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Consistent operator semigroups and their interpolation

A.F.M. ter Elst, Joachim Rehberg

Abstract

Under a mild regularity condition we prove that the generator of the interpolation of two C0-

semigroups is the interpolation of the two generators.

1 Introduction

Interpolation is a main tool in parabolic differential equations and in particular in semigroup theory, see

[BB], [Tri, Section 1.13] and [Lun, Chapter 2]. Frequently interpolation is done between two Lp-spaces

or between a Banach space and the domain of a power of the generator of a semigroup. The aim

of this paper is to consider abstractly interpolation of continuous semigroups, from the viewpoint of

category theory. In one of the main theorems of this paper, Theorem 3.10, we show that the generator

of the interpolation of two C0-semigroups is the interpolation of the two generators. As a corollary this

gives the following theorem for complex interpolation.

Theorem 1.1. Let (X,A, µ) be a σ-finite measure space and let p0, p1 ∈ [1,∞). Let S(p0) and S(p1)

be bounded consistent C0-semigroups in Lp0 and Lp1 with generators−Ap0 and−Ap1 , respectively.

Let θ ∈ [0, 1] and let p ∈ [1,∞) be such that 1
p

= 1−θ
p0

+ θ
p1

. Let S(p) be the C0-semigroup on Lp

which is consistent with S(p0). Let −Ap be the generator of S(p). Then

[D(Ap0), D(Ap1)]θ = D(Ap).

In order to illustrate the abstract setting of the paper we give an example in non-linear parabolic

equations, where the appropriate interpolation is not between two Lp-spaces or between a Banach

space and a power of a semigroup generator. Consider the quasilinear initial boundary value problem

u′ −∇ · φ(u)∇u = |∇u|2, ν · ∇u|∂Ω = f 6= 0, u(0) = 0. (1.1)

on a three-dimensional (possibly nonsmooth) domain Ω, where u ∈ Ls((0, T );X). We wish to find a

suitable Banach spaceX for the treatment of this initial boundary value problem. First, if the boundary

conditions are replaced by a Dirichlet condition, thenLp-spaces are an adequate choice forX in order

to treat (1.1), see [MERS] and [HR]. In view of the inhomogeneous Neumann conditions theLp-spaces

are not suitable (cf. [Cia, Section 1.2] [GGZ, Subsection II.2.2]). Secondly, at a first glance, the choice

X = W−1,2(Ω), which is the dual of W 1,2(Ω), seems to be adequate for the problem (1.1), as in the

linear case, compare [Lio, Section 3.3]. With this choice, however, for every fixed t the function u(t, ·)
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A.F.M. ter Elst and J. Rehberg 2

is then in general an element ofW 1,2(Ω) and hence |∇u(t, ·)|2 is then an element of L1(Ω) and fails

to be an element ofX , as required by the differential equation in (1.1). Thirdly, replacingW−1,2(Ω) by

the smaller space W−1,q(Ω), with q larger than the spatial dimension 3, and under the condition that

−∆ + I : W 1,q(Ω) → W−1,q(Ω) is a topological isomorphism (cf. [Zan] and [HHKRZ]) one could

now guess that X := W−1,q(Ω) is a good space to treat (1.1). Indeed, one could then reflect the

inhomogeneous Neumann condition adequately. Moreover, since u(t, ·) ∈ dom(∆) = W 1,q(Ω) one

deduces that |∇u(t, ·)|2 ∈ Lq/2(Ω) ⊂ W−1,q(Ω), where we used that q is larger than the space

dimension 3. This means that |∇u(t, ·)|2 ∈ X for every element u(t, ·) in the domain of the elliptic

operator and each t > 0. But, unfortunately, the theory for quasi-linear parabolic equations requires

more: for elements from an interpolation space between the Banach space and the domain of the

elliptic operator the right hand side |∇u|2 of the differential equation in (1.1) has to be well-behaved in

order to assure at least (local in time) existence and uniqueness, see for example [Lun, Chapter 7]. But

for elements v of an interpolation space between W−1,q(Ω) and W 1,q(Ω), the gradient ∇v cannot

be expected to be a function in general, and |∇v|2 cannot be defined properly for such elements (for

the required interpolation arguments see [GGKR]).

In order to get out of this dilemma it turns out that, quite in coincidence with the concept in [CS], that

one should take for X a Banach space which fulfils the following three properties.

(I)
(
−∆ + I

)−α
: X → W 1,q is continuous for some α ∈ (0, 1) and q > 3,

(II) |∇ψ|2 ∈ X for all ψ ∈ W 1,q and

(III) −∆ generates on X a (suitably regular) semigroup.

In [HDR, Section 7] a comprehensive treatment for (1.1) is given in a (dual) Bessel function space

H−τ,q = [Lq,W−1,q]θ with τ ∈ (3
q
, 1). But in the meanwhile it turned out that passing to spaces

[Lp,W−1,q]θ with p 6= q gives the theory more flexibility - and sharper results. In particular, p = q
2

is

of special interest, see [BMNR]. The reason of this are the better multiplier properties in the expression

∇ · φ∇ in the dependence of φ. Note that then the space X = [Lp,W−1,q]θ is generally not an

interpolation space between the general Banach space W−1,q and the corresponding domain of the

Laplacian (as a reference operator) on W−1,q. It turns out that indeed Properties (I), (II) and (III)

are satisfied when taking X = [Lp,W−1,q]θ and p is suitably chosen. In particular, the semigroup

generator property for the operators −∇ · φ∇ on X = [Lp,W−1,q]θ is expected to follow from the

generator property on bothLp andW−1,q by interpolation. Indeed, this is fairly clear in case of analytic

semigroups, but not in general. This is one of our motivations to investigate interpolation properties for

suitable operator semigroups in a more general context.

Since one is usually interested in a concrete equation, one must first know that the two semigroups act

consistently on the involved Banach spaces. In Section 2 we characterise consistency of semigroups

in terms of their resolvents and we obtain a useful expression for the intersection of the domain of the

generators. In Section 3 we consider interpolation functors and prove loosely speaking that semigroup

generators and interpolation functors commute. In the last section we give a couple of examples in

Lp-spaces and distribution spaces for consistent semigroups.
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Consistent operator semigroups and their interpolation 3

2 Consistency of operator semigroups

In this section we show that two C0-semigroups are consistent if and only if the resolvents of the

generators are consistent for large λ > 0. We start we the definition of consistent operators.

Definition 2.1. Let X and Y be two vector spaces. Let T0 : D(T0) → Y and T1 : D(T1) → Y be

two (linear) operators with domains D(T0) ⊂ X and D(T1) ⊂ X . Then the operators T0 and T1

are called consistent if T0x = T1x for all x ∈ D(T0) ∩ D(T1). Let X0 and X1 be two Banach

spaces which are embedded in a vector space X . Let S(0) and S(1) be semigroups in X0 and X1,

respectively. Then the semigroups S(0) and S(1) are called consistent if S(0)
t and S(1)

t are consistent

for all t > 0.

The following easy lemma gives a sufficient condition for two bounded operators to be consistent.

Lemma 2.2. Let (X0, X1) be an interpolation couple of Banach spaces. Let T0 and T1 be bounded

operators in X0 and X1, respectively. Let D ⊂ X0 ∩X1 and suppose that D is dense in X0 ∩X1.

Further, suppose that T0x = T1x for all x ∈ D. Then T0 and T1 are consistent.

The boundedness condition on the semigroups in the sequel is just for convenience.

Lemma 2.3. Let (X0, X1) be an interpolation couple of Banach spaces. Let S(0) and S(1) be bounded

C0-semigroups in X0 and X1 with generators −A0 and −A1, respectively. Then the following are

equivalent.

(i) The semigroups S(0) and S(1) are consistent.

(ii) For all λ > 0 the resolvent operators (A0 + λ I)−1 and (A1 + λ I)−1 are consistent.

Proof. ‘(i)⇒(ii)’. Let λ > 0 and x ∈ X0 ∩X1. Then

(A0 + λ I)−1x =

∫ ∞
0

e−λt S
(0)
t x dt =

∫ ∞
0

e−λt S
(1)
t x dt = (A1 + λ I)−1x.

‘(ii)⇒(i)’. Let λ > 0 and x ∈ X0 ∩ X1. Then it follows by induction to n that (A0 + λ I)−nx =

(A1 + λ I)−nx for all n ∈ N. Now let t > 0 and x ∈ X0 ∩X1. Then the Euler formula gives

S
(0)
t x = lim

n→∞
(A0 + t

n
I)−nx = lim

n→∞
(A1 + t

n
I)−nx = S

(1)
t x,

as required.

Remark 2.4. In [Are] Proposition 2.2 the following is proved: the set U of all λ for which (A0 +λ I)−1

and (A1 +λ I)−1 are consistent, is open and closed in ρ(−A0)∩ ρ(−A1). From this it easily follows

that if ρ(−A0) = ρ(−A1) and this set is connected, then the consistency of (A0 + λ0 I)−1 and

(A1 + λ0 I)−1 for only one λ0 implies the consistency of all resolvent operators.
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If the equivalent conditions in Lemma 2.3 are valid, then it is possible that there exists a λ ∈ ρ(−A0)∩
ρ(−A1) such that the resolvents (A0 +λ I)−1 and (A1 +λ I)−1 are not consistent. An example has

been given in [Are] Section 3.

Proposition 2.5. Let (X0, X1) be an interpolation couple of Banach spaces. Let S(0) and S(1) be

bounded consistent C0-semigroups in X0 and X1 with generators−A0 and−A1, respectively. Then

one has the following.

(a) The generators A0 and A1 are consistent.

(b) D(A0) ∩D(A1) = {x ∈ D(A0) ∩X1 : A0x ∈ X1} = (A0 + I)−1(X0 ∩X1).

Proof. ‘(a)’. Let x ∈ D(A0) ∩D(A1) and F ∈ (X0 +X1)′. Then

F (A0x) = lim
t↓0

1
t
F ((I − S(0))x) = lim

t↓0
1
t
F ((I − S(1))x) = F (A1x).

Hence A0x = A1x.

‘(b)’. Let x ∈ D(A0) ∩ D(A1). Then it follows from Statement (a) that A0x = A1x ∈ X1. So

D(A0) ∩D(A1) ⊂ {x ∈ D(A0) ∩X1 : A0x ∈ X1}. Conversely, suppose x ∈ D(A0) ∩X1 and

A0x ∈ X1. Let t > 0. Then for all F ∈ (X0 +X1)′ one deduces that

F
(

(I − S(1)
t )x

)
= F

(
(I − S(0)

t )x
)

= F
(∫ t

0

S(0)
s A0x ds

)
=

∫ t

0

F
(
S(0)
s A0x

)
ds

=

∫ t

0

F
(
S(1)
s A0x

)
ds = F

(∫ t

0

S(1)
s A0x ds

)
.

So
1
t
(I − S(1)

t )x = 1
t

∫ t

0

S(1)
s A0x ds

in X1. Hence

lim
t↓0

1
t
(I − S(1)

t )x = A0x

in X1. Therefore x ∈ D(A1). This proves the first equality in Statement (b).

Next, let x ∈ D(A0)∩D(A1). Then (A0 +I)x = (A1 +I)x ∈ X0∩X1 again by Statement (a). So

x ∈ (A0 + I)−1(X0 ∩X1). Conversely, let x ∈ X0 ∩X1. Then obviously (A0 + I)−1u ∈ D(A0).

Since (A0 + I)−1 and (A1 + I)−1 are consistent by Lemma 2.3, it follows that (A0 + I)−1x =

(A1 + I)−1x ∈ D(A1). So (A0 + I)−1x ∈ D(A0) ∩D(A1).

3 Interpolation of consistent operator semigroups

In this section we consider interpolation of semigroups and their generators. In all what follows, we

adopt the terminology of [Tri] Section 1.2, with minor modifications.
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Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces. Recall from [Tri] Subsec-

tion 1.2.2 that L((X0, X1), (Y0, Y1)) denotes the vector space of all linear maps T : X0 + X1 →
Y0 + Y1 such that T |X0 ∈ L(X0, Y0) and T |X1 ∈ L(X1, Y1). Clearly the operators T |X0 and T |X1

are consistent for all T ∈ L((X0, X1), (Y0, Y1)). There is a converse.

Lemma 3.1. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces, T0 ∈ L(X0, Y0)

and T1 ∈ L(X1, Y1). Suppose that T0 and T1 are consistent. Then there exists a unique T ∈
L((X0, X1), (Y0, Y1)) such that T |X0 = T0 and T |X1 = T1.

Moreover, the operator T is continuous from X0 + X1 into Y0 + Y1 and ‖T‖X0+X1→Y0+Y1 ≤
‖T0‖X0→Y0 ∨ ‖T1‖X1→Y1 .

Proof. The first part is easy and T ∈ L((X0, X1), (Y0, Y1)) is given by T (x0 + x1) = T0x0 +T1x1

for all x0 ∈ X0 and x1 ∈ X1. Here we use that T0 and T1 are consistent.

Next, let x ∈ X0 +X1. Let x0 ∈ X0 and x1 ∈ X1 be such that x = x0 + x1. Then

‖Tx‖X0+X1 ≤ ‖T0x0‖X0 + ‖T1x1‖X1

≤ (‖T0‖X0→Y0 ∨ ‖T1‖X1→Y1)(‖x0‖X0 + ‖x1‖X1).

So ‖Tx‖Y0+Y1 ≤ (‖T0‖X0→Y0 ∨ ‖T1‖X1→Y1)‖x‖X0+X1 . This proves the last assertion.

Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces. We provide

L((X0, X1), (Y0, Y1)) with the norm

‖T‖L((X0,X1),(Y0,Y1)) = ‖T |X0‖X0→Y0 ∨ ‖T |X1‖X1→Y1 .

Then L((X0, X1), (Y0, Y1)) is a Banach space. For the concept of interpolation functor we refer to

[Tri] Subsection 1.2.2. IfF is an interpolation functor and T ∈ L((X0, X1), (Y0, Y1)), then we denote

by TF : F(X0, X1) → F(Y0, Y1) the restriction of T to F(X0, X1). Note that TF is a bounded

operator. Alternatively, since we are interested in consistent operators, we also introduce another

notation. Let T0 ∈ L(X0, Y0) and T1 ∈ L(X1, Y1). Suppose that T0 and T1 are consistent. By

Lemma 3.1 there exists a unique T ∈ L((X0, X1), (Y0, Y1)) such that T |X0 = T0 and T |X1 = T1.

Then we define

F(T0, T1) = TF .

SoF(T0, T1) is a bounded operator fromF(X0, X1) intoF(Y0, Y1). Since T0, T1 andF(T0, T1) =

TF are all three restrictions of the same operator T onX0 +X1, it is obvious that the three operators

T0, T1 and F(T0, T1) = TF are pairwise consistent.

Lemma 3.2. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces and F an

interpolation functor. Then there exists an M > 0 such that

‖TF‖F(X0,X1)→F(Y0,Y1) ≤M ‖T‖L((X0,X1),(Y0,Y1))

for all T ∈ L((X0, X1), (Y0, Y1)).

DOI 10.20347/WIAS.PREPRINT.2382 Berlin 2017
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Proof. The operator T 7→ TF from the Banach space L((X0, X1), (Y0, Y1)) into the Banach space

L(F(X0, X1),F(Y0, Y1)) has a closed graph.

In several contexts dual semigroups are of interest, see the papers [Ama], [AE]. Therefore it makes

sense to establish a connection between consistency of operators and consistency of their adjoints.

Proposition 3.3. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces, T0 ∈
L(X0, Y0) and T1 ∈ L(X1, Y1). Suppose that T0 and T1 are consistent. Let T ∈ L((X0, X1), (Y0, Y1))

be such that T |X0 = T0 and T |X1 = T1. Then one has the following.

(a) T ′ = T ′0|(Y0+Y1)′ = T ′1|(Y0+Y1)′ .

(b) If Y0 ∩ Y1 is dense in both spaces Y0 and Y1, then

(Y0 + Y1)′ = Y ′0 ∩ Y ′1 (3.1)

and, consequently,

T ′ = T ′0|Y ′
0∩Y ′

1
= T ′1|Y ′

0∩Y ′
1
. (3.2)

Proof. ‘(a)’. Clearly the adjoint T ′ of T is a continuous operator from
(
Y0 +Y1)′ into

(
X0 +X1)′. Let

f ∈
(
Y0 + Y1

)′⊂ Y ′0 and x ∈ X0 ⊂ X0 +X1. Then

〈T ′0f, x〉X′
0×X0

= 〈f, T0x〉Y ′
0×Y0 = 〈f, Tx〉(Y0+Y1)′×(Y0+Y1) = 〈T ′f, x〉(X0+X1)′×(X0+X1).

The second equality is proved analogously.

‘(b)’. Under the density condition, the equality (3.1) is well-known, cf. [BL76] Theorem 2.7.1. Then (3.2)

follows from (a).

Definition 3.4. We say that an interpolation functor F has Property (d) (for dense) if for every inter-

polation couple (X0, X1) the subspace X0 ∩X1 is dense in the interpolation space F(X0, X1).

Example 3.5. The complex interpolation has Property (d). With exception of the limit values also the

real interpolation has Property (d). For complex and real interpolation, see [Tri] Subsections 1.9.3

and 1.6.2.

Example 3.6. The real interpolation with parameters the limit values does not have Property (d), see

[Tri] Remark 1.18.3.5.

The next lemma is easy to prove.

Lemma 3.7. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces and F an

interpolation functor which has Property (d). Let T0 ∈ L(X0, Y0), T1 ∈ L(X1, Y1) and suppose that

T0 and T1 are consistent. Then F(T0, T1) is the unique extension of the operator T |X0∩X1 : X0 ∩
X1 → Y0 ∩ Y1 which is continuous from the space F(X0, X1) into the space F(Y0, Y1).

Next we consider a functor on consistent semigroups.

DOI 10.20347/WIAS.PREPRINT.2382 Berlin 2017



Consistent operator semigroups and their interpolation 7

Proposition 3.8. LetF be an interpolation functor. Let (X0, X1) be an interpolation couple of Banach

spaces. Let S(0) and S(1) be consistent semigroups in X0 and X1 respectively. Then one has the

following.

(a) The family
(
F(S

(0)
t , S

(1)
t )
)
t>0

on F(X0, X1) is a semigroup which is consistent with both

S(0) and S(1).

(b) If both S(0) and S(1) are bounded semigroups, then the semigroup
(
F(S

(0)
t , S

(1)
t )
)
t>0

is also

bounded.

(c) Suppose in addition that S(0) and S(1) are C0-semigroups and that the interpolation functor F
has Property (d). Then the semigroup

(
F(S

(0)
t , S

(1)
t )
)
t>0

is a C0-semigroup.

Proof. ‘(a)’. This is straightforward.

‘(b)’. This follows from Lemmas 3.1 and 3.2.

‘(c)’. Without loss of generality we may assume that both S(0) and S(1) are bounded semigroups. For

all t > 0 write SFt = F(S
(0)
t , S

(1)
t ). Then also (SFt )t>0 is a bounded semigroup by Statement (b).

SinceF(X0, X1) is an intermediate space for the interpolation couple (X0, X1), there exists a c > 0

such that ‖x‖F(X0,X1) ≤ c ‖x‖X0∩X1 for all x ∈ X0 ∩X1. Let x ∈ X0 ∩X1 and t > 0. Then

‖SFt x− x‖F(X0,X1) ≤ c ‖SFt x− x‖X0∩X1 = c (‖S(0)
t x− x‖X0 + ‖S(1)

t x− x‖X1).

Hence limt↓0 ‖SFt x− x‖F(X0,X1) = 0 and limt↓0 S
F
t x = x in F(X0, X1).

Finally,X0∩X1 is dense inF(X0, X1) since the interpolation functor has Property (d). So limt↓0 S
F
t x =

x in F(X0, X1) for all x ∈ F(X0, X1).

We wish to determine the generator of the semigroup SF . We need a lemma.

Lemma 3.9. Let F be an interpolation functor which has Property (d). Let (X0, X1) be an interpola-

tion couple of Banach spaces. Further, let S(0) and S(1) be consistent C0-semigroups in X0 and X1

with generators −A0 and −A1, respectively. Let SF =
(
F(S

(0)
t , S

(1)
t )
)
t>0

be the C0-semigroup in

F(X0, X1) as in Proposition 3.8. Let −B be the generator of SF . Then D(A0) ∩D(A1) ⊂ D(B)

and D(A0) ∩D(A1) is a core for B.

Proof. Without loss of generality we may assume that both S(0) and S(1) are bounded semigroups.

The resolvent

(B + I)−1 : F(X0, X1)→ D(B)

is a topological isomorphism. Also the resolvent operators (B + I)−1 and (A0 + I)−1 are consistent

by Proposition 3.8(a) and Lemma 2.3. By Lemma 2.5(b) the restriction

(B + I)−1|X0∩X1 = (A0 + I)−1|X0∩X1 : X0 ∩X1 → D(A0) ∩D(A1)

DOI 10.20347/WIAS.PREPRINT.2382 Berlin 2017



A.F.M. ter Elst and J. Rehberg 8

is a bijection. Because X0 ∩ X1 ⊂ F(X0, X1), this implies immediately the assertion D(A0) ∩
D(A1) ⊂ D(B). Since F has Property (d), the space X0 ∩ X1 is dense in F(X0, X1). Hence

D(A0) ∩D(A1) is dense in D(B).

We provide the domain of a generator with the graph norm. Note that with the notation of the previous

lemma, (D(A0), D(A1)) is an interpolation couple and A0 ∈ L(D(A0), X0) and similarly A1 ∈
L(D(A1), X1). Now we are able to prove the main theorem of this paper.

Theorem 3.10. Let F be an interpolation functor which has Property (d). Let (X0, X1) be an interpo-

lation couple of Banach spaces. Further, let S(0) and S(1) be consistent C0-semigroups inX0 andX1

with generators −A0 and −A1, respectively. Then −F(A0, A1) is the generator of the semigroup(
F(S

(0)
t , S

(1)
t )
)
t>0

.

In particular,

D(F(A0, A1)) = F(D(A0), D(A1)).

Proof. Without loss of generality we may assume that S(0) and S(1) are bounded semigroups. Write

SFt = F(S
(0)
t , S

(1)
t ) for all t > 0 and let −B be the generator of the C0-semigroup SF . We know

that D(A0) ∩ D(A1) ⊂ D(B) by Lemma 3.9. Also Bx = A0x = AFx for all x ∈ D(A0) ∩
D(A1) by Proposition 2.5(a), where we set AF = F(A0, A1). The operator AF is bounded from

F(D(A0), D(A1)) into F(X0, X1). Hence there exists a c > 0 such that

‖AFx‖F(X0,X1) ≤ c ‖x‖F(D(A0),D(A1))

for all x ∈ F(D(A0), D(A1)). If x ∈ D(A0) ∩D(A1), then Bx = AFx and

‖Bx‖F(X0,X1) ≤ c ‖x‖F(D(A0),D(A1)).

Let x ∈ F(D(A0), D(A1)). Since D(A0)∩D(A1) is dense in F(D(A0), D(A1)) by Property (d),

there exists a sequence (xn)n∈N in D(A0) ∩ D(A1) such that limxn = x in F(D(A0), D(A1)).

Then (Bxn)n∈N is a Cauchy sequence in F(X0, X1) and limxn = x in F(X0, X1). Since B is a

closed operator, it follows that x ∈ D(B) and Bx = limBxn = limAFxn = AFx in F(X0, X1).

Hence B is an extension of AF .

It remains to show that D(B) ⊂ F(D(A0), D(A1)). The operator (A0 + I)−1 is bounded from X0

into D(A0) and the operator (A1 + I)−1 is bounded from X1 into D(A1). Moreover, the operators

(A0 + I)−1 and (A1 + I)−1 are consistent by Lemma 2.3. So by interpolation one obtains a bounded

operator, denoted by C , from F(X0, X1) into F(D(A0), D(A1)). Let c′ > 0 be such that

‖Cx‖F(D(A0),D(A1)) ≤ c′ ‖x‖F(X0,X1)

for all x ∈ F(X0, X1). If x ∈ X0 ∩X1, then Cx = (A0 + I)−1x. Hence

‖(A0 + I)−1x‖F(D(A0),D(A1)) ≤ c′ ‖x‖F(X0,X1)
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for all x ∈ X0 ∩X1. Using Proposition 2.5(b) it follows that

‖x‖F(D(A0),D(A1)) ≤ c′ ‖(A0 + I)x‖F(X0,X1) = c′ ‖(B + I)x‖F(X0,X1)

for all x ∈ D(A0)∩D(A1). ButD(A0)∩D(A1) is dense inD(B) by Lemma 3.9. SinceF(D(A0), D(A1))

is complete, it follows that D(B) ⊂ F(D(A0), D(A1)).

A similar statement is valid for the resolvents.

Proposition 3.11. LetF be an interpolation functor which has Property (d). Let (X0, X1) be an inter-

polation couple of Banach spaces. Further, let S(0) and S(1) be consistent bounded C0-semigroups

in X0 and X1 with generators −A0 and −A1, respectively. Then

F
(

(A0 + I)−1, (A1 + I)−1
)

=
(
F(A0, A1) + I

)−1

.

Proof. Write SFt = F(S
(0)
t , S

(1)
t ) for all t > 0. Let x ∈ X0 ∩X1. If F ∈ (X0 +X1)′, then

F
(

(F(A0, A1) + I)−1x
)

=

∫ ∞
0

e−t F
(
SFt x

)
dt =

∫ ∞
0

e−t F
(
S

(0)
t x
)
dt

= F
(

(A0 + I)−1x
)

= F
(
F
(

(A0 + I)−1, (A1 + I)−1
)
x
)
.

So

(F(A0, A1) + I)−1x = F
(

(A0 + I)−1, (A1 + I)−1
)
x.

Moreover, the operator (F(A0, A1) + I)−1 is bounded from F(X0, X1) into itself. Hence F
(

(A0 +

I)−1, (A1 + I)−1
)

= (F(A0, A1) + I)−1 by Lemma 3.7.

4 Example, Lp-spaces

One of the commonly used theorems states that semigroups on Lp-spaces, which are induced by

forms on L2, extrapolate consistently to the whole Lp-scale, provided one knows Gaussian estimates

for the L2-semigroup. We next describe this situation.

Let Ω ⊂ Rd be a bounded domain and D ⊂ ∂Ω be closed. We define

C∞D (Ω) = {ψ|Ω : ψ ∈ C∞(Rd) and suppψ ∩ D = ∅}.

For all p ∈ [1,∞) let W 1,p
D (Ω) be the closure of C∞D (Ω) in W 1,p(Ω). If q ∈ (1,∞], then we denote

byW−1,q
D (Ω) the (anti-)dual of the spaceW 1,q′

D (Ω), where q′ is the dual exponent of q. Let µ be a real,

bounded, measurable, elliptic function on Ω which takes its values in the set of real d × d-matrices.

Define the sesquilinear form t : W 1,2
D (Ω)×W 1,2

D (Ω)→ C by

t[u, v] =

∫
Ω

µ∇u · ∇v.
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A.F.M. ter Elst and J. Rehberg 10

Let A be the operator associated with t in L2(Ω) and let A : W 1,2
D (Ω) → W−1,2

D (Ω) be defined by

〈Au, v〉 = t[u, v] for all u, v ∈ W 1,2
D (Ω). ThenA andA generate analytic semigroups S(2) and S̃(2)

on L2(Ω) and W−1,2
D (Ω), respectively.

Theorem 4.1. Adopt the above notation and assumptions.

(a) The semigroups S(2) and S̃(2) are consistent.

(b) If the boundary around any point x ∈ ∂Ω \ D admits a bi-Lipschitzian boundary chart, then

the semigroup S(2) on L2(Ω) has a kernel with Gaussian upper estimates.

Moreover, the semigroup S(2) extends consistently to a C0-semigroup S(p) on Lp(Ω) for all

p ∈ [1,∞).

Proof. ‘(a)’. See [Ouh] Subsection 1.4.2.

‘(b)’. The first assertion is proved in [ER] Theorem 3.1. The second one follows from the first by [Are]

second proof on page 1160.

It is desirable in various contexts to know the consistency of semigroups on spaces like Lp(Ω) and

W−1,q
D (Ω) – as outlined in the introduction. Before we prove such a result we establish the following

lemma.

Lemma 4.2. Let p ∈ [1,∞) and q ∈ (1,∞). Then C∞c (Ω) is dense in W−1,q
D (Ω) ∩ Lp(Ω).

Proof. First of all, W−1,q
D (Ω) ∩ Lp(Ω) is dense in both W−1,q

D (Ω) and Lp(Ω), since C∞c (Ω) ⊂
W−1,q
D (Ω) ∩ Lp(Ω). Therefore(

W−1,q
D (Ω) ∩ Lp(Ω)

)′
=
(
W−1,q
D (Ω)

)′
+
(
Lp(Ω)

)′
= W 1,q′

D (Ω) + Lp
′
(Ω),

cf. [BL76] Theorem 2.7.1. Let F ∈ (W−1,q
D (Ω) ∩ Lp(Ω))′ = W 1,q′

D (Ω) + Lp
′
(Ω) and suppose that

F (u) = 0 for all u ∈ C∞c (Ω). Then F ∈ L1(Ω). So F = 0. Then the statement follows from the

Hahn–Banach theorem.

For all p ∈ [1,∞) let S(p) be the semigroup on Lp(Ω) as in Theorem 4.1(b) (assuming the conditions

of that theorem are satisfied).

Theorem 4.3. Assume that the boundary around any point x ∈ ∂Ω \ D admits a bi-Lipschitzian

boundary chart. Then the semigroup S̃(2) is consistent with the semigroup S(p) for every p ∈ [1,∞).

Proof. Let t > 0. If u ∈ C∞c (Ω), then S̃(2)
t u = S

(2)
t u = S

(p)
t u by Theorem 4.1. Now the result

follows from Lemmas 2.2 and 4.2.

There is also a version for W−1,q
D (Ω) with q ∈ [2,∞) under slightly more assumptions.

Theorem 4.4. Suppose that
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� the boundary around any point x ∈ ∂Ω \ D admits a bi-Lipschitzian boundary chart,

� the set D is a (d− 1)-set in the sense of Jonsson–Wallin [JW] Chapter II and

� Ω is a d-set in the sense of Jonsson–Wallin, or for all x ∈ Ω the matrix µ(x) is symmetric.

Let q ∈ [2,∞). Define the operator Ãq in W−1,q
D (Ω) by

D(Ãq) = {ψ ∈ W−1,q
D (Ω) ∩W 1,2

D (Ω) : Aψ ∈ W−1,q
D (Ω)}

and Ãq = A|D(Ãq). Then−Ãq generates a holomorphic semigroup onW−1,q
D (Ω) which is consistent

with the semigroup S(p) for all p ∈ [1,∞).

Proof. It follows from [DER] Lemma 6.9(c) that−Ãq generates a holomorphic semigroup onW−1,q
D (Ω).

Denote this semigroup by S̃(q). Then S̃(q) is consistent with S̃(2) by the paragraph before Lemma 6.9 in

[DER]. Hence if t > 0 and u ∈ C∞c (Ω), then S̃(q)
t u = S̃

(2)
t u = S

(p)
t u. Finally use again Lemmas 2.2

and 4.2.
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