

for g∗ ∈ V∗0, Ng∗ is the unique pair (ξ, ξΓ) ∈ V0 satisfying (2.9). (2.10)

We notice that N is linear, symmetric, and bijective. Therefore, if we set

‖g∗‖∗ := ‖Ng∗‖V0
, for g∗ ∈ V∗0, (2.11)

DOI 10.20347/WIAS.PREPRINT.2391 Berlin 2017
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then we obtain a Hilbert norm on V∗0, which turns out to be equivalent to the norm induced by the

norm of V ∗. For a future use, we collect some properties of N. By just applying the definition, we have

that

〈g∗,Ng∗〉V = ‖g∗‖2∗ if g∗ ∈ V∗0, (2.12)

∫

Ω

∇w · ∇ξ +

∫

Γ

∇ΓwΓ · ∇ΓξΓ = ‖(w,wΓ)‖
2
H

if (w,wΓ) ∈ V0 and (ξ, ξΓ) = N(w,wΓ) . (2.13)

By accounting for the symmetry of N, we also have (where, here and in the sequel, N is applied to

V∗0-valued functions as well)

〈∂tg
∗,Ng∗〉V =

1

2

d

dt
‖g∗‖2∗ if g∗ ∈ H1(0, T ;V∗0), (2.14)

∫

Ω

∇w · ∇ξ +

∫

Γ

∇ΓwΓ · ∇ΓξΓ =
1

2

d

dt
‖(w,wΓ)‖

2
H

if (w,wΓ) ∈ L2(0, T ;V), ∂t(w,wΓ) ∈ L2(0, T ;V∗0), (ξ, ξΓ) = N(∂t(w,wΓ)) . (2.15)

Now, we list our assumptions. For the structure of our system, we postulate:

τΩ and τΓ are nonnegative real numbers ; (2.16)

β̂, β̂Γ : R → [0,+∞] are convex, proper and l.s.c. with β̂(0) = β̂Γ(0) = 0 ; (2.17)

π̂, π̂Γ : R → R are of class C2 with Lipschitz continuous first derivatives. (2.18)

We set, for convenience,

β := ∂β̂ , βΓ := ∂β̂Γ , π := π̂′
and πΓ := π̂′

Γ, (2.19)

and assume that, with some positive constants C and η,

D(βΓ) ⊆ D(β) and |β◦(r)| ≤ η|β◦
Γ(r)|+ C for every r ∈ D(βΓ). (2.20)

In (2.20), the symbolsD(β) andD(βΓ) denote the domains of β and βΓ, respectively. More generally,

we use the notation D(G) for every maximal monotone graph G in R× R, as well as for the maximal

monotone operators induced on L2 spaces. Moreover, for r ∈ D(G), G◦(r) stands for the element of

G(r) having minimum modulus.

For the data, we make the following assumptions:

u ∈ L2(0, T ;L3(Ω))3, div u = 0 in Q and u · ν = 0 on Σ ; (2.21)

(ρ0 , ρ0|Γ) ∈ V , β̂(ρ0) ∈ L1(Ω) and β̂Γ(ρ0|Γ) ∈ L1(Γ) ; (2.22)

m0 := mean(ρ0, ρ0|Γ) ∈ intD(βΓ). (2.23)

Let us come to our notion of solution. It is a triple of pairs, ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)), that satisfies a

rather low level of regularity, in principle. Indeed, we just require that

(µ, µΓ) ∈ L2(0, T ;V), (2.24)

(ρ, ρΓ) ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V), (2.25)

(ζ, ζΓ) ∈ L2(0, T ;H), (2.26)

τΩ∂tρ ∈ L2(0, T ;H) and τΓ∂tρΓ ∈ L2(0, T ;HΓ) . (2.27)
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We have written, e.g., τΩ∂tρ in (2.27) instead of ∂t(τΩρ). We similarly behave throughout the paper,

in particular in the forthcoming (2.29), in order to avoid a heavy notation. The problem to be solved is

stated in a weak form, owing to the assumptions (2.21) on u. Namely, we require that

〈∂t(ρ, ρΓ), (v, vΓ)〉V −

∫

Ω

ρu · ∇v +

∫

Ω

∇µ · ∇v +

∫

Γ

∇ΓµΓ · ∇ΓvΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (2.28)

τΩ

∫

Ω

∂tρ v + τΓ

∫

Γ

∂tρΓ vΓ +

∫

Ω

∇ρ · ∇v +

∫

Γ

∇ΓρΓ · ∇ΓvΓ

+

∫

Ω

(
ζ + π(ρ)

)
v +

∫

Γ

(
ζΓ + πΓ(ρΓ)

)
vΓ =

∫

Ω

µv +

∫

Γ

µΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (2.29)

ζ ∈ β(ρ) a.e. in Q and ζΓ ∈ βΓ(ρΓ) a.e. on Σ, (2.30)

ρ(0) = ρ0 a.e. in Ω and ρΓ(0) = ρ0|Γ a.e. on Γ. (2.31)

We observe that any weak solution to problem (2.28)–(2.31) satisfies

∂t mean(ρ, ρΓ) = 0, whence mean(ρ, ρΓ)(t) = m0 for every t ∈ [0, T ]. (2.32)

Indeed, it suffices to take (v, vΓ) = (|Ω|+ |Γ|)−1(1, 1) in (2.28).

However, one can wonder whether the solution enjoys the better regularity

∂t(ρ, ρΓ) = (∂tρ, ∂tρΓ) ∈ L2(0, T ;H) and (µ, µΓ) ∈ L2(0, T ;W), (2.33)

(ρ, ρΓ) ∈ L2(0, T ;W), (2.34)

and actually satisfies the boundary value problems presented in the Introduction, i.e.,

∂tρ+∇ρ · u−∆µ = 0 a.e. in Q, (2.35)

∂tρΓ + ∂νµ−∆ΓµΓ = 0 a.e. on Σ, (2.36)

τΩ∂tρ−∆ρ+ ζ + π(ρ) = µ a.e. in Q, (2.37)

τΓ∂tρΓ + ∂νρ−∆ΓρΓ + ζΓ + πΓ(ρΓ) = µΓ a.e. on Σ. (2.38)

This is not obvious. For instance, it is not clear whether the derivative ∂t(ρ, ρΓ) can be replaced by

(∂tρ, ∂tρΓ), since the components of the test functions (v, vΓ) ∈ V used in (2.28) are not inde-

pendent. In the first result we present, we answer the above questions. However, for future use, it is

convenient to prepare a more general tool.

Theorem 2.1. Assume (2.16)–(2.20) for the structure, (2.21) for the velocity field and

((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) ∈ L2(0, T ;V× V×H) with (τΩ∂tρ, τΓ∂tρΓ) ∈ L2(0, T ;H) .

Then, we have the following statements:

i) if ρ ∈ L2(0, T ;W ), ∂t(ρ, ρΓ) ∈ L2(0, T ;H) and (2.28) is fulfilled, then

(µ, µΓ) ∈ L1(0, T ;W) with

‖(µ, µΓ)‖L1(0,T ;W) ≤ C1

(
‖(µ, µΓ)‖L2(0,T ;V) + ‖∂t(ρ, ρΓ)‖L2(0,T ;H)

+ ‖ρ‖L2(0,T ;W )‖u‖L2(0,T ;H)

)
, (2.39)
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where C1 depends only on Ω, and (2.35)–(2.36) hold true as well;

ii) if (2.29) is satisfied, then

(ρ, ρΓ) ∈ L2(0, T ;W) with

‖(ρ, ρΓ)‖L2(0,T ;W) ≤ C2

(
‖(ρ, ρΓ)‖L2(0,T ;V)

+ ‖((µ, µΓ), (ζ, ζΓ), (τΩ∂tρ, τΓ∂tρΓ))‖L2(0,T ;H×H×H)

)
, (2.40)

where C2 depends only on Ω, and (2.37)–(2.38) hold as well;

iii) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with ζΓ ∈ γ(ρΓ) a.e.

on Σ, then

‖ζΓ‖L2(0,T ;HΓ) ≤ C3

(
‖(ρ, ρΓ)‖L2(0,T ;V)

+ ‖((µ, µΓ), ζ, (τΩ∂tρ, τΓ∂tρΓ))‖L2(0,T ;H×H×H)

)
, (2.41)

where C3 depends only on Ω.

Assume, in addition, that u belongs to L∞(0, T ;L3(Ω)) and that

((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) ∈ L∞(0, T ;V× V×H) and (τΩ∂tρ, τΓ∂tρΓ) ∈ L∞(0, T ;H) .

Then, we have the following statements:

iv) if ρ ∈ L∞(0, T ;W ), ∂t(ρ, ρΓ) ∈ L∞(0, T ;H) and (2.28) is fulfilled, then

(µ, µΓ) ∈ L∞(0, T ;W) with

‖(µ, µΓ)‖L∞(0,T ;W) ≤ C4

(
‖(µ, µΓ)‖L∞(0,T ;V) + ‖∂t(ρ, ρΓ)‖L∞(0,T ;H)

+ ‖ρ‖L∞(0,T ;W )‖u‖L∞(0,T ;H)

)
, (2.42)

where C4 depends only on Ω;

v) if (2.29) is satisfied, then

(ρ, ρΓ) ∈ L∞(0, T ;W) with

‖(ρ, ρΓ)‖L∞(0,T ;W) ≤ C5

(
‖(ρ, ρΓ)‖L∞(0,T ;V)

+ ‖((µ, µΓ), (ζ, ζΓ), (τΩ∂tρ, τΓ∂tρΓ))‖L∞(0,T ;H×H×H)

)
, (2.43)

where C5 depends only on Ω;

vi) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with ζΓ ∈ γ(ρΓ) a.e.

on Σ, then

‖ζΓ‖L∞(0,T ;HΓ) ≤ C6

(
‖(ρ, ρΓ)‖L∞(0,T ;V)

+ ‖((µ, µΓ), ζ, (τΩ∂tρ, τΓ∂tρΓ))‖L∞(0,T ;H×H×H)

)
, (2.44)

where C6 depends only on Ω.

As a particular case of i) and ii), every solution to problem (2.28)–(2.31) satisfying (2.24)–(2.27) also

fulfills (2.34) and (2.37)–(2.38), and, if τΩ and τΓ are strictly positive, (2.33) and (2.35)–(2.36) hold

true as well.

Remark 2.2. We stress that all of the constants appearing in the estimates (2.39)–(2.44) depend only

on Ω. In particular, the constants C3 and C6 do not depend on γ.
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Our next results regard the well-posedness and the continuous dependence of the solution on the

velocity field. They are as follows:

Theorem 2.3. Assume (2.16)–(2.20) for the structure and (2.21)–(2.23) for the data. Then, problem

(2.28)–(2.31) has a at least one solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) satisfying the regularity properties

(2.24)–(2.27), (2.34) and the inequality

‖(µ, µΓ)‖L2(0,T ;V) + ‖(ρ, ρΓ)‖H1(0,T ;V ∗)∩L∞(0,T ;V)∩L2(0,T ;W)

+ ‖(ζ, ζΓ)‖L2(0,T ;H) + τ
1/2
Ω ‖∂tρ‖L2(0,T ;H) + τ

1/2
Γ ‖∂tρΓ‖L2(0,T ;HΓ) ≤ K1, (2.45)

for some constant K1 that depends only on the structure of the system, Ω, T , the initial data, and the

norm of u in L2(0, T ;L3(Ω))3. Furthermore, the components ρ and ρΓ of any solution are uniquely

determined, and the whole solution is unique if at least one of the operators β and βΓ is single-valued.

Remark 2.4. By combining the statements of Theorems 2.1 and 2.3, it is clear that estimates also

hold for the norms of (µ, µΓ) and (ρ, ρΓ) in L2(0, T ;W) with a constant K ′
1 similar to K1.

Theorem 2.5. Under the assumptions (2.16)–(2.20) on the structure and (2.21)–(2.23) on the data,

let ui, i = 1, 2, be two choices of u, and let ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) be the difference of two

corresponding solutions. Then the inequality

‖(ρ, ρΓ)‖L∞(0,T ;V ∗
0
)∩L2(0,T ;V) + τ

1/2
Ω ‖∂tρ‖L∞(0,T ;H) + τ

1/2
Γ ‖∂tρΓ‖L∞(0,T ;HΓ)

≤ K2‖u1 − u2‖L2(0,T ;L3(Ω)) (2.46)

holds true for some constant K2 that depends only on the structure of the system, Ω, T , the initial

data, and the norms of ui, i = 1, 2, in L2(0, T ;L3(Ω))3.

Under additional assumptions on the initial data and on the velocity u, we can ensure further regularity

for the solution. Namely, we have the following result:

Theorem 2.6. In addition to the assumptions (2.16)–(2.20) for the structure and (2.21)–(2.23) for the

data, suppose that τΩ and τΓ are strictly positive and that

u ∈ H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)), (2.47)

ρ0 ∈ H2(Ω) , ρ0|Γ ∈ H2(Γ) , β◦(ρ0) ∈ L2(Ω) and β◦
Γ(ρ0|Γ) ∈ L2(Γ) . (2.48)

Then, problem (2.28)–(2.31) has a at least one solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) that also satisfies

(µ, µΓ) ∈ L∞(0, T ;W) , (ρ, ρΓ) ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V) ∩ L∞(0, T ;W)

and (ζ, ζΓ) ∈ L∞(0, T ;H), (2.49)

‖(µ, µΓ)‖L∞(0,T ;W) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

+ ‖(ζ, ζΓ)‖L∞(0,T ;H) ≤ K3, (2.50)

with a constant K3 that depends only on the structure of the system, Ω, T , the initial data, and

the norm of u in H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)). In particular, the components (µ, µΓ) and

(ρ, ρΓ) are bounded.
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Remark 2.7. As Ω ⊂ R
3 and W ⊂ C0(Ω)× C0(Γ) due to the Sobolev inequalities, from standard

embedding results (cf., e.g., [40, Sect. 8, Cor. 4]) and (2.49) it follows that even ρ ∈ C0(Q) and

ρΓ ∈ C0(Σ). Moreover, a part of the result of Theorem 2.6 still holds true without assuming that τΩ
and τΓ are strictly positive, provided that the initial data satisfy the additional condition

(
−∆ρ0 + (βε + π)(ρ0),−∆Γρ0|Γ + ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)

)

belongs to a bounded subset of V for every ε ∈ (0, 1). (2.51)

With respect to the previous statement, we miss the conditions ∂t(ρ, ρΓ) ∈ L∞(0, T ;H) and (µ, µΓ) ∈
L∞(0, T ;W) (see the forthcoming Remark 7.1 for details). If the double-well potentials in the bulk

and on the boundary are the same potential of logarithmic type as in the next (2.52)–(2.53), then it is

easy to find sufficient conditions on ρ0 for (2.51) to hold. Indeed, one can assume that ‖ρ0‖∞ < 1
and (∆ρ0,∆Γρ0|Γ − ∂νρ0) ∈ V.

Our last result requires potentials of logarithmic type (see (1.3)) with the same domain. Namely, we

require that

β, βΓ : (−1, 1) → R are C2 functions with (2.52)

lim
rց−1

β(r) = lim
rց−1

βΓ(r) = −∞ and lim
rր1

β(r) = lim
rր1

βΓ(r) = +∞ . (2.53)

Theorem 2.8. In addition to the assumptions (2.16)–(2.20) on the structure, assume that τΩ and τΓ
are strictly positive and that β and βΓ satisfy (2.52)–(2.53). Moreover, assume that u and ρ0 satisfy

(2.21), (2.47) and

ρ0 ∈ W, ρ0|Γ ∈ WΓ, inf ρ0 > −1 and sup ρ0 < 1 . (2.54)

Then the unique solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) satisfies

ρ∗ ≤ ρ(x, t) ≤ ρ∗ for all (x, t) ∈ Q, (2.55)

for some constants ρ∗, ρ
∗ ∈ (−1, 1) that depend only on the structure of the system, Ω, T , the initial

data, and the norm of u in H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)).

Theorem 2.9. In addition to (2.16)–(2.20), assume that τΩ and τΓ are strictly positive, that β and

βΓ satisfy (2.52)–(2.53), and that β, π, βΓ and πΓ are of class C2. Moreover, assume that ρ0 satis-

fies (2.54). Finally, let ui ∈ H1(0, T ;L3(Ω)), i = 1, 2, be two choices of u satisfying (2.21), and let

((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) be the difference of the corresponding solutions. Then the inequality

‖(µ, µΓ)‖L∞(0,T ;W) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

≤ K4‖u1 − u2‖H1(0,T ;L3(Ω)) (2.56)

holds true for some constant K4 that depends only on the structure of the system, Ω, T , the initial

data, and the norms of ui, i = 1, 2, in H1(0, T ;L3(Ω)).

Throughout the paper, we will repeatedly use Young’s inequality

a b ≤ δ a2 +
1

4δ
b2 for all a, b ∈ R and δ > 0, (2.57)

Hölder’s inequality, and the Sobolev inequality related to the continuous embedding V ⊂ Lp(Ω)
with p ∈ [1, 6] (since Ω is three-dimensional, bounded and smooth). Besides, this embedding is
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compact for p < 6, and the same holds for the analogous spaces on the boundary. It follows that

the embeddings V ⊂ H and H ⊂ V ∗ are compact as well. In particular, we have the compactness

inequality

‖(v, vΓ)‖H ≤ δ
(
‖∇v‖H + ‖∇ΓvΓ‖HΓ

)
+ Cδ ‖(v, vΓ)‖V ∗

for every (v, vΓ) ∈ V and δ > 0, (2.58)

where Cδ depends only on Ω and δ. Finally, we set, for brevity,

Qt := Ω× (0, t) and Σt := Γ× (0, t) for 0 < t ≤ T , (2.59)

and simply write Q and Σ if t = T .

We conclude this section by stating a general rule concerning the constants that appear in the esti-

mates to be performed in the sequel. The small-case symbol c stands for a generic constant whose

values might change from line to line (and even within the same line) and depend only on Ω, on the

shape of the nonlinearities, and on the constants and the norms of the functions involved in the as-

sumptions of our statements. In particular, the values of c do not depend on ε if this parameter is

considered. A small-case symbol with a subscript like cδ (in particular, with δ = ε) indicates that the

constant might depend on the parameter δ, in addition. On the contrary, we mark precise constants

that we can refer to by using different symbols, like in (2.20) and in (2.45).

3 Strong solutions

This section is devoted to the proof of Theorem 2.1. Our argument relies on a result on an elliptic

problem. Thus, we prove the following lemma:

Lemma 3.1. Let γ : R → R be monotone and Lipschitz continuous, and assume that (w,wΓ) ∈ V

and (g, gΓ) ∈ H satisfy

∫

Ω

∇w ·∇v+

∫

Γ

∇ΓwΓ ·∇ΓvΓ +

∫

Γ

γ(wΓ)vΓ =

∫

Ω

gv+

∫

Γ

gΓvΓ for every (v, vΓ) ∈ V. (3.1)

Then we have that

(w,wΓ) ∈ W and ‖(w,wΓ)‖W + ‖γ(wΓ)‖HΓ
≤ CΩ

(
‖(w,wΓ)‖V + ‖(g, gΓ)‖H

)
, (3.2)

where CΩ depends only on Ω. Moreover, (w,wΓ) solves the boundary value problem

−∆w = g a.e. in Ω, and ∂νw −∆ΓwΓ + γ(wΓ) = gΓ a.e. on Γ . (3.3)

Proof. We use well-known estimates from the theory of traces and elliptic equations. The values of c
will depend only on Ω. We set, for brevity,M := ‖(w,wΓ)‖V+‖(g, gΓ)‖H. By taking any v ∈ H1

0 (Ω)
and testing (3.1) by (v, 0), we obtain the first identity in (3.3) in the sense of distributions. In particular,

we have ∆w = − g ∈ H . By combining this with w|Γ = wΓ ∈ VΓ, we deduce that

w ∈ H3/2(Ω) and ‖w‖H3/2(Ω) ≤ c
(
‖∆w‖H + ‖wΓ‖VΓ

)
≤ cM.

It follows that

∂νw ∈ HΓ and ‖∂νw‖HΓ
≤ c

(
‖w‖H3/2(Ω) + ‖∆w‖H

)
≤ cM,
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as well as the validity of the formula
∫

Ω

∇w · ∇v = −

∫

Ω

∆w v +

∫

Γ

∂νw v|Γ for every v ∈ V .

By replacing −∆w by g, comparing with (3.1), and noticing that for every vΓ ∈ VΓ there exists some

v ∈ V such that (v, vΓ) ∈ V, we deduce that
∫

Γ

∇ΓwΓ · ∇ΓvΓ +

∫

Γ

γ(wΓ)vΓ =

∫

Γ

(gΓ − ∂νw)vΓ for every vΓ ∈ VΓ . (3.4)

In particular, by choosing vΓ = γ(wΓ), we obtain that
∫

Γ

γ′(wΓ)|∇ΓwΓ|
2 +

∫

Γ

|γ(wΓ)|
2 =

∫

Γ

(gΓ − ∂νw)γ(wΓ),

whence immediately

‖γ(wΓ)‖HΓ
≤ ‖gΓ − ∂νw‖HΓ

≤ cM,

which is a part of (3.2). Then, we can rewrite (3.4) in the form
∫

Γ

∇ΓwΓ · ∇ΓvΓ =

∫

Γ

(gΓ − ∂νw − γ(wΓ))vΓ for every vΓ ∈ VΓ .

This implies the second identity in (3.3) (at least in a generalized sense), as well as

∆ΓwΓ ∈ HΓ and ‖∆ΓwΓ‖HΓ
≤ ‖gΓ − ∂νw − γ(wΓ)‖HΓ

≤ cM .

Therefore, we also have that

wΓ ∈ WΓ and ‖wΓ‖WΓ
≤ c

(
‖wΓ‖VΓ

+ ‖∆ΓwΓ‖HΓ

)
≤ cM .

We conclude that

w ∈ W and ‖w‖W ≤ c
(
‖∆w‖H + ‖wΓ‖WΓ

)
≤ cM .

Therefore, both the regularity and the estimate of (3.2) are completely proved, and the equations (3.3)

hold almost everywhere. �

Proof of Theorem 2.1. In order to prove i) and iv), we account for (2.21), which implies that

−
∫
Ω
ρ u · ∇v =

∫
Ω
∇ρ · u v a.e. in (0, T ) for every v ∈ V , and rewrite (2.28) a.e. in (0, T )

with this substitution. Then, for a.a. t ∈ (0, T ), we apply Lemma 3.1 with

γ = 0, (w,wΓ) = (µ, µΓ)(t), g = −(∂tρ+∇ρ · u)(t) and gΓ = −∂tρΓ(t),

by observing that ‖∇ρ(t) ·u(t)‖2 ≤ ‖∇ρ(t)‖6‖u(t)‖3 ≤ c‖ρ(t)‖W‖u(t)‖3 , where c depends only

on Ω. Then, we take the norms of both sides of (3.2) in L1(0, T ) or in L∞(0, T ) to deduce (2.39)

and (2.42), respectively, and notice that (3.3) coincides with (2.35)–(2.36). To prove ii) and v), we

apply Lemma 3.1 for a.a. t ∈ (0, T ) with

γ = 0, (w,wΓ) = (ρ, ρΓ)(t), g =
(
µ− τΩ∂tρ− ζ − π(ρ)

)
(t)

and gΓ =
(
µΓ − τΓ∂tρΓ − ζΓ − πΓ(ρΓ)

)
(t),

and argue as before. Finally, to prove iii) and vi), we apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ as

in the statement, (w,wΓ) and g as in the previous step, and

gΓ =
(
µΓ − τΓ∂tρΓ − πΓ(ρΓ)

)
(t).

Then, we write the estimate for ζΓ of (3.1) and take the norms of both sides inL2(0, T ) or inL∞(0, T ).
�
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4 Continuous dependence and uniqueness

In this section, we give the proof of Theorem 2.5 concerning continuous dependence on the velocity

field u and derive the uniqueness part of Theorem 2.3.

Proof of Theorem 2.5. We take two choices ui, i = 1, 2, of u and consider two corresponding so-

lutions ((µi, µiΓ), (ρi, ρiΓ), (ζi, ζiΓ)). We set ρ := ρ1 − ρ2 and similarly define the other differences,

according to the notation of the statement. We observe that mean(ρ, ρΓ) = 0 by the conservation

property (2.32), applied to (ρi, ρiΓ) for i = 1, 2, whence (ξ, ξΓ)(s) := N((ρ, ρΓ)(s)) is well defined

for every s ∈ [0, T ]. Thus, we write equation (2.28) at the time s for both solutions, test the difference

by (ξ, ξΓ)(s) and integrate with respect to s over (0, t), where t ∈ (0, T ). Owing to (2.14), we obtain

the identity

1

2
‖(ρ, ρΓ)(t)‖

2
∗ +

∫

Qt

∇µ · ∇ξ +

∫

Σt

∇ΓµΓ · ∇ΓξΓ =

∫

Qt

(ρ1u1 − ρ2u2) · ∇ξ . (4.1)

At the same time, we write equation (2.29) at the time s for both solutions, test the difference by

(ρ, ρΓ)(s), integrate over (0, t), and add the same term
∫ t

0
‖(ρ, ρΓ)(s)‖

2
H ds to both sides, for conve-

nience. We obtain that

τΩ
2

∫

Ω

|ρ(t)|2 +
τΓ
2

∫

Γ

|ρΓ(t)|
2 +

∫ t

0

‖ρ(s)‖2V ds+

∫ t

0

‖ρΓ(s)‖
2
VΓ
ds+

∫

Qt

ζρ+

∫

Σt

ζΓρΓ

=

∫

Qt

{
ρ2 −

(
π(ρ1)− π(ρ2)

)
ρ
}
+

∫

Σt

{
ρ2Γ −

(
πΓ(ρ1Γ)− πΓ(ρ2Γ)

)
ρΓ
}

+

∫

Qt

µρ+

∫

Σt

µΓρΓ . (4.2)

At this point, we add these equalities to each other. By the definition of N, the last two integrals of

(4.2) and the ones on the left-hand side of (4.1) cancel each other. Moreover, the terms involving ζ
and ζΓ are nonnegative by monotonicity. Thus, by owing to the Lipschitz continuity of π and πΓ, we

deduce that

1

2
‖(ρ, ρΓ)(t)‖

2
∗ +

τΩ
2

∫

Ω

|ρ(t)|2 +
τΓ
2

∫

Γ

|ρΓ(t)|
2 +

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds

≤

∫

Qt

|ρu1 + ρ2u| |∇ξ|+ c

∫ t

0

‖(ρ, ρΓ)(s)‖
2
H ds =: I1 + I2,

and we now treat the contributions I1 and I2 on the right-hand side separately. We account for the

Hölder, Sobolev and Young inequalities, and use the definitions (2.8) and (2.11). We have that

I1 ≤

∫ t

0

(
‖ρ(s)‖6 ‖u1(s)‖3 + ‖ρ2(s)‖6 ‖u(s)‖3

)
‖∇ξ(s)‖2 ds

≤
1

4

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds+ c

∫ t

0

‖u1(s)‖
2
3 ‖(ρ, ρΓ)(s)‖

2
∗ ds

+ c ‖ρ2‖
2
L∞(0,T ;V )

∫ t

0

‖u(s)‖23 ds+

∫ t

0

‖(ρ, ρΓ)(s)‖
2
∗ ds .

We deal with I2 as follows, invoking the compactness inequality (2.58):

I2 ≤
1

4

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds+ c

∫ t

0

‖(ρ, ρΓ)(s)‖
2
∗ ds .
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At this point, we collect all of these inequalities, observe that the function s 7→ ‖u1(s)‖
2
3 belongs

to L1(0, T ) by (2.21), and apply the Gronwall lemma. We immediately deduce (2.46) with a constant

whose dependence agrees with that asserted in the statement of Theorem 2.5. With this, the proof is

complete.

Partial uniqueness and uniqueness. Next, we derive the uniqueness part of Theorem 2.3. Unique-

ness for (ρ, ρΓ) clearly follows by taking u1 = u2 in (2.46). Assume now that β is single-valued. This

implies that ζ = β(ρ) is uniquely determined as well. Next, by Theorem 2.1, (2.37)–(2.38) hold true.

From (2.37), we deduce uniqueness for the component µ of the solution. This also implies uniqueness

for µΓ = µ|Σ, and (2.38) yields uniqueness for ζΓ. Assume now that βΓ is single-valued. In this case,

we first derive uniqueness for ζΓ = βΓ(ρΓ), then for µΓ by owing to (2.38). On the other hand, the first

equation (2.28) with (ρ, ρΓ) completely known implies that the difference of the components (µ, µΓ)
of two solutions is space independent, whence it has the form t 7→ ϕ(t)(1, 1) for some ϕ ∈ L2(0, T ),
since the second component is the trace of the first one. But ϕ must vanish since µΓ is unique. This

implies that µ is unique as well. Finally, (2.37) yields uniqueness for ζ . �

5 Approximation

In this section, we construct and solve an approximating problem depending on the small parameter

ε ∈ (0, 1), which is understood to be fixed throughout the whole section. This problem is simply

obtained by modifying (2.28)–(2.31) as follows: instead of τΩ and τΓ, we take the strictly positive

constants

τ εΩ := max{τΩ, ε} and τ εΓ := max{τΓ, ε}, (5.1)

and replace the functionals β̂ and β̂Γ and the operators β and βΓ by the following Moreau and Yosida

regularizations β̂ε, β̂Γ, ε, βε, βΓ, ε (see, e.g., [4, pp. 28 and 39]):

β̂ε(r) := inf
s∈R

{
1

2ε
|r − s|2 + β̂(s)

}
=

∫ r

0

βε(s)ds,

β̂Γ,ε(r) := inf
s∈R

{
1

2εη
|r − s|2 + β̂Γ(s)

}
=

∫ r

0

βΓ,ε(s)ds,

βε(r) :=
1

ε

(
r − (I + εβ)−1(r)

)
,

βΓ,ε(r) :=
1

εη

(
r − (I + εηβΓ)

−1(r)
)

for all r ∈ R, where η > 0 is the same constant as in the assumption (2.20). We point out that (2.17)

and (2.19) hold also for the approximations. Moreover, we have that

0 ≤ β̂ε(r) ≤ β̂(r), 0 ≤ β̂Γ,ε(r) ≤ β̂Γ(r) for every r ∈ R, (5.2)

|βε(r)| ≤ |β◦(r)|,
∣∣βΓ,ε(r)

∣∣ ≤
∣∣β◦

Γ(r)
∣∣ for every r ∈ D(β). (5.3)

Furthermore, (2.20) also holds true for βε and βΓ, ε with the same constants (see [6, Lemma 4.4]). We

thus write

|βε(r)| ≤ η|βΓ, ε(r)|+ C for every r ∈ R. (5.4)

Since βε and βΓ, ε have the same sign, we see that (5.4) and the Young inequality yield

βΓ, ε(r)βε(r) ≥
1

2η
|βε(r)|

2 − Cη for every r ∈ R, (5.5)
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with a similar constant Cη. We also notice that the inclusion D(βΓ) ⊆ D(β) (see (2.20)) and (2.23)

imply that

βε(r)(r −m0) ≥ δ0|βε(r)| − C0 and βΓ, ε(r)(r −m0) ≥ δ0|βΓ, ε(r)| − C0 (5.6)

for every r ∈ R and every ε ∈ (0, 1), where δ0 and C0 are some positive constants that depend only

on β, βΓ and on the position of m0 in the interior of D(βΓ) and of D(β) (see, e.g. [25, p. 908]).

The sought solution is a quadruple (µε, µε
Γ, ρ

ε, ρεΓ) having the regularity properties

(µε, µε
Γ) ∈ L2(0, T ;V) ∩ L1(0, T ;W), (5.7)

(ρε, ρεΓ) ∈ H1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ;W) (5.8)

and such that the 6-tuple (µε, µε
Γ, ρ

ε, ρεΓ, ζ
ε, ζεΓ) obtained by setting

ζε := βε(ρ
ε) and ζεΓ := βΓ, ε(ρ

ε
Γ) (5.9)

solves the following problem:

∫

Ω

∂tρ
ε v +

∫

Γ

∂tρ
ε
Γ vΓ −

∫

Ω

ρεu · ∇v +

∫

Ω

∇µε · ∇v +

∫

Γ

∇µε
Γ · ∇vΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (5.10)

τ εΩ

∫

Ω

∂tρ
ε v + τ εΓ

∫

Γ

∂tρ
ε
Γ vΓ +

∫

Ω

∇ρε · ∇v +

∫

Γ

∇Γρ
ε
Γ · ∇ΓvΓ

+

∫

Ω

(
ζε + π(ρε)

)
v +

∫

Γ

(
ζεΓ + πΓ(ρ

ε
Γ)
)
vΓ =

∫

Ω

µεv +

∫

Γ

µε
ΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (5.11)

ρε(0) = ρ0 a.e. in Ω and ρεΓ(0) = ρ0|Γ a.e. on Γ. (5.12)

We have written the sum of two integrals instead of a duality in (5.10), in accordance with the require-

ment (5.8) on (ρ, ρΓ).

The aim of this section is to solve the approximating problem (5.9)–(5.12). In this respect, we have the

following result.

Theorem 5.1. Assume (2.16)–(2.20) and (5.1) for the structure and (2.21)–(2.23) for the data. Then

the problem (5.9)–(5.12) has a unique solution (µε, µε
Γ, ρ

ε, ρεΓ) with the regularity properties (5.7)–

(5.8).

The rest of the section is devoted to the proof of Theorem 5.1. Since the approximating problem (5.9)–

(5.12) is a particular case of problem (2.28)–(2.31) and the operators βε and βΓ, ε are single-valued,

uniqueness has been already established in the previous section. As for existence, we use a slightly

modified Faedo–Galerkin scheme with a proper choice of the Hilbert basis. We introduce the operator

A ∈ L(V;V ∗) by setting

〈A(w,wΓ), (v, vΓ)〉V :=

∫

Ω

∇w · ∇v +

∫

Γ

∇ΓwΓ · ∇ΓvΓ for (w,wΓ), (v, vΓ) ∈ V, (5.13)

and notice that A is nonnegative and weakly coercive. Indeed, we have that

〈A(v, vΓ), (v, vΓ)〉V + ‖(v, vΓ)‖
2
H = ‖(v, vΓ)‖

2
V for every (v, vΓ) ∈ V. (5.14)
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Moreover, as the embedding V ⊂ H is compact, the resolvent of A is compact as well, and the

spectrum of A reduces to a discrete set of eigenvalues, the eigenvalue problem being

(e, eΓ) ∈ V \ {(0, 0)} and A(e, eΓ) = λ(e, eΓ) . (5.15)

More precisely, we can rearrange the eigenvalues and choose the eigenvectors in order that

0 = λ1 < λ2 ≤ λ3 ≤ . . . and lim
j→∞

λj = +∞, (5.16)

A(ej , ejΓ) = λj(e
j , ejΓ) and

∫

Ω

eiej +

∫

Γ

eiΓe
j
Γ = δij for i, j = 1, 2, . . . , (5.17)

and {(ej , ejΓ)} generates a dense subspace of both V and H. We notice that

∫

Ω

∇ei · ∇ej +

∫

Γ

∇Γe
i
Γ · ∇Γe

j
Γ = λi

(∫

Ω

eiej +

∫

Γ

eiΓe
j
Γ

)
= λiδij for i, j = 1, 2, . . . .

We also observe that every element (w,wΓ) ∈ H can be written as

(w,wΓ) =
∞∑

j=1

wj(e
j , ejΓ) with

∞∑

j=1

|wj|
2 = ‖(w,wΓ)‖

2
H < +∞,

and that (on account of (5.14))

(w,wΓ) ∈ V if and only if

∞∑

j=1

(1 + λj)|wj|
2 < +∞ .

Namely, the last sum yields the square of a norm on V that is equivalent to ‖ · ‖V. In particular, we

have the following property (the finite sum is the H-projection on the subspace Vn defined below):

‖(wn, wn
Γ)‖V ≤ CΩ‖(w,wΓ)‖V if (wn, wn

Γ) =
n∑

j=1

wj(e
j , ejΓ), (5.18)

where CΩ depends only on Ω. At this point, we set

Vn := span{(ej , ejΓ) : 1 ≤ j ≤ n} and V∞ :=

∞⋃

j=1

Vn = span{(ej, ejΓ) : j ≥ 1}, (5.19)

and, for every n ≥ 1, we look for a quadruple (µn, µn
Γ, ρ

n, ρnΓ) satisfying

(µn, µn
Γ) ∈ L2(0, T ;Vn) and (ρn, ρnΓ) ∈ H1(0, T ;Vn), (5.20)

∫

Ω

∂tρ
n v +

∫

Γ

∂tρ
n
Γ vΓ −

∫

Ω

ρnu · ∇v +

∫

Ω

∇µn · ∇v +

∫

Γ

∇Γµ
n
Γ · ∇ΓvΓ

+
1

n

∫

Ω

µnv +
1

n

∫

Γ

µn
ΓvΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ Vn, (5.21)
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τ εΩ

∫

Ω

∂tρ
n v + τ εΓ

∫

Γ

∂tρ
n
Γ vΓ +

∫

Ω

∇ρn · ∇v +

∫

Γ

∇Γρ
n
Γ · ∇ΓvΓ

+

∫

Ω

(
βε(ρ

n) + π(ρn)
)
v +

∫

Γ

(
βΓ, ε(ρ

n
Γ) + πΓ(ρ

n
Γ)
)
vΓ =

∫

Ω

µnv +

∫

Γ

µn
ΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ Vn, (5.22)

ρn(0) = ρn0 a.e. in Ω, (5.23)

where ρn0 is defined by the conditions (ρn0 , ρ
n
0 |Γ) ∈ Vn and

∫

Ω

ρn0v +

∫

Γ

ρn0 |ΓvΓ =

∫

Ω

ρ0v +

∫

Γ

ρ0|ΓvΓ for every (v, vΓ) ∈ Vn. (5.24)

Thus, ρn0 is the first component of the orthogonal projection of (ρ0, ρ0|Γ) on Vn. We have

‖ρn0‖H ≤ ‖(ρn0 , ρ
n
0 |Γ)‖H ≤ ‖(ρ0, ρ0|Γ)‖H and ‖(ρn0 , ρ

n
0 |Γ)‖V ≤ CΩ‖(ρ0, ρ0|Γ)‖V, (5.25)

the second one on account of (5.18).

The discrete problem. By (5.20), we have to look for (µn, µn
Γ) and (ρn, ρnΓ) given by

(µn, µn
Γ)(t) =

n∑

j=1

µj(t)(e
j , ejΓ) and (ρn, ρnΓ)(t) =

n∑

j=1

ρj(t)(e
j , ejΓ)

for some µj ∈ L2(0, T ) and ρj ∈ H1(0, T ). Let us introduce the n-vectors µ := (µj) and ρ := (ρj).
Then, by rewriting the system (5.21)–(5.22) just with (v, vΓ) = (ei, eiΓ) for i = 1, . . . , n, we see that

it takes the form

ρ ′(t)− U(t) ρ(t) +Dn µ(t) = 0 and B ρ ′(t) +Dρ(t) + F (ρ(t)) = µ(t), (5.26)

where Dn := diag(λ1 +
1
n
, . . . , λn + 1

n
), D := diag(λ1, . . . , λn), F : Rn → R

n is Lipschitz

continuous, and the matrices U = (uij) ∈ L2(0, T ;Rn×n) and B = (bij) ∈ R
n×n are given by

uij(t) :=

∫

Ω

eju(t) · ∇ei for a.a. t ∈ (0, T ) and bij := τ εΩ

∫

Ω

ejei + τ εΓ

∫

Γ

ejΓe
i
Γ,

for i, j = 1, . . . , n. By adding the second identity in (5.26) to the first one multiplied by D−1
n , we

obtain the equivalent system

(D−1
n +B) ρ ′(t) + V (t) ρ(t) + F (ρ(t)) = 0 and µ(t) = B ρ ′(t) +D ρ(t) + F (ρ(t)),

where V := D −D−1
n U belongs to L2(0, T ;Rn×n) and D−1

n +B is invertible, as we verify. To this

end, we show that B is positive definite. Indeed, for any vector y = (y1, . . . , yn) ∈ R
n, by setting

(v, vΓ) :=
∑n

j=1 yj(e
j, ejΓ), we have that

(By) · y =

n∑

i,j=1

bijyjyi = τ εΩ

∫

Ω

n∑

i=1

yie
i

n∑

j=1

yje
j + τ εΓ

∫

Ω

n∑

i=1

yie
i
Γ

n∑

j=1

yje
j
Γ

= τ εΩ

∫

Ω

|v|2 + τ εΓ

∫

Γ

|vΓ|
2 ≥ ε‖(v, vΓ)‖

2
H = ε‖y‖2

Rn .
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Hence, D−1
n +B is positive definite as well, thus invertible. On the other hand, (5.23) is equivalent to

an initial condition for ρ. Therefore, the discrete problem (5.20)–(5.23) has a unique solution.

At this point, our aim is to show that the solutions to the discete problem converge to a solution to the

approximating problem (5.9)–(5.12) as n tends to infinity, at least for a subsequence. To this end, we

start estimating and find bounds that do not depend on n. On the contrary, they can depend on ε.

An a priori estimate. We test (5.21), written at the time s, by (µn, µn
Γ)(s) and integrate over (0, t)

with respect to s to find that

∫

Qt

∂tρ
n µn +

∫

Σt

∂tρ
n
Γ µ

n
Γ +

∫

Qt

|∇µn|2 +

∫

Σt

|∇Γµ
n
Γ|

2

+
1

n

∫

Qt

|µn|2 +
1

n

∫

Σt

|µn
Γ|

2 =

∫

Qt

ρnu · ∇µn .

Next, we test (5.22) by ∂t(ρ
n, ρnΓ)(s), integrate over (0, t) with respect to s, and add the same terms∫

Qt
ρn∂tρ

n and
∫
Σt
ρnΓ∂tρ

n
Γ to both sides for convenience. We obtain that

τ εΩ

∫

Qt

|∂tρ
n|2 + τ εΓ

∫

Σt

|∂tρ
n
Γ|

2 +
1

2
‖(ρn, ρnΓ)(t)‖

2
V +

∫

Ω

β̂ε(ρ
n(t)) +

∫

Γ

β̂Γ, ε(ρ
n
Γ(t))

=
1

2
‖(ρn, ρnΓ)(0)‖

2
V +

∫

Ω

β̂ε(ρ
n(0)) +

∫

Γ

β̂Γ, ε(ρ
n
Γ(0)) +

∫

Qt

µn∂tρ
n +

∫

Σt

µn
Γ∂tρ

n
Γ

+

∫

Qt

(
ρn − π(ρn)

)
∂tρ

n +

∫

Σt

(
ρnΓ − πΓ(ρ

n
Γ)
)
∂tρ

n
Γ .

At this point, we add these equalities and notice that four terms cancel. Then, the remaining terms on

the left-hand side are nonnegative, so that we can forget about four of them. Moreover, we use (5.1)

and start estimating the right-hand side (also accounting for (5.18), (5.2) and (2.22)). We then arrive

at the estimate
∫

Qt

|∇µn|2 +

∫

Σt

|∇Γµ
n
Γ|

2 + ε

∫

Qt

|∂tρ
n|2 + ε

∫

Σt

|∂tρ
n
Γ|

2 +
1

2
‖(ρn, ρnΓ)(t)‖

2
V

≤

∫

Qt

|ρn| |u| |∇µn|+ c +
ε

2

∫

Qt

|∂tρ
n|2 +

ε

2

∫

Σt

|∂tρ
n
Γ|

2 + cε

∫

Qt

|ρn|2 + cε

∫

Σt

|ρnΓ|
2 + cε .

On the other hand, the Hölder, Sobolev and Young inequalities yield that

∫

Qt

|ρn| |u| |∇µn| ≤

∫ t

0

‖ρn(s)‖6 ‖u(s)‖3 ‖∇µ
n(s)‖2 ds

≤
1

2

∫

Qt

|∇µn|2 + c

∫ t

0

‖u(s)‖23 ‖ρ
n(s)‖2V ds ,

and we notice that the function s 7→ ‖u(s)‖23 belongs toL1(0, T ), by (2.21). Therefore, by rearranging

and applying the Gronwall lemma, we can infer that

‖∇µn‖L2(0,T ;H) + ‖∇Γµ
n
Γ‖L2(0,T ;HΓ) + ‖(ρn, ρnΓ)‖H1(0,T ;H)∩L∞(0,T ;V) ≤ cε . (5.27)

Consequence. Just by Lipschitz continuity, we also have that

‖(βε + π)(ρn)‖L∞(0,T ;H) + ‖(βΓ, ε + πΓ)(ρ
n
Γ)‖L∞(0,T ;HΓ) ≤ cε .
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On the other hand, if we test (5.22) by (|Ω|+ |Γ|)−1(1, 1), then we obtain, for a.a. t ∈ (0, T ),

|mean(µn, µn
Γ)(t)|

≤ c
{
‖∂tρ

n(t)‖H + ‖∂tρ
n
Γ(t)‖HΓ

+ ‖(βε + π)(ρn(t))‖H + ‖(βΓ, ε + πΓ)(ρ
n
Γ(t))‖HΓ

}
.

Therefore, we have shown that mean(µn, µn
Γ) is bounded in L2(0, T ), so that (5.27) and (2.6) allow

us to conclude that

‖(µn, µn
Γ)‖L2(0,T ;V) ≤ cε . (5.28)

Conclusion. We account for (5.27)–(5.28) and use standard weak and weak star compactness re-

sults, as well as the Aubin-Lions lemma (see, e.g., [33, Thm. 5.1, p. 58]). It follows that

(µn, µn
Γ) → (µε, µε

Γ) weakly in L2(0, T ;V), (5.29)

(ρn, ρnΓ) → (ρε, ρεΓ) weakly star in H1(0, T ;H) ∩ L∞(0, T ;V)

and strongly in L2(0, T ;H), (5.30)

as n tends to infinity, at least for a subsequence. By Lipschitz continuity, we also deduce that (βε +
π)(ρn) and (βΓ, ε + πΓ)(ρ

n
Γ) converge to (βε + π)(ρε) and (βΓ, ε + πΓ)(ρ

ε
Γ) strongly in L2(0, T ;H)

and in L2(0, T ;HΓ), respectively. Moreover, ρnu converges to ρεu weakly in L2(0, T ;L2(Ω)), since

u ∈ L2(0, T ;L3(Ω)) and ρn is bounded in L∞(0, T ;L6(Ω)), by the Sobolev inequality. Finally,

(ρn, ρnΓ)(0) converges to (ρε, ρεΓ)(0) at least weakly in H, so that (5.12) is satisfied.

Now, we recall (5.19) for the definition of V∞, and take an arbitrary V∞-valued step function (v, vΓ).
Since the range of (v, vΓ) is finite-dimensional, there exists some m such that (v, vΓ)(t) ∈ Vm for

a.a. t ∈ (0, T ). It follows that (v, vΓ)(t) ∈ Vn for a.a. t ∈ (0, T ) and every n ≥ m, so that we can

test (5.21) and (5.22), written at the time t, by (v, vΓ)(t) and integrate over (0, T ). At this point, it is

straightforward to deduce that (µε, µε
Γ), (ρ

ε, ρεΓ) and the functions ζε and ζεΓ given by (5.9) satisfy the

integrated version of (5.10)–(5.11) for every such step functions, namely, we have that
∫

Q

∂tρ
ε v +

∫

Σ

∂tρ
ε
Γ vΓ −

∫

Q

ρεu · ∇v +

∫

Q

∇µε · ∇v +

∫

Σ

∇µε
Γ · ∇vΓ = 0 ,

τ εΩ

∫

Q

∂tρ
ε v + τ εΓ

∫

Σ

∂tρ
ε
Γ vΓ +

∫

Q

∇ρε · ∇v +

∫

Σ

∇Γρ
ε
Γ · ∇ΓvΓ

+

∫

Q

(
ζε + π(ρε)

)
v +

∫

Σ

(
ζεΓ + πΓ(ρ

ε
Γ)
)
vΓ =

∫

Q

µεv +

∫

Σ

µε
ΓvΓ .

By density, the same equations hold true for every (v, vΓ) ∈ L2(0, T ;V). This implies that (5.10)–

(5.11) hold a.e. in (0, T ) and for every (v, vΓ) ∈ V, as desired. We notice that (5.10) and (5.11) are

formally equal to (2.28) and (2.29), respectively. Moreover, by accounting for (2.21), we can replace

the term −
∫
Ω
ρεu · ∇v by the expression

∫
Ω
∇ρε · u v in (5.10) and notice that ∇ρε · u belongs

to L2(0, T ;H), since ρε ∈ L∞(0, T ;L6(Ω)) and u ∈ L2(0, T ;L3(Ω)). This, and what we already

know for the other terms, allow us to apply i) and ii) of Theorem 2.1. We then deduce the full regularity

(5.7)–(5.8), by starting from the lower regularity already established. �

6 Existence

This section is devoted to the conclusion of the proof of Theorem 2.3. Namely, we show that the

solutions to the approximating problems converge to a solution to problem (2.28)–(2.31) satisfying
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(2.45). We recall that the constant mean value property (2.32) is also satisfied by the solutions to the

ε-approximating problems. In performing our estimates, we avoid the superscript ε in the notation of

the solution, for simplicity, writing it only at the end of each step.

First a priori estimate. We test (5.10) and (5.11), written at the time s, by (µ, µΓ)(s) and ∂t(ρ, ρΓ)(s),
respectively. Then, we integrate over (0, t) and sum up. Moreover, we add the same terms

∫
Qt
ρ∂tρ

and
∫
Σt
ρΓ∂tρΓ to both sides. Since some terms cancel each other, we obtain the identity

∫

Qt

|∇µ|2 +

∫

Σt

|∇ΓµΓ|
2 + τ εΩ

∫

Qt

|∂tρ|
2 + τ εΓ

∫

Σt

|∂tρΓ|
2

+
1

2
‖(ρ, ρΓ)(t)‖

2
V +

∫

Ω

β̂ε(ρ(t)) +

∫

Γ

β̂Γ, ε(ρΓ(t))

=
1

2
‖(ρ0, ρ0|Γ)‖

2
V +

∫

Ω

β̂ε(ρ0) +

∫

Γ

β̂Γ, ε(ρ0|Γ)

+

∫

Qt

(
ρ− π(ρ)

)
∂tρ+

∫

Σt

(
ρΓ − πΓ(ρΓ)

)
∂tρΓ +

∫

Qt

ρu · ∇µ .

Now, we observe that

∫

Qt

ρu · ∇µ ≤

∫ t

0

‖ρ(s)‖6 ‖u(s)‖3 ‖∇µ(s)‖2 ds ≤
1

2

∫

Qt

|∇µ|2 + c

∫ t

0

‖u(s)‖23 ‖ρ(s)‖
2
V ds ,

and that the function s 7→ ‖u(s)‖23 belongs toL1(0, T ), by (2.21). Therefore, also on account of (5.2)

and (2.22), we easily conclude from Gronwall’s lemma that

‖∇µε‖L2(0,T ;H) + ‖∇Γµ
ε
Γ‖L2(0,T ;HΓ) + ‖(ρε, ρεΓ)‖L∞(0,T ;V)

+ ‖β̂ε(ρ
ε)‖L∞(0,T ;L1(Ω)) + ‖β̂Γ, ε(ρ

ε
Γ)‖L∞(0,T ;L1(Γ))

+ (τ εΩ)
1/2‖∂tρ

ε‖L2(0,T ;H) + (τ εΓ)
1/2‖∂tρ

ε
Γ‖L2(0,T ;HΓ) ≤ c . (6.1)

Consequence. By testing (5.10) with an arbitrary (v, vΓ) ∈ L2(0, T ;V), and owing to the assump-

tions (2.21) on u, we have that

〈∂t(ρ, ρΓ), (v, vΓ)〉V

≤ ‖∇µ‖L2(0,T ;H)‖v‖L2(0,T ;V ) + ‖∇ΓµΓ‖L2(0,T ;HΓ)‖vΓ‖L2(0,T ;VΓ)

+ ‖ρ‖L∞(0,T ;L6(Ω)) ‖u‖L2(0,T ;L3(Ω)) ‖∇v‖L2(0,T ;L2(Ω)) .

Then, the continuous embedding V ⊂ L6(Ω) and (6.1) imply that

‖∂t(ρ
ε, ρεΓ)‖L2(0,T ;V ∗) ≤ c . (6.2)

Second a priori estimate. We account for (2.23) and test (5.11) by the V0-valued function (ρ −
m0, ρΓ −m0) a.e. in (0, T ) without integrating with respect to time. Setting α := mean(µ, µΓ) a.e.

in (0, T ) for a while, we obtain

∫

Ω

βε(ρ)(ρ−m0) +

∫

Γ

βΓ, ε(ρΓ)(ρΓ −m0)
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= − τ εΩ

∫

Ω

∂tρ(ρ−m0)− τ εΓ

∫

Γ

∂tρΓ(ρΓ −m0)−

∫

Ω

|∇ρ|2 −

∫

Γ

|∇ΓρΓ|
2

−

∫

Ω

π(ρ)(ρ−m0)−

∫

Γ

πΓ(ρΓ)(ρΓ −m0)

+

∫

Ω

(µ− α)(ρ−m0) +

∫

Γ

(µΓ − α)(ρΓ −m0) (6.3)

a.e. in (0, T ). Observe that, in the right-hand side of (6.3) the integrals involving the gradients are

bounded in L∞(0, T ), due to (6.1). Then, by using the inner product in H, the corresponding Schwarz

inequality, and the Lipschitz continuity of π and πΓ, we deduce that

∫

Ω

βε(ρ)(ρ−m0) +

∫

Γ

βΓ, ε(ρΓ)(ρΓ −m0)

≤
∣∣((τ εΩ∂tρ, τ εΓ∂tρΓ), (ρ−m0, ρΓ −m0)

)
H

∣∣ + c

+
∣∣((π(ρ), πΓ(ρΓ)), (ρ−m0, ρΓ −m0)

)
H

∣∣
+
∣∣((µ− α, µΓ − α), (ρ−m0, ρΓ −m0)H

)∣∣
≤

{
‖(τ εΩ∂tρ, τ

ε
Γ∂tρΓ)‖H + c ‖(ρ, ρΓ)‖H + c+ ‖(µ− α, µΓ − α)‖H

}
×

× ‖(ρ−m0, ρΓ −m0)‖H + c .

Hence, in view of (6.1) and (5.6), we deduce that

∫

Ω

|βε(ρ)|+

∫

Γ

|βΓ, ε(ρΓ)| ≤ c‖(µ− α, µΓ − α)‖H + ψε (6.4)

where ψε is bounded in L2(0, T ) uniformly with respect to ε. On the other hand, owing to the definition

(2.8) and recalling that ‖ · ‖V0
is a norm on V0 that is equivalent to the standard one, we have that

‖(µ− α, µΓ − α)‖H ≤ c ‖(µ− α, µΓ − α)‖V0
= c ‖(∇µ,∇ΓµΓ)‖H .

Since the last term is bounded in L2(0, T ) by (6.1), the inequality (6.4) implies that

‖βε(ρ)‖L2(0,T ;L1(Ω)) + ‖βΓ, ε(ρΓ)‖L2(0,T ;L1(Γ)) ≤ c .

At this point, we can test (5.11) by (1, 1) and find a bound for mean(µ, µΓ) in L2(0, T ). Combining it

with (6.1), we conclude that

‖(µε, µε
Γ)‖L2(0,T ;V) ≤ c . (6.5)

Third a priori estimate. We test (5.11), written at the time s, with (βε(ρ), βε(ρΓ))(s) and integrate

over (0, t) with respect to s, obtaining the identity

τ εΩ

∫

Ω

β̂ε(ρ(t)) + τ εΓ

∫

Γ

β̂ε(ρΓ(t)) +

∫

Qt

β ′
ε(ρ)|∇ρ|

2 +

∫

Σ

β ′
Γ, ε(ρΓ)|∇ΓρΓ|

2

+

∫

Qt

|βε(ρ)|
2 +

∫

Σt

βΓ, ε(ρΓ) βε(ρΓ)

= τ εΩ

∫

Ω

β̂ε(ρ0) + τ εΓ

∫

Γ

β̂ε(ρ0|Γ) +

∫

Qt

(
µ− π(ρ)

)
βε(ρ) +

∫

Σt

(
µΓ − πΓ(ρΓ)

)
βε(ρΓ) .
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All of the terms on the left-hand side are nonnegative but the last one, for which we have, thanks

to (5.5), ∫

Σt

βΓ, ε(ρΓ) βε(ρΓ) ≥
1

2η

∫

Σt

|βε(ρΓ)|
2 − c .

Since the right-hand side can be easily handled by using the Young inequality, (5.2), (2.22), and the

estimates (6.1) and (6.5), we conclude that

‖ζε‖L2(0,T ;H) + ‖βε(ρ
ε
Γ)‖L2(0,T ;HΓ) ≤ c . (6.6)

Fourth a priori estimate. We apply the part iii) of Theorem 2.1 to the solution to the approximating

problem with the choice γ = βΓ, ε. As the constant C3 does not depend on ε, inequality (2.41) yields

a bound for ζΓ in terms of quantities that have already been estimated. Hence, we conclude that

‖ζεΓ‖L2(0,T ;HΓ) ≤ c . (6.7)

At this point, we can apply the part ii) of Theorem 2.1. We thus have

‖(ρε, ρεΓ)‖L2(0,T ;W) ≤ c . (6.8)

Conclusion. We account for (6.1)–(6.8) and use standard weak and weak star compactness results

as well as the Aubin-Lions lemma (see, e.g., [33, Thm. 5.1, p. 58]). We have

(µε, µε
Γ) → (µ, µΓ) weakly in L2(0, T ;V),

(ρε, ρεΓ) → (ρ, ρΓ) weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V) ∩ L2(0, T ;W)

and strongly in L2(0, T ;H),

τ εΩ∂tρ
ε → τΩ∂tρ weakly in L2(0, T ;H),

τ εΓ∂tρ
ε
Γ → τΓ∂tρΓ weakly in L2(0, T ;HΓ),

(ζε, ζεΓ) → (ζ, ζΓ) weakly in L2(0, T ;H),

as ε tends to zero, at least for a subsequence. Moreover, ρεu converges to ρu weakly inL2(0, T ;L2(Ω)),
since u ∈ L2(0, T ;L3(Ω)) and ρε converges to ρ at least weakly star in L∞(0, T ;L6(Ω)). At this

point, it is straightforward to deduce that ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) satisfies the integrated version of

(2.28)–(2.29) with time-dependent test function (v, vΓ) ∈ L2(0, T ;V), and this is equivalent to our

formulation. Furthermore, thanks to the strong convergence of (ρε, ρεΓ) to (ρ, ρΓ) and to well-known

results on maximal monotone operators (see, e.g. [2, Proposition 2.2, p. 38]), we derive (2.30), i.e.,

ζ ∈ β(ρ) and ζΓ ∈ βΓ(ρΓ). Besides, (ρε, ρεΓ)(0) converges to (ρ, ρΓ)(0) at least weakly in V ∗, so

that (2.31) holds true as well. Finally, the estimate (2.45) follows from lower semicontinuity. �

7 Complements

This section is devoted to the proof of Theorems 2.6, 2.8 and 2.9. Our proofs rely on further a priori

estimates on the solutions to the ε-approximating problems. However, in performing them, we proceed

formally, for brevity. Also in this section, we write the superscript ε in the notation for the solution only

at the end of each step. From now on, we assume that τΩ > 0, τΓ > 0 and that (2.47)–(2.48) hold

true. We can also take ε ≤ min{τΩ, τΓ}, so that τ εΩ = τΩ and τ εΓ = τΓ (see (5.1)).
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Fifth a priori estimate. We differentiate both (5.10) and (5.11) with respect to time. By noting that

mean(∂t(ρ, ρΓ)) = 0 by (2.32), we test the obtained equations by (ξ, ξΓ) := N(∂t(ρ, ρΓ)) and

∂t(ρ, ρΓ), respectively. We obtain the identities
∫

Qt

∂2t ρ ξ +

∫

Σt

∂2t ρΓ ξΓ +

∫

Qt

∇∂tµ · ∇ξ +

∫

Σt

∇Γ∂tµΓ · ∇ΓξΓ

=

∫

Qt

∂tρ u · ∇ξ +

∫

Qt

ρ ∂tu · ∇ξ ,

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

+

∫

Qt

β ′
ε(ρ)|∂tρ|

2 +

∫

Σt

β ′
Γ, ε(ρΓ)|∂tρΓ|

2

=
τΩ
2

∫

Ω

|∂tρ(0)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(0)|
2

−

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2 +

∫

Qt

∂tµ∂tρ+

∫

Σt

∂tµΓ∂tρΓ .

Now, we add these equalities to each other and treat the sum of the first two integrals by accounting

for (2.14). Moreover, we can cancel four terms in the sum due to the definition of N (see (2.9)–(2.10)).

Finally, we recall that β ′
ε and β ′

Γ, ε are nonnegative, and integrate by parts the integrals involving u by

using (2.21). We then obtain that

1

2
‖∂t(ρ, ρΓ)(t)‖

2
∗ +

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

≤ I0 −

∫

Qt

∇∂tρ · u ξ −

∫

Qt

∇ρ · ∂tu ξ −

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2 , (7.1)

where

I0 :=
1

2
‖∂t(ρ, ρΓ)(0)‖

2
∗ +

τΩ
2

∫

Ω

|∂tρ(0)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(0)|
2 . (7.2)

Now, we estimate the integrals involving u by using the Hölder inequality, the continuous embedding

V ⊂ L6(Ω), the equivalence on V0 of the norms ‖ · ‖V and ‖ · ‖V0
, and the definition (2.11) of ‖ · ‖∗.

We have

−

∫

Qt

∇∂tρ · u ξ ≤

∫ t

0

‖∇∂tρ(s)‖2 ‖u(s)‖3 ‖ξ(s)‖6 ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖ξ(s)‖
2
V ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖(ξ, ξΓ)(s)‖
2
V0
ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖∂t(ρ, ρΓ)(s)‖
2
∗ ds ,

as well as

−

∫

Qt

∇ρ · ∂tu ξ ≤

∫ t

0

‖∇ρ(s)‖6 ‖∂tu(s)‖3/2 ‖ξ(s)‖6 ds

≤ c

∫ t

0

‖∇ρ(s)‖2V ds+ c

∫ t

0

‖∂tu(s)‖
2
3/2 ‖∂t(ρ, ρΓ)(s)‖

2
∗ ds ,
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and we notice that the first term on the right-hand side is already bounded due to (6.8). In addition, the

functions s 7→ ‖u(s)‖23 and s 7→ ‖∂tu(s)‖
2
3/2 belong to L1(0, T ), by (2.21) and (2.47). The last two

terms on the right-hand side of (7.1) can easily be dealt with, by using the boundedness of π′ and π′
Γ

and the compactness inequality (2.58) in the following way:

−

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2

≤
1

2

∫

Qt

|∇∂tρ|
2 +

1

2

∫

Σt

|∇Γ∂tρΓ|
2 + c

∫ t

0

‖∂t(ρ, ρΓ)(s)‖
2
∗ ds .

It remains to estimate the terms appearing in (7.2). To do that, we write (5.10)–(5.11) at time t = 0
and account for the initial condition (5.12). We have

∫

Ω

∂tρ(0)v +

∫

Γ

∂tρΓ(0)vΓ +

∫

Ω

∇µ(0) · ∇v +

∫

Γ

∇ΓµΓ(0) · ∇ΓvΓ =

∫

Ω

ρ0 u(0) · ∇v ,

τΩ

∫

Ω

∂tρ(0) v + τΓ

∫

Γ

∂tρΓ(0) vΓ +

∫

Ω

∇ρ0 · ∇v +

∫

Γ

∇Γρ0|Γ · ∇ΓvΓ

+

∫

Ω

(βε + π)(ρ0)v +

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ)vΓ =

∫

Ω

µ(0)v +

∫

Γ

µΓ(0)vΓ ,

for every (v, vΓ) ∈ V. Now, we choose (v, vΓ) = (ξ, ξΓ) := N(∂t(ρ, ρΓ)(0)) in the first equality,

(v, vΓ) = ∂t(ρ, ρΓ)(0) in the second, and add. The terms involving µ(0) and µΓ(0) cancel out by

the definition of N (see (2.9)–(2.10)). Moreover, invoking (2.12), we obtain that

‖∂t(ρ, ρΓ)(0)‖
2
∗ + τΩ

∫

Ω

|∂tρ(0)|
2 + τΓ

∫

Γ

|∂tρΓ(0)|
2

=

∫

Ω

ρ0 u(0) · ∇ξ −

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0) ,

and we start estimating the right-hand side. For the first term, we account for the equivalence on V0

of the norms ‖ · ‖V and ‖ · ‖V0
, and the definition (2.11) of ‖ · ‖∗ once more. Furthermore, we use

the continuous embedding W = H2(Ω) ⊂ C0(Ω) and the interpolation property, where p, p0, p1 ∈
[1,+∞] and θ ∈ (0, 1) satisfy p0 6= p1 and 1

p
= 1−θ

p0
+ θ

p1
(see [3, p. 8 and Thm. 5.3.1 p. 113]),

(Lp0(Ω), Lp1(Ω))θ,p = (Lp0p0(Ω), Lp1p1(Ω))θ,p = Lpp(Ω) = Lp(Ω)

which gives in particular (L3(Ω), L3/2(Ω))1/2,2 = L2(Ω) and thus the inequality

‖u(0)‖2 ≤ c ‖u‖H1(0,T ;L3/2(Ω))∩L2(0,T ;L3(Ω)) ≤ c .

Hence, we can do the following computation:

−

∫

Ω

ρ0 u(0) · ∇ξ ≤ ‖ρ0‖∞ ‖u(0)‖2 ‖∇ξ‖2

≤ c‖ρ0‖W ‖(ξ, ξΓ)‖V0
≤ c ‖∂t(ρ, ρΓ)(0)‖∗ ≤

1

2
‖∂t(ρ, ρΓ)(0)‖

2
∗ + c .
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We deal with the next two integrals by integrating by parts and using some of the assumptions (2.48):

−

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

=

∫

Ω

∆ρ0 ∂tρ(0) +

∫

Γ

(∆Γρ0|Γ − ∂νρ0)∂tρΓ(0) ≤ δ

∫

Ω

|∂tρ(0)|
2 + δ

∫

Γ

|∂tρΓ(0)|
2 + cδ,

where δ > 0 is arbitrary. By invoking (5.3) for βε and βΓ, ε, and the assumptions (2.48), which also

imply boundedness for ρ0 and ρ0|Γ, we find that

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0)

≤
(
‖β◦(ρ0)‖2 + c

)
‖∂tρ(0)‖2 +

(
‖β◦

Γ(ρ0|Γ)‖2 + c
)
‖∂tρΓ(0)‖2

≤ δ‖∂tρ(0)‖
2
2 + δ‖∂tρΓ(0)‖

2
2 + cδ .

Recalling all of the above estimates, and choosing δ > 0 small enough, we see that I0 ≤ c. At this

point, we come back to (7.1) and apply the Gronwall lemma. We then conclude that

‖∂t(ρ
ε, ρεΓ)‖L∞(0,T ;H)∩L2(0,T ;V) ≤ c , whence ‖(ρε, ρεΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c . (7.3)

Remark 7.1. In connection with Remark 2.7, if τΩ and τΓ are not supposed to be positive and (2.51)

holds, one modifies the last estimates on the initial values as follows: we have

−

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0)

= −

∫

Ω

(
−∆ρ0 + (βε + π)(ρ0)

)
∂tρ(0)−

∫

Γ

(
∆Γρ0|Γ − ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)

)
∂tρΓ(0)

≤ ‖−∆ρ0 + (βε + π)(ρ0),∆Γρ0|Γ − ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)‖V ‖∂t(ρ, ρΓ)(0)‖V ∗

≤ δ‖∂t(ρ, ρΓ)(0)‖
2
V ∗ + cδ .

This leads to an estimate that is somewhat weaker than (7.3) and yields a weaker result at the end of

the procedure, as announced in the quoted remark.

Sixth a priori estimate. We set α := mean(µ, µΓ) for a while and test (5.10) by the V0-valued

function (µ, µΓ)− α(1, 1). We obtain, for a.e. t ∈ (0, T ),

∫

Ω

|∇µ|2 +

∫

Γ

|∇ΓµΓ|
2 = −

∫

Ω

∂tρ(µ− α)−

∫

Γ

∂tρΓ(µΓ − α) +

∫

Ω

ρ u∇µ .

Now, we recall that the norm (2.8) is equivalent on V0 to the natural norm. Thus, by also accounting

for (2.47) and for (7.3), combined with the continuous embedding V ⊂ L6(Ω), we may estimate the

right-hand side a.e. in (0, T ) as follows:

−

∫

Ω

∂tρ(µ− α)−

∫

Γ

∂tρΓ(µΓ − α) +

∫

Ω

ρ u∇µ

≤ c ‖∂t(ρ, ρΓ)‖V∗‖(µ, µΓ)− α(1, 1)‖V0
+ ‖ρ‖6 ‖u‖3 ‖∇µ‖2 ≤ c

(
‖∇µ‖2 + ‖∇ΓµΓ‖2

)
.
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At this point, the Young inequality immediately yields that

‖∇µε‖L∞(0,T ;H) + ‖∇Γµ
ε
Γ‖L∞(0,T ;HΓ) ≤ c , i.e.,

‖(µε, µε
Γ)−mean(µε, µε

Γ)‖L∞(0,T ;V) ≤ c . (7.4)

Seventh a priori estimate. We recall the estimate (6.4) already obtained, which holds a.e. in (0, T )
and also involves α := mean(µ, µΓ). From (7.3) and (7.4), we infer that

‖βε(ρ)‖L∞(0,T ;L1(Ω)) + ‖βΓ, ε(ρΓ)‖L∞(0,T ;L1(Γ)) ≤ c.

We use this bound and (7.3) in the next estimate: we test (5.11) by (1, 1)/(|Ω|+ |Γ|) and obtain, for

a.a. t ∈ (0, T ),

|mean(µ, µΓ)(t)| ≤ c ‖∂t(ρ, ρΓ)‖L∞(0,T ;V∗)

+ c‖(βε + π)(ρ)‖L∞(0,T ;L1(Ω)) + c‖(βΓ, ε + πΓ)(ρΓ)‖L∞(0,T ;L1(Γ)) ≤ c .

Combining this with (7.4), we conclude that

‖(µε, µε
Γ)‖L∞(0,T ;V) ≤ c, whence ‖(µε, µε

Γ)‖L∞(0,T ;H) ≤ c . (7.5)

Eighth estimate. At this point, we can test (5.11) by (βε(ρ), βε(ρΓ)) a.e. in (0, T ). By taking ad-

vantage of the above estimates and of (5.5), we immediately deduce that

‖βε(ρ
ε)‖L∞(0,T ;H) + ‖βε(ρ

ε
Γ)‖L∞(0,T ;HΓ) ≤ c . (7.6)

Ninth a priori estimate. We apply the part vi) of Theorem 2.1 to the solution to the approximating

problem with the choice γ = βΓ, ε. As the constant C6 does not depend on ε, inequality (2.44) yields

a bound for ζΓ in terms of quantities that have already been estimated. Hence, we conclude that

‖ζεΓ‖L∞(0,T ;HΓ) ≤ c . (7.7)

At this point, we can apply the part v) of Theorem 2.1. We thus have

‖(ρε, ρεΓ)‖L∞(0,T ;W) ≤ c . (7.8)

Proof of Theorem 2.6. We come back to the argument used for the existence part of proof of The-

orem 2.3, recalling that the solution to the approximating problem converges to a solution to problem

(2.28)–(2.31) in a proper topology, at least for a subsequence. In view of the estimates (7.3)–(7.8),

the limiting solution also satisfies the further regularity specified by (2.49), and estimate (2.50) follows

from semicontinuity. �

Proof of Theorem 2.8. We recall that µ and µΓ are bounded by Theorem 2.6. Thus, accounting for

(2.53) and (2.54), we may choose ρ∗, ρ
∗ ∈ (−1, 1) with ρ∗ ≤ ρ0 ≤ ρ∗ such that

(β + π)(r) + ‖µ‖∞ ≤ 0 and (βΓ + πΓ)(r) + ‖µΓ‖∞ ≤ 0 for every r ∈ (−1, ρ∗),

(β + π)(r)− ‖µ‖∞ ≥ 0 and (βΓ + πΓ)(r)− ‖µΓ‖∞ ≥ 0 for every r ∈ (ρ∗, 1).
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Then, we test (2.29) by ((ρ−ρ∗)+, (ρΓ−ρ
∗)+), where ( · )+ stands for the positive part, and integrate

with respect to time. We obtain the identity

τΩ

∫

Ω

|(ρ(t)− ρ∗)+|2 + τΓ

∫

Γ

|(ρΓ(t)− ρ∗)+|2

+

∫

Qt

|∇(ρ− ρ∗)+|2 +

∫

Σt

|∇Γ(ρΓ − ρ∗)+|2

=

∫

Qt

(
µ− (β + π)(ρ)

)
(ρ− ρ∗)+

+

∫

Σt

(
µΓ − (βΓ + πΓ)(ρΓ)

)
(ρΓ − ρ∗)+ .

Since the right-hand side is nonpositive, we conclude that (ρ − ρ∗)+ = 0, i.e., ρ ≤ ρ∗. In the same

way, one proves that (ρ∗ − ρ)+ = 0, i.e., ρ ≥ ρ∗. �

Now, we start the proof of Theorem 2.9. Also in this case, we proceed formally. Moreover, in order to

simplify the notation, we perform our estimates on the solutions to problem (2.28)–(2.31), directly, and

avoid the approximating problem. For i = 1, 2, we denote, by µi, µiΓ, etc., the components of the

solutions corresponding to ui, while µ, µΓ, etc., are the differences, e.g., µ = µ1 − µ2, according to

the notation of the statement. For brevity, we also set u := u1 − u2, as well as

f := β̂ + π̂ , fΓ := β̂Γ + π̂Γ , whence f ′ = β + π and f ′
Γ = βΓ + πΓ .

Moreover, since the result given by Theorem 2.8 holds for both solutions, we can assume that f ′, f ′′,

f ′
Γ and f ′′

Γ are bounded and Lipschitz continuous, the corresponding constants depending only on the

previous assumptions on the structure, the norms of the velocity fields ui related to (2.47), and the

assumptions (2.48) on the initial datum.

First auxiliary estimate. We write (2.28) for both solutions, take the difference and differentiate with

respect to time. Then, we test the obtained equality by (ξ, ξΓ) := N(∂t(ρ, ρΓ)) a.e. in (0, T ) and

integrate over (0, t). With the help of (2.14) and (2.11) we infer that

1

2
‖∂t(ρ, ρΓ)(t)‖

2
∗ +

∫

Qt

∇∂tµ · ∇ξ +

∫

Σt

∇Γ∂tµΓ · ∇ΓξΓ =

∫

Qt

∂t
(
ρ1u1 − ρ2u2

)
· ∇ξ .

At the same time, we write (2.29) for both solutions, take the difference and differentiate it with re-

spect to time; then, we test by ∂t(ρ, ρΓ) and integrate over (0, t). Finally, we add the same integrals∫
Qt
(ρ ∂tρ + ∇ρ · ∇∂tρ) and

∫
Σt
(ρΓ∂tρΓ + ∇ΓρΓ · ∇Γ∂tρΓ) to both sides, for convenience. We

obtain that

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

+
1

2
‖ρ(t)‖2V +

1

2
‖ρΓ(t)‖

2
VΓ

= −

∫

Qt

(
f ′′(ρ1)∂tρ1 − f ′′(ρ2)∂tρ2

)
∂tρ−

∫

Σt

(
f ′′
Γ(ρ1Γ)∂tρ1Γ − f ′′

Γ(ρ2Γ)∂tρ2Γ
)
∂tρΓ

+

∫

Qt

∂tµ ∂tρ+

∫

Σt

∂tµΓ ∂tρΓ

+

∫

Qt

(
ρ ∂tρ+∇ρ · ∇∂tρ

)
+

∫

Σt

(
ρΓ∂tρΓ +∇ΓρΓ · ∇Γ∂tρΓ

)
.
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At this point, we add these equalities to each other and employ the definition of N (see (2.9)–(2.10))

in order to cancel four terms in the sum. Moreover, we rearrange the right-hand side, account for (2.11)

and the equivalence of (2.8) to the norm in V on the subspace V0, and use the boundedness and the

Lipschitz continuity of both f ′′ and f ′′
Γ . We then obtain that

∫

Ω

|∇ξ(t)|2 +

∫

Γ

|∇ΓξΓ(t)|
2 +

∫

Ω

|∂tρ(t)|
2 +

∫

Γ

|∂tρΓ(t)|
2

+

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2 + ‖ρ(t)‖2V + ‖ρΓ(t)‖

2
VΓ

≤ c

∫

Qt

|∂tρ| |u1| |∇ξ|+ c

∫

Qt

|∂tρ2| |u| |∇ξ|+ c

∫

Qt

|ρ| |∂tu1| |∇ξ|+ c

∫

Qt

|ρ2| |∂tu| |∇ξ|

+ c

∫

Qt

|ρ| |∂tρ1| |∂tρ|+ c

∫

Σt

|ρΓ| |∂tρ1Γ| |∂tρΓ|

+ c

∫

Qt

(|ρ2|+ 1) |∂tρ|
2 + c

∫

Σt

(|ρ2Γ|+ 1) |∂tρΓ|
2

+ c

∫ t

0

‖ρ(s)‖V ‖∂tρ(s)‖V ds+ c

∫ t

0

‖ρΓ(s)‖VΓ
‖∂tρΓ(s)‖VΓ

ds ≤ c

10∑

j=1

Ij ,

with obvious definitions of I1, . . . , I10. We now estimate each of these integrals by using the Hölder,

Sobolev and Young inequalities as follows. We have, for every δ > 0,

I1 ≤

∫ t

0

‖∂tρ(s)‖6 ‖u1(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0

‖∂tρ(s)‖
2
V ds+ cδ

∫ t

0

‖u1(s)‖
2
3 ‖∇ξ(s)‖

2
2 ds ,

I2 ≤

∫ t

0

‖∂tρ2(s)‖6 ‖u(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0

‖u(s)‖23 ds+ cδ

∫ t

0

‖∂tρ2(s)‖
2
V ‖∇ξ(s)‖22 ds ,

I3 ≤

∫ t

0

‖ρ(s)‖6 ‖∂tu1(s)‖3 ‖∇ξ(s)‖2 ds

≤ c

∫ t

0

‖ρ(s)‖2V ds+

∫ t

0

‖∂tu1(s)‖
2
3 ‖∇ξ(s)‖

2
2 ds ,

I4 ≤

∫

Qt

|∇ξ(s)|2 + c ‖ρ2‖
2
∞

∫

Qt

|∂tu|
2 ,

I5 ≤

∫ t

0

‖ρ(s)‖3 ‖∂tρ1(s)‖3 ‖∂tρ(s)‖3 ds

≤ δ

∫ t

0

‖∂tρ(s)‖
2
V ds+ cδ

∫ t

0

‖∂tρ1(s)‖
2
V ‖ρ(s)‖2V ds

= δ

∫

Qt

|∇∂tρ|
2 + δ

∫

Qt

|∂tρ|
2 + cδ

∫ t

0

‖∂tρ1(s)‖
2
V ‖ρ(s)‖2V ds .

Moreover, an analogous estimate holds for I6. On the other hand, it is easy to see that

I7 ≤ c (1 + ‖ρ2‖∞)

∫

Qt

|∂tρ|
2 , I8 ≤ c (1 + ‖ρ2Γ‖∞)

∫

Σt

|∂tρΓ|
2 .
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Finally, I9 and I10 can be treated just with the Young inequality. Now, we observe that the functions

s 7→ ‖u1(s)‖
2
3 , s 7→ ‖∂tρi(s)‖

2
V , i = 1, 2 , s 7→ ‖∂tu1(s)‖

2
3 , s 7→ ‖∂tρ1Γ(s)‖

2
VΓ
,

all belong toL1(0, T ). Hence, we collect all the inequalities we have obtained, choose δ small enough,

and apply the Gronwall lemma. We conclude that

‖(∇ξ,∇ΓξΓ)‖L∞(0,T ;H) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(Ω)) , (7.9)

where we recall that (ξ, ξΓ) := N(∂t(ρ, ρΓ)). Notice that (7.9) implies a part of (2.56).

Second auxiliary estimate. We write the equation (2.28) for both solutions and test the difference

a.e. in (0, T ) by (µ, µΓ). The same we do with (2.29), and test the difference by −(µ, µΓ). Then, we

sum up and have, a.e. in (0, T ),

‖µ‖2V + ‖µΓ‖
2
VΓ

= (τΩ − 1)

∫

Ω

∂tρ µ+ (τΓ − 1)

∫

Γ

∂tρΓ µΓ +

∫

Ω

(
ρ1u1 − ρ2u2

)
· ∇µ

+

∫

Ω

∇ρ · ∇µ+

∫

Γ

∇ΓρΓ · ∇ΓµΓ

+

∫

Ω

(
f ′(ρ1)− f ′(ρ2)

)
µ+

∫

Γ

(
f ′
Γ(ρ1Γ)− f ′

Γ(ρ2Γ)
)
µΓ .

Now, we rearrange the right-hand side and use the boundedness and the Lipschitz continuity of f ′

and f ′
Γ, as well as the Hölder and Young inequalities. We obtain a.e. in (0, T ) that

‖µ‖2V + ‖µΓ‖
2
VΓ

≤ δ ‖µ‖2H + cδ‖∂tρ‖
2
H + δ ‖µΓ‖

2
HΓ

+ cδ‖∂tρΓ‖
2
HΓ

+
(
‖ρ‖6 ‖u1‖3 + ‖ρ2‖6 ‖u‖3

)
‖∇µ‖2

+ δ ‖∇µ‖2H + cδ‖∇ρ‖
2
H + δ ‖∇ΓµΓ‖

2
H + cδ‖∇ΓρΓ‖

2
HΓ

+ δ ‖µ‖2H + cδ‖ρ‖
2
H + δ ‖µΓ‖

2
HΓ

+ cδ‖ρΓ‖
2
HΓ
,

where δ > 0 is arbitrary. By choosing δ small enough, using the Sobolev inequality, and recalling that

u1 ∈ L∞(0, T ;L3(Ω)) and ρ2 ∈ L∞(0, T ;V ), we deduce that

‖µ‖2V + ‖µΓ‖
2
VΓ

≤ c
(
‖∂tρ‖

2
H + ‖∂tρΓ‖

2
HΓ

+ ‖ρ‖2V + ‖ρΓ‖
2
VΓ

+ ‖u‖23
)

a.e. in (0, T ).

At this point, by accounting for (7.9), we conclude that

‖(µ, µΓ)‖L∞(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(Ω)) . (7.10)

Proof of Theorem 2.9. We recall that (2.21) holds true for both u1 and u2 and rewrite the transport

terms in (2.28) in the form
∫
Ω
∇ρi ·ui v. Then we take the difference of the equations, written for both

solutions, and apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ = 0 and the following choice of g and gΓ:

g =
(
−∂tρ−∇ρ1 · u1 +∇ρ2 · u2

)
(t) =

(
−∂tρ−∇ρ1 · u+∇ρ · u2

)
(t) and gΓ = −∂tρΓ(t) .

We then obtain that

‖(µ, µΓ)(t)‖W ≤ c
(
‖(µ, µΓ)(t)‖V + ‖∂tρ(t)‖2 + ‖u(t)‖3 + ‖∇ρ(t)‖6 + ‖∂tρΓ(t)‖2 ,
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where c depends only on Ω and the norms of ∇ρ1 and u2 in the spaces L∞(0, T ;L6(Ω)) and

L∞(0, T ;L3(Ω)), respectively. By combining this with (7.9)–(7.10), we deduce that

‖(µ, µΓ)‖L∞(0,T ;W) ≤ c ‖u‖H1(0,T ;L3(Ω)) ,

which is a part of (2.56). In order to prove the remaining part of the estimate, we write (2.29) for both

solutions, take the difference, and apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ = 0 and the choice

g =
(
−τΩ∂tρ− f ′(ρ1) + f ′(ρ2) + µ

)
(t) and gΓ =

(
−τΓ∂tρΓ − f ′

Γ(ρ1Γ) + f ′
Γ(ρ2Γ) + µΓ

)
(t).

We then obtain that

‖(ρ, ρΓ)‖L∞(0,T ;W) ≤ c
(
‖(ρ, ρΓ)‖L∞(0,T ;V) + ‖(g, gΓ)‖L∞(0,T ;H)

)
≤ c ‖u‖H1(0,T ;L3(Ω)) ,

where the last inequality follows from (7.9) and (7.10). With this, (2.56) is completely proved. �
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