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ABSTRACT. It is well-known that multivariate curve estimation suffers from the 
"curse of dimensionality". However, reasonable estimators are possible, even in se-
veral dimensions, under appropriate restrictions on the complexity of the curve. In 
the present paper we explore how much appropriate wavelet estimators can exploit 
typical restrictions on the curve, which require a local adaptation to different de-
grees of smoothness in the different directions. It turns out that the application 
of a anisotropic multivariate basis, which has in contrast to the conventional mul-
tivariate resolution scheme a multidimensional scale parameter, is essential. Some 
simulations indicate the possible gains by this new method over thresholded esti-
mators based on the multiresolution basis with a one-dimensional scale index. 

1. INTRODUCTION 

1 

Multivariate curve estimation is often considered with some scepticism, because it is 
associated with the term of the "curse of dimensionality". This notion reflects the fact 
that nonparametric statistical methods lose much of their power if the dimension d is 
large. In the presence of r bounded derivatives, the usual optimal rate of convergence 
in regression or density estimation is n-2rf(2r+d), where n denotes the number of 
observations. To get the same rate as in the one-dimensional case, one has to assume 
a smoothness of order rd rather than r. This phenomenon can also be explained by 
the sparsity of data in high dimensions. If we have a uniformly distributed sample 
over the hypercube [-1, l]d , then we will find only a fraction of about 2-d of the 
data in the hypercube [O, 1 ]d . 
Nevertheless, there is sometimes some hope for a successful statistical analysis in 
higher dimensions. Often the true complexity of a multivariate curve is much lower 
than it could be expected from a statement that the curve is a member of a certain 
Soboley class w;(JR.d) with degree of smoothness r. Scott (1992, Chapter 7) claims: 
"Multivariate data in JR.d are almost never d-dimensional. That is, the underlying 
structure of data in JR.d is almost always of dimension lower than d." Even if this 
statement applies often not in this pure form, one has sometimes the situation that 
the variability in some of the directions is smaller than that described by a conser-
vative multivariate smoothness assumption. This phenomenon can be adequately 
modelled by anisotropic smoothness classes, which therefore provide a good point 
of. departure for rigorous mathematical considerations in this context. According to 
such an assumption, an appropriate smoothing method has to apply different degrees 
of smoothing in the various directions. · . 
Another, even more restrictive, remedy to problems with high dimensionality consists 
in imposing additional structural assumptions which restrict the complexity of the 
curve. Well-established extreme cases in this direction are additive models and single 
index models. It is known that one can estimate in both cases the curve with ·a rate 
corresponding to the one-dimensional case; see, e.g., Stone (1985) and Hardle, Hall 
and Ichimura (1993). Compared to a high-dimensional nonparametric estimate, such 
additive functions are sometimes easier to interpret. It is clear that such a strong 
structural assumption is almost always inadequate, and one actually estimates some 
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kind of projection of the true function on the lower-dimensional functional class. 
Stone (1985) derived his results in this general setting of a possibly inadequate model. 
From the pure estimation point of view, this approach has an obvious drawback. 
Except for the rather rare cases that such structural assumptions are actually exactly 
fulfilled, such estimators are even not consistent as the sample size n tends to infinity. 
Hence, there is some motivation for a more flexible approach, which provides an 
effective dimension reduction if appropriate, but which leads at least to a consistent 
estimate in the general case. 
Since the seminal papers by Donoho and Johnstone (1992) and Donoho, Johnstone, 
Kerkyacharian and Picard (1995) nonlinear wavelet estimators have developed to a 
widely accepted alternative to traditional methods like kernel or spline estimators. 
In particular, they are known to be able to successfully deal with spatially varying 
smoothness properties, which are summarized under the notion of "inhomogeneous 
smoothD;ess". Assume we measure the loss in L2 • Inhomogeneous smoothness is then 
often modelled by Besov constraints, that is the unknown curve is assumed to lie in 
a Besov class B;,q( K) with p < 2 . It is well-known that higher-dimensional wavelet 
bases can be obtained by taking tensor products of appropriately combined functi-
ons from one-dimensional bases. In almost all statistical papers the authors used an 
isotropic multiresolution construction, where one-dimensional basis functions coming 
from the same resolution scale are combined with each other. However, it was shown 
in Neumann and von Sachs (1995) for the special case of two-dimensional anisotro-
pic Sobolev classes that this basis does not provide an optimal data compression if 
different degrees of smoothness are present in the two directions. Accordingly, the 
commonly used coordinatewise thresholding approach does not provide the optimal 
rate of convergence in such a case. Neumann and von Sachs (1995) proposed an al-
ternative construction of a higher-dimensional basis, which involves tensor products 
of one-dimensional basis functions from different resolution scales, too. It was sh~wn 
in the abovementioned special case that a thresholded wavelet estimator based on 
this basis can really adapt to different degrees of smoothness in different directions 
and can attain the optimal rate of convergence. In Section 2 we extend these results 
to higher dimensions and to Besov constraints, which admit also fractional degrees 
of smoothness. 
In Section 3 we study another situation, which more implicitly requires directional 
adaptivity. We seek an as large as possible functional classes, where our directionally 
adaptive estimation method still attains a rate close to the one-dimensional case. 
These classes have dominating mixed smoothness properties and are considerably 
larger than classes like w;d(JR.d), for example, and they involve somewhat like a 
restriction to functions with a lowerdimensional structure. Additive or multiplicative 
models are contained there as special cases, however the estimation method is more 
flexible than usual methods for such models. Since it is not explicitly based on this 
structural assumption, it delivers an asymptotically consistent estimate even if the 
true curve cannot be decomposed into additive or multiplicative components. 
The multivariate estimation scheme considered in this article seems to be reasonable 
on general grounds and it could have been found also without the motivation by 
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anisotropic smoothness classes. Once the reasonability of this estimator is accepted, 
one could also raise the opposite question: What is the class of problems that our 
anisotropic wavelet basis is the solution to? The present paper provides at least a 
partial answer to this question by showing that certain anisotropic smoothness priers 
(and the case considered in Section 3 can also be interpreted in this sense) require 
a multivariate wavelet basis with mixed resolution scales rather than the commonly 
used multivariate basis with a one-dimensional scale parameter. In this sense, the 
present article contributes also to a better understanding of the estimation method. 
Following a recent trend, the theoretical derivations in the Sections 2 and 3 are made 
for ~he technically simplest model, signal plus Gaussian white noise. In Section 4 we 
transfer the results to actually interesting settings from the statistical point of view, 
density estimation and regression. The results of some simulations are reported in 
Section 5. The proofs are contained in Section 6. 

2. WAVELET THRESHOLDING IN ANISOTROPIC BESOV CLASSES 

To keep the technical part as simple as possible, we assume that we have function-
valued observations Y(~), ~ = (x1 , ••• , xd)' E [O, l]d , according to the Gaussian 
white noise model 

(2.1) 

Here W is a Brownian sheet ( cf., e.g., Walsh (1986)) and € > 0 is the noise level. We 
will consider a small-noise asymptotics, that is € ~ 0 , which mimics the situation 
of large-sample asymptotics in nonparametric regression or density estimation. The 
link between the asymptotics in model (2.1) and the usual asymptotics for regression 
and density estimation will be established by setting E = n-1/ 2 , where n denotes 
the sample size. 
To investigate how well our estimation method adapts to varying smoothness pro-
perties in different directions, we assume that f lies in an anisotropic Besov class. 
We restrict ourselves to this global smoothness class mainly for technical conveni-
ence. This is sufficient for our particular purpose to investigate the capability of the 
estimator to adapt to different degrees of smoothness in different directions. Since 
wavelet thresholding is a spatially adaptive procedure in that it automatically cho-
oses a reasonable degree of smoothing according to the local smoothness properties 
of the function, one could expect a favourable behaviour of our estimator in the case 
of spatially varying anisotropic smoothness properties of f, too. 
Following Besov, Il'in and Nikol'skii (1979), we introduce now smoothness classes in 
anisotropic Besov spaces. Denote by ei = (0, ... , 0, 1, 0, ... , O)' the ith unit vector. 
We define the finite difference of the function fin direction of Xi as 

bi.i,hf (~) = f (~ + hei) - f (~). 
By induction we get the kth difference in direction of Xi as 

f:..thf(g;_) = f:..;,hf:..t°h1 f(g;_) = t( -1 )1+k (~) f(~ + lhei)· 
l=O 
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Fix any integer ki > Ti . Similar to the one-dimensional case we define the Besov 
norm in direction of Xi as 

for q < oo , and 

where 9i,h = [0,1] x ... x [0,1] x[OVkih,1/\(1-kih)]x[0,1] x ... x [0,1]. Note that 
i-1 d-i 

11-11 b:'i measures only smoothness of f in direction of Xi. Setting z:. = ( r1, . . . , r d )' 
i,pi,q 

and '!!. = (P1, . . . , Pd)' we define 

Assume we have an orthonormal basis of compactly supported wavelets of L2 [0, 1], 
{<Pz,kh U {,,Pj,k};~z,k . Such bases are given by Meyer (1991) and Cohen, Daubechies 
and Vial (1993). 
Let Vj be the subspace of L 2 [0, 1], which is generated by {<Pi,kh· It is known that 

00 

L2 ([0, l]d) = LJ Vj ® · · · ® Vj, 
j=l 

which s.hows the possibility to build a basis of L2 ([0, l]d) from tensor produe:ts of 
functions from a one-dimensional basis { <Pzkh U { 'lj;jk};~l;k· 
Setting Wz_1 := Vz we obtain the decomposition 

Vj~ Vi· @ ... @ Vi· 
- (Vz EB Wi EB • • · EB Wj•-1) ® · · · ® (Vz EB Wi EB · • • EB Wj•-1) 

j*-1 

E9 W· IV\ • • • IV\ W· 31 'Cl 'Cl Jd.. (2.2) 
i1 , ... ,ja,=l-1 

Accordingly, we obtain a basis B of L2 ([0, l]d) as 

00 

B = LJ { '1f;i1,k1 ( x1) · · · ,,Pia.,ka.( xd)}k1 , ••• ,ka.' (2.3) 
i1 , ... ,ja,=l-1 

where ,,Pz-l,k := <Pz,k . This construction provides a multidimensional basis, where 
the resolution scales j 1 , ... ,jd are completely mixed. 



5 

To introduce another construction of a higher-dimensional basis, we set v}0 ) := Vj , 
Y;(l) := vVi , and c/;)~2 := cPi,k , r/J)~2 := 'lf;i,k . Now we can write Y;~ as 

V;~ ( Vl(O) ® ... ® Vi(O)) EB 

EB EB EB (vPd ® · .. ® V;(id)) , (2.4) 
j?_l (it, ... ,id)E{O,l}d\ {(O, ... ,O)} 

which corresponds to the following basis B of L2 ([0, 1 ]d): 

B = { <Pf~1 (x1) · · · <Pf~)xd)} ki, ... ,kd U 

U LJ LJ {<P):1~(x1)···ef>)::~(xd)} . (2.5) 
">l ( ) d ( kt ,. .. ,kd J_ ii, ... ,id E{0,1} \{ 0, ... ,0)} 

The latter basis B provides ad-dimensional multiresolution analysis. On first sight it 
seems t.o be more appealing than B and it is almost exclusively used in statistics; see, 
e.g., Delyon and Juditsky (1993), Tribouley (1995), and von Sachs and Schneider 
(1994). Appropriate wavelet estimators based on B can attain minimax rates of 
convergence in isotropic smoothness classes, which justifies its use in statistics. 
However, it was shown in Neumann· and von Sachs (1995) in the two-dimensional 
case that B is not really able to adapt to different degrees of smoothness in different 
directions. Expressed in terms of the kernel-estimator language, a projection estima-
tor using basis functions from B cannot mimic a multivariate kernel estimator based 
on a product kernel with different (directional) bandwidths hi, ... , hd. In contrast, 
we will show that estimators based on B can attain minimax rates of convergence 
in anisotropic smoothness classes. Furthermore, the superiority of B extends beyond 
the rigorous, but sometimes quite pessimistic minimax approach. The use of such 
a multiscale method seems to be important in many estimation problems, whenever 
- globally or locally - different degrees of smoothness are present. An alternative 
method of adapting to different degrees of smoothness in different directions was 
developed by Donoho (1995) in the framework of anisotropic Holder classes. He pro-
posed a CART-like recursive scheme to obtain adequate degrees of smoothing in each 
direction. 

2.1. A lower bound to the rate of convergence. To set a benchmark for the 
estimation scheme to be developed, we establish a lower bound to the rate at which 
the risk can decrease in anisotropic Besov classes. Since we are only interested in the 
optimal rate, we can use an easily implemented approach developed in Bretagnolle 
and Huber (1979). 
To study the complexity of the functional class Bi,q(K), we take any function µ, 
which is Holder continuous of order max{r1 , ... , rd},-supported on [O, 1), and satisfies 
llµllL2 = 1 . Let, for some positive Co to be precised in the proof of Lemma 2.1, jibe 
chosen such that 
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Define 
µk1 , ... ,kJ!!}_) = 2(ji + ... +jd)/2 µ(231 X1 - ki) · · · µ(2ida;d - kd)· 

It is easy to see that 

1 

and 

(2.6) 

supp(µk1, ... ,kd) n supp(µkf, ... ,k~) = 0, if (ki, ... , kd) # (k~, ... , k~). (2.7) 
Let D = D( e) = 2i1 + ... +id ~ ( e2)-(l/ri + ... +i/rd)/(l/ri+ ... +1/rd+2) . Now we define a class 
of functions, parametrized by the D-dimensional parameter fl = (fh1 , ... ,kJo<ki<2;i-l , 
by - -

2h 2jd 

µ~(~) = :E ... :E fh1, ... ,kdµk1, ... ,kd(~). 
ki=l kd=l 

It is not difficult to prove the following lemma. 

Lemma 2.1. If 0 0 ·is chosen small enough, then 

max {llµellB?:. } ~ K. 
~E{O,e}D - l!.•q 

(2.8) 

Using (2.6), (2. 7), and Lemma 2.1, we obtain by the method introduced in Bretagnolle 
and Huber (1979) a lower bound to the rate of convergence in B~q(K). 

Theorem 2.1. It holds that 

i~f si:p { Ellh _ JllL} > Ce2t9(r1, ... ,rd), 
fe fEB~q(K) 

where 

r= [
1 ( 1 1 )]-l d T1 + ... + Td 

2.2. Optimal wavelet thresholding in anisotropic Besov classes. In this sub-
section we develop thresholding schemes based on the anisotropic basis B, which pro-
vide the optimal or a near-optimal rate of convergence in anisotropic Besov spaces. 
First, we show that the rate given in Theorem 2.1 is actually attainable by certain 
wavelet estimators. It will turn out, that this method depends on the unknown 
smoothness parameters r1 , •.. , Td . Hence, an additional adaptation step would be 
necessary to obtain a fully adaptive method. Alternatively, one can use a universal 
estimation method, as proposed in a series of papers by Donoho and Johnstone, also 
contained in Donoho et al. (1995). 
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As a starting point we take a one-dimensional boundary-adjusted wavelet basis of 
L2([0, 1]), e.g., those of Meyer (1991) or Cohen, Daubechies and Vial (1993). We 
assume that 

(Al) (i) J cf;(t) dt = 1, 
(ii) J 'lj;(t)tk dt = 0 for 0:::; k:::; max{r1 , ... , rd} - 1. 

(As mentioned in Delyon and Juditsky (1993, Section 5.2), we do not need the frequ-
ently assumed smoothness of the wavelet itself for the particular purpose of obtaining 
certain rates of convergence.) 
For the sake of notational convenience we write 'l/;z-i,k = cPl,k . As explained above, 
we get a d-dimensional orthonormal basis by setting 

(2.9) 

To simplify notation, we use the multiindex I for (j1 , ... , jd, k1 , ... , kd)', whenever 
possible. The true wavelet coefficients are defined as 

fh = f 'l/;1(~)!(~) d~. 
J[o,1]d 

(2.10) 

Having observations according to model (2.1), we obtain empirical versions of these 
coefficients as 

(2.11) 

where e1 t'V N(O, 1) are i.i.d. 
Now we proceed in the usual way. An appropriate smoothing is obtained by nonlinear 
thresholding of the empirical coefficients, which includes a truncation of the infinite 
wavelet series as a special case. Finally, we obtain an estimate of f by applying the 
inverse wavelet transform to the thresholded empirical coefficients. 
Two commonly used rules to treat the coefficients are 

1) hard thresholding 

and 
2) soft thresholding 

5(s)(B1, A) = (11i1I - .A)+ sgn(B1). 

In the following we denote by 5(.) either S(h) or 5(s). 
As a basis for our _particular choice of the threshold values we take an upper estimate 
of the risk of s<·)(fh, .A) as an estimate of fh. By Lemma 1 of Donoho and Johnstone 
( 1994a) we can prove that the relation 

E ( s<·l(iii, A) - 81) 2 ~ c ( e2 G + 1) \0( ~) + min{A2
' (}n) (2.12) 



8 

holds uniformly in A 2:: 0 and fh E JR., where cp denotes the standard normal density. 
Accordingly, we get by 

O€((A1),8) := sup {I: (e2 (AI+1) cp(A1
) + min{A~,en)} (2.13) 

(8r)E9 I E € 

an upper rate bound for the estimator 

f = L 5(.)(81, A1)'l/lr, 
i 

which is uniform in the functional class {f = ~I e r'l/Ji I (er) E e} . 
A closely related quantity, 

(2.14) 

was used in Neumann and von Sachs (1995) as a chracterization of the difficulty of 
estimation in the functional class given by e. A different quantity, 

fi€( e) = sup {I: min{ E2
' en} ' 

(8r)E9 r 
has been considered in Donoho and Johnstone (1994) to establish the link between 
optimal estimation and approximation theory. There it was shown that fi€( 0) can be 
attained by the risk of an appropriately thresholded wavelet estimator within some 
logarithmic factor, (log €-l )P, p > 0. We modify fi€(0) by n€((.Xr), 0) in order to 
remove the logarithmic factor, which. does not occur in the lower bound given in 
Theorem 2.1. This factor appeared in Donoho and Johnstone (1994) because fi€ does 
not appropriately capture the additional difficulty due to sparsity of the signal; and 
hence e had to be replaced by eylog e-1 . In contrast, n€ penalizes sparsity of the 
signal, which arises due to ignorance of the significant coefficients in a large set of 
potentially important ones, by the additional terms (Ar/ E + 1 )cp( Ar/ E) . They arise 
from upper estimates of tail probabilities of Gaussian random variables. 
Now we intend to show how the lower risk bound given in Theorem 2.1 can be attained 
by a particular estimator. This will be a thresholded wavelet estimator, where the 
choice of the thresholds is motivated by the upper bound given by (2.13). 
Let j;, ... , jd be chosen in such a way that 

(2.15) 

In "homogeneous smoothness classes", that is in the case of Pi 2:: 2 for i = 1, ... , d , 
we would attain the optimal rate of convergence by the linear projection estimator 
on the linear space Vi; ® · · · ® Vjd ; see also the next lemma for an upper estimate of 
the error due to truncation. In the more difficult case of "inhomogeneous smoothness 
classes", that is if Pi < 2 for any i, we have to employ a more refined method. 
We define the following thresholds: 

(2.16) 
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where "' is any constant satisfying 

"' > J21og(2). (2.17) 
These particular choices of the Ar's are similar to those in Delyon and Juditsky (1993), 
which has been proposed for isotropic smoothness classes. We consider the estimator 

hopt(g;_) = L 5(.)( Br, A it)'lj; r(g;_). (2.18) 
I 

The following theorem establishes the desired result for the rate of convergence. 

Theorem 2.2. Assume {Al) and 

Pi > (1 - pif2)(1/r1 + ... + l/rd) for all i = 1, ... , d. 

Then 

Note that the above thresholding scheme depends on the unknown parameters r 1 , .•• , r d • 

Hence, its practical implementation would require an additional adaptation step. 
There exists a wide variety of possible approaches to achieve this in many statistical 
models of interest. However, there seems to be no universal recipe for all purposes. To 
avoid these difficulties one could use an alternative approach propagated in a series of 
papers by Donoho and Johnstone, also contained in Donoho et al. (1995). It consists 
of truncating the infinite wavelet expansion off at a sufficiently high resolution scale 
and then treating the remaining empirical coefficients by some universal threshol~ing 
rule. First, consider the error incurred by truncation at a given level. 

Lemma 2.2. Assume {Al). Let V1·= EBii+ ... +ict=l (Vj1 ® · · · ® V;J. Then 

where 

S1;P {II/ - Proj:r;;J* JllL} = O (2-J*-y(r1, ... ,rct,P1, ... ,pct)), 
fEBf.q(K) 

1(r1, ... ,rd,p1, ... ,pd) = {2 + [(1 - 2/p1)/r1+···+(1-2/pd)/rd]}/ (l/r1+···+1/rd) 
and Pi = min{pi, 2} . 

Provided that 1(r1, ... ,rd,p1, ... ,pd) > 0 , this lemma basically means that an 
approximation rate of €P (p < oo) can be attained by an appropriate set of basis 
functions which has algebraic cardinality, say €-v(p) for some v(p) < oo . 
Define 'Ie ={I I i1 + ... + jd ~ J;}, where 21; = O(E-v) for any v < oo . We 
consider the estimator 

f:niv (g;_) = L 5(.)(ifr' A Iniv)'lj; r(g;_), (2.19) 
lEie 
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where 

(2.20) 

This estimator J:univ is much less dependent than J:opt on prior assumptions about 
the smoothness of f. In practice, one should take some reasonably large v in order 
to keep the truncation bias small in a wide range of smoothness classes. In view 
of results of Donoho et al. (1995), it is not surprising at all that J:univ attains the 
optimal rate of convergence within some logarithmic factor. For reader's convenience 
we formally establish this in the following theorem. 

Theorem 2.3. Assume {Al) and 

Pi > (1 - pif2)(1/r1 + ... + 1/rd) for all i = 1, ... , d. 

Then 

s;_ip { EllJ:univ - JllL} 
fEB~q(K) 

If r(r1, ... , rd,Pt, ... ,pd)> 0, the value of J; can be chosen so large, that the upper 
bound given in Theorem 2.3 is dominated by the first term on the right-hand side. 
Hence, we obtain the optimal rate of convergence within some logarithmic factor. 

Remark 1. (The corresponding kernel estimator) 
As already mentioned, we can attain the optimal rate of convergence by a projection 
estimator on the space Vi• © · · · © Vi• in the class Bi,~(K), if Pi 2:'.: 2 for all 
i = 1, ... , d . Alternatively, we can also use a multivariate kernel estimator with a 
product kernel K(!f) = K1 ( x1) · · · K1 ( xd) , where Ki is a boundary corrected kernel 
satisfying J K 1(x)xk dx =Sok 0:::; k:::; max{r1, ... ,rd}-1. Choosing a product 
bandwidth f1 = (h1, ... , hd) with hi X €(2/ri)/(t/ri+ ... +l/rd+2) , we obtain the optimal 
rate of convergence. 

3. A MULTIVARIATE FUNCTIONAL CLASS, WHICH ADMITS RATES OF 
CONVERGENCE (JLOSE TO THE ONE-DIMENSIONAL CASE 

In this section we proceed with the investigation of what wavelet methods can offer 
for multivariate estimation problems. Although again nonlinear thresholding in the 
anisotropic wavelet basis is used, the object under consideration is quite different 
from that considered in the previous section: There we studied the ability of our 
estimator to adapt to different degrees of smoothness in different directions, which 
were modeled by anisotropic Besov classes. The "effective dimension" of such a class 
in [O, l]d is d, and therefore at least some of the directional smoothness parameters 
Ti must be sufficiently large to make a successful estimation in several dimensions 
possible. Here we consider the opposite situation, where the effective dimension of 
our multivariate functional class in [O, 1 ]d is still one, or at least very close to one. 
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Some motivation for the definition of the particular functional classes considered here 
comes from additive models, which are known to allow rates of convergence correspon-
ding to the one-dimensional case. As we will see below, the approximate preservation 
of the one-dimensional rate goes considerably beyond the case of such semiparametric 
models. Having in mind that nonlinear thresholding in the anisotropic basis adapts 
locally to the presence of a different complexity in the various directions, we seek an 
as large as possible class of functions that does not suffer from the curse of dimen-
sionality. It turns out that appropriate functional classes are those with dominating 
mixed derivatives; see, e. g., Schmeifier and Triebel (1987, Chapter 2). 
For the sake of simplicity we first restrict our considerations to the case of LrSobolev 
constraints, although other definitions of smoothness like Besov constraints would also 
be possible. Let, for some fixed K, 

(3.1) 

In contrast to usually considered isotropic smoothness classes like the d-dimensional 
Sobolev class 

the mixed derivatives play the dominant part in (3.1 ). Whereas we need a degree of 
smoothness of s == rd in Fs(K) to get the rate €4r/(2r+i) for the minimax risk, we 
need only r partial derivatives in each direction in (3.1) to attain this rate up to a 
logarithmic factor. 
The class F$d)(K) contains additive models like, e. g., 

d d 

f(~) == L fi(xi) + L fi;(xi, Xj), 
i=l i,j=l 

if fi E F$1)( K') and fij E F$2)( K') , or a multiplicative model like 
d 

f (~) == II fi( Xi), 
i=l 

. (3.2) 

(3.3) 

if fi E F$1)( K') , for appropriate K', as special cases. However, it is considerably 
larger than such semiparametric classes of functions in that it is a truely nonparame-
tric functional class. The restriction of the complexity is attained by an appropriate 
smoothness assumption instead of rigorous structural assumptions as in (3.2) and 
(3.3). 
As a benchmark for the estimation method to be considered, we derive first a lower 
bound to the minimax risk in F$d)(K). Recall that 'l/Jr are the tensor product wave-
lets defined by (2.9), and fh == f 'l/;1(~)!(~) d~ denotes the corresponding wavelet 
coefficient. _For the one-dimensional scaling function efJ and the wavelet 'lj; we assume 
that 
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(A2) (i) J ef>(t) dt = 1, 
(ii) f 'lj; ( t )tk di = Q for Q ~ k ~ T. 

It will be shown below that membership in F$d)( K) implies a constraint on the wavelet 
coefficients of the type 

(3.4) 

We again intend to apply the hypercube method to derive a lower risk bound~ To get 
a sharp bound, we have to find the hardest cubical subproblem. To achieve this, we 
consider the level-wise contributions to the total risk by any hypothetical minimax 
estimator. At coarse scales, that is for J = j 1 + ... + jd smalk the coefficients fh 
are allowed to be quite large. Accordingly, the linear estimates 81 are minimax and 
their level-wise contributions to the total risk are of order E2#{J I j 1 + ... + jd = 
J}:::::::: E221 Jd-l . At finer scales, the smoothness constraint of 

I: I: IB112 ~ K'2-2(j1 + ... +jd)r 
i1 + ... +jd=J ki , ... ,kd 

becomes dominating, and not all coefficients are allowed to be in absolute value as 
large as the noise level E at the same time. Despite the rapidly increasing number 
of coefficients at each level J as J ~ oo , the level-wise contribution of optimal 
estimators to the total risk will decrease. 
In accordance with this heuristics, a sharp lower bound to the minimax rate of con-
vergence will be generated by the problem of estimating the wavelet coefficients at a 
level which is at the border between-the "dense case" and the "sparse case". Roughly 
speaking, the dense case corresponds to levels {(j1, ... ,jd) I i1 + ... + jd = J}, 
where all coefficients can simultaneously attain the value E, whereas the sparse· case 
corresponds to levels at which only a fraction of these coefficients can be equal to E 

at the same time. Correspondingly, the hardest level J~ satisfies the relation 

(3.5) 

which leads to 

1 ( 2[ ( -l)]d-l)-l/(2r+i) 2 E :::::::: € log € • (3.6) 

Let µ be any r times continuously differentiable wavelet supported on [O, 1] (In con-
trast to the case in Subsection 2.1 we need orthogonality of µ(2ix-k) and µ(2i' x -k') 
if (j, k) "I- (j', k') .). Using the multiindex I= (j1, ... ,jd, ki, ... , kd) we define 

µ1(~) = 2U1 + ... +;d)/2µ(2i1 X1 - ki) ... µ(2idxd - kd)· 

Define the following class of functions, parametrized by the multidimensional para-
meter B = ( B 1 )I: ;1 + ... +id=J" : 

µe(~) 
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The following lemma characterizes the complexity of the functional class :F~d)( K) via 
the dimensionality of B. 

Lemma 3.1. Let J(;. be chosen according to {3.6). If C0 is small enough, then 

{µe I 81 E {O, Coe} for all I: i1 + ... + jd ~ J(;.} ~ .r;d)(K). 

Since the µi's are orthogonal, we immediately obtain by the hypercube method the 
following bound to the minimax rate of convergence in :F~d)(K). 

Theorem 3.1. It holds that 

i~f sup {Ellie - JllL} 2:: c ( €2[log( €-1 )]d-1 rr/(2r+i>_ 
fe Je_r}d)(K) 

Now we formulate an upper bound to the complexity of the functional class :F~d)( K) 
by an appropriate restriction on the wavelet coefficients. 

Lemma 3.2. Assume {A2). Then, for appropriate K', 

K'}. 
Note that the norm applied to the coefficients 81 in Lemma3.2 is of Lrtype. Therefore 
it is not surprising that even a simple projection estimator attains the minimax rate 
of convergence in :FJd)(K). 

Theorem 3.2. Assume {A2}. Let J(;. be defined as in {3.6} and let 

lYC~) 2: 2: B1'l/J1(~). 
ii + ... +jd::;Jt! ki , ... ,kd 

Then 

Remark 2. In contrast to the case of anisotropic Besov classes considered in the 
previous section, the construction of an aEpropriate kernel estimator is not obvious 
at all. Note that the wavelet estimator f! projects the observations on the space 
Eeji + ... +id=le Vii ® · · · ® V;d . Since the spaces Vii Q9 • • • Q9 V;d and V;f Q9 • • • Q9 V;~ 
are not orthogonal for (j1, ... >id) =J (j~, ... , j~) , one has to devise a quite involved 
kernel-based projection scheme, which is then able to provide the optimal rate of 
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convergence. 

Remark 3. Note that an assumption of different degrees of smoothness in different 
directions like 

~ ar1+ ... +rd 
L.J a r1 a r d f :::; K X1 ••• Xd 

O~ri~Ri L2 

does not lead to an essential change in the rate of convergence. Here the worst case 
described by r = min{Ri} drives essentially the rate of convergence, which is again 
not better than €4r/(2r+i). More exactly, the minimax rate of convergence is then 
(€2[log(c1 )JD-1 ) 2r/(2r+1), where D = #{ri I Ti= min{rj}} is the multiplicity of 
the worst direction. 

Note that the optimal projection estimator f;' depends, via Je, on the smoothness 
parameter r. To get a simple, fully adaptive method, we can again apply certain 
universal thresholds .. Let feimiv be defined as in (2.19) and (2.20). 

Theorem 3.3. Assume {A2}. Then 

sup {Ellhuniv - JllL} = 0 ((€2[log(€-l)Jd)2r/(2r+l)) + 0 (2-2J;r). 
fE_r}d)(K) 

Note that the universally thresholded estimator misses the optimal rate of conver-
gence, which is attained by the projection estimator considered in Theorem 3.2, by 
some logarithmic factor. This is because the universal estimator does not achieve the 
optima~ tradeoff between squared bias and variance. The same effect is well-known 
for conventional smoothness classes; see, e.g., Donoho et al. (1995). As shown in Do-
noho and Johnstone (1992) for univariate Besov classes, the necessity for noniinear 
estimators occurs in functional classes which allow more spatial inhomogeneity than 
Lrclasses. To show that appropriate thresholding works also in our framework of 
multivariate smoothness classes with dominating mixed derivatives, we consider now 
a slightly larger functional class, which allows a more inhomogeneous distribution of 
the smoothness over [O, l]d. We define this class in analogy to the Besov space B'1. 00 , 

which is the largest one in the scale of spaces B;,q with degree of smoothness r ~nd 
1 :::; p, q :::; 00 . 

According to the inequality 

( #It1 L lfhl < 
!EI 

we define the following functional class: 
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By Lemma 3.2, we can easily see that :FJd)(K) ~ :F;;~00 (K') holds for an appro-
priate K!. Moreover, these classes are considerably larger than :F;d)(K), since they 
contain, for example, one-dimensional functions f(;g_) = f 1(x1) from the spatially 
inhomogeneous smoothness class Br,00 ( K'). Since linear estimators are, even in this 
simple special case of f (;g_) = f1 ( x1) , f1 E B~,oo ( K') , restricted to a rate of con-
vergence of €4;:'/(2;:'+i), r = r - 1/2 , we can only hope to get the desired rate of 
( €2[log( €-1 )Jd-l ) 2r/(2r+i) by an appropriate nonlinear method. 
Let Je be defined as in (3.6). We define the thresholds 

* { o, . 
Ar = €/'i,V(j1 + · · · + jd) - Je, 

where K, is again any constant larger than vf2 log 2. Further, let 

f:(;g_) = L 5(·)(81, Aj)'l/;r(!f). 
I 

The foliowing theorem shows that f; is optimal in the class :F;~00 (K). 
Theorem 3.4. Assume ( A2). Then 

s~p { Ellf; - !Iii,} = 0 ( ( e2[log( e-1 )]d-1 )2'1(2r+l)) . 
fE~11 , 00 (K) 

. (3.8) 

(3.9) 

4. APPLICATION TO NONPARAMETRIC REGRESSION AND DENSITY ESTIMATION 

In this section we intend to indicate how far the theoretical results from the previous 
sections are relevant for more realistic models like nonparametric regression and den-
sity estimation. Under reasonable assumptions and by setting € x n-1/ 2 , the lower 
bounds from the previous sections can be transferred both to non-Gaussian regres-
sion and density estimation. (Note that the hypercube approach by Bretagnolle and 
Huber (1979) was just developed in the density estimation setting.) 
Assume that d-dimensional independent observations ii, i = 1, ... , n, according to 
a density f are available. For simplicity of this discussion assume that we intend to 
estimate f only on some rectangular domain, say [O, l]d, where f is bounded away 
from zero. Empirical wavelet coefficients are easily defined as 

n 

Br = n-1 L 'l/Jr(ii). 
i=l 

These coefficients are unbiased estimators for B r and have a variance 
aJ = n-1 (J 'lf;J(;g_)f(r!l) d;g_ - Bn . Using Lemma 3.1 and Lemma 2.3 in Saulis and 
Statulevicius (1991) we obtain that 

p ( ± Br ;;/1 
:::>: x) = (1 - <T?(x))(l + o(l)) (4.1) 
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holds uniformly in x = o((n2-Ci1 + ... +jct))116). Let 

6 r-..J N( fh, a;). (4.2) 

Essentially by integration by parts, we can derive that 

E (o(.)(Br, >.) - Br)2 = E (o(.)(6, >.) - Br) 2 
(1 + a(l)) + O(n->-) (4.3) 

holds in a uniform manner in {J I 2j1 + ... +jd :::; n-Y} , for any fixed "'! < 1 and 
arbitrary >. < oo ; see, e. g., Neumann (1994). This means that we can apply just 
the same estimation techniques which were developed for the Gaussian white noise 
model (2.1 ). 
In view of the heteroscedastic structure of the approximating model ( 4.2), we think 
that a slight modification of the thresholding schemes from the previous sections is 
advisable. For example, the universal threshold >.:niv = ej2 log( #Ie) defined in 
Section 2 should be replaced by thresholds 

( 4.4) 

where In denotes t.he set of indices associated to coefficients that are thresholded, 
and 

o} = n-1 (n-1 ~ ,PJ(Y;) - B~) (4.5) 

is a consistent estimate of aJ. 
As long as In contains only indices I with 2j1 + ... +jd :::; n"Y , for some "'{ < 1 , 
asymptotic normality ( 4.1) and the risk equivalence ( 4.2) are valid, and we can expect 
analogous asymptotic results to hold as in the Gaussian case. 
A similar connection to the Gaussian white noise model can be established for mul-
tivariate nonparametric regression. Assume we have n independent observations 
(X1 , Yi),. .. , (Kn, Yn) , where Xi is distributed according to a d-dimensional den-
sity p. For f(ll) = E(li I Xi = ll) we obtain the usual nonparametric regression 
model 

• 1 
i = .L,. .. ,n, ( 4.6) 

where E(ei I ;& = ll) = 0. 
In contrast to the density case, we have to take care of the bias when we construct 
empirical wavelet coefficients. An obvious possibility is, to compute first a multivari-
ate local polynomial estimator off with some small bandwidth hn and then to insert 
this estimate into formula (2.10). 
To be more specific, assume that 

(A3) (i) the marginal density p of Xi is bounded away from zero on [O, l]d, 
(ii) f is r-times continuously differentiable on [O, l]d, where r > d/2 , 

(iii) for all M < oo , there exist constants GM < oo , such that 

sup E (leilM I xi = ll) :::; GM. 
~E(O,l]d 
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Let f (~) be a multivariate local polynomial estimator of order r with some bandwidth 
hn; see, e. g., Ruppert and Wand (1994). Conditioned on Xi, ... ,Xn, J can be 
written in the form 

f(~) = E Wi(~)Yi. 
i 

For the bandwidth hn we assume that, for any 6 > 0 , 

h2r = 0 (n-1-6), h-d = 0 (nl-6). ( 4.7) 

It may be shown that, for C large enough, the relation 

P ( sup { L wi(~)f(Xi) - f(~) } > Ch~)· = 0 ( n->.) 
~E[O,l]d i . 

is satisfied, that is, the maximal bias of f(~) over [O, 1 ]d is of order h~ with a proba-
bility exceeding 1 - O(n->.) . If we set Br = J 7/Jr(~)J(~) d~, then 

E Cifr I X 1, ... ,xn) - fh = O(h~) 
is also satisfied with the above probability. Using Theorem 2 of Amosova (1972) we 
can prove that, conditioned on X 1 , ... , X n , the asymptotic relation 

p ( ± 91 ~ fh 2": x) = (1 - P(x))(l + o(l)) + O(n->.), (4.8) 

where O"J = var (81 I x 1> ••• 'xn) ' is satisfied for all I with 2i1 + ... +jd ~ n'Y ' .. 
I < 1 , with overwhelming probability. Hence, it is not· difficult to transfer the 
methods from Sections 2 and 3 to multivariate nonparametric regression. 

5. SIMULATIONS 

In this section we briefly report on results of a simulation study, which was carried 
out to check how far the asymptotic results are relevant for moderate sample sizes. 
We used as a convenient programming environment the XploRe system, which has 
been developed by W. Hardle and coworkers, and runs on personal computers. A 
description of this is contained in Hardle, Klinke and Turlach (1995). 
In accordance to the main theme of this paper, we considered a bivariate function 
f ( x1 , x 2 ) = 2 sin2( x1 ) , which has an effective dimension one. This function is visua-
lized in Figure 1, on the grid G = {((i - 1/2)/16, (j - 1/2)/16), i,j = 1, ... , 16} 
with 256 grid points. 

[Please insert Figure 1 about here] 

First we compared the anisotropic wavelet basis with the usual (isotropic) multireso-
lution basis with regard to their ability to compress the signal f. Good compressibi-
lity means that most of the power of the signal is packet in an as small as possible 
number of coefficients. To compute the wavelet coefficients of the two-dimensional 
bases we used the one-dimensional fast wavelet transform (as well as its inverse for 
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backtransformation) as the main building block, which provides a quite efficient al-
gorithm. Figure 2 shows magnitudes of the wavelet coefficients, IB1I, of the two bases 
on a logarithmic scale. We omitted the "father x father-coefficient", Bo,o;1,1, in both 
cases and displayed the 50 largest coefficients in decreasing order. The solid line 
corresponds to coefficients of the anisotropic basis, whereas the dotted line refers to 
coefficients of the ri:mltiresolution basis. 

[Please insert Figure 2 about here] 

This picture underlines the superior ability of the anisotropic basis to compress sig-
nals like f, which have an effective dimension lower than the nominal one. Most of 
the power of the signal is packed in a small set of coefficients, whereas the multire-
solution basis needs more functions to provide a comparable approximation to the 
function f. Asymptotic theory prescribes that this will have direct consequences to 
the performance of appropriately thresholded estimators in statistical models. 
We ad~ed Gaussian white noise, which leads to the nonparametric regression model 

}ij = f(xi, Xj) + £ij, i,j = 1, ... , 16, 

where Xi = (i - 1/2)/16 and £ij f'J N(O, u2) are independent. We chose u = 0.1 , 
which corresponds roughly to an amount of noise usually assumed in nonparametric 
regression, and u = 0.05 . Figures 3a and b show the true function f (solid line) and 
one set of observations Yij according to u = 0.1 and u = 0.05 , respectively. 

[Please insert Figu~es 3a and b about here] 

After calculating 256 empirical coefficients in both cases, we applied thresholding 
at the universal thresholds A'riv = uJ2 log(255) to all coefficients B1, I =J 
(0, O; 1, 1) . We restricted our considerations to hard thresholding, that is 5(.)(B1, A)= 
B1 I('81I ;?: A) , since we know from extensive simulations in Marron et al. (1995) 
that hard thresholding is often better than soft and almost never essentially worse. 
This superiority may be quite clear in cases of strong inhomogeneity in the size of 
the coefficients 8 I. 
Figures 4a and b show realizations of hard thresholded estimators based on the aniso-
tropic wavelet basis and the multiresolution basis, respectively, in the case of u = 0.1 . 

[Please insert Figures 4a and b about here] 

The anisotropic estimator provides quite a good approximation to the true function 
f, whereas the isotropic one even does not ca:e_ture the variability off in x1-direction. 
The numbers of active coefficients including Bo,o;1,1 are 3 and 1, and the L2-losses are 
0.174 and 0.500, respectively. 
Figures 5a and b show realizations of the same estimators in the case u = 0.05 . 

[Please insert Figures 5a and b about here] 

The anisotropic estimator approximates f almost perfectly, whereas the isotropic one 
achieves a similar degree of approximation as the anisotropic estimator in the case 
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u == 0.1 . The numbers of active coefficients are 7 and 5, and the Lrlosses are 0.0003 
and 0.174, respectively. 
We studied also some other examples for f and u as well as a modified threshold 
choice °Aj0 d == uJ21og(nii+i2 (B)), where n1(B) denotes the number of wavelets in a 
certain basis B associated to levels (j1,j2) with j 1 + h == J. This particular choice 
of the thresholds is somewhat less conservative than the above thresholds "Ariv. This 
alternative led sometimes to the inclusion of some more coefficients, which resulted in 
slightly improved estimators, but sometimes both thresholding schemes gave identical 
results. Concerning different choices for f and u, the anisotropic estimators were 
never worse than the isotropic ones, and sometimes dramatically better. 
We restricted our study to bivariate functions, mainly for the sake of a convenient 
visual presentation of the results. The whole program, including the use of the one-
dimensional fast wavelet transform as the main building block of the implementation, 
can be carried out in higher dimensions, also. An appropriately thresholded estimator 
based on the anisotropic basis will be able to adapt to a lowerdimensional structure 
of a higherdimensional function, whereas the structure of the isotropic basis prevents 
corresponding estimators from exploiting an effective dimension lower than the nomi-
nal one. We think that this effect will become even more drastic when the difference 
between the full dimension and the effective dimension is larger than one. 

6. PROOFS 

Proof of Lemma 2.1. It is easy to see that 

( + h ) ( ) < Q2(ii+ ... +id)/22iiTihTi-h] ~ €-lhri~[ri], l a~ a~ I -----r;:J µki , ... ,kd ~ ei - a [ri] µki , ... ,kd ~ 
Bx· X· i i 

where the constant C can be made arbitrarily small by an appropriately small choice 
of 0 0 • Hence, {µ8 , B E {O, e}D} .~ H!..(C) . Since the Holder class H!..(C) is 
embedde.d in B~,q(K) for C small enough, we obtain the assertion. D 

Proof of Theorem 2.2. By (2.12)," we only have to study the decay of the functional 
ne((.:\jt), e) given by (2.13) as € ~ 0' where e == {(81) I LJJ BJ'l/;1 E B~,q(K)} . 
We proceed from the decomposition 

nE ( ( "Af't), e) 
< L :Ee2 

ii 5i{ , ... ,id5id. k1 , ... ,kd 
d 00 

+:E :E (
.:\opt ) (.:\opt) L €2 _I_ + 1 r.p _l_ 

ki, ... ,kd € € 

d 00 

+:E :E :E L min { (.:\f't)2
, Bn 

i=l ii=il+l (ii, ... 1ii-i 1ii+i 1• 00 1id): i1cr1c5iiTi ki, ... ,kd 

(6.1) 
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By (2.15), we have that 

31 = Q ( €22i;+ ... +iii) = Q ( €2fi(r1 1 ... ,rd)). (6.2) 

Fix for a moment i and ji > jl . Note that 

#{I I (jk - jZ)rk::; (ji - ji)ri} _ Q (2iiri(1/r1+ ... +1/rd~) 

Q (2i;+ ... +iii2Ui-ii)ri(l/r1+ ... +1/rd)). (6.3) 

This implies that 

(
,opt ) (,opt) 

" 2 A[ 1 A[ L.Je-+ cp-
k1, ... ,ka. € € 

0 ( e22;;+ ... +;;;) 0 ( 2(i;-ji)ri{1/r1+ ... +1/r•l-jj; _ j{ exp(- K
2
(j; .- ji')r;(l/;1 + ... + 1/rd)): 

0 ( €2.i(ri. ... ,r•l) 0 (exp ((j; - ii)r;(l/r1+ ... +1/rd) [log(2) - K 2 /2]) -/i• - ii). 
Since [log(2) - K,

2 /2] < 0 , we obtain that 

(6.4) 

Let Pi = min{pi, 2} . By llf llb:i ::; K we obtain by straightforward calculations 
i,pi,q 

that 

sup { L 
er E0 · · · · . . ( ) (11 , ... ,Ji-11Ji+11··· ,u): 11cr1c5:JiTi 

L IBrlPi} ::; c2-iiTiPi2iiri(1-pi/2)(1/r1+ ... +1/ra.). 
ki , ... ,ka. ( 6. 5) 

This implies 

Q ( (A ft)2-Pi2-jiTiPi2iiri(1-pi/2)(1/r1 + ... +1/rd)) 

Q ( €2-pi (ji _ j;)1-pi/22-iiriPi2iiri(1-pi/2)(1/r1 + ... +1/ra.)) 

o ( e22i;+ ... +iii) o ( e-P'i2-iiri.Pi2-U;+ ... +iii)P'i/2) * 
* 0 (2-(ji-it)riPi2iiri(1-Pi/2)(1/r1+ ... +1/ra.)2U;+ ... +jit)(Pi/2-1)(ji - ii)1-Pi/2) (6.6) 

First we can easily see that e-P'i2-iiriP'i2-U;+ ... +iii)Pi/2 = 0(1) . Because of 
2i;+ ... +iii >::: 2iiri(l/ri+ ... +t/ra.) and by (1- pi/2)(1/r1 + ... + l/rd)- Pi < 0 we obtain 
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that 

d 00 

33 == L L Q ( €22i;+ ... +jd2-(ji-jt)riPi2iiri(l-pi/2)(1/r1+ ... +i/rd)2(j;+ ... +j~)(Pi/2-l)(ji _ J;)l-pi/2) 
i=l ii=i;+1 ' 

d 00 

Q ( €22i;+ ... +jd) L L Q ( 2(ii-it)ri[(1-pi/2)(1/r1+ ... +i/rd)-pi](ji _ j;)l-pi/2) 
i=l ii=i;+l 

0 ( €22;;+ ... +jd) . 

Collecting the estimates in (6.1), (6.2), (6.4), and (6.7) we obtain the assertion. D 

Proof of Lemma 2.2. Fix for a moment ji. Then we obtain, analogously to (6.5), that 

(6.8) 

Note that jiri - (j1 + ... + jd)(l/pi - 1/2) ~ jkrk - (j1 + ... + jd)(l/pk - 1/2) for 
all k == 1, ... , d implies the relation 

Using (6.8) and (6.9) we obtain that 

II! - Proh;J. flli2 

00 d 

< L.: L.: 
J=J•+1 i=l (h , ... ,jd): h + ... +jd=J, k1 , ... ,kd 

jiT'i-J(l/;i-l/2)~iJcT'Tt-J(1/;1t-l/2) 
00 L Q (2-J-y(r1, ... ,rd1Pl1···1Pd)) == Q (2-J*"'Y(r1, ... ,rd1Pl1 .. •iPd)). 

J=J•+1 

D 

Proof of Theorem 2.3. Setting formally -Ariv == oo if It/:. Ie, we have again that 

s;,ip {Ellhuniv - JllL} ~ Cfi((-Ariv), 8), 
fEB~q(K) 

(6.10) 

where e == {(Br) I "Er Br'l/Jr E B~,q(K)} . 

(6.7) 
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Let ji be chosen such that 2ilri x ( €2 log( €-1) tl/(l/ri + ... +i/rct+2) . We split up 

n ((;\riv), e) 
< E €2 (;\riv + i) cp (Ariv) 

lEie € € 

+ I: E min{(;\riv)2,en 
ii'S.ii ki , ... ,kd 

+ E E min{(;\riv)2,eJ} 
ii> ii ki , ... ,kd 

(6.11) 

The first term on the right-hand side is obviously of order €2 log( €-1) . 
The second term can be majorized by C €2 log( €-l )2i;+ ... +ici , which is 0( ( €2 log( €-1) )19(ri, ... ,rct) 
The third term can be estimated by 

L Q ( ( €2 log( €-1) )1-pi/2) L 2jiTi[(l-Pi/2)(1/r1 + ... +i/rct) - Pi] 
i ~>~ 

_ ~ Q ( ( €2 log( €-1) )1-pif22i;ri((l-pi/2)(1/r1 + ... +i/rct)- Pi]) 
i 

Finally, by Lemma 2.2, the fourth term is of order 2-J;-y(ri, ... ,rct,P11···1Pct) , which com-
pletes the proof. O 

Proof of Lemma 3.1. Let 0 ~ r1, ... , rd ~ r . Then, for i1 + ... + jd == le , 

Let I= {I I i1 + ... + jd == le} . Further, since f µ<;1, ... ,rct)(!!l) d;Jl == 0 , we have 
that 
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We have by (3.5) that 

L B1µf1, ... ,rd) 1,2 
IEI £ 2 

< LB1ilµf1 ' ... ,rd)lli
2 

+ L ()1() J j(µf1, ... ,rd>, µ~1, ... ,rd)) I 
I,J 

0 ( €22JE J:-122JET) 

+ """"' {I ( ( r1 , ... ,r d) ( r1 , •.. ,r d)) I} """"B () L.J sup µ1 , µl+J L.J 1 I+J 
J IEI I 

- 0 ( €22JE J:-122JEr) = 0(1 ), 

which proves the assertion. D 

Proof of Lemma 3.2. Let µ1(~) = 2Cii+ ... +id)r'lflt~~ (x1) · • • 'lfa):~~(xd) . Then, by inte-
gration by parts, 

Expanding f(r, ... ,r) in a homogeneous wavelet series, f(r, ... ,r) = EJEVd[J-z/;~ , we 
obtain 

2: !J ::; G. 

We restrict our considerations first to I= {(j1, ... ,jd, ki, ... , kd) I ji 2:: l for all i} , 
that is to coefficients associated to products of wavelets Viii,'ki rather than scaling fun-
ctions c/Jki. The near-orthogonality of the system {µ1} IEI is characterized by the 
fact that 

L sup {l('l/JJ+J, µ1)1} < oo. 
JEVd IEI 

This implies that 
I: 22u1 + ... +jd)r I: e~ 

(i1, ... ,jd): ii?:.l k1, ... ,kd 

I: If J(r, ... ,rl("'-)µ1("'-) d.~f 
IEI 

< L L IT11+IfJ2+I('lfl11+I' µ1)('lfl12+I, µ1)1 

< ( L sup{l('l/11+1,µ1)!})

2 

2:1i :=; C. 
JEVd IEI !EI 

The remaining wavelet coefficients () 1 with ji = l -1 for at least one i can be treated 
by similar considerations, which completes the proof. D 
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Proof of Theorem 3.2. By Lemma 3.2, (3.5), and (3.6) we obtain that 

Ellf: - fllL 
e2#{I I ii+ .. ·+ jd:::; J€} + L f)~ 

D 
Proof of Theorem 3.3. By (2.12), our coordinatewise upper risk estimate will be es-
sentially driven by the functional min{(.Xriv)2, en. According to the heuristics lea-
ding to the balance relation (3.5), we choose J€ as the presumably hardest level such 
that 

e2 log( €-i )21e J:-i ~ 2-21er 
is satisfied. Since J€ == O(log( e-i )) , we conclude from (2.12) that 

D 

EllJ:niv - fllL 
< e2#I. c[:iv + 1) 9' c\[:'v) 

+ (.X1tiv)2#{J I ii+···+ jd:::; J€} 

+ I: I: e~ 

0 ( e\/log( €-l) + e2 log( €-l )2J, J:-1 + r 2< J,AJ; )r) 

o ( ( e2[1ogV1 )Jd)2"1c2r+1>) + o ( r2J;r) . 

Proof of Theorem 3.4. By (2.12) and (3. 7), the proof of the theorem is reduc·ed to 
estimating n€((.Xj), 0), where 
e == { (81) I sup] { 21Cr-i/2)J-(d-i)/2 Ei1+ ... +jd=J Ek1, ... ,kd IBrl}:::; K}. We have 

n€ ((.Xj), e) 
< I: 

00 

+ I: I: I: min{(.xj)2,eH 
l=le+i ii + ... +id=] k1 , ... ,kd 

Ti + T2 + TJ. (6.12) 
From (3.5) and (3.6) we see that 

Ti == 0 (e221e[log(e-i)]d-i) == 0 ((e2[log(e-i)]d-i)2r/(2r+i)). (6.13) 
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Since 

L 21-Je(J/Je)d-1 (.:\j + 1) cp (.:\j) 
l>lt! € € 

= 2:: 0 (exp (( J - J.)[log(2) - x;
2 /2J) (J/ J.)d-1.j J-:--- 1.) 

J>Je 
0(1), 

we get 

T2 0 ( e22J•1:-1
) J~, 0 ( 2J-J,(Jf J.)d-l c·: + 1) cp en) 

- 0 (e22Jt!J:-1) = 0 ((e2[log(e-1)]d-1)2r/(2r+i)). (6.14) 

Finally, we have 

2:: I: min{(.xi)2,en 
·i1 + ... +id=] ki , ... ,kd 

< .:\* I 

0 ( e.j J _ J.rJ(r-1/2) J(d-1)/2) 

0 ( erJ.(r-1/2lJ£d-1)/2) 0 ( r(J-J,)(r-1/2v J - J.(J/ J.)(d-1)/2) , 

which implies, by e2-Jt!(r-1/2) J~d-l)/2 ~ 2-2Jer = 0( (e2 [log( e-1 )Jd-l )2r/(2r+l)) , that 

T3 = 0 ( ( €2[log( €-1 )]d-1 )2r/(2r+i)) . (6.15) 

D 
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FIG. 1. FUNCTION F 
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X: X_l (*10 -1) 
Y: X_2 (*10 -l) 
Z: F (X_l,X_2) 
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FIG. 3a. F VS. F+NOISE 

X: X_l (*10 -1) 
Y: X_2 (*10 -1) 
Z: F(X_l,X_2) 



30 

FIG. 3b. F VS. F+NOISE 

X: X_l (*10 -1) 
Y: X_2 ( * 1 O -1 ) 
Z : F ( X_l, X_2 ) 
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FIG. 4a. F VS. ANISOTROPIC EST. 

X: X_l (*10 -1) 
Y: X_2 (*10 -l) 
Z: F(X_l,X_2) 
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FIG. 4b. F VS. MULTIRES EST. 

y 

X: X_l (*10 -1) 
Y: X_2 (*10 -l) 
Z: F(X_l,X_2) 
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FIG. Sa. F VS. ANISOTROPIC EST. 

X: X_l (*10 -1) 
Y: X_2 (*10 -l) 
Z: F(X_l,X_2) 
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FIG. Sb. F VS. MULTIRES EST. 

X: X_l (*10 -1) 
Y: X_2 (*10 -l) 
Z: F(X_l,X_2) 
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