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Total variation diminishing schemes in optimal control of scalar
conservation laws

Soheil Hajian, Michael Hintermüller, Stefan Ulbrich

Abstract

In this paper, optimal control problems subject to a nonlinear scalar conservation law are
studied. Such optimal control problems are challenging both at the continuous and at the discrete
level since the control-to-state operator poses difficulties as it is, e.g., not differentiable. Therefore
discretization of the underlying optimal control problem should be designed with care. Here the
discretize-then-optimize approach is employed where first the full discretization of the objective
function as well as the underlying PDE is considered. Then, the derivative of the reduced objective
is obtained by using an adjoint calculus. In this paper total variation diminishing Runge-Kutta
(TVD-RK) methods for the time discretization of such problems are studied. TVD-RK methods,
also called strong stability preserving (SSP), are originally designed to preserve total variation of
the discrete solution. It is proven in this paper that providing an SSP state scheme, is enough to
ensure stability of the discrete adjoint. However requiring SSP for both discrete state and adjoint is
too strong. Also approximation properties that the discrete adjoint inherits from the discretization
of the state equation are studied. Moreover order conditions are derived. In addition, optimal
choices with respect to CFL constant are discussed and numerical experiments are presented.

1 Introduction

We are considering an optimal control problem of type

min
u∈Uad

∫

R
G(y(x, T )) dx,

subject to (s.t.) a scalar conservation law, i.e.,

yt + f(y)x = 0 in R× R+,
y(x, 0) = u(x) in R.

Here Uad is called the admissible set and it is assumed to be non-empty, convex and closed. the state,
y(x, t), is considered to be the entropic (weak) solution of the scalar conservation law and u(x), the
control, is the initial data of the partial differential equation (PDE).

Although the definition of the optimal control problem seems simple, the PDE constraint (conservation
law) poses severe difficulties for the analysis of such problems, both at the continuous and at the
discrete level. The major problem is the possible formation of a shock in the state y(x, t) at finite time
even for very smooth initial data u(x), when the flux function f(·) is non-linear. Moreover it is easy
to show through examples that the control-to-state map is not Gâteaux differentiable when shocks
are present. This poses a significant problem for obtaining the derivative of the cost functional of a
(control) reduced version of the underlying optimal control problem. Luckily a generalized definition
of the derivative, called “shift derivative”, for the control-to-state map has been derived by S. Ulbrich
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S. Hajian, M. Hintermüller, S. Ulbrich 2

[Ulb01, Ulb02] which implies Fréchet differentiability of the cost functional. Such differentiability results
enable us to compute the derivative of the cost functional using an adjoint approach. In Section 2, we
state the underlying optimal control in a rigorous context by recalling weak and entropic solutions of
scalar conservation laws and their properties as well as the concept of shift differentiability.

The difficulties that arise from the nature of the PDE is also reflected at the discrete level, i.e., one
should discretize the problem with care. Monotone schemes, that we recall in Section 3, are among
successful discretizations for conservation laws and their theory is well-understood. We use monotone
discretizations in space to obtain a semi-discrete formulation and then we discretize in time using
a total variation diminishing (TVD) Runge-Kutta (RK) scheme. TVD-RK methods are a class of RK
methods that guarantee, under quite mild assumption, that the discrete solution is total variation stable
(also called “strongly stability preserving (SSP)” methods). We then obtain the fully discrete optimal
control problem by discretizing the objective functional.

Similar to the continuous level, one can obtain the derivative of the cost functional using the adjoint
calculus. The properties of the discrete adjoint are intimately related to the discretization of the discrete
state. The TVD-RK method for the discrete state can be characterized by two sets of coefficients
{αij} and {βij}. We show that the corresponding discrete adjoint is also obtained by a TVD-RK
method where the coefficients are “conjugates” of {αij} and {βij}. Therefore we will study in Section
4 stability and approximation of the discrete adjoint. In particular we discover the following properties:

� Proposition 4.3: Imposing SSP on both, discrete state and discrete adjoint, is too strong and it
results in a first-order time-discretization.

� Theorem 4.4: Imposing SSP on the discrete state is enough to give stability of the discrete
adjoint.

� Theorem 4.5 and Theorem 4.6: Any two-stage second-order TVD-RK method for the discrete
state results in a second-order adjoint approximation. Any three-stage third-order TVD-RK
method for the discrete state results in a second-order adjoint approximation. Hager in [Hag00]
showed that for certain third-order RK methods, the resulting discrete adjoint is only second-
order. Theorem 4.6 shows that this is the case for the class of TVD-RK methods.

The study of the differentiability of the control-to-state map when shocks are present was started in
[BG97]. In that paper it was shown that this map is in general not differentiable. A similar problem
formulated in terms of a minimization task was studied in [JS99] where the derivative of the objective
functional was obtained when the state is smooth and does not contain shocks. Later S. Ulbrich in
[Ulb01, Ulb02] analyzed the shift-differentiability of the so-called control-to-state operator and showed
Fréchet differentiability of the reduced objective functional in the presence of shocks. Moreover, an
adjoint procedure to compute the mentioned derivative was introduced and analyzed.

For the nonlinear conservation law (1), it has been observed that not all RK methods can ensure TVD
properties of the approximation, i.e., oscillations occur near discontinuities; see the example in [GS98,
Section 2]. Shu and Osher in [SO88] constructed a class of RK methods that ensures the approxi-
mation to be TVD; the so-called TVD-RK methods. The main idea is to use convex combinations of
the forward Euler method to construct a high-order approximation. If the Euler step is stable in some
(semi-)norm, then under some mild conditions the convex combination of the Euler steps is stable,
too. Order conditions also derived in [SO88] for second and third orders with two and three stages,
respectively. We should also remark that the derivation of such conditions remains formal as often the
solution of the hyperbolic problem does not possess the required regularity. It is proven in [GS98] that
a fourth-order method with four stages does not exist. However a fourth order five stage method was
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TVD-RK methods and optimal control of scalar conservation laws 3

discovered in [SR02]. Ruuth and Spiteri showed in [RS02] that there does not exist methods beyond
fourth order of any number of stages.

For the numerical treatment of such optimization problems and for a particular objective functional,
M. Giles showed in [Gil03] that the classical Lax-Friedrichs scheme leads to a discrete adjoint which
converges to a wrong solution. Later M. Giles and S. Ulbrich showed in [GU10a, GU10b, Ulb01] under
a restrictive time-step that the classical Lax-Friedrichs scheme yields a convergent discrete adjoint.
Higher-order discretizations based on relaxation of the conservation law was also introduced and
studied by M. Herty and M. Banda in [BH12]. We finish this brief review of the literature by recalling
an alternating descent method introduced in [CPZ08] as a solution technique for such optimization
problems.

2 Optimal control of scalar conservation laws

An abstract optimal control problem can be formulated as

min J(y) subject to S(u) = y, u ∈ Uad, (P)

where y is called the state variable and u is the control variable, with the latter belonging to an admis-
sible set Uad. The objective functional is denoted by J(·) and it is assumed to be differentiable. The
control and state variables are related through a control-to-state map S(·) which can be regarded as
a solution operator of the underlying PDE. Obviously, the control-to-state S(·) influences existence
and uniqueness of the optimal control problem as well as optimality conditions which characterize the
optimal solution.

In this work, we consider S(·) to be the solution operator of the following one-dimensional scalar
conservation law (Cauchy problem):

yt + f(y)x = 0 in R× R+,
y(x, 0) = u(x) in R, (1)

where u ∈ L∞(R) is the initial data with compact support in a bounded interval K ⊂ R and y(x, t)
is the conserved variable. This motivates to define the admissible set Uad by

Uad :=
{
u ∈ L∞(R) : supp(u)⊂K, ‖u‖BV(R) ≤ C

}
, (2)

where C > 0 is a constant, supp(·) denotes the support of a function, i.e., supp(u) = {x ∈ R :
u(x) 6= 0}, and L∞(R) is the Lebesgue space of essentially bounded functions on R with norm
‖·‖L∞(R). In this paper we assume that the so-called flux function f(·) is in C2(R) and satisfies
f ′′ > 0. A particular example is f(y) = 1

2
y2 which gives rise to the inviscid Burgers’ equation.

Concerning the objective functional we study the so-called tracking type functional, i.e.,

J(y) :=

∫

R
G(y(x, T )) dx, (3)

where T > 0 is a final time. A common example is G(y(x, T )) := |y(x, T ) − yobs(x)|2 with
yobs ∈ L2(R) given.

Classical solutions of (1) can be constructed by the method of characteristics. However, due to the
possible non-linearity of the flux function f , classical solutions break down in finite time even for very
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smooth initial data. Therefore we consider generalized (weak) solutions of (1) in integral form: The
function y ∈ L∞(R× R+) is called a weak solution of (1) if it satisfies

∫

R×R+

y ϕt + f(y)ϕx dxdt+

∫

R
u(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C∞c (R× R+), (4)

where C∞c (R× R+) represents the space of infinitely differentiable functions with compact supports
in R × R+, with R+ = [0,+∞). There might be more than one weak solution for given initial data.
For instance, consider the following example: Let f(y) = 1

2
y2, and u(x) = 0 for x < 0 and u(x) = 1

for x ≥ 0 which yields a discontinuous initial data. Then, the following two weak solutions are known:

y1(x, t) =

{
0 x < 1

2
t,

1 x ≥ 1
2
t,

and y2(x, t) =





0 x < 0,

x/t 0 ≤ x < t,

1 t ≤ x.

The lack of uniqueness can be overcome by picking the physically relevant or entropy solution. There-
fore we impose an extra constraint on the weak solution: A function y ∈ L∞(R × R+) is called an
entropy solution (in the sense of Kružkov [Kru70]) if it satisfies

∫

R×R+

η(y)ϕt + q(y)ϕx dxdt+

∫

R
η(u(x))ϕ(x, 0) dx ≥ 0 ∀ϕ ∈ C∞c (R× R+), ϕ ≥ 0, (5)

where η(y) := |y − k| and q(y) = sign(y − k)(f(y) − f(k)) for all k ∈ R. One can show that
if y satisfies (5) then it is also a weak solution in the sense of (4); see for instance [CG09, Section
5.5]. Kružkov then shows that such an entropy solution is indeed unique. For the following result
we introduce BV(R), the space of the functions of bounded variations on R, i.e., u ∈ BV(R) iff
u ∈ L1(R) and TV(u) := sup{

∫
R u p

′ dx : p ∈ C1
c(R), |p| ≤ 1 a.e. in R}. Here “a.e.” stands for

“almost everywhere”. Endowed with ‖u‖BV(R) = ‖u‖L1(R) + TV(u), it is a Banach space.

The following theorem is due to Kružkov [Kru70]. We refer the reader to [Eva10, Section 11.4.3] for a
proof.

Theorem 2.1. Let u ∈ L∞(R) in (5), then there exists a unique entropy solution y of (5) that sat-
isfies ‖y(·, t)‖L∞(R) ≤ ‖u‖L∞(R) for all t > 0. Moreover let, y1 and y2 be two entropy solutions
corresponding to initial data u1, u2 ∈ L∞(R) ∩ L1(R), respectively. Then we have

‖y1(·, t)− y2(·, t)‖L1(R) ≤ ‖u1 − u2‖L1(R) ∀t > 0.

Finally if u ∈ BV(R) then TV(y(·, t)) ≤ TV(u) for all t > 0.

The notion of entropy solutions enables us to state our optimal control problem in a meaningful way.
Therefore, our optimal control problem (P) is completed by setting the solution operator S(·) to be the
entropy solution of the conservation law at time T . We will see in Section 2.1 that S(·) is not Gâteaux
differentiable when discontinuity (shocks) appear in the state y. Therefore a different approach in defin-
ing a derivative of the control-to-state map, called shift derivative, is derived which leads to Fréchet
differentiability of the objective functional.

Using this setting, existence of a minimizer can be shown for the underlying problem; see Appendix.
We also refer to [CPZ08, Ulb99] for a more general case. Uniqueness is, however, not guaranteed

DOI 10.20347/WIAS.PREPRINT.2383 Berlin 2017



TVD-RK methods and optimal control of scalar conservation laws 5

since we can construct control examples that lead to the same state which minimizes the objective
functional: Indeed, consider the following controls

u1 =





1 −2 ≤ x < 0,

−1 0 ≤ x ≤ 2,

0 otherwise,

u2 =





1 −2 ≤ x < −1,

−x −1 ≤ x ≤ 1,

−1 1 ≤ x ≤ 2,

0 otherwise,

for Burgers’ equation, i.e., f(y) = 1
2
y2. We fix the final time T = 2. One can construct the corre-

sponding entropy solution for each initial data. A direct calculation by the method of characteristics
shows that at time t ≥ T both initial data give

y(x, t) =





1
t
(x+ 2) −2 ≤ x ≤ 0,

1
t
(−x+ 2) 0 < x ≤ 2,

0 otherwise.

Setting yobs := y(x, T ), we then have J(S(u1)) = J(S(u2)) = 0, i.e., two optimal controls for (P).

Remark 2.2 (flux identification problem). A different, yet similar optimal control problem of conserva-
tion laws can be formulated in which the control variable is the flux function and the initial data is fixed.
More precisely we look for a flux function f ∈ Fad, where Fad is the admissible set, minimizing a
given objective functional. For instance f may have a closed analytical form, perhaps transforming the
optimal control problem into Rn. In this case the solution operator is, i.e., defined as y = S(f). The
existence of the minimum can be proven by a continuity result due to Lucier [Luc86]

‖S(f)(·, t)− S(g)(·, t)‖L1(R) ≤ t‖f − g‖Lip ‖u‖BV,

and an assumption on the compactness of Fad; see [JS99, Section 2.2] for details. Uniqueness is
again not guaranteed in general; see the discussion in [JS99].

2.1 Shift differentiability and adjoint calculus

As we have seen, the control-to-state operator is a delicate object and needs special care for the
forward problem (1) to be well-posed. We have also seen that although the optimal control problem
(P) admits a minimizer, uniqueness cannot be expected in general. it is not necessarily unique. We
now turn our attention on characterizing such a minimum. For the numerical treatment, first-order
characterizations of such minimizers are of importance. This is our next subject of study.

A first step in deriving optimal conditions for the problem is investigating differentiability of the objective
functional. Note that the objective functional defined by (3) is well behaved, in the sense that G is
sufficiently smooth and allows existence of a solution and only the solution operator S(·) may cause
problems. Thus, using the chain rule, we must investigate differentiability of S(·). It turns out that in
the presence of shocks, S(·) is not Gâteaux differentiable as we illustrate in the following example
borrowed from [BG97].

Example 2.1. Suppose the initial data is uε = (1 + ε)x · 1[0,1](x) where ε ∈ R and 1[0,1](x)
denotes the indicator function of the interval [0, 1]. Consider the Burgers’ equation. We can construct
the entropy solution by the method of characteristics:

yε(x, t) =
(1 + ε)x

1 + (1 + ε)t
· 1

[0,
√

1+(1+ε)t]
(x).
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Note that the shock position now depends on the perturbation, that is, xs(t) =
√

1 + (1 + ε)t, and
at time t = 0 the derivative exists

v(x) = lim
ε→0

ε−1(uε − u0) = x · 1[0,1](x).

However at time t > 0 there is no such derivative v(x) ∈ L1(R). In fact ε−1(yε(·, t) − y0(·, t))
converges as ε→ 0 in the sense of distributions to

x

(1 + t)2
· 1[0,

√
1+t] +

t

2(t+ 1)
δ√1+t, (6)

where δx is the Dirac delta function located at x.

Note that in the previous example, the distributional derivative has a continuous part and a singular part
due to a shift in the shock location. Moreover the perturbed shock location, xs(t) =

√
1 + (1 + ε)t,

is differentiable with respect to the perturbation and the solution, yε(x, t), vary differentiably in the left
and right of the shock. This motivates a first order approximation of (6) introduced in [Ulb01, Ulb02].

Let u ∈ U ⊂ U where U is an open set and U a Banach space. Moreover u is such that yu := S(u)
has bounded variation and its support is inK ⊂ R. For the sake of presentation, suppose for instance
that u has compact support, contains a shock at xs(0) and is a C1 function on either side of the shock.
Suppose the shock remains in the solution up to time T and its position is given by xs(t). We perturb
u by δu ∈ U such that yu+δu := S(u + δu) ∈ L∞(R) ∩ BV(R). Then we can define a first order
approximation of yu+δu − yu by the shift variation

δS(δy, s) := δy + sign(s)[[y(xs(T ), T )]]1[xs(T ),xs(T )+s] ∈ L1(K),

where [[y(xs(T ), T )]] = y(x−s (T ), T ) − y(x+
s (T ), T ) and (δy, s) ∈ L1(K) × R depends linearly

on δu. Here δy corresponds to the variation of the solution in the continuous part and s is a linear
approximation of the shock shift (e.g., in Example 2.1, xs(t) is differentiable with respect to ε). More
precisely we suppose that there exists a bounded linear operator

T (u) ∈ L(U ,Lr(K)× R) r ∈ (1,∞],

such that (δy, s) := T (u) · δu. We say yu is shift differentiable at u if

lim
δu→0
‖δu‖−1

U · ‖yu+δu − yu − δS(T (u) · δu)‖L1(K) = 0.

It is proven that shift differentiability implies Fréchet differentiability of the objective functional, see for
instance [Ulb01, Section 3.2.2]. Moreover it is shown in [Ulb01, Theorem 3.3.2] that, under some tech-
nical assumptions, entropy solutions are continuously shift-differentiable and therefore the objective
functional is Fréchet differentiable.

Although the shift differentiability result is a useful tool in proving differentiability of the objective func-
tional using sensitivities, it is often more convenient to obtain the objective functional’s derivative using
an adjoint calculus. For the conservation laws with smooth solution, F. James and M. Sepúlveda de-
rived such an adjoint based derivative; see [JS99, Section 2.4] and the reference therein. Later S. Ul-
brich generalized the adjoint calculus to the case where the solution contains shocks. Here we only
state the result and refer the interested reader to [Ulb01, Ulb02] for details. For a formal derivation see
[GU10a].
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Suppose the perturbation δu has the same structure as u, i.e., it contains a shock discontinuity at
xs(0) and is piecewise C1 on either side of the shock. Then the derivative of J (u) := J(S(u)) in
the direction of the δu (perturbation in the initial data) is given by

J ′(u)δu =

∫

R
p(x, 0) δu(x) dx, (7)

where p(x, t) is the adjoint variable that satisfies the following backward equation with final-time con-
dition

pt + f ′(y)px = 0 in R× (0, T ),
p(x, T ) = G′(y(x, T )) in R. (8)

In case y(x, t) contains a shock which travels along xs(t), we need to impose an interior boundary
condition for the adjoint along xs(t):

p(xs(t), t) =
[[G(y)]]

[[y]]

∣∣∣
(xs(T ),T )

∀t ∈ [0, T ]. (9)

The adjoint equation (8) is backward in time and is a non-conservative hyperbolic PDE with final datum
and has been studied by many authors, see for instance [JS99] and [Ulb03]. Let us first consider the
case when p(x, T ) ∈ Liploc(R), e.g., shocks at the final time are smoothed in the objective functional.
A one-sided Lipschitz-continuity condition (OSLC) on f ′(y), i.e.,

ess sup
x 6=z

(f ′(y(x, t))− f ′(y(z, t))

x− z
)+

≤ m(t),

where m(t) ∈ L1(0, T ), guarantees that the generalized backward characteristics starting from time
T do not intersect. Then existence of at least one Lipschitz continuous solution can be guaranteed.
However, uniqueness is not ensured; see [Con67]. Uniqueness can be proved for the so-called re-
versible solutions which we briefly recall. Let us define the set E as the set of exceptional solutions,
i.e., Lipschitz continuous solutions of (8) where p(x, T ) = 0. Then the support of the exceptional
solutions is defined as

Ve :=
{

(x, t) ∈ R× (0, T ) : ∃p ∈ E , p(x, t) 6= 0
}
.

A reversible solution is then a Lipschitz continuous solution of (8) which is locally constant in Ve; see
[BJ98, Definition 4.1.4].

We should mention that reversible solutions can be also defined for discontinuous Borel functions as
end data p(x, T ) that are pointwise everywhere the limit of a bounded sequence (pTn ) ∈ C0,1(R), i.e.,
bounded in C(R) ∩W 1,1

loc (R); see [Ulb03]. In this case, reversible solutions can be defined as broad
solutions along the generalized backward characteristics, which automatically ensures the internal
boundary condition (9), if the end date (9) are used at (xs(T ), T ).

The following theorem states properties of the reversible solution and is proved in [Ulb03, Theorem 14]
for the general case of hyperbolic balance laws. For simplicity of the presentation, we adapt the result
in [Ulb03, Theorem 14] to our setting (see also [BJ98]). For the case of a discontinuous end data, we
refer the reader to [Ulb03, Corollary 15].

Theorem 2.3. Let f ′(y(x, t)) ∈ L∞(R×(0, T )) and satisfies OSLC. Then the following holds: For all
p(x, T ) ∈ C0,1(R) there exists a unique reversible solution p of (8). Moreover, p ∈ C0,1(R× [0, T ])
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and solves (8) a.e. on R× (0, T ). Finally, for all t ∈ [0, T ], z1 < z2 and 0 ≤ s < ŝ ≤ T with

I := [z1, z2], I ŝs := [s, ŝ]× I,
J :=

[
z1 − (T − t)‖f ′(y)‖L∞(R×(0,T )), z2 + (T − t)‖f ′(y)‖L∞(R×(0,T ))

]
,

JTt := [t, T ]× J,

the following estimates hold:

‖p(·, t)‖B(I) ≤ ‖p(·, T )‖B(J),

‖px(·, t)‖L1(I) ≤ ‖px(·, T )‖L1(J),

‖pt‖L1(I ŝs ) ≤ (ŝ− s)‖f ′(y)‖L∞(I ŝs )‖px‖L∞(s,ŝ;L1(I)),

where B(I) is the Banach space of the bounded functions equipped with the sup-norm.

We now demonstrate the use of the adjoint calculus by the following example.

Example 2.2. Consider Burgers’ equation, i.e., f(y) := 1
2
y2, on the domain Ω = (−1, 1), and the

initial data is set to be

u(x) :=

{
1 −1 ≤ x < 0,

−1 0 < x ≤ 1,

with a shock discontinuity at x = 0. For the boundary conditions we set y(−1, t) = 1 and y(1, t) =
−1 for t > 0. It is easy to see that the entropic solution equals the initial data, i.e., y(x, t) = u(x) for
all t > 0. Hence the shock position remains at x = 0, i.e., xs(t) = 0 for t > 0. We now compute the
adjoint state using (8) and (9). For this purpose, let G(y) := 1

2
|y|2. Then we have [[G(y)]]|t=T = 0

and G′(y) = y. Then for the final-time condition of the adjoint equation, we obtain

p(x, T ) :=

{
1 −1 ≤ x < 0,

−1 0 < x ≤ 1,
and p(0, T ) = 0.

and for the “interior” boundary condition we have p(0, t) = 0 for t ∈ [0, T ]. We fix T = 1
2
.

By the method of characteristics we can construct p(x, t) for t < T . More precisely, along all straight
lines x(t) with the derivative ẋ(t) = y(x(t), t), the adjoint state is constant. This implies that, at
t = 0, we have

p(x, 0) =





1 −1 < x < −1
2
,

0 −1
2
≤ x ≤ 1

2
,

−1 −1
2
< x < 1.

See also Figure 1.

3 Numerical methods

In this section we describe how we discretize the optimal control problem (P). In this paper we follow
the discretize-then-differentiate approach, that is, we first fully discretize the optimization problem and
then derive the optimality conditions for the resulting finite dimensional optimization problem. In partic-
ular we should consider in detail the discretization of the conservation law (1). It is important that one
makes sure that the discretization of the forward problem converges to the unique entropy solution
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T = 1
2

11
2− 1

2−1
x

t

p(x,T )=1︷ ︸︸ ︷ p(x,T )=−1︷ ︸︸ ︷

0

Figure 1: Construction of the adjoint using the method of characteristics in space-time domain. Note
that the adjoint has a constant value in the gray area due to the discontinuity of the state at time T .

as well as the inherited adjoint discretization to the continuous adjoint state. We refer the reader to
[LeV90] for an introduction to numerical methods for such PDEs.

Since we are interested in studying how time discretization, using TVD-RK methods, influences quality
of the overall scheme, we first discretize the conservation law in space and then in time by a TVD-RK
method.

3.1 Spatial discretization

Let us first partition the domain, say R with non-overlapping intervals, Ij := (xj−1/2, xj+1/2], where
xj−1/2 < xj+1/2 for all j ∈ Z. The so-called mesh size is denoted by hj := xj+1/2 − xj−1/2. We
denote the semi-discrete approximation at time t by

y(t) := (. . . , yj−1(t), yj(t), yj+1(t), . . .) ∈ `∞(Z).

More precisely, yj(t) ∈ R is an approximation to the cell-average of the true solution, i.e.,

yj(t) ≈
1

hj

∫ xj+1/2

xj−1/2

y(x, t) dx.

We then discretize in space using a conservative scheme, by choosing a numerical flux function
f̂(yj(t), yj+1(t)) that approximates f(y(xj+1/2, t)). Then the semi-discrete numerical scheme is
obtained by solving the following ordinary differential equation (ODE) in time:

d
dt
yj(t) +

1

hj

(
f̂(yj(t), yj+1(t))− f̂(yj−1(t), yj(t))

)
= 0 ∀j ∈ Z. (10)

The simplest time discretization for (10) is given by the forward Euler scheme. For this purpose, we
partition the time direction into time slabs tn for n ∈ Z+, where tn < tn+1. For simplicity we assume
a uniform time-step, i.e., tn+1− tn = k for all n ∈ Z+ and similarly a uniform mesh-size, i.e., hj = h
for all j ∈ Z. Then the fully discrete system using the forward Euler discretization reads

yn+1
j = ynj −

k

h

(
f̂(ynj , y

n
j+1)− f̂(ynj−1, y

n
j )
)
∀j ∈ Z, n ∈ Z+, (11)

where yn := (. . . , ynj−1, y
n
j , y

n
j+1, . . .) is an approximation to y(tn). Later, in Section 4, we discretize

(10) by a high-order TVD-RK method.

The choice of the numerical flux f̂(·, ·) is crucial since it effects convergence properties of the method.
Note that not only are we interested in convergence to a weak solution but, also we require conver-
gence to the entropy solution. Hence we require that the method satisfy a discrete version of (5) as
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well as other properties like L1-contraction, total variation diminishing etc. In fact, monotone schemes
satisfy such requirements and converge to the entropy solution; see for instance [LeV90, Chapter 15].
We, however, need yet another condition: the numerical scheme should be differentiable. This enables
us to derive optimality conditions at the discrete level.

Motivated by the differentiability issue addressed above, the following numerical fluxes are used in this
paper:

f̂LF(a, b) := 1
2
(f(a) + f(b))− γ

2
h
k
(b− a) Lax-Friedrichs (LF),

f̂EO(a, b) := f(0) +
∫ a

0
f ′(s)+ ds+

∫ b
0
f ′(s)− ds Engquist-Osher (EO),

(12)

where γ ∈ (0, 1) and we define f ′(s)+ := max(0, f ′(s)) and f ′(s)− := min(0, f ′(s)). We note
that the classical Lax-Friedrichs method uses γ = 1. However, due to the stability requirements for the
discrete adjoint we impose γ < 1; see Section 3.3. The Lax-Friedrichs scheme is monotone provided
that the time-step satisfies the CFL condition

k

h
sup
|y|≤M

|f ′(y)| ≤ γ, (13)

where M = maxx |u(x)|. We define the total variation semi-norm for y by

|y|TV :=
∞∑

j=−∞

|yj+1 − yj|.

It is well-known that monotone schemes are also TVD; see [LeV90, Chapter 15.7]. Therefore we have
|yn+1|TV ≤ |yn|TV. M. Giles and S. Ulbrich in [GU10a, GU10b] proved that for the Lax-Friedrichs
method, provided k ≤ γ · h2−q for 0 < q < 1, both forward and adjoint approximations converge
to the their respective continuous counterparts. This is due to adding more grid points near the shock
position as the mesh is refined. This, however, results in a very restrictive time-step requirement.

Since the support of the initial data is assumed to be in a bounded set, recall (2), and it is known that
the solution of the conservation law has a finite speed of propagation, we can consider the problem
on a bounded domain, denoted by Ω only. Therefore, the discretization can be written using finite
dimensional operators. Let us suppose that Ω = (a, b) is partitioned into N elements, Ij for j =
1, . . . , N , with x1/2 = a and xN+1/2 = b. Then we can define a finite dimensional space Vh := RN

as approximation space, and we denote the approximation at time tn by ynh = (yn1 , y
n
2 , . . . , y

n
N) ∈ Vh.

This allows us to express the underlying scheme using a non-linear discrete operator, Fh : Vh → Vh,
which is defined by

[
Fh(w)

]
j

:= f̂(wj, wj+1)− f̂(wj−1, wj) ∀j = 1, . . . , N, w ∈ Vh. (14)

The fully discrete version of (11) with forward Euler time integration can then be written as

yn+1
h = ynh −

k

h
Fh(y

n
h), y0

h = uh. (15)

Differentiability properties of Fh(·) will be exploited later in Section 3.2 for deriving an adjoint dis-
cretization. Now we state Lax-Friedrichs and Engquist-Osher differentiability in the following proposi-
tion whose proof we defer to the appendix.
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Proposition 3.1. Let the flux function be f(·) ∈ C2. Then the respective Fh(w) for the Lax-Friedrichs
and Engquist-Osher schemes at w ∈ Vh is Fréchet differentiable, i.e., there exists a linear bounded
operator F ′h(w) : Vh → Vh such that in direction v ∈ Vh we have [F ′h(w)v]j = gj,j+1− gj−1,j with

gLF
j,j+1 := 1

2

[
f ′(wj+1)vj+1 + f ′(wj)vj

]
− γ

2
h
k
(vj+1 − vj) (LF),

gEO
j,j+1 := 1

2

[
f ′(wj+1)vj+1 + f ′(wj)vj

]
− 1

2
(|f ′(wj+1)|vj+1 − |f ′(wj)|vj) (EO),

for i = j, . . . , N . Moreover, for their transposes we have
[
F ′h(w)>v

]
j

= γ h
k
vj − 1

2

(
γ h
k

+ f ′(wj)
)
vj+1 − 1

2

(
γ h
k
− f ′(wj)

)
vj−1 (LF),

[
F ′h(w)>v

]
j

= |f ′(wj)|vj − 1
2

(
|f ′(wj)|+ f ′(wj)

)
vj+1 − 1

2

(
|f ′(wj)| − f ′(wj)

)
vj−1 (EO).

We will see in Section 3.2 how properties of Fh(·) influence the discrete adjoint variable. In particular
we are interested in total variation diminishing properties of the discrete adjoint.

3.2 Discrete optimal control problem and adjoint calculus

In this section we state the discrete optimization problem, derive the discrete adjoint and study its
properties when a forward Euler time integration is employed together with the spatial discretization
discussed in Section 3.1.

As before, we denote the final time by T . For simplicity, we partition the time direction in a way that
there exists nT such that T = nT · k. In order to ease the notation, we concatenate approximations
ynh at different times n = 1, . . . , nT to obtain yh ∈ (Vh)

nT +1:

yh := (y0
h,y

1
h,y

2
h, . . . ,y

nT
h )>. (16)

The discretized objective functional is then given by

Jh(yh) :=
N∑

j=1

hG(ynT
j ),

where yh is obtained by (15). We then consider the following finite dimensional optimal control problem

min Jh(yh) subject to Sh(uh) = ynT
h , uh ∈ Vh ∩ Uad, (DP)

where Sh(·) is the discrete control-to-state operator which is defined by successive (nT times) appli-
cation of (15) to uh.

For deriving the discrete adjoint, it is more convenient to consider (15) as constraint instead of Sh(·).
For this purpose, we define the equality constraint at time tn by Lnh : (Vh)

nT +1 → Vh with

Lnh(yh) := −ynh + yn−1
h − k

h
Fh(y

n−1
h ) for n = 1, . . . , nT ,

and L0
h(yh,uh) = −y0

h + uh. We then collect all time-step contributions and state the discrete
constraint as Lh(yh,uh) = 0 where Lh : (Vh)

nT +1 × Vh → (Vh)
nT +1 with

Lh(yh,uh) =
(
L0
h(yh,uh), L

1
h(yh), L

2
h(yh), · · · , LnT

h (yh)
)>
.
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Then we define the Lagrangian for the finite dimensional problem (DP) by

L(yh,ph,uh) := Jh(yh) + hp>h · Lh(yh,uh),
where ph ∈ (Vh)

nT +1 is enumerated like yh in (16).

Recall that from Proposition 3.1 we know thatFh(·) is differentiable when Lax-Friedrichs and Engquist-
Osher schemes are used. Differentiability of Fh(·) implies differentiability of Lh(·, ·) with respect to
the first argument. More precisely, a direct calculation shows that this derivative, denoted by L′yh

(·, ·),
has a lower triangular structure:

L′yh
(yh,uh) =




−I
I − k

h
F ′h(y

1
h) −I

. . . . . .

I − k
h
F ′h(y

nT−1
h ) −I

I − k
h
F ′h(y

nT
h ) −I



,

and therefore L′yh
(·, ·) is invertible. As a consequence, the constraint Lnh(yh) = 0 satisfies the linear

independence constraint qualification (LICQ) at any feasible point of (DP). Hence, at a solution pair
(yh, uh) there exists a Lagrange multiplier (adjoint state) ph.

Now, we can compute the discrete derivative of the objective functional using a discrete adjoint calcu-
lus. The concatenated discrete adjoint equation is given

∇Jh(yh) + hL′yh
(yh,uh)

>ph = 0. (17)

Note that L′yh
(yh,uh)

> is upper triangular, and for a fixed yh one can solve (17) successively from
pnT
h to p0

h, i.e., backward in time similar to the continuous adjoint; see (8). From the definition of the
discrete objective function we get

∇Jh(yh) =
(
0,0, · · · ,0, hG′(ynT

h )
)>
,

and therefore pnT
h = G′(ynT

h ) which is the discrete counterpart for the final-time condition in (8). For
n = nT , . . . , 0 we have

pnT
h = G′(ynT

h ), pnh =
[
I − k

h
F ′h(y

n+1
h )>

]
pn+1
h for n = (nT − 1), . . . , 0. (18)

which is the discrete counterpart of the adjoint PDE (8). The gradient of the discrete reduced objective
function in the direction of δuh ∈ Vh is obtained by

∇Jh(uh)>δuh = h

N∑

j=1

p0
j δuj. (19)

Remark 3.2 (Convergence of the discrete adjoint). Note, however, that at the discrete level, the interior
boundary condition (9) does not appear. Hence a natural question is to ask whether the discrete adjoint
converges to the continuous one or not. It is shown in [Gil03] through a numerical experiments that the
adjoint obtained from Lax-Friedrichs scheme converges to a wrong solution as the mesh is refined. It
is also observed that if numerical diffusion is chosen such that the shock in ynT

h spreads into more
cells, then the discrete adjoint converges. This is proven in [GU10a, GU10b].

We are not aware of a similar result for the Engquist-Osher scheme. However, it has been shown in
[Ulb01] that for the case where the end data is Lipschitz continuous, e.g., by using a smoothed end
state in the tracking functional, the discrete adjoint converges to the continuous adjoint. This motivates
the use of two separate solvers for the discrete forward and adjoint problems, e.g., by using a TVDRK-
MUSCL scheme, when the end data is smoothed. We should mention that this approach results in an
inexact discrete adjoint.
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3.3 Stability of the discrete adjoint

We would like to examine monotonicity of the discrete adjoint by checking whether or not it is TVD.
The discrete adjoint, satisfying (18), can be written in a simplified form for analysis as

pnj = Aj,0 p
n+1
j + Aj,1 p

n+1
j+1 + Aj,−1 p

n+1
j−1 , (20)

where

ALF
j,l :=





γ
2
− k

2h
f ′(wj) for l = −1,

1− γ for l = 0,
γ
2

+ k
2h
f ′(wj) for l = 1,

AEO
j,l :=





k
2h

(
|f ′(wj)| − f ′(wj)

)
for l = −1,

1− k
h
|f ′(wj)| for l = 0,

k
2h

(
|f ′(wj)|+ f ′(wj)

)
for l = 1.

Note that, provided the CFL condition (13) is satisfied, we have ALF
j,l ≥ 0 and AEO

j,l ≥ 0. Moreover,
observe that by construction we have

1∑

l=−1

Aj,l = 1.

Taking absolute values on both sides in (20) and using the above properties, we obtain

|pnj | ≤ Aj,0|pn+1
j |+ Aj,1|pn+1

j+1 |+ Aj,−1|pn+1
j−1 | ≤ max

l=−1,0,1
|pn+1
j+l | ≤ ‖pn+1

h ‖∞,

which implies L∞ stability. We now show that the discrete adjoint scheme with a forward Euler time
discretization is also TVD. We first rewrite (20) in the following form

pnj = pn+1
j +Bj,0(pn+1

j − pn+1
j−1 ) +Bj,1(pn+1

j+1 − pn+1
j ), (21)

with

BLF
j,l :=

{
−γ

2
+ k

2h
f ′(wj) for l = 0,

γ
2

+ k
2h
f ′(wj) for l = 1,

BEO
j,l :=

{
− k

2h
|f ′(wj)|+ k

2h
f ′(wj) for l = 0,

k
2h
|f ′(wj)|+ k

2h
f ′(wj) for l = 1.

Then, Harten’s Lemma [Har83a] guarantees TVD properties of the discrete adjoint scheme.

Lemma 3.3 (Harten’s Lemma). Suppose a finite difference scheme can be written as

wj = vj +Bj,0 · (vj − vj−1) +Bj,1 · (vj+1 − vj),
where Bj,0 and Bj,1 are arbitrary nonlinear functions of vj, vj+1, vj−1 and satisfy

Bj,0 ≤ 0, Bj,1 ≥ 0, Bj,1 −Bj+1,0 ≤ 1.

Then we have |wh|TV ≤ |vh|TV.

Observe that in our case, the above conditions on Bj,0 and Bj,1 are satisfied provided a (1− γ)-CFL
condition for Lax-Friedrichs and a 1

2
-CFL condition for Engquist-Osher are satisfied, respectively, i.e.,

kLF

h
sup
|y|≤M

|f ′(y)| ≤ (1− γ),
kEO

h
sup
|y|≤M

|f ′(y)| ≤ 1

2
. (22)

This is the reason for the choice of γ ∈ (0, 1) in the Lax-Friedrichs scheme. Obviously the optimal
CFL condition is

CFL∗ = max
γ∈(0,1)

min{γ, 1− γ} =
1

2

Lemma 3.3 now guarantees that the discrete adjoint obtained from forward Euler time discretization is
TVD, i.e., ∣∣pnh

∣∣
TV
≤
∣∣pn+1

h

∣∣
TV
. (23)

Note that this property is shared by the continuous adjoint in Theorem 2.3.
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4 Strong stability preserving time discretizations

In this section, we examine the effect of using RK methods for discretizing the underlying problem
instead of using the forward Euler method.

A TVD-RK method is defined by convex combinations of forward Euler steps which are parametrized
by two sets of coefficients: {αij} and {βij} for i = 1, ..., s and j = 0, ..., (s − 1) where s is the
number of RK stages. A TVD-RK time stepping is then defined as follows:

1 Set the initial stage: w(0) = ynh,

2 Compute for each stage i = 1, . . . , s:

w(i) =
i−1∑

j=0

αijw
(j) − k

h
βijFh(w

(j)), (24)

3 Set the next time-step approximation: yn+1
h = w(s).

Moreover, we impose the following constraints over {αij} and {βij}:

αij, βij ≥ 0,
i−1∑

j=0

αij = 1,
(
βij 6= 0 =⇒ αij 6= 0

)
. (25)

The following result is due to Shu and Osher [SO88] and shows that the TVD-RK method is stable if
the forward Euler (15) is stable. We call such methods strong stability preserving (SSP) since we have
stability with respect to stage variables, too.

Proposition 4.1. Suppose the time-step k is chosen such that the forward Euler discretization is
stable, i.e.,

‖w − k

h

βij
αij

Fh(w)‖ ≤ ‖w‖ ∀w ∈ Vh, (26)

for all i = 1, . . . , s, j = 0, . . . , (s− 1) and αij 6= 0. Here, ‖·‖ is a non-negative homogeneous con-
vex function, e.g., a norm or a semi-norm. Moreover assume that the conditions in (25) are satisfied.
Then for the TVD-RK method we have

‖w(i)‖ ≤ max
j=0,...,(i−1)

‖w(j)‖ for i = 1, . . . , s,

and consequently ‖yn+1‖ ≤ ‖yn‖.

In order to highlight the technical differences between the proof technique of [SO88], which relies on∑i−1
j=0 αij = 1, the property not available for the discrete adjoint in Section 4.1, we display the short

proof.

Proof. First observe that if αij = 0 then the contribution of w(j) is zero. So we can rewrite (24) by

w(i) =
∑

{j:αij 6=0}

αij

(
w(j) − k

h

βij
αij

Fh(w
(j))
)
∀i = 1, . . . , s.

DOI 10.20347/WIAS.PREPRINT.2383 Berlin 2017



TVD-RK methods and optimal control of scalar conservation laws 15

Table 1: Table of coefficients for TVD-RK methods of order two and three.
order αij βij minαij/βij

2 1 1 1
1/2 1/2 0 1/2

3 1 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

We then take ‖·‖ from both sides and use convexity as well as our assumption on the stability of the
Euler step: for all i = 1, . . . , s we have

‖w(i)‖ ≤
∑

{j:αij 6=0}

αij‖w(j)‖ ≤
(

max
j=0,...,(i−1)

‖w(j)‖
)( ∑

{j:αij 6=0}

αij

)
= max

j=0,...,(i−1)
‖w(j)‖,

where we also used positivity of αij, βij and
∑i−1

j=0 αij = 1. The proof is completed by induction.

Let us denote the forward Euler time-step by kFE. Then the stable TVD-RK time-step is bounded by

k ≤
(

min
αij ,βij 6=0

αij
βij

)
kFE. (27)

Therefore one can optimize the coefficients αij and βij to maximize the constant minαij ,βij 6=0
αij

βij
. In

Table 1, we show such optimal TVD-RK methods of two and three stages.

We now rewrite our discrete optimization problem (DP) using a TVD-RK time discretization. First we
redefine ynh to be suitable for the TVD-RK method: the collection of all stage approximations at time-
slab tn is given by

ynh := (yn,0h ,yn,1h , . . . ,yn,sh )> ∈ Wh := (Vh)
s+1,

where yn,lh is the approximation at time tn, at stage l = 0, . . . , s. Then we concatenate contributions
from all time-steps to get

yh := (y0
h,y

1
h, . . . ,y

nT
h )> ∈ (Wh)

nT +1.

Let us denote the forward Euler operator by Hij : Vh → Vh with

Hij(vh) :=

{
vh − k

h

βij
αij
Fh(vh) if αij > 0,

0 if αij = 0.

for all vh ∈ Vh which is differentiable with derivative in direction of uh ∈ Vh given by

H ′ij(vh)uh :=

{[
I − k

h

βij
αij
F ′h(vh)

]
uh if αij > 0,

0 if αij = 0.

Then the equality constraint generated by TVD-RK scheme at time tn and stage l is denoted by
Ln,lh : (Wh)

nT +1 → Wh with

L0,0
h (yh,uh) := −y0,0

h + uh,

Ln,0h (yh) := −yn,0h + yn−1,s
h ,

Ln,lh (yh) := −yn,lh +
∑l−1

j=0 αljHlj(y
n,j
h ) for n = 1, . . . , nT , and l = 1, . . . , s.
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The fully discrete scheme, i.e., spatial discretization with the TVD-RK method, can be expressed as
Lh(yh,uh) = 0 where

Lh(yh,uh) =
(
L0,0
h (yh,uh), L

0,1
h (yh), · · · , L0,s

h (yh), . . . , L
nT ,s
h (yh)

)>
∈ (Wh)

nT +1.

As before we define the Lagrangian function by

L(yh,ph,uh) := Jh(yh) + hp>h · Lh(yh,uh),
where ph ∈ W nT +1

h has the same structure as yh. Note that since Hij(·) is differentiable we can
conclude that Lh(·, ·) is also differentiable with respect to the first argument. Moreover, similar to the
case with forward Euler step, it has again a lower triangular structure:

L′yh
(yh,uh) =




G(y0
h)

K G(y1
h)

. . . . . .

K G(ynT−1
h )
K G(ynT

h )



,

where G(·) is the linearized contribution of the TVD-RK scheme, i.e.,

G(ynh) :=




−I
α10H

′
10(yn,0h ) −I

α20H
′
20(yn,0h ) α21H

′
21(yn,1h ) −I
...

. . .

αs,0H
′
s,0(yn,0h ) αs,s−1H

′
s,s−1(yn,s−1

h ) −I



, (28)

and K links the approximation from the previous time-step to the current one:

K :=




O · · · O I
O · · · O O
...

...
...

O · · · O O


 . (29)

As before, the discrete adjoint satisfies,

∇Jh(yh) + hLyh
(yh,uh)

>ph = 0,

which is again backward in time. As before, the above constraint satisfies LICQ. Let us illustrate the
above adjoint equation with an example.

Example 4.1 (case s = 2). Consider the discrete adjoint for a TVD-RK discretization with two stages.
Let n < nT . Then the discrete adjoint satisfies the following backward in time linear system:

pn,0h −α10H
′
10(yn,0h )>pn,1h −α20H

′
20(yn,0h )>pn,2h = 0,

pn,1h −α21H
′
21(yn,1h )>pn,2h = 0,

pn,2h = pn+1,0
h ,

which is a TVD-RK scheme with coefficients α?ij and β?ij . In fact, the TVD-RK coefficients for the
discrete adjoint equation are related to the TVD-RK of the discrete state as follows

α∗10 = α21,
α∗20 = α20, α∗21 = α10,

β∗10 = β21,
β∗20 = β20, β∗21 = β10.
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Observe the way how the coefficients of the TVD-RK scheme are transformed by this conjugation
process. We refer to the coefficients of the adjoint TVD-RK scheme as conjugate coefficients. This
transformation in the table of adjoint TVD-RK coefficients might pose some restrictions on the choice
of the TVD-RK method in the first place. We conclude this section by the following proposition.

Proposition 4.2. Suppose we discretize-then-optimize the problem (P) and a TVD-RK time discretiza-
tion is used for the discrete state variable with coefficients αij and βij . Then the discrete adjoint is
also obtained by a TVD-RK method with coefficients α∗ij and β∗ij such that

α∗ij = αs−j,s−i, β∗ij = βs−j,s−i for i = 1, . . . , s, and j = 0, . . . , (s− 1). (30)

4.1 Stability of the discrete adjoint

Given the result of Proposition 4.2, our first idea is to impose SSP on both the discrete state and
the adjoint variables, i.e., imposing (25) on {αij, βij} and {α∗ij, β∗ij}. In other words, the following
conditions on {αij, βij} should hold:

αij, βij ≥ 0,
i−1∑

j=0

αij = 1,
s∑

i=j+1

αij = 1,
(
βij 6= 0 =⇒ αij 6= 0

)
. (31)

This however turns out to be too strong as the following proposition clarifies.

Proposition 4.3. Suppose we discretize-then-optimize the problem (P) with a TVD-RK method. If we
require SSP for both discrete state and discrete adjoint, then the TVD-RK method is at most first-order.
More precisely, the TVD-RK coefficients are

αi,j =

{
1 if j = i− 1,
0 otherwise,

βi,j =

{
βi,i−1 if j = i− 1,
0 otherwise,

which gives a concatenation of forward Euler steps.

Proof. We need to identify sets of {αij} and {βij} that satisfy (31). Thus, all coefficients need to be
non-negative. Let i = 1, then α10 = 1. Now let j = 0 and observe that

∑s
i=j+1 αij = 1. This

implies αi,0 = 0 for all i = 2, . . . , s since all αij ≥ 0 and α10 = 1. Now let i = 2 and observe that∑i−1
j=0 αij = 1. However we just showed that α20 = 0 which implies α21 = 1. We now repeat the

same process by letting j = 1 and consider the constraint
∑s

i=j+1 αij = 1. Continuing, we conclude
that αi,i−1 = 1 and the other coefficients are zero. Since αi,j = 0 for j < i − 1 we conclude
from the last requirement of (31) that βij = 0 for j < i − 1. Therefore the only free parameters are
βi,i−1. However, such a TVD-RK scheme is equivalent to the concatenation of Euler steps, instead of
a combination. Finally, the concatenation of Euler steps yields a first-order method.

As we shall see next, imposing (31) is not necessary. Let us consider a two-stage TVD-RK that ensures
SSP only for the state discretization. That is, TVD-RK satisfies only (25). Moreover suppose that the
time-step k is chosen such that adjoint stability of the forward Euler step for discrete adjoint holds. For
instance, for the discrete adjoint from Example 4.1 we have

‖pn,1‖ ≤ α21‖pn,2‖,
‖pn,0‖ ≤ α20‖pn,2‖+ α10‖pn,1‖,

where ‖·‖ is a non-negative homogeneous convex function, e.g., a semi-norm or a norm.
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For SSP of the TVD-RK scheme we would take the maximum of (semi-)norms up to the (i−1)st stage
and use the assumption that the sum of the coefficients in each stage equals one. However here we
do not have that α20 + α10 = 1. Instead, we can substitute the first inequality into the second and
obtain

‖pn,0‖ ≤ (α20 + α21 α10)‖pn,2‖ = ‖pn,2‖,
which holds true since α10 = 1 and α20 + α21 = 1. This shows that for two-stage SSP TVD-RK
methods we have stability at each time-step which is weaker than stability at each stage; observe
that in Proposition 4.1 stability is achieved at each stage and therefore at each time-step. We can
generalize this observation to an arbitrary s-stage TVD-RK method.

Theorem 4.4. Suppose the state equation is discretized with an SSP TVD-RK method. Moreover
suppose that k is chosen such that it ensures forward Euler stability for both the discrete state and
adjoint. Then the discrete adjoint is stable in each time-step for an arbitrary s-stage method., i.e.,

‖pn,0‖ ≤ ‖pn,s‖,

where ‖·‖ is a non-negative homogeneous convex function, e.g., a semi-norm or a norm.

Proof. Since we require Euler step stability, we have for each stage

‖pn,`‖ ≤
s∑

i=`+1

αi` ‖pn,i‖ for ` = 0, . . . , s− 1.

Let ` = 0 and recall that α10 = 1. Then, using the above inequality we have

‖pn,0‖ ≤
s∑

i=1

αi0 ‖pn,i‖ = ‖pn,1‖+
s∑

i=2

αi0‖pn,i‖ ≤
s∑

i=2

(αi1 + αi0)‖pn,i‖.

Now isolating the term with i = 2 and noting that α21 + α20 = 1 we have

‖pn,0‖ ≤ ‖pn,2‖+
s∑

i=3

(αi1 + αi0)‖pn,i‖ ≤
s∑

i=3

(αi2 + αi1 + αi0)‖pn,i‖.

We repeat this procedure to obtain ‖pn,0‖ ≤∑s
i=`′

(∑`′−1
j=0 αij

)
‖pn,i‖ for all `′ = 1, . . . , s. We then

choose `′ = s and obtain ‖pn,0‖ ≤ (
∑s−1

j=0 αsj)‖pn,s‖ = ‖pn,s‖ which completes the proof.

Theorem 4.4 shows that any s-stage TVD-RK method for the discrete state yields a stable TVD-RK
method for the discrete adjoint. However the discrete adjoint is proved to be stable at each time-step
instead of each stage.

4.2 Order conditions for the discrete adjoint

In this section we study approximation properties of the scheme for the discrete adjoint. We focus on
deriving order conditions for the discrete adjoint scheme. For this purpose, extra conditions on the
TVD-RK method applied to the state discretization are needed to ensure high-accuracy of the adjoint
scheme. We also check which methods provide optimal CFL constants. For simplicity of the notation
we consider TVD-RK methods with a conjugate coefficient table as in Proposition 4.2 for the following
linear problem

ṗ(t) +R(t)p(t) = 0, p(T ) = pT ∈ Vh. (32)
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Here R(t) is a linear operator and defined as

R(t) := −1

h
F ′h(y(t))>, (33)

where y(t) is the solution of the semi-discrete problem (10), i.e., ẏ(t) = − 1
h
Fh(y(t)). For com-

pleteness we state derivatives of R(·):

Ṙ(t) = 1
h2
F ′′h (y(t))>Fh(y(t)),

R̈(t) = − 1
h3

[
F ′′h (y(t))>F ′h(y(t))>Fh(y(t)) + F ′′′h (y(t))>Fh(y(t))2

]
.

(34)

Observe that R(t) at `th stage is approximated by −1
h
F ′h(y

n,`
h ), see for instance Example 4.1 and the

definition of H ′i`(y
n,`
h ). Since we consider the local error of the TVD-RK method in the time interval

[tn, tn+1], we let yn,0h = y(tn). For the analysis of the TVD-RK method we need approximation
properties of −1

h
F ′h(y

n,`
h ). A direct calculation gives

− 1
h
F ′h(y

n,0
h )> = R(tn+1)− kṘ(tn+1) + 1

2
k2R̈(tn+1) +O(k3), (35)

− 1
h
F ′h(y

n,1
h )> = R(tn+1)− (1− β10)kṘ(tn+1)

−1
2
k2

h3
(1− β10)2F ′′′h (y(tn+1))>F 2

h (y(tn+1))

−1
2
k2

h3
(1− 2β10)F ′′h (y(tn+1))>F ′h(y(tn+1))>Fh(y(tn+1)) +O(k3),

(36)
and

− 1
h
F ′h(y

n,2
h )> = R(tn+1)− (1− ψ)kṘ(tn+1)

−1
2
k2

h3
(1− ψ)2F ′′′h (y(tn+1))>F 2

h (y(tn+1))

−1
2
k2

h3
(1− 2ψ + 2β21β10)F ′′h (y(tn+1))>F ′h(y(tn+1))>Fh(y(tn+1))

+O(k3),

(37)

where
ψ := β20 + β21 + α21β10. (38)

Note that since the inner stages of the RK are low order, we have first order approximation of R(·) in
(36) and (37).

A Taylor expansion of the solution of (32) at time tn+1 with the time-step (−k) yields

p(tn) = p(tn+1) + kR(tn+1)p(tn+1) + k2

2

[
R2(tn+1)− Ṙ(tn+1)

]
p(tn+1)

−k3

6

[
2Ṙ(tn+1)R(tn+1) +R(tn+1)Ṙ(tn+1)−R3(tn+1)− R̈(tn+1)

]
p(tn+1)

+O(k4),

(39)

We will compare the TVD-RK method with conjugate coefficients against the Taylor expansion in (39).

4.2.1 Two stage methods

We now study the approximation properties of a two stage scheme. In this vein, Shu and Osher derived
in [SO88] order conditions for TVD-RK methods with two stages. As before, let {αij}, {βij} be the
coefficients of a TVD-RK scheme for the state equation. Then the method is second-order if it satisfies
(25) and the following order conditions

α21β10 + α10β21 + β20 = 1,
β10β21 = 1

2
.

(40)
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We need to find extra conditions on {αij} and {βij} to obtain a second-order approximation for the
discrete adjoint too. For the TVD-RK method with a conjugate coefficient table applied to (32) we have
(see Example 4.1):

pn,0h =
[
α10 + kβ10R(tn)

]
pn,1h +

[
α20 + kβ20R(tn)

]
pn,2h ,

pn,1h =
[
α21 + kβ21R(tn+1)− k2β21(1− β10)Ṙ(tn+1)

]
pn,2h +O(k3).

Eliminating pn,1h , we simplify the above equations and obtain

pn,0h = (α20 + α10α21)pn,2h + (α10β21 + α21β10 + β20)kR(tn+1)pn,2h
+
[
β10β21R

2(tn+1)− (β20 + α21β10 + α10β21(1− β10))Ṙ(tn+1)
]
k2pn,2h +O(k3).

(41)
Recall that α10 = 1 and α20 + α21 = 1. Then using these facts in the above expansion we get

pn,0h = pn,2h + (α10β21 + α21β10 + β20)kR(tn+1)pn,2h
+
[
β10β21R

2(tn+1)− (β20 + α21β10 + α10β21(1− β10))Ṙ(tn+1)
]
k2pn,2h +O(k3).

(42)
We compare (42) to the Taylor expansion of the exact solution (39) and require the following conditions
on the coefficients:

α21β10 + α10β21 + β20 = 1,
β10β21 = 1

2
,

β20 + α21β10 + α10β21(1− β10) = 1
2
.

(43)

Note that the first and second conditions are satisfied due to (40). Moreover, the first two conditions
imply that the third condition is automatically satisfied. Therefore any second order TVD-RK method
applied to the forward problem results in a second order approximation of the discrete adjoint. The
above arguments prove the following theorem.

Theorem 4.5. Suppose a second-order two-stage TVD-RK method is used to discretize the state
equation. Then the corresponding TVD-RK method for the adjoint equation is consistent and is second-
order. Moreover, The optimal CFL constant is one.

4.2.2 Three stage methods

In this section we analyze approximation properties of the third-order three stages TVD-RK methods.
The following conditions should be satisfied to ensure a third-order discrete state:

α32 = 1− α31 − α30, (44)

β32 =
3β10 − 2

6ψ(β10 − ψ)
, (45)

β21 =
1

6β10β32

, (46)

β31 =
1
2
− α32β10β21 − ψβ32

β10

, (47)

β30 = 1− α31β10 − α32ψ − β31 − β32, (48)

β20 = ψ − α21β10 − β21. (49)
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The free parameters are α21, α30, α31, β10 and ψ; see the discussion in [SO88] for details. The same
analysis as in Section 4.2.1, and employing inner stages approximation properties (35)-(37) and com-
paring with coefficients of the Taylor expansion in (39), yields that the following conditions must be
satisfied for the discrete adjoint:

α31β10 + α21α32β10 + α32(β20 + β21) + β30 + β31 + β32 = 1 (first order), (50)

α32β10β21 + β10β31 + α21α32β10 + β32(β20 + β21) = 1
2

(for R2)

α31β10 + α21α32β10 + α32β20 + β30 + β32(1− ψ)

+(α32β21 + β31)(1− β10) = 1
2

(for Ṙ)





(second order), (51)

β10β21β32 = 1
6

(for R3)

β20β32 + β10β31 + (1− β10)β21β32 + β10β21α32 + β10β32α21 = 1
3

(for ṘR)

(1− ψ)
(
β32β20 + β10α21β32 + β32β21

)

+(1− β10)
(
β21β10α32 + β10β31

)
= 1

6
(for RṘ)

α31β10 + α21α32β10 + α32β20 + (α32β21 + β31)(1− β10)2

+β30 + β32(1− ψ)2 = 1
3

(for F ′′′F 2)

α31β10 + α21α32β10 + α32β20 + (α32β21 + β31)(1− 2β10)
+β30 + β32(1− 2ψ + 2β21β10) = 1

3
(for F ′′F ′F )





(third order).

(52)

One can show that if conditions (44)-(49) are satisfied then (50)-(52) are automatically satisfied except
for the term associated to RṘ: Let us define A := (1− ψ)

(
β32β20 + β10α21β32 + β32β21

)
+ (1−

β10)
(
β21β10α32 + β10β31

)
. Then we have

A = (1−ψ)ψβ32+(1−β10)
(1

2
−ψβ32

)
=

1

2
+ψ(ψ−β10)β32−

1

2
β10 =

1

2
+

1

2
β10−

1

6
−1

2
β10 =

1

3
,

which cannot be equal to 1
6

for any choice of parameters. Therefore the discrete adjoint TVD-RK
method is at most second order. The above arguments prove the following theorem.

Theorem 4.6. Suppose a third-order three-stage TVD-RK method is used to discretize the state equa-
tion. Then the corresponding TVD-RK method for the adjoint equation is consistent and is at most
second-order. Moreover, the optimal CFL constant is one.

4.2.3 Fifth stage (fourth-order) method

We have already mentioned that a fourth-order TVD-RK method with four stages does not exist, see
[GS98, RS02]. Using a non-linear programming computer code, a fourth-order with five stages TVD-
RK method has been found in [SR02, Appendix B]. It has been shown by Hager in [Hag00, Proposition
6.1] that when a general four stage fourth-order RK method is applied to the forward problem of an
optimal control problem of ODEs, then the corresponding discrete adjoint is also automatically fourth-
order. Inspired by this result we would like to check whether or not the fourth-order with five stage
TVD-RK method of [RS02] generates a fourth-order discrete adjoint too.
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In order to check the order conditions for this particular TVD-RK method, we use the Butcher’s table
of the mentioned TVD-RK method and check if the order conditions in [Hag00, Table 1] are satisfied.
A direct calculation shows that the discrete adjoint is only second order. This is however not surprising
since the TVD-RK method is obtained by a non-linear programming (with order conditions for the
forward problem as constraints).

4.3 Convergence of the TVD-RK method

In this section we discuss convergence of the discrete adjoint obtained from a TVD-RK method. We
follow the framework established in [Ulb01, Chapter 6.4]. We consider the case when the end data of
the continuous adjoint is smooth, e.g., p(x, T ) ∈ Liploc(R), and the space discretization is either Lax-
Friedrichs or Engquist-Osher method which yields a monotone scheme when combined with forward
Euler method in time; see for instance [LeV90, Chapter 15.7].

Consider the TVD-RK schemes with either Lax-Friedrichs or Engquist-Osher discretization and sup-
pose the time-step k is chosen such that the forward Euler discretizations (26) are monotone and their
corresponding discrete adjoint scheme is TVD, see (22), (27). The first ingredient for the proof is to
show that the TVD-RK scheme is again a monotone scheme for the forward problem, i.e., given any
initial data ynj , w

n
j , at time tn we have

ynj ≥ wnj ∀j =⇒ yn+1
j ≥ wn+1

j ∀j.

Suppose that until `-th stage we have yn,ij ≥ wn,ij for all i = 1, . . . , `. Since yn,`+1
j is equal to a

convex combination of forward Euler methods and each forward Euler method is a monotone scheme,
we can conclude that yn,`+1

j ≥ wn,`+1
j .

The second ingredient is to show that after eliminating the inner stages we have a conservative
scheme. Let us demonstrate this for a two-stage method: observe that the application of an Euler
step at the first stage can be written as

yn,1j = H(yn,0j−1, y
n,0
j , yn,0j+1) := α10y

n,0
j − β10

k

h

[
f̂(yn,0j , yn,0j+1)− f̂(yn,0j−1, y

n,0
j )
]
. (53)

Then the second stage can be written in the conservative form

yn+1
j = ynj −

k

h

[
f̃(ynj−1, y

n
j , y

n
j+1, y

n
j+2)− f̃(ynj−2, y

n
j−1, y

n
j , y

n
j+1)

]
, (54)

where the numerical flux is defined by

f̃(yj−1, yj, yj+1, yj+2) := (α21β10 + β20)f̂(yj, yj+1)

+ α10β21f̂(H(yj−1, yj, yj+1),H(yj, yj+1, yj+2)),

after eliminating the inner stage. We state the convergence result in the following proposition.

Proposition 4.7. Suppose the final end data of the continuous adjoint satisfies p(x, T ) ∈ C0,1(R).
Moreover, suppose that the space discretization is either the Lax-Friedrichs or Engquist-Osher method
and that the time is discretized using a TVD-RK method. Let the time-step k = c h be chosen such that
the forward Euler discretizations (26) are monotone and their corresponding discrete adjoint scheme
is TVD, see (22), (27). Then the discrete adjoint is convergent to the unique reversible solution as
k = c h→ 0, i.e.,

ph → p in B([0, T ]; Lr(I)),

where B([0, T ]; Lr(I)) is the space of bounded functions equipped with the sup-norm and with val-
ues in Lr(I) for r ∈ [1,∞) and I := (−R,R) for all R > 0.
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Proof. We give the main steps of the proof from [Ulb01, Chapter 6.4]. First, we eliminate the inner
stages and write the TVD-RK method in a conservative form (see (54) for the two stage method):

yn+1
j = ynj −

k

h

[
f̃nj+1/2 − f̃nj−1/2

]
, f̃nj+1/2 := f̃(ynj−K+1, . . . , y

n
j+K).

Therefore it is of the form (6.9) in [Ulb01]. Then the discrete adjoint can be written as

pnj = pn+1
j +

k

h

K∑

i=1−K

anj−i+1/2,i (p
n+1
j−i+1 − pn+1

j−i ), (55)

where anj−i+1/2,i = ∂yi f̃
n
j−i+1/2. For the L∞-stability, it is more convenient to write the discrete adjoint

scheme in the following form:

pnj =
K∑

i=−K

Bn
j,ip

n+1
j−i ,

where Bn
j,−K = k

h
an
j+K− 1

2
,1−K , Bn

j,K = − k
h
an
j−K+ 1

2
,K

and

Bn
j,i = δ0,i +

k

h
(an
j−i− 1

2
,i+1
− an

j−i+ 1
2
,i
), −K < i < K,

where δ0,i is the Kronecker delta. For the stability of the total variation, however, it is more convenient
to write the discrete adjoint scheme in the form

(pnj+1 − pnj ) =
K∑

i=−K

Cn
j,i(p

n+1
j−i+1 − pn+1

j−i ), (56)

where Cn
j,−K = k

h
an
j+K+ 1

2
,1−K , Cn

j,K = − k
h
an
j−K+ 1

2
,K

and

Cn
j,i = δ0,i +

k

h
(an
j−i+ 1

2
,i+1
− an

j−i+ 1
2
,i
), −K < i < K.

Monotonicity of the TVD-RK method applied to the forward problem ensures that Bn
j,i ≥ 0 (see

[Ulb01, Lemma 6.4.2]). Moreover, the TVD-RK adjoint scheme is TVD by Theorem 4.4 and maps by
(55) constant values pn+1

j−K = . . . = pn+1
j+K = c to the same value pnj = c. Hence, [Har83b, Theorem

2.1] yields that the TVD-RK adjoint scheme is monotonicity perserving and thus (56) implies Cn
j,i ≥ 0.

This shows that condition (1) in [Ulb01, 6.4.1] is satisfied.

It remain to show that assumptions (D1), (D2) and (D3) of [Ulb01, 6.4.1] hold. (D1) is consistency
of the numerical flux which holds in our case; observe for instance that f̃(y, y, y, y) = f(y) in (53)
since α21β10 +α10β21 +β20 = 1. (D2) is the convergence of the discrete state to the entropy solution
of the state which holds as our discretization is TVD. (D3) is an OSLC condition which holds for Lax-
Friedrichs and Engquist-Osher discretization (see [Ulb01, Lemma 6.5.2 and Lemma 6.5.5] for details).
Then we can apply Theorem 6.4.4 and Theorem 6.4.6 in [Ulb01] to show convergence of the discrete
adjoint to the unique reversible solution.

5 Numerical experiments

In this section we perform numerical experiments on TVD-RK methods for computing the discrete
adjoint state. We show through numerical experiments that the adjoint scheme obtained from dis-
cretization of the forward problem using a TVD-RK method is stable.
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Figure 2: Discrete adjoint computed using Engquist-Osher and Lax-Friedrichs schemes with two-stage
TVD-RK method.

Let us consider the configuration of Example 2.2. The domain is set to be Ω = (−1, 1), the flux
function f(y) := 1

2
y2 and u(x) = 1 for x ∈ [−1, 0) and u(x) = −1 for x ∈ [0, 1]. We set

the function G(y(x, T )) := 1
2
|y(x, T )|2. For the boundary condition we choose y(−1, t) = 1 and

y(1, t) = −1. We then use the Lax-Friedrichs and Engquist-Osher schemes to compute {ynh}nT
n=1

with the time-step

k =
1

2

(
min

αij ,βij 6=0

αij
βij

)
γ h,

where γ = 1
2

is the optimal CFL constant for both the forward and adjoint discretization as discussed
in Section 3.3. Here, as before, h is the mesh parameter and is inversely proportional to the number
of cells N . We use the TVD-RK methods of Table 1. As shown in Theorem 4.4 the discrete adjoint is
also stable provided the TVD-RK method for the forward problem is SSP. Moreover we expect that the
discrete adjoint approximates the continuous adjoint at t = 0,

p(x, 0) =





1 −1 < x < −1
2
,

0 −1
2
≤ x ≤ 1

2
,

−1 −1
2
< x < 1,

even though the discrete adjoint scheme does not impose the “interior” boundary condition (9).

In Figure 2, we observe that for both the Engquist-Osher and Lax-Friedrichs methods with a two-stage
TVD-RK method, we obtain a stable TVD discrete adjoint. Note that in the interval x ∈ (−1

2
, 1

2
), the

discrete adjoint has the correct value, i.e., p(x, 0) = 0, and the shock location is correct as well.
Moreover, the discrete adjoint converges as we refine the mesh. Identical results are obtained using
a three-stage TVD-RK method. The reason for this is that the Lax-Friedrichs and Engquist-Osher
methods are low order methods while the time discretization is high order and the leading error is due
to the spatial discretization.

In Figure 3, we observe that the total variation of the discrete adjoint at any time t < T deviates from
the final time discrete adjoint, i.e., pnT

h , only up to machine precision. This implies that the TVD-RK
method for the discrete adjoint is TV stable, even though it is not SSP.
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Figure 3: The difference between total variation of the discrete adjoint at time tn and total variation of
the final time discrete adjoint.

5.1 Giles’ test case

In this section we perform numerical experiments on an optimal control problem which was first pro-
posed by M. Giles in [Gil03]. Let us choose the setting of the problem of the previous section except
for the objective functional which we now choose to be G(y) := y5− y. Note that since y(x, T ) = 1
for x ∈ [−1, 0) and y(x, T ) = −1 for x ∈ (0, 1] we have G′(y(x, T )) = 4 for x ∈ [−1, 1] \ {0}.
Moreover since there is a shock in the solution at time T at x = 0 we should impose an “interior”
boundary condition for the adjoint state. Since [[G(y(x, T ))]] = 0, we should set the “interior” bound-
ary condition to

p(0, t) = 0 ∀t ∈ [0, T ].

Therefore the adjoint state at time t = 0 reads

p(x, 0) =





4 −1 < x < −1
2
,

0 −1
2
≤ x ≤ 1

2
,

4 −1
2
< x < 1.

If we choose the discretize-then-differentiate approach, we do not impose such an “interior” boundary
condition for the discrete adjoint. It has been first observed by M. Giles in [Gil03] that the Lax-Friedrichs
scheme provides a discrete adjoint that converges to a wrong adjoint; see Remark 3.2. We perform
the numerical experiment for the Engquist-Osher scheme with a two-stage TVD-RK method and the
number of cells N = 800. In Figure 4, we observe that discrete adjoint has the correct value for
x ∈ [−1,−1

2
)∪(1

2
, 1] but it has a wrong value for x ∈ [−1

2
, 1

2
], i.e., ph(x, 0) = 0.25 for x ∈ [−1

2
, 1

2
].

The wrong value in this region does not improve under refinement and the approximation converges
to the value 0.25 in this region. Note that the final-time condition ph(0, T ) has a Dirac delta shape at
x = 0 due to the non-linearity of the objective functional with the value of 0.25. This is precisely the
value that is transported backward in time.

It is shown in [GU10a, GU10b] that the Lax-Friedrichs scheme converges to the correct adjoint pro-
vided a restrictive time-step of type k = O(h2−q), for 0 < q < 1; see Figure 4 (right). Observe that
in Figure 5 that Lax-Friedrichs method converges in the shock funnel with k = O(h1.2).

Such a time-step increases diffusion in the scheme and allows more grid points to enter the shock
and hence it leads to convergence of the discrete adjoint to the correct solution. This, however, is not
possible with the classical definition of the Engquist-Osher scheme as such a diffusion is not present.

In Figure 6, we plot the deviation of the total variation of the discrete adjoint from the total variation of
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Figure 4: The discrete adjoint computed using Engquist-Osher (left) and Lax-Friedrichs (right)
schemes and a two-stage TVD-RK method for Giles’ test case.
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Figure 5: Convergence of the discrete adjoint computed using the Lax-Friedrich method.
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Figure 6: The difference between total variation of the discrete adjoint at time tn and total variation of
the final time discrete adjoint for Giles’ test case.

ph(x, T ). Observe that we have ph(x, t) ≤ ph(x, T ) for t ∈ [0, T ] up to machine precision which
agrees with the theoretical stability result for TVD-RK methods.

5.2 A numerical optimal control problem

In this section we solve an optimization task using the gradient information obtained from a discrete
adjoint.

We set the objective functional to

J(y) :=
1

2

∫ 1

−1

|y(x, T )− yobs(x)|2dx,

with the final time T = 1
2
,

yobs(x) :=

{
2x− 1

2
1
4
≤ x ≤ 3

4
,

0 otherwise,

and Burgers’ flux function f(y) = 1
2
y2. Given the current control uj (at iteration j) we compute the

discrete adjoint at time T = 0, i.e., pj(x, 0) and choose δu = −ηjpj(x, 0) where ηj ∈ R+ is a
parameter to ensure J(yh(uj+1)) < J(yh(uj)). Then the updated control at iteration j + 1 reads

uj+1(x) = uj(x)− ηj pj(x, 0). (57)

We choose ηj by checking Armijo’s condition and a back-tracking procedure, i.e.,

J(yh(uj+1)) ≤ J(yh(uj))− coptηj‖pj(x, 0)‖2
L2(−1,1), (58)

where copt ∈ (0, 1) is the Armijo’s constant. If the above Armijo’s condition is not satisfied we choose
a smaller α by

αnew := ραold,

where 0 < ρ < 1 and recheck (58). In this numerical experiment, we choose ρ = 0.95, copt = 0.5
and the initial α = 0.5. As initial guess we fix

u0(x) :=

{
(3

4
+ x)(1

2
− x) −3

4
≤ x ≤ 1

2
,

0 otherwise.
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Figure 7: The state variable yh(x, T ) obtained from optimization algorithm with tol = 10−2 and
tol = 10−4.
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Figure 8: The control variable u(x) obtained from optimization algorithm with tol = 10−2 and tol =
10−4.

We choose the Engquist-Osher method for spatial discretization and Heun’s second order TVD-RK
method. The time step is chosen as k = 0.25h and the stopping criteria is taken to be ‖∇Jh(uh)‖L2(Ω) =
‖pj(x, 0)‖L2(Ω) ≤ tol. In our experiments we set tol = 10−2 and 10−4.

In Figure 7, we observe that the numerical algorithm seems to converge to the true solution. That is, it
captures correctly the shock location at x = 3

4
and also the rare-faction. There are numerical artifacts

at x = 3
4

which vanish as we reduce the tolerance tol. The corresponding initial guess for the control
variable and the final control variable are plotted in Figure 8.

6 Conclusion

In this paper we studied TVD-RK methods for the numerical treatment of the optimal control problems
in a discretize-then-optimize approach. We have shown that a TVD-RK discretization of the state
equation yields a TVD-RK method for the discrete adjoint with a conjugate coefficient table. We then
showed that requiring SSP for both discrete state and adjoint is too strong and results in a first order
method. Luckily, imposing SSP for the discrete state is sufficient to obtain stability of the discrete
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adjoint. This result holds for an arbitrary s-stage TVD-RK method. Moreover, thanks to the linearity
of the adjoint equation, the TVD-RK method for the discrete adjoint is consistent. We also studied
the approximation properties of the discrete adjoint and showed that for a second order two-stage
method applied to the forward problem, we obtain a second order discrete adjoint too. However for the
third order three-stage method applied, we only obtain a second order discrete adjoint. Our theoretical
results were finally illustrated by numerical experiments.

We would like to finish this conclusion by mentioning that the convergence of the discrete adjoint to
the continuous adjoint is an interesting question of its own.

A Existence of a minimizer

Proposition A.1. LetG(y) = 1
2
|y(x, T )−yobs(x)|2. Then the optimal control problem subject to the

conservation law (1) has a solution in the admissible set Uad.

Proof. We begin with the continuity of the objective functional. Suppose y(x, t) and w(x, t) are the
entropic solution of (1) with the initial data u(x) ∈ Uad and v(x) ∈ Uad, respectively. Then we have

|J(y)− J(w)| = 1

2

∣∣∣
∫

R
(y − w)(y + w − 2yobs)

∣∣∣ ≤ ‖y − w‖L1(R)‖y + w − 2yobs‖L∞(R).

Then by L1-contraction of the entropic solutions we have

|J(y)− J(w)| ≤ ‖y(·, T )− w(·, T )‖L1(R)(‖y(·, T )‖L∞(R) + ‖w(·, T )‖L∞(R) + c)
≤ ‖u− v‖L1(R)(‖u‖L∞(R) + ‖v‖L∞(R) + c)
≤ C‖u− v‖L1(R),

where in the last step we used the L∞ stability of the entropic solutions and the fact that u and v are
in Uad and therefore we have a uniform bound on the L∞-norm.

Observe that J(y) ≥ 0 and therefore a minimizing sequence denoted by {ui} exists. Since Uad is a
compact set in L1, one can obtain a subsequence denoted by {uij} that converges strongly in L1(R)
to u? ∈ Uad as j →∞. Then using continuity of the objective functional we have

inf
u∈Uad

J(y) = lim
j→∞

J(y(uij)) = J(y(u?)) for u? ∈ Uad,

which shows existence of the minimizer.

We would like to mention also that for a more general admissible set, e.g.,

Uad :=
{
u ∈ L∞(R) : supp(u) ∈ K, ‖u‖L∞(R) ≤ C

}
, (59)

and an assumption on the uniform convexity of the flux function f(·), one can also obtain an existence
result. We refer the reader to [CPZ08] for the proof.

B Proof of Proposition 3.1

Proof. Since f(·) is C2 we have f(w + v) = f(w) + f ′(w)v + 1
2
f ′′(z)v2 for w, v ∈ R and some

z ∈ (w,w + v). For the Lax-Friedrichs flux, a direct calculation shows

f̂(wj + vj, wj+1 + vj+1) = f̂(wj, wj+1) + gLF
i+1,i +O(v2

j ) +O(v2
j+1) +O(v2

j−1).
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For Engquist-Osher we have

f̂(wj + vj, wj+1 + vj+1) = f̂(wj, wj+1) +

∫ wj+vj

wj

f ′(s)+ ds+

∫ wj+1+vj+1

wj+1

f ′(s)− ds.

Note that we can write f ′(x)+ = 1
2
(f ′(x) + |f ′(x)|) and f ′(x)− = 1

2
(f ′(x) − |f ′(x)|). Recall

the definition of gEO
j,j+1 in the proposition and define the residual r(w,v) : Vh × Vh → Vh by

[r(w,v)]j := [Fh(w + v)]j − [Fh(w)]j − [F ′h(w)v]j . Then we have [r(w,v)]j = qj,j+1− qj−1,j

where

qj,j+1 =

∫ wj+vj

wj

f ′(s)+ − f ′(wj)+ ds+

∫ wj+1+vj+1

wj+1

f ′(s)− − f ′(wj+1)− ds.

For the first term on the right-hand side we have

∣∣∣
∫ wj+vj

wj

f ′(s)+ − f ′(wj)+ ds
∣∣∣ ≤ max

z∈(wj ,wj+vj)
|f ′(z)+ − f ′(wj)+| · |vj| ≤ C v2

j ,

since f ′(x)+ is Lipschitz continuous. The proof for the second term of qj,j+1 is similar.

Hence we showed that for both Lax-Friedrichs and Engquist-Osher fluxes we have [r(w,v)]j =
O(v2

j ) +O(v2
j+1) +O(v2

j−1), respectively. Taking the `1-norm of r(w,v) one obtains

‖r(w,v)‖`1 ≤ C‖v‖2
`2 ≤ C‖v‖2

`1 ,

where C is independent of the mesh parameter. Multiplying both sides by h gives

‖r(w, v)‖L1(Ω) ≤ C‖v‖L1(Ω) ‖v‖`1 ,

which shows that ‖r(w, v)‖L1(Ω)/‖v‖L1(Ω) → 0 uniformly when v converges to zero. This completes
the proof for the derivative. A direct calculation yields the formula for the transpose.
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