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Hybrid finite-volume/finite-element schemes
for p(x)-Laplace thermistor models

Jürgen Fuhrmann, Annegret Glitzky, Matthias Liero

Abstract

We introduce an empirical PDE model for the electrothermal description of organic semiconductor
devices by means of current and heat flow. The current flow equation is of p(x)-Laplace type,
where the piecewise constant exponent p(x) takes the non-Ohmic behavior of the organic layers
into account. Moreover, the electrical conductivity contains an Arrhenius-type temperature law.
We present a hybrid finite-volume/finite-element discretization scheme for the coupled system,
discuss a favorite discretization of the p(x)-Laplacian at hetero interfaces, and explain how path
following methods are applied to simulate S-shaped current-voltage relations resulting from the
interplay of self-heating and heat flow.

1 Introduction

Presently, carbon-based semiconductors are used in smartphone displays and increasingly in TV
screens. Due to the fascinating properties of organic light-emitting diodes (OLEDs), e.g. large-area
surface emission, semi-transparency, flexibility, also lighting applications are of great interest. However,
lighting requires a much higher brightness than displays and hence higher currents are necessary.
These cause substantial Joule self-heating accompanied by unpleasant brightness inhomogeneities
of the panels. An appropriate simulation tool for the electrothermal description of OLEDs can help to
validate cost-efficient device concepts by accounting for nonlinear self-heating effects.

Applying a voltage to an organic semiconductor device induces a current flow which leads to a power
dissipation by Joule heating and hence also a temperature rise. As higher temperatures improve the
electrical conductivity in organic materials, higher currents occur. Thus, a positive feedback loop devel-
ops that either leads to the destruction of the device by thermal runaway if the generated heat cannot
be dispersed into the environment or results in S-shaped current-voltage characteristics. In particular,
in the latter case regions of negative differential resistance (S-NDR) appear, where currents increase
despite of decreasing voltages, see Fig. 1 (right). Devices that show such an electrothermal interplay
are called thermistors.

S-NDR has been verified for the organic material C60 in [7] and for organic materials used in OLEDs
in [6], where the temperature dependence of the conductivity is modeled by an exponential law of
Arrhenius type, which features an activation energy that is linked to the energetic disorder in the or-
ganic material. Due to the huge aspect ratios of OLED panels, such devices cannot be regarded as
a single spatially homogeneous thermistor device, but rather as an array of thermally and electrically
coupled thermistor devices. In particular, the self-heating, and hence also the local differential resis-
tance, is now a collective property of neighboring thermistors. One attempt is followed in [6] where
the electrothermal behavior of OLEDs is investigated by means of electrically and thermally coupled
thermistor networks and SPICE simulations.

In this paper, we present a mathematical model for the current and heat flow in organic semiconductor
devices consisting of a coupled PDE system for the electrostatic potential and the temperature, see
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Figure 1: Schematic view of an OLED stack (left) and simulated current-voltage characteristics for
different thermal outcoupling regimes, regions of negative differential resistance are dashed (right)

Sect. 2. This PDE modeling approach gives much more flexibility concerning variations in geometry
and material composition than network models. An essential feature of our PDE model is that the
current flow equation is of p(x)-Laplace type, where the exponent p(x) takes the non-Ohmic behavior
of the organic layers into account. The exponent is in general discontinuous but piecewise constant as
the different functional layers exhibit different power laws. In Sect. 3 we introduce a numerical scheme
for the simulation of current and heat flow in OLEDs. One of the major challenges is the derivation
of a stable scheme for the p(x)-Laplacian, which we address by using a hybrid finite-volume/finite-
element approach which is discussed in Sect. 4. Whereas the presented scheme preserves lower
bounds for the temperature, a convergence proof is still under discussion. Challenges arise from bad
analytical properties of the Joule heat term. Finally, in Sect. 5 we describe a path following method
which enables us to simulate the electrothermal behavior of organic semiconductor devices also in the
S-NDR regime.

2 PDE Modeling of Current and Heat Flow

To describe the interplay of current and heat flow in OLEDs the following empirical PDE model was
developed in [9]. It consists of the current flow equation for the electrostatic potential ϕ and the heat
equation for the temperature T

−∇ · S(x, T,∇ϕ) = 0,
−∇ ·

(
λ(x)∇T ) = H(x, T,∇ϕ)

on Ω ⊂ Rd (2.1)

with electrical current density S, heat conductivity λ, and Joule heat term H . The special features of
the model are the Arrhenius-like temperature law as well as the non-Ohmic current-voltage relations
incorporated by a power law in the function S,

S(x, T,∇ϕ) = κ0(x)F (x, T )|∇ϕ|p(x)−2∇ϕ, F (x, T ) = exp
[
− Eact(x)

kB

( 1

T
− 1

Ta

)]
.
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Here, Ta > 0 and kB denote the fixed ambient temperature and Boltzmann’s constant. The quantitites
κ0, p, and Eact are material dependent effective conductivity, power law exponent, and activation en-
ergy, respectively, which have to be extracted from measurements. The first equation in (2.1) becomes
of p(x)-Laplacian type with discontinuous but piecewise constant exponent p. In particular, we have
p(x) ≡ 2 in Ohmic materials such as electrodes and different values p(x) > 2 in organic layers. The
Joule heat term in the second equation of (2.1) takes the form

H(x, T,∇ϕ) = η(x, T,∇ϕ)κ0(x)F (x, T )|∇ϕ|p(x),

where η(x, T,∇ϕ) ∈ [0, 1] represents the light-outcoupling factor. The system is complemented by
Dirichlet and no-flux boundary conditions for the potential ϕ at the contacts ΓD and the insulating
parts ΓN of the boundary, and Robin boundary conditions for the heat flow to describe the coupling to
the environment

ϕ = ϕD on ΓD, S(x, T,∇ϕ) · ν = 0 on ΓN ,

− λ(x)∇T · ν = γ(x)(T − Ta) on Γ = ∂Ω.
(2.2)

Since the Joule heat term H is a priori only in L1, the mathematical treatment of the system is
not straightforward. For analytical results concerning the existence, boundedness and regularity of
solutions to Problem (2.1), (2.2) we refer to [3, 4, 8].

3 Numerical Scheme

Since we have to deal with piecewise constant functions p(x), we subdivide the computational domain
Ω =

⋃
r∈RΩr into disjoint subdomains coinciding with the regions of continuity of the coefficients.

We call the surface between two neighboring regions hetero interface. Due to its ability to preserve
the maximum principle of the current flow equation and the positivity of the temperature, we prefer a
two-point flux finite-volume method for the dicretization of (2.1), (2.2) over methods defined on more
general meshes (e.g. [5]). Our control volumes are Voronoi cells based on a grid with the boundary
conforming Delaunay property with respect to boundaries and hetero interfaces [11]. Let V denote
the set of Voronoi boxes and m = #V be the number of cells. We assume that each control volume
K ∈ V contains a collocation point xK ∈ Ω.

Let K ∈ V be an internal Voronoi box meaning that mesd−1(K ∩ ∂Ω) = 0. We apply Gauss’s
theorem to the integral of the flux divergence to obtain for the current flow equation in (2.1) the flux
balance with further subdivision into contributions from adjacent subdomains (κ0,r and Fr indicate the
corresponding values in region Ωr):

0 =

∫
K

∇ · S(x, T,∇ϕ) dx =
∑
r∈R

∑
L∼K

∫
K∩L∩Ωr

κ0,r Fr(T )|∇ϕ|pr−2∇ϕ · νKL da, (3.1)

where L ∼ K indicates that L is adjacent to K and νKL is the unit normal vector pointing from K
into L. Note that the normal flux over a surface K ∩ L ∩ Ωr does not only depend on the normal
components of ∇ϕ but on the modulus of the full gradient. To take this into account we compute
the approximation of |∇ϕ|2 on K ∩ L ∩ Ωr as the average squared norms of the P1 finite element
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gradients ∇τϕ over the set TK,L,r of all simplices τ (triangles in 2D) in the underlying Delaunay
triangulation adjacent to the edge xKxL and belonging to Ωr:

∣∣∇ϕ∣∣2|K∩L∩Ωr
≈ G2

K,L,r(ϕ) :=

∑
τ∈TK,L,r

|τ ||∇τϕ|2∑
τ∈TK,L,r

|τ |
. (3.2)

By this approach we find an approximation of the right-hand side of (3.1) consisting in replacing the
surface integral by a simple quadrature, and the gradient projection by a finite difference expression

0 =
∑
r∈R

∑
L∼K

|K ∩ L ∩ Ωr|
|xK−xL|

κ0,rFr(TKL)GK,L,r(ϕ)pr−2(ϕL−ϕK). (3.3)

The same method for calculating the conductivity in the Joule heat term is combined with the technique
proposed in [2] allowing to evaluate the Joule heating approximation by edge contributions: Gauss’s
theorem in the heat equation yields

0 =
∑
L∼K

∫
K∩L

λ(x)∇T · νKL da +

∫
K

η(x)κ0(x)F (x, T )|∇ϕ|p(x) dx, (3.4)

and the suggested approach yields the approximation of the heat flow equation on K

0 =
∑
r∈R

∑
L∼K

(
|K ∩ L ∩ Ωr|
|xK−xL|

λr(TL−TK)

+
1

2

|K ∩ L ∩ Ωr|
|xK−xL|

ηrκ0,rFr(TKL)GK,L,r(ϕ)pr−2(ϕL−ϕK)2

)
,

(3.5)

where TKL = (TK+TL)/2.

For Voronoi boxes K ∈ V with mesd−1(K ∩ ∂Ω) > 0 we additionally have to implement Dirichlet,
no-flux or Robin boundary conditions, respectively,

w = wD or − ν · (b∇w) = 0 or − ν · (b∇w) = e(w − wD) on K ∩ Ωr ∩ ∂Ω.

We write the flux over an outer face K ∩ Ωr ∩ ∂Ω as er(wK − wDr )|K ∩ Ωr ∩ ∂Ω|, where wDr
corresponds to a mean of wD on K ∩Ωr ∩ ∂Ω, er is chosen very large to realize Dirichlet boundary
values, er is set to zero for no-flux boundary conditions and it corresponds to a mean for e in case of
Robin boundary conditions. Such that, according to (3.3) and (3.5) for all Voronoi boxes K ∈ V we
have to solve

0 =
∑
r∈R

(∑
L∼K

|K ∩ L ∩ Ωr|
|xK−xL|

κ0,rFr(TKL)GK,L,r(ϕ)pr−2(ϕL−ϕK)

+ er(ϕK − ϕDr )|K ∩ Ωr ∩ ∂Ω|
)
,

(3.6)
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p(x) = 6 p(x) = 6p(x) = 2 p(x) = 2p(x) = 6 p(x) = 6p(x) = 2 p(x) = 2

(a) (b) (c)
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Figure 2: Discrete solutions of p(x)-Laplace equation (4.1) with constant right-hand side, homoge-
neous Dirichlet boundary conditions, and piecewise constant p(x): (a) correct approximation, (b)
wrong approximation with two local maxima due to gradient averaging ignoring the hetero interface,
and (c) L2 error of approximating solutions for correct and wrong averaging schemes

0 =
∑
r∈R

∑
L∼K

(
|K ∩ L ∩ Ωr|
|xK−xL|

λr(TL−TK)

+
1

2

|K ∩ L ∩ Ωr|
|xK−xL|

ηrκ0,rFr(TKL)GK,L,r(ϕ)pr−2(ϕL−ϕK)2

)
+
∑
r∈R

γr(TK − Ta)|K ∩ Ωr ∩ ∂Ω|.

(3.7)

4 Numerical Tests for the p(x)-Laplacian

To justify our discretization ansatz for the gradient norm |∇ϕ| in (3.2), we consider the two-dimensional
test case for the p(x)-Laplacian

−∇ · (|∇ϕ|p(x)−2∇ϕ) = f in Ω, ϕ = 0 on ∂Ω (4.1)

with fixed source term f = 1, where Ω is composed of two unit squares Ω1 and Ω2 being glued
together at one edge and setting p(x) = 6 in Ω1 and p(x) = 2 in Ω2, respectively. The simulations
in Fig. 2 illustrate the importance of taking care of the hetero interface when calculating the average
of the gradient norm. An averaging over all simplices adjacent to a given edge regardless of the
hetero region they belong to leads to an artificial diffusion along the hetero interface. We highlight the
appearance of two local maxima (one centered in Ω1 and one centered in Ω2) in Fig. 2 (b). As shown
in Fig. 2 (c), this effect cannot be diminished by grid refinement. Indeed, the L2 error of the wrong
averaging scheme with respect to the correct solution (Fig. 2 (a)) stays above a positive constant.

The validity of our approach (3.2) and the way it has been implemented (by (3.6) with right hand
side |K| and κ0,r = Fr(TKL) = 1, ϕDr = 0, er large) hinges on the fact that all the measures
|K ∩ L ∩ Ωr| can be calculated from contributions from each simplex which at the hetero interfaces
have to stay nonnegative. It is guaranteed by the boundary conforming Delaunay property of the
underlying triangulation.
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Table 1: Geometry and material parameters

Domain p Eact [eV] κ0 [1/(Ωm)] λ [W/(mK)] η Thickness [nm]

Ωanode 2.0 0.0 7.4× 10−6 1.0× 103 1.0 9
Ω1 4.07 0.325 7.7× 10−8 1.0× 103 1.0 64
Ω2 6.0 1.588 9.7× 10−8 1.0× 103 0.8 20
Ω3 4.7 0.2 2.1× 10−7 1.0× 103 1.0 50

5 A Path Following Method for Simulating S-shaped Current-
Voltage Relations

Our discretization scheme allows to simulate complicated three-dimensional OLED structures, see
[6]. As an example we consider a crossbar OLED stack depicted in Fig. 1 (left), given by two stacked
cuboids Ωanode and Ωorg. The upper one, Ωanode, representing the optically transparent anode is over-
lapping to the left and electrically contacted only on the left side Γ+. The lower one, Ωorg, consisting of
the organic semiconducting layers Ω1, Ω2, and Ω3 realizes the actual OLED structure with an active
area of 2 mm × 2 mm, see Fig. 1 (left). The organic material is contacted by a metal layer. Due to
the high conductivity of this layer we assume that the potential is constant here and neglect the metal
layer entirely in the simulations by prescribing Dirichlet boundary conditions on the bottom Γ− of Ω3.

On Γ− the potential is set to zero and on Γ+ to the (spatially constant) externally applied voltage V .
We determine the current-voltage relation of the OLED stack (which can be S-shaped) by calculating
the current over Γ+. Then, the Dirichlet boundary is given by ΓD = Γ+∪Γ−. The ambient temperature
is fixed to 293 K, the other essential parameters for the simulation are collected in Table 1.

With the equations (3.6) and (3.7) for all Voronoi boxes K ∈ V we arrive at a system of 2m coupled
nonlinear algebraic equations for u = (ϕK , TK)K∈V of the form

g(u, V ) = 0, g : R2m × R→ R2m.

To trace a solution branch, starting from a solution (u0, V0) of g(u, V ) = 0 we use a predictor-
corrector method [10] adapted to PDE calculations as proposed in [1]. The prediction is obtained by
moving forward a step along the tangent t to the branch. First we solve gu,V (u0, V0)t = 0, t ∈ R2m+1.
To ensure that t points in the forward direction with respect to the tangent t0 of the last point, we
demand t0 · t > 0. In other words, we have to solve( gu,V (u0, V0)

t0

)
t =

( 0
1

)
.

Next, we normalize t such that ‖t‖ = 1. Our predictor (u∗, V ∗) now is choosen as

( u∗

V ∗

)
=
( u0

V0

)
+

∆L

‖t‖∗
t, where ‖t‖2

∗ =
1

2m

2m∑
i=1

t2i + t22m+1

ensures that a step along the branch gives similar proportion to the unknowns and to the parameter,
and, by construction, ‖u∗−u0, V

∗−V0‖∗ = ∆L. The corrector step consists in solving the nonlinear
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Figure 3: Simulated current density [A/m2] (left) and temperature distribution [K] (right) in horizontal
cross section through the middle of the organic emitter layer at an applied voltage of 6.5 V

system ( g(u, V )
‖u− u0, V − V0‖2

∗ − (∆L)2

)
= 0

by Newton’s method, where the calculated prediction (u∗, V ∗) is used as starting value. If Newton’s
method does not converge, meaning that the predictor is too far from the desired solution, the step
size ∆L (related to the arc length parameter) is locally reduced until the method is convergent. The
convergent Newton procedure yields the next point (u1, V1) on the solution branch with a distance of
∆L to (u0, V0).

Fig. 3 contains the simulated current density and the temperature distribution in a horizontal cross
section in the emitting layer of the OLED material for an applied voltage of 6.5 V. Have in mind that
the temperature and current density maxima appear at the side where the anode voltage is applied.
Fig. 1 (right) shows simulated S-shaped current voltage relations for test structures with different
thermal outcoupling regimes realized by varying heat transfer coefficients γ in (2.2).
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[4] Bulíček, M., Glitzky, A., Liero, M.: Thermistor systems of p(x)-Laplace-type with discontinuous
exponents via entropy solutions. to appear in DCDS-S (WIAS Preprint 2247 (2016))

DOI 10.20347/WIAS.PREPRINT.2378 Berlin 2017



J. Fuhrmann, A. Glitzky, M. Liero 8

[5] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion
problems on general nonconforming meshes. IMA J. Numer. Anal. 30, 1009–1043 (2010)

[6] Fischer, A., Koprucki, T., Gärtner, K., Brückner, J., Lüssem, B., Leo, K., Glitzky, A., Scholz, R.:
Feel the heat: Nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24, 3367–
3374 (2014)

[7] Fischer, A., Pahner, P., Lüssem, B., Leo, K., Scholz, R., Koprucki, T., Gärtner, K., Glitzky, A.:
Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110,
126,601/1–126,601/5 (2013)

[8] Glitzky, A., Liero, M.: Analysis of p(x)-Laplace thermistor models describing the electrothermal
behavior of organic semiconductor devices. Nonlinear Anal. Real World Appl. 34, 536–562 (2017)

[9] Liero, M., Koprucki, T., Fischer, A., Scholz, R., Glitzky, A.: p-Laplace thermistor modeling of elec-
trothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys. 66, 2957–2977
(2015)

[10] Seydel, R.: Practical bifurcation and stability analysis. Springer (1994)

[11] Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Computa-
tional Mathematics and Mathematical Physics 50(1), 38–53 (2010)

DOI 10.20347/WIAS.PREPRINT.2378 Berlin 2017


