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Numerical approach to a model for quasistatic damage with
spatial BV -regularization

Sören Bartels, Marijo Milicevic, Marita Thomas

Abstract

We address a model for rate-independent, partial, isotropic damage in quasistatic small strain
linear elasticity, featuring a damage variable with spatial BV -regularization. Discrete solutions
are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve
the constrained nonsmooth optimization problem that determines the damage variable at each
time step. We prove convergence of the method and show that discrete solutions approximate a
semistable energetic solution of the rate-independent system. Moreover, we present our numeri-
cal results for two benchmark problems.

1 The damage model, its solution concept, and our results

By damage evolution we understand the formation and growth of cracks and voids in the microstructure
of a solid material. This process is monitored over a time interval [0,T] for a body with reference
configuration Ω ⊂ Rd, d > 1. In the spirit of generalized standard materials [29] and continuum
damage mechanics [34, 35] this degradation phenomenon is modeled by a volumetric internal damage
variable z : [0,T]×Ω→ [0,1] which is incorporated into the constitutive law in order to reflect the
changes of the elastic behavior due to damage. It is assumed that the length scale of the specimen
of the considered material is much larger than that of the respective reference volume. The reference
volume of a material is a characteristic volume such that all relevant properties of the material are
comprised in this amount of material and such that the material can be regarded as homogeneous if
it is considered in a much larger length scale than the length scale of the reference volume. The value
z(t,x) at (t,x) ∈ [0,T ]×Ω can then be understood as the undamaged fraction of the reference
volume at time t located in x ∈Ω.

The evolution of the damage variable is driven by time-dependent external loads, which cause the
deformation of the body and increase its stresses. To relax, damage evolves and thus turns stored
energy into dissipated energy. These two energy contributions can be described by an energy func-
tional E and a dissipation potential R. In literature many different assumptions have been made with
regard to the growth properties of the two functionals, which directly affect the regularity properties
of the damage variable with regard to time and space. In this way the contributions to damage pro-
cesses in mathematical and engineering literature can be divided into two major classes: One class
considers the evolution of damage as a rate-dependent phaenomenon, mostly modeled by a viscous
dissipation with quadratic growth, cf. e.g. [20, 19, 31, 7, 8, 49] and a further class understands damage
as a rate-independent process described by a positively 1-homogeneous dissipation potential, cf. e.g.
[30, 37, 11, 17, 45, 59, 57, 58]. While the first growth property leads comparably smooth evolution in
time settled in L2(Ω), the latter only provides bounded variations in time, so that the damage variable
may jump in time. Indeed, the use of a rate-independent model, resp. the neglection of rate-effects,
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is also seen as a feasible approximation for certain damage processes observed in experiments,
cf. e.g. [27]. We will follow the latter concept and consider the 1-homogeneous dissipation potential
R : Z→ R∪{∞},

R(v) :=
∫

Ω

R(v)dx, with R(v) :=

{
ρ|v|dx if v ∈ (−∞,0],
+∞ if v > 0

(1a)

with Z := L1(Ω) , (1b)

and with a constant dissipation rate ρ > 0. Due to the convention z = 1 for the unbroken and z = 0 for
the broken state of the material, the dissipation potential ensures the unidirectionality of the process
and thus prevents healing of the material.

Also for the energy functional E different regularity assumptions have been made for the damage
variable: By now, it has bekome a well-accepted approach to incorporate damage gradients into the
energy, in order to account for nonlocal effects of damage from a physical point of view, and to benefit
from its regularizing effect in the mathematical analysis and numerical simulations. The vast majority
of contributions considers a damage gradient with growth of power p = 2 [20, 19, 28, 7, 8, 42, 40,
60, 56, 2, 39, 36]. For technical reasons, sometimes also p > d is chosen, cf. e.g. [44, 31, 49]. It has
to be remarked that this choice has direct influence on the effects of damage that can be observed
with this model: For gradient regularizations of this type, mathematically, the damage variable is an
element in a Sobolev space, and transitions between damaged and undamaged material phases have
to be smooth and thus have to take place in zones of a certain positive width. The assumption p > d
enforces that the damage variable even has to be continuous in space. Yet, from own experience one
can also observe situations where the transition between damaged and undamaged regions is very
sharp. This effect cannot be described by a regularization in Sobolev spaces. Therefore it is the aim
of this work to contribute to the toolbox for the investigation of damage processes with a model that
allows for sharp transitions between damaged and undamaged material phases. To capture this effect,
but still to benefit from regularizing effects of gradients, we propose to replace the Sobolev-gradient by
a BV-gradient. More precisely, we shall consider an energy functional Ê : [0,T]×U×X→R∪{∞}
of the form

Ê (t,u,z) :=
1
2

∫
Ω

f (z)
(
λ
∣∣ tre(u+g(t))

∣∣2 +2µ|e(u+g(t))|2
)

dx

+κ|Dz|(Ω)+
∫

Ω

I[0,1](z)dx−
∫

ΓN

uN(t) · (u+g(t))ds
(2)

with the Lamé constants λ ,µ > 0, e(u) := 1
2(∇u+∇u>) the small-strain tensor, g : [0,T]×Ω→Rd

a suitable extension of a given Dirichlet datum into the domain Ω and uN : [0,T]× ΓN → Rd a
given surface loading acting along the Neumann-boundary ΓN. Due to the mapping properties of
the monotonously increasing function f : [0,1]→ [a,b] with constants 0 < a < b the model will
capture partial damage only: It is f (0)≥ a and hence, even in the state of maximal damage the solid
has the ability to counteract external loadings with suitable stresses and displacements; for models
allowing for complete damage, where this property is lost, we refer e.g. to [9, 46, 32]. The compactness
information needed to handle the product of f (z) and quadratic terms in e is provided by the total
variation |Dz|(Ω) of z in Ω, weigthed with a constant κ > 0,. Finally, the indicator function I[0,1]
confines the values of z to the interval [0,1], i.e., I[0,1](z) = 0 if z ∈ [0,1] and I[0,1](z) = ∞ otherwise.
In view of (2) we set

U := {v ∈ H1(Ω,Rd), v = 0 on ΓD in trace sense} , (3a)

X := BV(Ω) , (3b)

DOI 10.20347/WIAS.PREPRINT.2388 Berlin 2017



Numerical approach to a model for quasistatic damage with spatial BV -regularization 3

so that, in view of (1b), we will work with the extended energy functional E : [0,T]×U×Z→R∪{∞}

E (t,u,z) :=
{

Ê (t,u,z) if (u,z) ∈ U×X,
∞ otherwise.

(4)

It is the aim of this paper to study the existence of solutions for the rate-independent system (U×
Z,E ,R) given by (3), (4), (1a) by proving the convergence of a numerical method. For this, we will
impose a partition ΠN := {tk

N , k ∈ {0,1, . . . ,N},0 = t0
N < .. . < tN

N = T} of the time-interval [0,T]
and a space discretization in terms of P1 finite elements, yielding finite-element spaces Uh,Xh. At
each time-step tk

N ∈ ΠN , we will determine approximate solutions in Uh,Xh via an alternating mini-
mization scheme, i.e., starting from an approximation (u0h,z0h)∈Uh×Xh of the initial datum (u0,z0)
at t0

N , we alternatingly compute

uk
Nh = argminu∈Uh

E (tk,u,zk−1
Nh ), (5a)

zk
Nh ∈ argminz∈Xh

E (tk,uk
Nh,z)+R(z− zk−1

Nh ) . (5b)

While the computation of uk
Nh reduces to the solution of a linear system of equations, the computa-

tion of zk
Nh requires the solution of a constrained nonsmooth minimization problem. This problem is

qualitatively of the form of the Rudin-Osher-Fatemi (ROF) problem [55] for which various numerical
schemes have been proposed for its iterative solution, cf., e.g., [3, 6, 13, 14, 25, 26, 33, 38, 50, 62].
We approximate a minimizer zk

Nh by converting the minimization problem into a saddle-point problem
and use a variant of the alternate direction method of multipliers (ADMM) [18, 21, 22, 23, 24] recently
introduced in [5] as Variable-ADMM for the approximate solution of the saddle-point problem.

As N → ∞ for the time-discretization and h→ 0 for the space-discretization we show that suitable
interpolants constructed from (5) approximate a semistable energetic solution of the system (U×
Z,E ,R):

Definition 1.1 (semistable energetic solution). A function q = (u,z) : [0,T]→ U×Z is called semi-
stable energetic solution for the system (U×Z,E ,R), if t → ∂tE (t,q) ∈ L1((0,T)) and if for all
s, t ∈ [0,T] we have E (t,q(t)) < ∞, if for a.a. t ∈ (0,T) minimality condition (6a) is satisfied and if
for all t ∈ [0,T] semistability (6b) as well as the upper energy-dissipation estimate (6c) hold true, i.e.:

for all ũ ∈ U : E (t,u(t),z(t))≤ E (t, ũ,z(t)) , (6a)

for all z̃ ∈ X: E (t,u(t),z(t))≤ E (t,u(t), z̃)+R(z̃− z(t)), (6b)

E (t,q(t))+R(z(t)− z(0))≤ E (0,q(0))+
∫ t

0
∂ξ E (ξ ,q(ξ ))dξ , (6c)

where the dissipated energy up to time t is given by the total variation induced by the dissipation
potential R with unidirectionality constraint and, by thus induced monotonicity of z : [0,T]→ Z, takes
the form R(z(t)− z(0)).

Let us note here that the alternate minimization scheme (5) directly leads to the notion of semistable
energetic solutions. In the quasistatic, rate-independent setting they form a much wider class than
the well-known energetic solutions, cf. e.g. [43, 45], which replace conditions (6a) & (6b) by the joint
global stability condition ∀(ũ, z̃) ∈ U×Z : E (t,u(t),z(t))≤ E (t, ũ, z̃)+R(z̃− z(t)) and the upper
energy-dissipation estimate (6c) by an energy-dissipation balance. In fact, the existence of energetic
solutions for the above system (U×Z,E ,R) was investigated in [57]. As a matter of concept, en-
ergetic solutions are obtained from a time-discrete scheme with a monolithic minimization in the pair

DOI 10.20347/WIAS.PREPRINT.2388 Berlin 2017



S. Bartels, M. Milicevic, M. Thomas 4

(u,z) in each time step. In the case that E (t, ·, ·) is jointly convex in the pair (u,z) it can be shown
that semistable energetic solutions are also energetic solutions. However, this is not true if the energy
functional does not enjoy the property of joint convexity. In this case it can be observed that energetic
solutions tend to evolve earlier than semistable energetic solutions, cf. e.g. [52]. Indeed, many energy
functionals taken from engineering literature are separately convex in the variables u and z but not
jointly convex, cf. [59, Sec. 5] for examples on convexity properties of damage models.

Our paper is organized as follows: In Section 2 we state the main assumptions needed for the analysis.
Section 3 introduces the numerical algorithms used to calculate approximate solutions in the sense
of (5). We present the Variable-ADMM adjusted to the present setting, address its stability and the
monotonicity of the residual and prove that the residual controls the difference between the optimal
energy and the energy of the iterates. Based on this, in Section 4 we prove our main result, Thm. 4.1,
providing the convergence of the approximate solutions to a semistable energetic solution of (U×
Z,E ,R) in the sense of evolutionary Γ-convergence. Finally, in Section 5 we report our numerical
results for an academic example and a benchmark problem from engineering.

2 Setup and notation

Throughout this work, we consider the time interval [0,T] for some time horizon T > 0 and an open
bounded Lipschitz domain Ω⊂Rd , d = 2,3, with Dirichlet boundary ΓD ⊂ ∂Ω with positive (d−1)-
dimensional Hausdorff-measure H d−1(ΓD) > 0. We denote by (·, ·) the L2-inner product, by ‖ · ‖
the L2-norm, and by | · | the Euclidean norm on Rd . Moreover, by B([0,T ],•) we denote the space
of functions f mapping time into a space •, which are bounded and defined everywhere in [0,T ].

Regarding the given data appearing in (2) we make the following assumptions:

Assumption 2.1 (Assumptions on the given data). 1 The function f : [0,1]→ [a,b] is continu-
ously differentiable, convex, and monotonically increasing.

2 The Lamé constants satisfy λ ,µ > 0.
3 The extension of the Dirichlet datum is of regularity g ∈ C1([0,T],H1(Ω;Rd)) with Cg :=
‖g‖C1([0,T],H1(Ω;Rd)).

4 The Neumann datum uN is of regularity uN ∈C1([0,T],L2(ΓN;Rd))with CuN := ‖uN‖C1([0,T],L2(ΓN;Rd))

Moreover, for the space discretization we will use the following notation related to finite element
spaces: Let (Th)h>0 be a family of triangulations of Ω where the index h denotes the mesh size h =
maxT∈Th hT with hT being the diameter of the simplex T . The minimal diameter is given by hmin =
minT∈Th hT . The sets Nh and Eh contain all nodes and edges, respectively, of the triangulation Th.
We will use the finite element space of continuous, piecewise affine functions (r = 1) or vector fields
(r = d), denoted by S 1(Th)

r and of elementwise constant vector fields L 0(Th)
d, i.e.,

S 1(Th)
r := {vh ∈C(Ω;Rr) : vh|T affine for all T ∈Th} , (7a)

L 0(Th)
d := {qh ∈ L∞(Ω;Rd) : qh|T constant for all T ∈Th}. (7b)

Moreover, denoting by Ih : C0(Ω)→ S 1(Th) the standard nodal interpolation operator we will
consider the discrete inner products

(vh,wh)h :=
∫

Ω

Ih[vhwh]dx = ∑
y∈Nh

βyvh(y)wh(y) on S 1(Th) ,

(ph,qh)w := hd
min(ph,qh) on L 0(Th)

d ,
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where βy =
∫

Ω
ϕy dx with ϕy the nodal basis function associated to y ∈Nh. We have the relations

‖vh‖ ≤ ‖vh‖h ≤ (d +2)1/2‖vh‖, and ‖qh‖w ≤ c‖qh‖L1(Ω),

for all vh ∈S 1(Th) and qh ∈L 0(Th)
d , see [4, Lemma 3.9] and [12, Thm. 4.5.11]. Finally, for a se-

quence of step sizes (τ j) j∈N and functions (a j) j∈N we will denote the backward difference quotient by

dta j =
a j−a j−1

τ j
.

3 Numerical Method

We now discuss the numerical algorithms used to solve the alternate minimization problem (5) on the
discrete level. With S 1(Th)

d and S 1(Th) from (7) we set Uh := S 1(Th)
d ∩{v ∈C(Ω;Rd),v =

0 on ΓD}⊂H1
D(Ω;Rd) in (5a) and Xh :=S 1(Th)⊂BV (Ω) in (5b). While the minimization problem

(5a) to determine uk
Nh reduces to the solution of a linear system of equations, the minimization problem

(5b) to find zk
Nh is more difficult due to the non-differentiability of the BV -seminorm and the occurence

of non-smooth constraints in E and R. We will deal with the minimization problem (5b) in Subsection
3.1 and subsequently explain the algorithm for the full alternate minimization problem in Subsection
3.2.

3.1 Minimization with respect to z in (5b)

For the following discussion we consider a partition ΠN of [0,T] with N ∈ N fixed. We also keep
tk
N ∈ ΠN and uk

Nh the solution of (5a) fixed. For simpler notation we here write tk = tk
N , uk

h = uk
Nh,

and zk
h = zk

Nh, i.e. we do not indicate the dependence of these quantities on N ∈ N fixed. We first

of all note that a minimizer zk
h = zk

Nh obtained in (5b) is required to satisfy zk
h− zk−1

h ≤ 0 almost

everywhere in Ω since otherwise R(zk
h−zk−1

h ) is infinite. Since zk
h,z

k−1
h ∈Xh =S 1(Th) are globally

continuous and piecewise affine this is equivalent to zk
h(x) ≤ zk−1

h (x) for all x ∈ Nh. Particularly,

|zk
h(x)− zk−1

h (x)|= zk−1
h (x)− zk

h(x). Hence, letting for k ≥ 1

Kk := {vh ∈S 1(Th) : 0≤ vh(x)≤ zk−1
h (x) ∀ x ∈Nh} (8)

we define the auxiliary functional Ẽ (tk, ·, ·) : Uh×Xh→ R∪{∞},

Ẽ (tk,uh,zh) :=
1
2

∫
Ω

f (zh)
(
λ | tre(uh +g(tk))|2 +2µ|e(uh +g(tk))|2

)
dx

−
∫

ΓN

uN(tk) · (uh +g(tk))ds+κ

∫
Ω

|∇zh|dx+ IKk(zh).

We obtain that minimality property (5b) is equivalent to

zk
h ∈ argminzh∈Xh

Ẽ (tk,uk
h,zh)−ρ(zh,1).
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In order to approximate a minimizer zk
h we consider for τ j > 0 the augmented Lagrangian functional

Lk
h(zh, ph,sh;ηh,ζh) :=

1
2

∫
Ω

f (zh)e(uk
h +g(tk)) : Ce(uk

h +g(tk))dx−ρ(zh,1)

+κ

∫
Ω

|ph|dx+(ηh,∇zh− ph)w +
τ j

2
‖∇zh− ph‖2

w

+ IKk(sh)+(ζh,zh− sh)h +
τ j

2
‖zh− sh‖2

h.

For the approximation of a minimizer zk
h we use the following algorithm [5] which generalizes the

alternating direction method of multipliers (ADMM) established and analyzed, e.g., in [18, 21, 22, 23,
24], by using variable step sizes.

Algorithm 3.1 (Variable-ADMM). Choose z0
h = zk−1

h , η0
h = 0 and ζ 0

h = 0. Choose τ,τ > 0 with
τ ≤ τ , δ ∈ (0,1), γ,γ ∈ (0,1) with γ ≤ γ , and R� 1. Set j = 1.

(1) Set γ1 = γ , τ1 = τ and R0 = R.

(2) Compute a minimizer (p j
h,s

j
h) ∈L 0(Th)

d×S 1(Th) of

(ph,sh) 7→ Lk
h(z

j−1
h , ph,sh;η

j−1
h ,ζ

j−1
h ).

(3) Compute a minimizer z j
h ∈S 1(Th) of

zh 7→ Lk
h(zh, p j

h,s
j
h;η

j−1
h ,ζ

j−1
h ).

(4) Update

η
j

h = η
j−1

h + τ j(∇z j
h− p j

h),

ζ
j

h = ζ
j−1

h + τ j(z
j
h− s j

h).

(5) Define

R j =
(
‖η j

h−η
j−1

h ‖2
w + τ

2
j ‖∇(z j

h− z j−1
h )‖2

w +‖ζ j
h −ζ

j−1
h ‖2

h + τ
2
j ‖z

j
h− z j−1

h ‖2
h
)1/2

.

(6) Stop if R j is sufficiently small.
(7) Define (τ j+1,γ j+1) as follows:

� If R j ≤ γ jR j−1 or if τ j = τ and γ j = γ set

τ j+1 = τ j and γ j+1 = γ j.

� If R j > γ jR j−1 and τ j > τ set

τ j+1 = max{δτ j,τ} and γ j+1 = γ j.

� If R j > γ jR j−1, τ j = τ and γ j < γ set

τ j+1 = τ, γ j+1 = min
{

γ j +1
2

,γ
}
, u j = u0 and λ

j = λ
0.
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(8) Set j = j+1 and continue with (2).

In the following proposition we prove that the iterates are bounded, that the algorithm terminates and
that the residuals R j are monotonically decreasing. To this extent we define the functionals

F(ph) = κ

∫
Ω

|ph|dx, H(sh) = IKk(sh),

G(zh) =
1
2

∫
Ω

f (zh)e(uk
h +g(tk)) : Ce(uk

h +g(tk))dx−ρ(zh,1).

Proposition 3.1 (Termination of Alg. 3.1 and monotonicity of residuals). Let (zh, ph,sh;ηh,ζh) be a

saddle-point for Lk
h. For the iterates (z j

h, p j
h,s

j
h;η

j
h ,ζ

j
h ), j ≥ 0, of Algorithm 3.1, the corresponding

differences δ
j

η := ηh−η
j

h , δ
j

ζ
:= ζh−ζ

j
h , δ

j
p := ph− p j

h, δ
j

s := sh− s j
h, and δ

j
z := zh− z j

h, and the
distance

D2
j = ‖δ

j
η‖2

w +‖δ j
ζ
‖2

h + τ
2
j ‖∇δ

j
z ‖2

w + τ
2
j ‖δ j

z ‖2
h,

we have that for every J ≥ 1 it holds

D2
J +

J

∑
j=1

R2
j ≤ D2

0.

In particular, R j→ 0 as j→ ∞ and Algorithm 3.1 terminates. Moreover, we have

R2
j+1 ≤ R2

j ,

i.e., the residual is non-increasing.

Proof. The optimality conditions for a saddle-point of Lk
h are given by

(ηh,qh− ph)w +F(ph)≤ F(qh) ∀ qh ∈L 0(Th)
d,

(ζh,rh− sh)h +H(sh)≤ H(rh) ∀ rh ∈S 1(Th),

−(ηh,∇(wh− zh))w− (ζh,wh− zh)h +G(zh)≤ G(wh) ∀ wh ∈S 1(Th),

(9)

and ph = ∇zh and sh = zh. On the other hand, with η̃
j

h = η
j−1

h +τ j(∇z j−1
h − p j

h) and ζ̃
j

h = ζ
j−1

h +

τ j(z
j−1
h − s j

h), the optimality conditions for the iterates of Algorithm 3.1 read

(η̃
j

h ,qh− p j
h)w +F(p j

h)≤ F(qh) ∀ qh ∈L 0(Th)
d,

(ζ̃
j

h ,rh− s j
h)h +H(s j

h)≤ H(rh) ∀ rh ∈S 1(Th),

−(η j
h ,∇(wh− z j

h))w− (ζ
j

h ,wh− z j
h)h +G(z j

h)≤ G(wh) ∀ wh ∈S 1(Th).

(10)

Testing (9) and (10) with (qh,rh,wh) = (p j
h,s

j
h,z

j
h) and (qh,rh,wh) = (ph,sh,zh), respectively, and

adding corresponding inequalities gives

(η̃
j

h−ηh, ph− p j
h)w ≤ 0,

(ζ̃
j

h −ζh,sh− s j
h)h ≤ 0,

(ηh−η
j

h ,∇(zh− z j
h))w +(ζh−ζ

j
h ,zh− z j

h)h ≤ 0.
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The rest of the proof of the first estimate is analogous to the proof of [5, Thm. 3.7].

The proof of the monotonicity follows by testing (10) at iterations j and j + 1 with (qh,rh,wh) =

(p j+1
h ,s j+1

h ,z j+1
h ) and (qh,rh,wh) = (p j

h,s
j
h,z

j
h), respectively, and adding the inequalities, which

gives

0≤ − (η̃
j+1

h − η̃
j

h , p j
h− p j+1

h )w− (η
j

h−η
j+1

h ,∇(z j
h− z j+1

h ))w

− (ζ̃
j+1

h − ζ̃
j

h ,s
j
h− s j+1

h )h− (ζ
j

h −ζ
j+1

h ,z j
h− z j+1

h )h.

The monotonicity then follows as in the proof of [5, Prop. 3.11]. �

In the next step, we show that the residual R j controls the difference in the objective values.

Lemma 3.1. Let (zh, ph,sh;ηh,ζh) be a saddle-point of Lk
h. Then there exists a constant C0 > 0 such

that we have for any j ≥ 1

Ẽ (tk,uk
h,s

j
h)+R(s j

h− zk−1
h )− Ẽ (tk,uk

h,zh)−R(zh− zk−1
h )≤C0R j. (11)

Proof. We use the short notation δ
j

η , δ
j

ζ
, δ

j
p , δ

j
s and δ

j
z as in Proposition 3.1. Testing (10)

with (qh,rh,wh) = (ph,sh,zh), adding the inequalities, noting that ph = ∇zh and sh = zh and using

η
j

h− η̃
j

h = τ j∇(z j
h− z j−1

h ), ζ
j

h − ζ̃
j

h = τ j(z
j
h− z j−1

h ) we obtain

F(p j
h)+G(z j

h)+H(s j
h)−F(ph)−G(zh)−H(sh)

≤ − (η̃
j

h ,δ
j
p)w +(η

j
h ,∇δ

j
z )w− (ζ̃

j
h ,δ

j
s )h +(ζ

j
h ,δ

j
z )h

= − (η
j

h ,dtη
j

h)w− τ
2
j (∇dtδ

j
z ,δ

j
p)w− (ζ

j
h ,dtζ

j
h )h− τ

2
j (dtδ

j
z ,δ

j
s )h.

(12)

Testing the optimality conditions of z j
h and z j−1

h with wh = z j−1
h and wh = z j

h, respectively, and adding
the corresponding inequalities gives

0≤−τ
2
j (dtη

j
h ,∇dtz

j
h)w− τ

2
j (dtζ

j
h ,dtz

j
h)h.

Using dtη
j

h = ∇z j
h− p j

h and dtζ
j

h = z j
h− s j

h and inserting ph = ∇zh and sh = zh on the right-hand
side gives

0≤−τ
2
j (∇δ

j
z ,∇dtδ

j
z )w + τ

2
j (δ

j
p,∇dtδ

j
z )w− τ

2
j (δ

j
z ,dtδ

j
z )h + τ

2
j (δ

j
s ,dtδ

j
z )h. (13)

Adding (12) and (13) we get

F(p j
h)+G(z j

h)+H(s j
h)−F(ph)−G(zh)−H(sh)

≤ − (η
j

h ,dtη
j

h)w + τ
2
j (∇δ

j
z ,∇dtz

j
h)w− (ζ

j
h ,dtζ

j
h )h + τ

2
j (δ

j
z ,dtz

j
h)h

≤ ‖η j
h‖w‖dtη

j
h‖w + τ

2
j ‖∇δ

j
z ‖w‖∇dtz

j
h‖w +‖ζ j

h‖h‖dtζ
j

h‖h + τ
2
j ‖δ j

z ‖h‖dtz
j
h‖h ≤C0R j,

with C0 being bounded due to Proposition 3.1.

Let us furthermore note that by Proposition 3.1 we have that s j
h and z j

h are bounded, particularly

0≤ s j
h≤ zk−1

h for all j≥ 0. Since f is Lipschitz continuous on bounded intervals, the Hölder inequality,
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the Lipschitz continuity of f and the inverse estimate ‖wh‖L∞(Ω)≤ h−d/2‖wh‖ (cf. [12, Thm. 4.5.11])
yield

1
2

∫
Ω

( f (s j
h)− f (z j

h))e(u
k
h +g(tk)) : Ce(uk

h +g(tk))dx≤ ch−d/2‖s j
h− z j

h‖.

We finally observe that using s j
h ≤ zk−1

h , zh ≤ zk−1
h , the triangle inequality, the inverse estimate

‖∇wh‖L1(Ω) ≤ ch−1‖wh‖L1(Ω) and the equivalence of ‖ · ‖ and ‖ · ‖h we have

Ẽ (tk,uk
h,s

j
h)+R(s j

h− zk−1
h )− Ẽ (tk,uk

h,zh)−R(zh− zk−1
h )

= F(p j
h)+G(z j

h)+H(s j
h)−F(ph)−G(zh)−H(sh)+κ

∫
Ω

(
|∇s j

h|− |p
j
h|
)

dx

+
1
2

∫
Ω

( f (s j
h)− f (z j

h))e(u
k
h +g(tk)) : Ce(uk

h +g(tk))dx+ρ

∫
Ω

(
z j

h− s j
h

)
dx

≤C0R j + cκh−d/2‖∇z j
h− p j

h‖w + cκh−1‖s j
h− z j

h‖h + c(ρ +h−d/2)‖z j
h− s j

h‖h

≤C0R j.

which proves the assertion. �

Remark 3.1. In general, the iterates (z j
h) j≥0 of Algorithm 3.1 may penetrate the obstacles, i.e., z j

h /∈Kk

for some j ∈N, cf. (8). Therefore, if (zstop
h , pstop

h ,sstop
h ;η

stop
h ,ζ stop

h ) is the output of the algorithm, we

set zk
h = sstop

h ∈ Kk to ensure the coercivity of the bulk energy.

3.2 Alternate minimization (5)

In order to solve the full problem (5) we apply the following scheme:

Algorithm 3.2 (Alternate Minimization). Choose a stable initial pair (u0
h,z

0
h) ∈S 1(Th)

d×S 1(Th)
and a partition 0 = t = 0 < .. . < tN = T of the time interval and set k = 1.
(1) Compute the unique minimizer uk

h of

uh 7→ Ẽ (tk,uh,zk−1
h ).

(2) Compute an approximate minimizer zk
h of

zh 7→ Ẽ (tk,uh,zh)−ρ(zh,1)

by using Algorithm 3.1, i.e., set zk
h = sstop

h with sstop
h computed by Algorithm 3.1.

(3) Stop if k = N. Otherwise, increase k→ k+1 and continue with (1).

The optimality condition for uk
h in step (1) of the algorithm reads∫

Ω

f (zk−1
h )e(uk

h) : Ce(vh)dx = −
∫

Ω

e(g(tk)) : Ce(vh)dx+
∫

ΓN

uN(tk) · vh ds

for all vh ∈S 1(Th)
d . In our computation we replace g by gh = Ihg on the right-hand side with Ih

being the nodal interpolant and g sufficiently smooth. We further use the midpoint rule to compute for
T ∈Th and e ∈ Eh the integrals∫

T
f (zk−1

h )dx, and
∫

e
uN(tk) · vh ds.

The computation of uk
h then amounts to solving a linear system of equations with a weighted stiffness

matrix.
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4 Existence of semistable energetic solutions for (U×Z,E ,R)

In this section we show that the solutions (uk
Nh,z

k
Nh)Nh obtained at each time step tk

N via the alternate
minimization problem (5) can be used to approximate a semistable energetic solution to system (U×
Z,E ,R). To this end, with S 1(Th)

d and S 1(Th) from (7), we set in (5)

Uh := S 1(Th)
d ∩{v ∈C(Ω;Rd),v = 0 on ΓD} and Xh := S 1(Th) . (14)

We recall that Uh ⊂ H1
D(Ω;Rd) and Xh ⊂ BV (Ω) for all h > 0 such that⋃

h

Uh ⊂ H1
D(Ω;Rd) densely and

⋃
h

Xh ⊂ BV (Ω) densely . (15)

We now choose a sequence (hN)N such that hN→ 0 as N→∞ and consider a sequence of partitions
(ΠN)N of [0,T] such that the time-step size ∆N → 0 as N → ∞. With E from (4) we introduce the
energy functionals EN : [0,T]×U×Z→ R∪{∞},

EN(t,u,z) :=
{

E (t,u,z) if (u,z) ∈ Uh(N)×Xh(N),

∞ otherwise,
(16)

where the given data g(t) and uN(t) are replaced by suitably interpolated versions gN(t) and uNN(t)
in the discrete spaces, which are uniformly bounded and converge strongly to the original datum. We
thus compute for every N ∈N and h(N)> 0, for each tk

N ∈ΠN a solution (uk
N ,z

k
N)= (uk

Nh(N),z
k
Nh(N))

to (5) using Algorithm 3.2. In particular, according to Algorithm 3.1 the pair (uk
N ,z

k
N) = (uk

Nh,z
k
Nh)

satisfies

∀u ∈ Uh(N) : EN(tk
N ,u

k
N ,z

k−1
N )≤ EN(tk

N ,u,z
k−1
N ) , (17a)

∀z ∈ Xh :
EN(tk

N ,u
k
N ,z

k
N)+R(zk

N− zk−1
N )≤ EN(tk

N ,u
k
N ,z)+R(z− zk−1

N )+TOL(N) (17b)

with some h(N)-dependent tolerance TOL(N), which bounds the residual Rh
j , cf. Algorithm 3.1, Step

(5). In view of Lemma 3.1 a sequence (TOL(N))N can be chosen such that

TOL(N)N→ 0 as N→ ∞ . (18)

We evaluate the given data in the partition {t0
N , . . . , t

N
N } which results in an (N +1)-tupel. Moreover,

for any tupel (v0
N , . . . ,v

N
N) we introduce the piecewise constant left-continuous (right-continuous) in-

terpolant vN (vN):

vN(t) := vk+1
N for all t ∈ (tk

N , t
k+1
N ] , (19a)

vN(t) := vk
N for all t ∈ [tk

N , t
k+1
N ) . (19b)

Accordingly, E , resp. E , indicates that the interpolants gN and uNN , resp. gN and uNN are used. In
particular, thanks to Assumptions 2.1 we have for all t ∈ [0,T]

gN(t)→ g(t) in U & uNN(t)→ uN(t) in L2(ΓN;Rd) . (20)

This puts us in the position to find the following properties of the interpolants (uN ,uN ,zN ,zN) con-
structed from (uk

N ,z
k
N)

N
k=0 via (19), which we prove in Sec. 4.1:
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Numerical approach to a model for quasistatic damage with spatial BV -regularization 11

Proposition 4.1 (Discrete version of (6) and apriori estimates). Let the assumptions of Section 2 hold
true and keep n ∈N fixed. For each k ∈ {0,1, . . . ,N} let (uk

N ,z
k
N) satisfy (17). Then the correspond-

ing interpolants (uN ,uN ,zN ,zN) obtained via (19), fulfill the following discrete version of (6) for all
t ∈ [0,T]:

for all ũ ∈ U : E N(t,uN(t),zN(t))≤ E N(t, ũ,zN(t)) , (21a)

for all z̃ ∈ X: E N(t,uN(t),zN(t))≤ E N(t,uN(t), z̃)+R(z̃− zN(t))+TOL(N), (21b)

E N(t,qN(t))+DissR(zN , [0, t])≤ E N(0,q0
N)+

∫ t

0
∂ξ EN(ξ ,qN(ξ ))dξ +TOL(N)N . (21c)

In particular, there is a constant C > 0 such that the following bounds hold true uniformly for all N ∈N:

for all t ∈ [0,T] : ‖uN(t)‖U ≤C , (22a)

for all t ∈ [0,T] : ‖zN(t)‖X +‖zN(t)‖L∞(Ω) ≤C , (22b)

R(zN(T)− z0
N)≤C & ‖zN‖BV (0,T;Z) ≤C , (22c)

where (uN ,zN) in (22a) & (22b) stands for both (uN ,zN) and (uN ,zN).

Based on these properties we will establish the proof of the following convergence result in Sec. 4.2:

Theorem 4.1 (Convergence of (U×Z,EN ,R) to (U×Z,E ,R) in the sense of (6)). Let the assump-
tions of Prop. 4.1 hold true. Then there exists a not relabeled subsequence (uN ,uN ,zN ,zN)N of dis-
crete solutions fulfilling (21) & (22) for each N ∈N and a limit pair (u,z)∈B(0,T;U)×

(
B(0,T;X)∩

BV (0,T;Z)
)

such that the following convergences hold true:

for all t ∈ [0,T] : uN(t)⇀ u(t) in U and zN(t)
∗
⇀ z(t), zN(t)

∗
⇀ z(t) in X , (23a)

for all t ∈ [0,T] : zN(t)→ z(t) in Lp(Ω) for all p ∈ [1,∞) , (23b)

for all t ∈ [0,T]\J : uN(t)⇀ u(t) in U and z(t) = z(t) , (23c)

where J denotes the union of the jump times of z,z ∈ BV (0,T;Z). In particular, (u,z) is a semistable
energetic solution of the system (U×Z,E ,R).

4.1 Proof of Prop. 4.1

Proof of properties (21): Taking into account the definition (19) of the interpolants (uN ,uN ,zN ,zN)
we see that minimality properties (17) can be directly translated into (21a) & (21b). To find the dis-
crete upper energy-dissipation estimate (21c) we test the minimality of uk

N in (17a) by uk−1
N and the

minimality of zk
N in (17b) by zk−1

N . This results in

EN(tk
N ,u

k
N ,z

k−1
N ) ≤ EN(tk

N ,u
k−1
N ,zk−1

N )

EN(tk
N ,u

k
N ,z

k
N)+R(zk

N− zk−1
N ) ≤ EN(tk

N ,u
k
N ,z

k−1
N )+TOL(N) .

Let now t ∈ (0, tn
N ] for some n ≤ N. Adding the above two inequalities, adding and subtracting
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EN(tk−1
N ,uk−1

N ,zk−1
N ), and summing over k ∈ {1, . . . ,n} we find

EN(tn
N ,u

n
N ,z

n
N)+R(zn

N− z0
N)

≤ EN(t0
N ,u

0
N ,z

0
N)+

n

∑
k=1

Eh(tk
N ,u

k−1
N ,zk−1

N )−EN(tk−1
N ,uk−1

N ,zk−1
N )+nTOL(N)

= EN(t0
N ,u

0
N ,z

0
N)+

n

∑
k=1

∫ tk
N

tk−1
N

∂ξ EN(ξ ,uk−1
N ,zk−1

N )dξ +nTOL(N) ,

(24)

which yields (21c) for all t ∈ (0, tn
N ] and integers n≤ N.

Proof of estimates (22): Observe that there are constants c0,c1 > 0, such that for all (t,u,z) ∈
[0,T]×U×Z with EN(t,u,z) < ∞ it holds |∂tEN(t,u,z)| ≤ c1(c0 + EN(t,u,z)). This entitles us
to apply a Gronwall estimate under the time-integral in (24). Following the classical arguments for
energy-dissipation inequalities in the rate-independent setting, cf. e.g. [45, Prop. 2.1.4], results in the
estimates

c0 +E N(tk
N ,u

k
N ,z

k
N) ≤ (c0 +E N(0,u0

N ,z
0
N))exp(c1T )≤C , (25a)

R(zk
N− z0

N) ≤ (c0 +E N(0,u0
N ,z

0
N))exp(c1T )≤C , (25b)

where the uniform boundedness by C > 0 is due to (20) and Assumption 2.1. Estimates (22a) are then
standardly obtained from the bound (25a), exploiting that f (0) ≥ a > 0 and µ > 0 by Assumption
2.1, as well as Korn’s and Young’s inequality. Estimates (22b) follow from the uniform boundedness of
the damage gradients and the fact that I[0,1](zN(t)) = 0 a.e. in Ω, ensured by (25a), whereas the first
estimate in (22c) is due to (25b) and the second is a direct consrquence taking into account the form
of R, see (1a). This concludes the proof of Prop. 4.1. �

4.2 Proof of Thm. 4.1

Proof of convergences (23): To obtain the convergence result for the damage variables in (23a)
we make use of the uniform bound in (22b). This, together with the fact that R : Z×Z→ [0,∞]
is a weakly sequentially lower semicontinuous dissipation distance, allows us to apply a generalized
version of Helly’s selection principle, see e.g. [45, Thm. 2.1.24], and hence to find a (not relabeled)
subsequence as well as limit functions z,z ∈ BV([0,T],Z), such that for all t ∈ [0,T]:

R(zN(t)− z0
N)→R(z(t)− z0) , zN(t)⇀ z(t) & zN(t)⇀ z(t) in X∩L∞(Ω). (26)

For some t ∈ [0,T] fixed, select a further subsequence such that uN(t)⇀ u(t) in U. Exploiting the
minimality (21a) of uN(t) for E N(t, ·,zN(t)) as well as cancellations and the weak sequential lower
semicontinuity properties, we find

0≤ limsup
N→∞

(
E N(t, ũ,zN(t))−E N(t,uN(t),zN(t))

)
≤ E (t, ũ,z(t))−E (t,u(t),z(t))

)
(27)

for all ũ ∈U. In other words, u(t) is the unique minimizer of the strictly convex functional E (t, ·,z(t)) :
U→ R∪ {∞}. Thus, the above selection of a subsequence of (uN(t))N was unnecessary. This
observation holds for all t ∈ [0,T]. Moreover, since z and and the given data are measurable with
respect to time, we also have that u : [0,T]→U is measurable. This concludes the proof of statement
(23a).
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Convergence result (23b) can now be concluded from (26) using that the weak-star convergence in
BV (Ω) implies strong convergence in L1(Ω). In view of the uniform bound in L∞(Ω) the strong
L1(Ω)-convergence can be improved to strong convergence in Lp(Ω) for any p ∈ [1,∞).

Let J ⊂ [0,T] denote the union of the jump times of z,z ∈ BV(0,T;Z). By the properties of BV-

functions, J is at most countable. Consider t ∈ [0,T]\J and a sequence t lN
N → t as N → ∞ with

t lN
N ∈ΠN for all N ∈ N. With zlN

N obtained by (5b), it holds that zlN
N = zN(t

1
lN ) = zk(t2

lN ) for all t lN−1
N ≤

t2
lN ≤ t lN

N ≤ t1
lN ≤ t lN+1

N . For t1
lN → t and t2

lN → t as N → ∞ we thus conclude z(t) = z(t) for all

t ∈ [0,T]\J. Since ulN
N is the unique minimizer of EN(t

lN
N , · ,zlN−1

N ), we find the convergence result for
(uN(t))N in (23c) with similar arguments.

Limit passage in the discrete notion of solution (21): Thanks to convergences (23) and (20) the
limit passage in the upper energy-dissipation estimate (21c) can be carried out by means of lower
semicontinuity arguments on the left-hand side of (21c). To pass to the limit on the right-hand side of
(21c) we make use of the strong convergence (u0

N ,z
0
N)→ (u0,z0) in U×X for the energy at initial

time and of the fact that TOL(N)N→ 0 as N→∞. Convergence of the power of the external loadings
follows via weak-strong convergence arguments from (23) and (20).

In order to pass to the limit in minimality condition (21a) we have to argue via a suitable recovery
sequence. More precisely, for any ũ ∈ U we construct a recovery sequence (ũN)N such that uN ∈
Uh(N) for each N ∈N. For this, thanks to the density of smooth functions in U, we first find a sequence

(ûN)N ∈C∞(Ω;Rd)∩U with ‖ũ− ûN‖U→ 0. We then set

ũN := Ih(N)ûN ,

which thus ensures that ũN → ũ strongly in U, cf. [15, Thm. 3.2.3].

Set now W (e,z) := f (z)
(
λ | tre(u)|2+2µ|e(u)|2

)
. Observing that, for each N ∈N, the term |DzN(t)|(Ω)

cancels out in (21a), we find∫
Ω

f (z(t))
(
λ | tre(u(t)+g(t))|2 +2µ|e(u(t)+g(t))|2

)
dx+

∫
ΓN

uN(t) · (u(t)+g(t))dH d−1

≤ liminf
N→∞

(∫
Ω

W (e(uN(t)+gN(t)),zN(t))dx+
∫

ΓN

uN(t) · (uN(t)+gN(t))dH d−1
)

≤ lim
N→∞

(∫
Ω

W (e(ũN +gN(t)),zN(t))dx+
∫

ΓN

uN(t) · (ũN +gN(t))dH d−1
)

=
∫

Ω

f (z(t))
(
λ | tre(ũ+g(t))|2 +2µ|e(ũ+g(t))|2

)
dx+

∫
ΓN

uN(t) · (ũ+g(t))dH d−1 ,

which amounts to (6a) upon adding |Dz(t)|(Ω) on both sides of the above inequality.

In order to pass to the limit in the semistability inequality (21b) we construct for each z̃ ∈ X a mutual
recovery sequence (z̃N)N such that z̃N ∈ Xh(N) for each n ∈ N and such that

limsup
N→∞

(
E N(t,uN(t), z̃N)+R(z̃N− zN(t))−E N(t,uN(t),zN(t))

)
≤ E (t,u(t), z̃)+R(z̃− z(t))−E (t,u(t),z(t))

(28)

Clearly, since the term on the left-hand side of (28) is nonnegative for all N ∈ N a successful limit
passage implies the semistability (6b) of the limit.

Consider z̃ ∈ X such that R(z̃− z(t))< ∞, i.e., such that z̃≤ z(t) a.e. in Ω. Otherwise, (28) can be
trivially satisfied for the constant sequence z̃N := z̃. In a first step, in order to find an approximant as
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an element of Xh(N) we proceed as follows: By the density of smooth functions in BV (Ω) with respect
to intermediate (or strict) convergence, we find for given z̃ ∈ BV (Ω)∩Lp(Ω), 1≤ p < ∞ a sequence
(z◦N)N ⊂ C∞(Ω)∩BV (Ω)∩Lp(Ω) such that ‖∇z◦N‖L1(Ω) ≤ |Dz̃|(Ω)+ω(N) with ω(N)→ 0 as
N→ ∞ and ‖z̃− z◦N‖Lp(Ω)→ 0 as N→ ∞. Then we set

ẑN := Ih(N)z
◦
N ∈ Xh(N) if d = 2 and ẑN := Jh(N)z

◦
N ∈ Xh(N) if d = 3 , (29)

where Jh is a quasi-interpolation operator, cf. [16]. This ensures that ẑN → z̃ strongly in Lp(Ω) for
any p ∈ [1,∞) as well as |ẑN |(Ω)→ |z̃|(Ω) as N → ∞, cf. [3, Thm. 3.1] and [4, Lemma 10.1]. In
a second step, we have to modify ẑN according to the constraint imposed by the unidirectionality of
the dissipation potential. More precisely, we apply the construction of the mutual recovery sequence
developed in [59, 57], i.e., we define

z̃N := max{0,min{ẑN−δN ,zN(t)}} with δN := ‖zN(t)− z(t)‖1/2
L2(Ω)

. (30)

We see that this construction satisfies R(z̃N − zN(t)) < ∞. In the context of energetic solutions
for system (U×Z,E ,R) it was shown that construction (30) satisfies the analogon of the mutual
recovery condition (28), in [57, Sec. 2.2] for ẑN = z̃ ∈ BV (Ω) and in [59, Sec. 3.2.5] for ẑN = z̃ ∈
X = W 1,r(Ω) with r ∈ (1,∞). Moreover, in a thermo-viscoelastic setting, [51, Sec. 4.2] handles the
limit passage in the semistability inequality from an adhesive delamination model with a regularization
of Modica-Mortola-type to a delamination model, where the delamination variable is the characteristic
function of a set of finite perimeter and thus only accounts for the sound and the broken state of the
glue. Many of the arguments developed in the context of [59, 57, 51] can be used also in the present
situation. In particular, as in [59, Sec. 3.2.5] we introduce the sets

AN := [ẑN−δN ≥ zN(t)] BN := [0≤ ẑN−δN ≥ zN(t)] and CN := Ω\(AN ∪BN) , (31)

where we used the short-hand [. . .] := {x ∈ Ω s.th. . . .}. Exploiting the convergence (23b) it can be
shown as in [59, Sec. 3.2.5] that

L d(BN) = L d(Ω\(AN ∪CN))→ 0 . (32)

It can also be argued that z̃N ∈ XN(h) for ẑN ,zN(t) ∈ Xh(N) and ‖z̃N‖W 1,1(Ω) ≤ ‖ẑN‖W 1,1(Ω) +

‖zN(t)‖W 1,1(Ω) ≤ C. This implies that z̃N
∗
⇀ w in BV (Ω) as well as z̃N → w in L1(Ω). By Riesz’

convergence theorem once then can extract a (not relabeled) subsequence z̃N→w converging point-
wise a.e. in Ω and due to construction (30) combined with (32) we conclude that w = z̃.

In order to verify (28) we now observe that

limsup
N→∞

(
E N(t,uN(t), z̃N)+R(z̃N− zN(t))−E N(t,uN(t),zN(t))

)
≤ limsup

N→∞

1
2

∫
Ω

( f (z̃N)− f (zN(t)))
(
λ | tre(uN +gN(t))|2 +2µ|e(uN +gN(t)|2

)
dx

+ limsup
N→∞

(
‖∇z̃N‖L1(Ω)−‖∇zN(t)‖L1(Ω)

)
+ limsup

N→∞

R(z̃N− zN(t)) ,

where we used that the energy terms involving the Neumann boundary condition cancel out. Since
z̃≤ z(t) by assumption and z̃N ≤ zN(t) by construction, we observe that ( f (z)− f (z(t))),( f (z̃N)−
f (zN(t)))≤ 0. Hence we can pass to the limit in the quadratic bulk term via weak lower semicontinuity,
exploiting convergences (23) and (20). Furthermore, we have that R(z̃N − zN(t))→ R(z̃− z(t))
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thanks to convergence (23b) and the properties of construction (30). It remains to handle the difference
of the damage gradients. In view of (30) & (31) we see that

‖∇z̃N‖L1(Ω)−‖∇zN(t)‖L1(Ω) ≤ ‖∇ẑN‖L1(AN)
−‖∇zN(t)‖L1(BN∪CN)

≤ ‖∇ẑN‖L1(Ω)−‖∇zN(t)‖L1(BN∪CN)
,

where ‖∇ẑN‖L1(Ω) → |Dz̃|(Ω) by construction. Using that ‖∇zN(t)‖L1(BN∪CN)
= |DzN(t)| |BN∪CN

(Ω), i.e., the variation of zN(t) in Ω restricted to the set BN ∪CN , we may conclude the proof by
repeating the weak lower semicontinuity arguments developed in [57, Sec. 2.2] to find that

− liminf
N→∞

‖∇zN(t)‖L1(BN∪CN)
≤−|Dz(t)|(Ω) .

This concludes the proof of (28) and of Thm. 4.1. �

5 Numerical Experiments

We report in this section the numerical results for two two-dimensional benchmark problems taken
from [1] and [41].

5.1 Membrane with hole

In the sequel we specify all relevant information for the first benchmark problem from [1].

Γ
top
N =normal Neumann loading

Γ
right
N

Γbottom
D =normal Dirichlet fixing

Γ
le f t
D =normal

Dirichlet fixing

Figure 1: Left: Domain Ω and illustration of applied traction for membrane with hole: the material is
pulled from above. Right: Coarse triangulation (hmin = 0.055).

Problem specification:

We consider a body occupying a square domain with a hole around the center and which is pulled
from above and below. Due to symmetry we regard only the upper right quarter of the domain. We
summarize all relevant information for the first example in the following.
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� Geometry: Length scale L = 1 mm;
Domain Ω = (0,L)2 \{x ∈ R2 : |x| ≤ L

√
2/3};

Dirichlet boundary ΓD = ([L
√

2/3,L]×{0})∪ ({0}× [L
√

2/3,L])

� Time horizon: T= 1 s

� Load: Dirichlet data:

uD(t,x)1 = 0 mm/s if x ∈ Γ
le f t
D ,

uD(t,x)2 = 0 mm/s if x ∈ Γ
bottom
D ;

Neumann data:

uN(t,x) =
[

0 N
mm2s

t ·1 N
mm2s

]
if x ∈ Γ

top
N ,

uN(t,x) =
[

0 N
mm2s

0 N
mm2s

]
if x ∈ Γ

right
N ;

The geometry and the applied traction are illustrated in Fig. 1.

� Material parameters: Young’s modulus E = 2900 N/mm2;
Poisson’s ratio ν = 0.4;
Lamé constants

λ =
Eν

(1+ν)(1−2ν)
≈ 4142.9

N
mm2 , µ =

E
2(1+ν)

≈ 1035.7
N

mm2 ;

The function f is chosen as f (z) = a+(b−a)z with
a = 1/2, b = 1;
Damage toughness ρ = 4 ·10−4 N/mm2;
Regularization factor κ = 10−6 N/mm2

� Initialization: Initial stable state u0
h ≡ 0, z0

h ≡ 1.

� Discretization: Four triangulations Th generated with distmesh (see [48]) with
mesh sizes (in mm)

h≈ 0.204, hmin ≈ 0.055; h≈ 0.09, hmin ≈ 0.034;
h≈ 0.054, hmin ≈ 0.016; h≈ 0.029, hmin ≈ 0.008;

Equidistant partition of [0,T] with ∆t = 10/(dT/h2
mine)

� Algorithm: Algorithm 3.1 stops if R j ≤ 10−6/(2max{1,1/(τ jhmin)});
τ = h−2

min, τ = 10−4, δ = 0.5, γ = 0.5, γ = 0.999

Aim:

Since we are dealing with a BV -regularized damage model, i.e., the damage variable is allowed to
jump in space, we want to investigate if the interfaces between damaged and undamaged parts of the
material are sharp at least on the scale h of the mesh resolution. We will also compare the results
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with an H1-regularization, i.e., we replace κ|Dz|(Ω) by κ‖∇z‖2 and by κhmin‖∇z‖2 in order to
investigate the influence of the chosen regularization term on the damage evolution. The dependence
of the solutions on the mesh size will also be analyzed.

Results:

t ≈ 0.487 t ≈ 0.723 t = 1

Figure 2: Damage evolution with mesh size hmin ≈ 0.008 and time step size ∆t = 1/1492. Top:
BV -regularization. Bottom: Unweighted H1-regularization. Displacements are magnified by factor 40.

hmin = 0.034 hmin = 0.016 hmin = 0.008

Figure 3: Damage at t = 1 for different mesh sizes and time step sizes. Top: BV -regularization. Bottom:
Weighted H1-regularization with κhmin‖∇z‖2. Displacements are magnified by factor 40.

In Fig. 2 three time steps of the damage evolution computed by Algorithm 3.2 for hmin = 0.008 are
depicted, both for the damage model with BV -regularization and unweighted H1-regularization of the
damage variable. The displacements are magnified by a factor of 40. One can clearly observe that
the BV -regularization leads to sharp jumps (on the scale of h) while the transitions from undamaged
(z = 1) to damaged (z = 0) parts of the material are smeared out for the H1-regularization as it could
be expected. The evolutions are more similar to each other if the H1 regularization term is scaled with
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Figure 4: Verification of energy estimate (21c) as a function of tn
N for three different mesh sizes. Sum

of stored and dissipated energy (= total energy = left-hand side of (21c)); work of external loading up
to time tn

N (= right-hand side of (21c) with E N(0,q0
N) = 0). Left: with BV -regularization; right: with

H1-regularization.

the factor hmin as it can be seen from Fig. 3. However, it is not clear whether the regularization term
κhmin‖∇z‖2 can be analytically justified, particularly with respect to the limit h→ 0.

In Fig. 4 we verify the energy estimate (21c) as a function of tn
N , n ≤ N, for three mesh sizes

hmin = 0.055,0.016,0.008. Obviously, the energy inequality holds and is increasing in time which is
in accordance to (21c) since the inequality holds for all tk

N < tn
N , 1≤ k ≤ n≤ N.

5.2 Notched square

The relevant information for the second test, which is taken from [41], are given below.

Γ
top
D =normal Dirichlet loading

Γbottom
D =Dirichlet fixing

1 mm

0.4925 mm

0.4925 mm

Figure 5: Left: Domain Ω and illustration of boundary conditions for notched square: the material is
pulled from above. Right: Initial locally refined mesh.
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Problem specification:

We consider a body occupying a square domain with a notch reaching from the middle of the left edge
to the center of the specimen. The specimen is pulled from above and clamped at the bottom. We
summarize all relevant information for this example in the following.

� Geometry: Length scale L = 1 mm;
Domain Ω = (0,L)2 \ conv{(0,0.5075),(0.5,0.5),(0,0.4925)};
Dirichlet boundary ΓD = ([0,L]×{0})∪ ([0,L]×{L})

� Time horizon: T= 1 s

� Load: Dirichlet data:

uD(t,x)2 = t ·0.002 mm/s if x ∈ Γ
top
D ,

uD(t,x) =
[

0 mm/s
0 mm/s

]
if x ∈ Γ

bottom
D ;

Neumann data:

uN(t,x) =
[

0 N
mm2s

0 N
mm2s

]
if x ∈ ΓN ;

The geometry is illustrated in Fig. 5.

� Material parameters: Young’s modulus E = 210 kN/mm2;
Poisson’s ratio ν = 0.3;
Lamé constants

λ =
Eν

(1+ν)(1−2ν)
≈ 121.15

kN
mm2 , µ =

E
2(1+ν)

≈ 80.77
kN

mm2 ;

The function f is chosen as f (z) = a+(b−a)z with
a = 10−6, b = 1;
Damage toughness ρ = 2.7 ·10−3 kN/mm2;
Regularization factor κ = 10−7 kN/mm2

� Initialization: Initial stable state u0
h ≡ 0, z0

h ≡ 1.

� Discretization: Three triangulations Th generated by uniform refinement of an
initial mesh refined locally in region of expected damage evolution with mesh
sizes (in mm)

h≈ 0.25, hmin ≈ 0.0156; h≈ 0.125, hmin ≈ 0.0078; h≈ 0.0625, hmin ≈ 0.0039;

Equidistant partition of [0,T] with ∆t = 10/(dT/h2
mine)

� Algorithm: Algorithm 3.1 stops if R j ≤ 10−7/(2max{1,1/(τ jhmin)});
τ = h−2

min, τ = 10−3, δ = 0.5, γ = 0.5, γ = 0.999
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Aim:

The aim of this experiment is to compare the resulting damage evolution with established numerical
experiments for damage or crack propagation reported in [41, 61], which are based on a phase field
approach, and to check whether our damage model yields qualitatively the same results.

Results:

In Fig. 6 and 7 three snapshots of the damage evolution computed by Algorithm 3.2 for hmin ≈
0.0078 are depicted for the damage model with BV -regularization and H1-regularization, respectively,
of the damage variable. Let us remark that the damage evolution observed in Fig. 6 qualitatively
matches with the evolution reported in [41, Fig. 8] and [61, Fig. 4], i.e., the damage concentrates
in a thin region around the horizontal line connecting the tip of the notch and the boundary on the
right. Moreover, in contrast to the models discussed in [41, 61] the model presented in this paper is a
damage model without phase field character and models by a > 0 only partial damage. Particularly,
our model is not of Ambrosio-Tortorelli type.

In Fig. 8 the energy curves corresponding to (21c) as a function of tn
N are depicted for three different

mesh sizes . One can again observe that the energy inequality holds and that the gap is increasing
in time. Furthermore, one can observe in Fig. 8 that the damage evolves relatively fast to the right
boundary after the damage process has been initiated, e.g., for hmin = 0.0039 it takes only a few
milliseconds from initiation of the damage until damage reaches the boundary which is also in accor-
dance with the observations made in [41, 61]. Note that the damage is triggered earlier for smaller
mesh sizes which is on the one hand due to the singularity of the stress at the crack tip and on the
other hand due to the finer partition of the time interval for smaller mesh sizes. This underlines the
need for proper adaptive refinement techniques both for the space and the time variable.

t ≈ 0.624 t ≈ 0.638 t ≈ 0.662

Figure 6: BV -regularized evolution for notched square with mesh size hmin ≈ 0.0078
and time step size ∆t = 1/1638. Top: Evolution of damage variable z. Bottom: Stress√

f (z)e(u+g(t)) : Ce(u+g(t)).
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t ≈ 0.673 t ≈ 0.687 t ≈ 0.711

Figure 7: H1-regularized evolution for notched square with mesh size hmin ≈ 0.0078
and time step size ∆t = 1/1638. Top: Evolution of damage variable z. Bottom: Stress√

f (z)e(u+g(t)) : Ce(u+g(t)).
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Figure 8: Verification of energy estimate (21c) as a function of tn
N for three different mesh sizes. Sum

of stored and dissipated energy (= total energy = left-hand side of (21c)); work of external loading up
to time tn

N (= right-hand side of (21c) with E N(0,q0
N) = 0). Left: with BV -regularization; right: with

H1-regularization.

6 Conclusion

The numerical experiments show that our damage model can qualitatively capture the important fea-
tures of damage evolution or crack propagation already reported in [41, 61, 10] for a phase field
approach and, e.g., in [47, 54, 53] for similar numerical experiments based on energetic formulations.
Depending on the particular setting the BV -regularization of the damage variable can lead to tran-
sitions from damaged to undamaged zones in the material that are significantly sharper than for an
H1-regularization as it has been observed in our first experiment.
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