
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Flux large deviations of independent and reacting particle

systems, with implications for macroscopic fluctuation theory

D.R. Michiel Renger

submitted: February 22, 2017 (revision: August 23, 2017)

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: michiel.renger@wias-berlin.de

No. 2375

Berlin 2017

2010 Mathematics Subject Classification. 46N55, 60F10, 60J27, 82C35.

2010 Physics and Astronomy Classification Scheme. 05.40.-a, 05.70.Ln, 82.40.Bj, 82.20.Fd.

Key words and phrases. empirical measure, empirical flux, discrete space, large deviations, macroscopic fluctuation the-
ory.

This research has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 “Scaling Cascades
in Complex Systems”, Project C08 “Stochastic spatial coagulation particle processes”. The author thanks Davide Gabrielli,
Alexander Mielke and Robert Patterson for their helpful discussions and comments.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Flux large deviations of independent and reacting particle
systems, with implications for macroscopic fluctuation theory

D.R. Michiel Renger

Abstract

We consider a system of independent particles on a finite state space, and prove a dynamic
large-deviation principle for the empirical measure-empirical flux pair, taking the specific fluxes
rather than net fluxes into account. We prove the large deviations under deterministic initial con-
ditions, and under random initial conditions satisfying a large-deviation principle. We then show
how to use this result to generalise a number of principles from Macroscopic Fluctuation Theory
to the finite-space setting.

1 Introduction

A well-known strengthening of the Second Law states that for thermodynamically closed systems not
only is the free energy non-increasing in time, but the system is driven by its free energy. Exactly how
the free energy drives the system can often be made precise by linear response theory, that is, a con-
stitutive relation between thermodynamic driving forces, defined as the derivative of the free energy,
and the thermodynamic velocities, that is, ċ(t) = −K

(
c(t)
)
DF

(
c(t)
)
. If the state-dependent oper-

ator K(c) is symmetric and positive definite, then such equations are actually gradient flows on the
manifold with inverse metric tensor K(c), and the Second Law follows as a consequence. Moreover,
one then also has the free energy-dissipation balance, that is, the dissipation of free energy equals
the free energy production. Since the work of Onsager it is well-known that the symmetry of the oper-
ator K(c) is closely connected to detailed balance of an underlying microscopic system [Ons31] via
large-deviation principles. In a general setting, one can always derive free energy-dissipation balances
from microscopic systems satisfying detailed balance, although this may lead to non-linear response
theories, and non-quadratic dissipations, in particular on discrete spaces [MPR14].

For microscopic systems that are not in detailed balance with macroscopic systems that are not ther-
modynamically closed, this is no longer true. A detailed balance condition can be violated either due to
bulk forces, or due to boundary effects. Typical examples of the latter are the boundary-driven systems
studied in for example [BDSG+02, BDSG+03, DLE03]. We will focus our attention on bulk forces. The
typical case is a system with a uniform stationary state and an external non-conservative force field
that causes mass to flow around in cycles, leaving the stationary state intact. Hence the work done
by the external force field may have no effect on the concentration, and an energy-dissipation balance
as described above is not to be expected. Naturally, the work done is not simply lost, but the resulting
effect cannot be observed unless both the concentration and the fluxes are taken into account. This
idea is the core of Macroscopic Fluctuation Theory (MFT), which allows to derive many thermodynamic
properties for systems that are not in detailed balance, see the recent overview paper [BDSG+15] and
the references therein. The aim of the current paper is to provide a few steps towards a more general
Macroscopic Fluctuation Theory, as follows.
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D.R.M. Renger 2

Firstly, most known results in MFT are stated for systems on a continuous space (at least macro-
scopically). Therefore the stochastic noise is usually driven by some noise that is approximately white,
leading to Freidlin-Wentzell-type large deviations that can be written as a squared Hilbert norm. Of
course, having a natural Hilbert structure at hand can be beneficial in many ways. For example, with
a Hilbert structure one can split the large deviations into orthogonal components: gradient parts and
solenoidal parts. However, it is more natural for processes on discrete spaces to be driven by Poisson
noise; in that case the large deviations will no longer be quadratic. Nevertheless, in this paper we will
see that many arguments of MFT are also valid in the non-quadratic case.

Secondly, it should be noted that most known MFT studies net fluxes only. In the current paper we
distinguish between forward and backward fluxes through an edge, which we call one-way fluxes. This
has a few advantages. Firstly, there could be forces that produce strong fluxes without changing the
net flux; such forces speed up the mixing behaviour of the system and can therefore be important
quantities to study. Secondly, it turns out that on discrete spaces the large deviation rate for the one-
way fluxes takes on a very explicit form, whereas the large deviations for the net fluxes is defined
implicitly, either via a convex dual, or via a minimisation problem. Indeed, this minimisation comes
from a simple contraction principle, which can always be applied whenever only the net fluxes are of
interest.

Thirdly, we study generalised gradient structures and what we call dissipative structures that are in-
duced by the large-deviation Lagrangians. We show that in an abstract setting, such gradient structures
must always be related to the adjoint of the continuity equation.

Some of the MFT principles that we consider are also studied in the work [BMN09], which is more
physics-oriented and focuses on net fluxes rather than one-way fluxes.

1.1 Microscopic models

In this paper we consider two classes of models: (A) independent particles on a finite state space, and
(B) reacting particles on a finite state space, where we allow for mean-field interaction and a broad
range of possible reactions including annihilation, creation, coagulation and fragmentation. Of course
the independent particle model is a subclass of the reacting particle model. For the independent case
we will rigorously prove the many-particle limit and the corresponding large deviations, which is –
maybe surprisingly given the independence of the particles – not completely trivial. For the reacting
particle model the large deviations will only be calculated formally. We can then use the large devia-
tions to study MFT for the more general setting of reacting particles.

(A) Let X1(t), X2(t), . . . be independent copies of a Markov chain on a finite state space I , with
generator matrix Q ∈ RI×I . We first assume the following initial conditions:

Fix a 0 < µ ∈ P(I) and deterministic initial positions in I : X1(0) = x1, X2(0) =
x2, . . . in I , such that

C(n)(0) :=
1

n

∑n
k=1 1xk −−−→n→∞

µ. (1)

Later we will consider random initial conditions as well. Throughout this paper, all processes will be
of bounded variation, where we implicitly assume càdlàg representatives. Therefore the (random) set
jumpt(Xk) := {t̂ ∈ (0, t);Xk(t̂

−) 6= Xk(t̂)} of any Markov chain Xk will be at most countable
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(actually finite a.s.). Define the empirical measure and the empirical integrated (one-way) flux by

C(n)(t) :=
1

n

n∑
k=1

1Xk(t), and W(n)(t) :=
1

n

n∑
k=1

∑
t̂∈jumpt(Xk)

1(
Xk(t̂−),Xk(t̂)

).
Then the pair

(
C(n)(t),W(n)(t)

)
is a Markov process in P(I)× l1+(I × I) with generator

(Q(n)φ)(c,w) := n
∑∑
i 6=j

ciQij

[
φ(ci→j,wij+)− φ(c,w)

]
, (2)

and deterministic initial condition
(
C(n)(0),W(n)(0)

)
=
(
n−1

∑n
k=1 1xk , 0

)
, where ci→j := c −

1
n
1i + 1

n
1j and wij+ := w + 1

n
1ij . This notation will only be used for fixed n, and so we can

repress the dependence on that parameter. Here, l1+(I × I) is the space of non-negative matrices
RI×I

+ equipped with the norm |w|1 =
∑∑

i 6=j wij . By a slight abuse of notation we ignore diagonal
elements in this space.

(B) The reacting particle model that we study is a classic model in the study of chemical reactions,
which is sometimes know as the Chemical Master Equation (although this usually signifies a model
with specific mass-action reaction rates), see [AK11] and the references therein. In this model the
number of particles is no longer conserved, and so to avoid confusion we replace the parameter n by
a parameter V (for volume) which controls the order of the number of particles in the system. Similar
to initial condition (1.1) we fix a µ ∈ l1+(I), not necessarily a probability measure, such that initially
the number of particles in the system is approximately V |ν|1. The dynamics will consist of a finite
number of possible reactions r ∈ R. A reaction r corresponds to removing of a number of particles
(α(r)

1 , . . . , α
(r)

I ) ∈ NI and adding a number of particles (β(r)

1 , . . . , β(r)

I ) ∈ NI , so that the net result
of a reaction r can be described by the effective stoichiometric vector γ(r) = β(r) − α(r) ∈ ZI . A
reaction r takes place with a rate k(V,r)

(
C(V )(t)

)
that depends on the empirical measure

C(V )(t) :=
1

V

N(V )(t)∑
k=1

1Xk(t),

where N (V )(t) denotes the number of particles in the system at time t. Similarly as above, we can
now define the integrated flux as

W(V )

r (t) := 1
V

#
{

reactions r that occurred in time (0, t]
}
.

The pair (C(V ),W(V )) is then a Markov process in l1+(I)× l1+(R), with generator

(Q(V )φ)(c,w) :=
∑
r

k(V,r)(c)
[
φ(c+ 1

V
γ(r),w + 1

V
1r)− φ(c,w)

]
. (3)

Observe that this indeed includes the independent case:R = I × I\{i = j}, k(n,(i,j))(c) = nciQij

and γ(i,j) = 1j − 1i and V = n.

1.2 Macroscopic models and large deviations

(A) In the many-particle limit, the independent particle process (C(V ),W(V )) converges to the solution
of

ċ(t) + div ẇ(t) = 0, (4a)

ẇ(t) = c(t)⊗ Q, (4b)
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with initial condition
(
c(0),w(0)

)
=
(
µ, 0
)
, using the notation (c⊗ Q)ij := ciQij and (divw)i :=∑

j∈I wij − wji. We will make this convergence result rigorous in Proposition 3.3. Observe that the
net integrated flux through an edge (i, j) is just the anti-symetric matrix wij−wji, so that the one-way
fluxes really encode more information. Equation (4a) is the continuity equation, or conservation law,
and it plays an important role in MFT. Naturally, the microscopic equation also satisfies the continuity
equation, hence microscopic fluctuations can only occur around (4b).

In Theorems 4.1 and 4.2 we prove large-deviation principles that characterise the dynamic microscopic
fluctuations around the macroscopic limit:

Prob
((
C(n)(·),W(n)(·)

)
≈ (c,w)

)
∼ e−nI0(c(0))−nJ(0,T )(c,w) as n→∞,

J(0,T )(c,w) :=



∫ T
0
S
(
ẇ(t)|c(t)⊗ Q

)
dt, if (c,w) ∈

W 1,1
(
0, T ;P(I)× l1(I × I)

)
and ċ+ div ẇ = 0,

and limt↘0 w(t) = 0,

∞, otherwise.

(5)

Here S(Â|A) :=
∑∑

i 6=j λB(Âij/Aij)Aij is the usual relative entropy and λB(z) := z log z−z+1
for z > 0 and λB(0) := 0 is the Boltzmann function. We first prove the large deviations under initial
condition (1.1), in which case

I0

(
c(0)

)
=

{
0, c(0) = µ,

∞, otherwise.
(6)

After that we will prove the large-deviation principle for more general initial conditions, where C(n)(0)
is assumed to be random, and satisfying a large-deviation principle with some given rate functional
I0.

(B) For the reacting particle model we assume that the average reaction rates converge 1
V
k(r,V ) →

k̄(r) as V →∞. Then under suitable assumptions, see for example [Kur70, Kur72, SW95, PR16], the
process (C(V ),W(V )) converges to the solution of

ċ(t) = Γw(t), (7a)

ẇ(t) = k̄(c(t)), (7b)

where

Γ :=
[
γ(1) . . . γ(R)

]
. (7c)

Of course, (7a) can again be interpreted as a continuity equation. Formally, we shall see that the pair
(C(V ),W(V )) satisfies a large-deviation principle,

Prob
((
C(V )(·),W(V )(·)

)
≈ (c,w)

)
∼ e−V I0(c(0))−V J(0,T )(c,w) as V →∞,

J(0,T )(c,w) :=


∫ T

0
S
(
ẇ(t)|k̄(c(t))

)
dt, if (c,w) ∈ W 1,1

(
0, T ; l1+(I)× l1+(R)

)
and ċ− Γw = 0,

and limt↘0 w(t) = 0,

∞, otherwise.

(8)
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1.3 Overview

The paper is organised into two parts. In the first part we rigorously prove the flux large deviations for
the independent particles case, and formally for the reacting particle system. In Section 2 we introduce
the space, the topology and the sigma algebra that will be used for the large deviations. In Section 3
we discuss well-posedness for the microscopic and macroscopic models, and show that the micro-
scopic process converges to the deterministic macroscopic equation; these results are needed for the
large deviations. In Section 4 we rigorously prove the dynamic large-deviation principle large-deviation
principle (5) for the state-flux pair in the independent case, first under deterministic initial conditions
and then under random initial conditions. As common in dynamical large deviation theory, the difficulty
lies in showing that the rate functional can be approximated by a set of sufficiently regular paths in
order to prove the lower bound. It is also common to either regularise the perturbation factor [PR16], or
replace the probabilities by exponentially equivalent ones [SW95, Ch. 5]. However, in the current work
we directly regularise the paths (c,w), and exploit the explicit formulation (5) of the rate functional. Un-
fortunately this argument is not easily generalisable to the reacting particle model, see Remark 4.19.
Nevertheless we will formally derive those large deviations at the end of Section 4. In the second part
of the paper, i.e. Section 5, we will work in the more general setting, assuming the large deviations
for the reacting particle model hold. We then explore what these large deviations imply for MFT on
discrete spaces with one-way fluxes. In particular, we derive a number of time-reversal symmetries.
After this we introduce the concept of dissipative structures and its relation with generalised gradient
structures, and apply these concepts to the setting of this paper, where we will need the net fluxes
rather than the one-way fluxes.

2 Preliminaries

2.1 Paths of bounded variation

Throughout this paper we consider paths of bounded variation on an arbitrary time interval (0, T ). For
any Banach space valued function f ∈ L1(0, T ;X∗), the essential pointwise variation is

epvar(f) := inf
g=f a.e.

sup
0<t1<...<tK<T

K∑
k=1

‖g(tk)− g(tk−1)‖X∗ ,

where the supremum runs over all finite partitions of the interval (0, T ). The space of paths of bounded
variation is defined as

BV(0, T ;X∗) :=
{
f ∈ L1(0, T ;X∗) : epvar(f) <∞

}
.

Any function of bounded variation f has a weak derivative ḟ ∈ M(0, T ;X∗) which is a X∗-
valued bounded measure on (0, T ) with total variation norm ‖ḟ‖TV = epvar(f) [AFP06, Prop. 3.6
& Th. 3.27]. In addition, if a function of bounded variation is absolutely continuous, then f lies in
W 1,1(0, T ;X∗) [AFP06, p. 139]. Moreover, any path of bounded variation f ∈ BV(0, T ;X∗) has a
càdlàgrepresentative, that satisfies f(t) = f(0) + ḟ

(
(0, t]

)
[AFP06, Th. 3.28].

We will be particarly concerned with the set

BVflux := BVflux

(
0, T ;P(I)× l1(I × I)

)
:={

(c,w) ∈ BV
(
0, T ;P(I)× l1(I × I)

)
: ċ = − div ẇ

}
.
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Observe that the continuity equation in this definition is in general a measure-valued equation in time,
i.e. ċ(dt) = − div ẇ(dt). In this sense both the microscopic model and the macroscopic model
satisfies the continuity equation.

Throughout the paper we will need the following three simple estimates for any (c,w) ∈ BVflux:

epvar(c) = ‖ċ‖TV = ‖div ẇ‖TV ≤ 2 ‖ẇ‖TV = 2 epvar(w), (9)

‖c‖L1(0,T ;P(I)) =

∫ T

0

|c(t)|1 dt = T, (10)

‖w‖L1(0,T ;l1(I×I)) =

∫ T

0

|w(t)|1 dt =

∫ T

0

|ẇ((0, t])|1 dt

≤
∫ T

0

|ẇ|1((0, T ]) dt = T ‖ẇ‖TV = T epvar(w). (11)

Remark 2.1. Inequality (9) actually becomes an equality if w does not have simultaneous jumps. For
microscopic paths (C(n),W(n)) with finite n this is indeed almost surely the case.

2.2 The hybrid topology and Borel sigma-algebra

In this paper we always equip the space of paths of bounded variation with the hybrid topology. This
topology is defined via the convergent nets as follows. We say that a sequence (or net) (cn,wn)n in
BV
(
0, T ;P(I)× l1(I × I)

)
converges hybridly to a path of bounded variation (c,w) whenever

(cn,wn)→ (c,w) strongly in L1
(
0, T ;P(I)× l1(I × I)

)
and

(ċn, ẇn)→ (ċ, ẇ) vaguely,

that is, against all test functions in C0

(
0, T ;RI×I×I). It should be noted that this topology is mostly

known in the literature as the weak-* topology [AFP06, Def. 3.11]. The term hybrid topology was
recently introduced in [HPR16] to distinguish it from the functional analytical weak-* topology; strictly
speaking, the two topologies only coincide in finite dimensions and restricted to bounded variation
balls.

The space BV
(
0, T ;P(I) × l1(I × I)

)
equipped with the hybrid topology is not a Polish space -

it is not metrisable. This could make it difficult to do probability theory on this space. It is, however,
completely regular and perfectly normal [HPR16, Th. 3.15]. Therefore, the corresponding Borel sigma-
algebra ‘behaves nicely’, and the standard tools from probability theory that we will need are still valid
[HPR16, Sec. 4].

We choose to work with the space of paths of bounded variation rather than the usual Skorohod space
since the compactness criteria are very easy. This simplifies the proof of the exponential tightness,
Proposition 4.6, considerably. In particular, because of the estimates (9),(10) and (11) above,

Proposition 2.2 ([AFP06, Th. 3.23] and [HPR16, Th. 3.18]). Let F ⊂ BVflux be a subset of finite
variation: sup(c,w)∈F epvar(w) <∞. Then F is hybrid-compact.

A similar argument is used in [PR16] to prove large deviations for infinite chemical reaction networks,
and related approaches can be found in [Jak97] and [BFG15].

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017
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3 Well-posedness and many-particle limit

We now discuss the well-posedness of both the microscopic and macroscopic model, and provide a
short proof of the convergence from the micro to the macro model. The proofs of the results in this
section are fairly standard, but we include them for completeness. For the proof of the large deviations
in Section 4, we will in fact need these results for a slightly more general process, perturbed by an
abitrary u ∈ L∞

(
0, T ; l∞(I × I)

)
, with generator:

(Q(n)

u(t)φ)(c,w) := n
∑∑
i 6=j

ciQijuij(t)
[
φ(ci→j,wij+)− φ(c,w)

]
. (12)

3.1 Well-posedness

Since the jump rates nciQijuij(t) are uniformly bounded in t and the hybrid sigma-algebra is uniquely
characterised by the finite-dimensional distributions [HPR16, Th. 4.5], the following result becomes
trivial:

Proposition 3.1 (Existence for the microscopic system). Let n ∈ N, C(n)(0) ∈ P(I) ∩ 1
n
NI , and

W(n)(0) = 0, and let the process (C(n),W(n)) be defined by the perturbed generator Q(n)

u(t). Then

there exists a unique probability measure for (C(n),W(n)) on the space BV
(
0, T ;P(I)× l1(I×I)

)
,

i.e. for any hybridly-measurable set U ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
,

P(n)

u (U) := Prob
(
(C(n),W(n)) ∈ U

)
(13)

and similarly we define the measure P(n) whenever u ≡ 0. Moreover, the process (C(n),W(n)) lies
almost surely in BVflux.

The well-posedness of the macroscopic system is a bit more involved:

Proposition 3.2 (Well-posedness of the macroscopic system). (i) Let u ∈ L∞
(
0, T ; l∞(I × I)

)
,

and let (µ, v) ∈ P(I) × l1(I × I) be given. Then there exists a unique solution (c,w) ∈
W 1,1

(
0, T ;P(I)× l1(I × I)

)
to the perturbed system of equations

ċ(t) = − div ẇ(t), t ∈ (0, T )

ẇ(t) = c(t)⊗ Q⊗ u(t), t ∈ (0, T )

limt↘0 c(t) = µ,

limt↘0 w(t) = v.

(14)

Moreover, the solution (c,w) also lies in W 1,∞(0, T ; l1(I × I)
)
.

(ii) Let u ∈ L∞+
(
0, T ; l∞(I × I)

)
. For any t ∈ (0, T ) the solution operator ψ(t) :

(
µ, v
)
7→(

c(t),w(t)
)

for the initial value problem (14) is a linear and bounded operator mapping l1(I ×
I × I) into itself.

Proof. (i) The proof is by a standard Picard-Lindelöf fixed point argument.

We first prove existence and uniqueness of solutions for the slowed-down system{
ẇ(t) = α

(
µ− divw(t)

)
⊗ Q⊗ u(t), t ∈ (0, T ),

limt↘0 w(t) = v,
(15)

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017



D.R.M. Renger 8

where 0 < α ≤ 1 will be determined later. Observe that for α = 1 the problem (15) coincides with
(14) once we retrieve the variable c through the continuity equation (4a). Denote

W 1,1
v :=

{
w ∈ W 1,1

(
0, T ; l1(I × I)

)
: lim
t↘0

w(t) = v
}
,

and define the operator A : W 1,1
v → W 1,1

v by

A[w](t) := v + α

∫ t

0

(
µ− divw(s)

)
⊗ Q⊗ u(s) ds.

Naturally, solutions of (15) are fixed points of A. We can estimate for any w, ŵ ∈ W 1,1
v :

‖A[w]− A[ŵ]‖BV ≤ α(T + 1)‖w − ŵ‖L1|Q|1‖u‖L∞ .

Hence for α small enough, the Banach Fixed Point Theorem gives the existence and uniqueness of
a solution to the slowed-down system (15). By rescaling time we find a unique solution of the original
system (14) up to time αT . Repeating this process a finite number of times gives existence and
uniqueness in W 1,1 of the solution up to time T .

For the regularity in W 1,∞, observe that ẇ(t) = c(t) ⊗ Q ⊗ u(t) is uniformly bounded, and hence
so are ċ(t) = − div ẇ(t) and c(t) and w(t).

(ii) The linearity of ψ is immediate from the linearity of the system (14). The boundedness in the first
variable is also trivial since |c(t)|1 = |µ|1. For the boundedness in w, note that u ≥ 0 implies that
w(t) is non-negative and non-decreasing. Therefore d

dt
|w(t)|1 = |ẇ(t)|1 ≤ |µ|1|Q|1‖u‖∞, which

proves that |w(t)|1 ≤ t|µ|1|Q|1‖u‖∞.

3.2 Many-particle limit

We now state that the microscopic system converges to the macroscopic system in the many-particle
limit. Of course, this limit is an immediate consequence of the law of the large numbers, see for
example [Dud89, Th. 11.4.1]. However, the proof below has a bit more structure that allows for gener-
alisations.

Theorem 3.3 (Many-particle limit). Fix (deterministic) (C(n)(0))n and µ in P(I) such that C(n)(0)→
µ, and W(n)(0) ≡ 0. Let 0 ≤ u ∈ L∞

(
0, T ; l∞(I × I)

)
be non-negative and bounded, and let

(C(n),w(n)) be the perturbed process with generator (12) starting from (C(n)(0), 0). Then (C(n),W(n))
converges in probability in BV

(
0, T ;P(I)× l1(I× I)

)
with the hybrid topology to the (deterministic)

solution (c,w) of the perturbed problem (14).

Proof. We first prove convergence of the finite-dimensional distributions by operator convergence. Let
Qu(t) : C1

b

(
P(I)×l1(I×I)

)
→ Cb

(
P(I)×l1(I×I)

)
be the deterministic generator corresponding

to the system (14), i.e.:

(Qu(t)φ)(c,w) =
∑∑
i 6=j

ciQijuij(t)∇φ(c,w) · (1j − 1i,1ij). (16)

The corresponding semigroup is of course
(
S(t)φ

)
(c,w) = φ

(
ψ(t)(c,w)

)
, where ψ(t) is the solu-

tion operator. Because of Proposition 3.2(ii), the semigroup S(t) maps C1
b

(
P(I) × l1(I × I)

)
into

itself, and henceC1
b

(
P(I)× l1(I×I)

)
is a core for the limit generatorQu(t) [EK05, Ch. 1, Prop. 3.3].
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Moreover, for any test function φ in this core we clearly have ‖Q(n)

u(t)φ−Qu(t)φ‖Cb(P(I)×l∞(I×I)) → 0.
Therefore, due to the Trotter-Kurtz Theorem [Kal97, Th. 17.25] all finite-dimensional distributions con-
vergence.

By the tightness of the process (C(n),W(n)) in BV
(
0, T ;P(I) × l1(I × I)

)
, which will be proven

in Proposition 4.6, we also have narrow convergence of the paths in BV
(
0, T ;P(I) × l1(I × I)

)
,

see [HPR16, Prop. 4.8]. Finally, narrow convergence to a deterministic limit implies convergence in
probability.

4 Large deviations

In this section we rigorously prove the dynamic large-deviation principle. First we prove the dynamic
large deviations under deterministic initial conditions:

Theorem 4.1 (Large-deviation principle I). Fix a µ ∈ P(I), µ > 0 (coordinate-wise) satisfying initial
condition (1.1). Then the pair (C(n),W(n)) satisfies a large-deviation principle in BV

(
0, T ;P(I) ×

l1(I × I)
)

with the hybrid topology, with good rate functional J(0,T ) from (5), where we implicitly set
J(0,T )(c,w) =∞ whenever limt↘0

(
c(t),w(t)

)
=
(
µ, 0
)

is violated.

Next we derive the coupled large-deviation principle if the initial conditions satisfy a large-deviation
principle themselves:

Theorem 4.2 (Large-deviation principle II). Let the random variables C(n)(0) satisfy a large-deviation
principle in P(I) with rate functional I0, and assume that I0 is left-continuous at the lower boundary
{c ∈ P(I) : ci = 0 for some i ∈ I}. Then the pair (C(n),W(n)) satisfies a large-deviation principle in
BV
(
0, T ;P(I)× l1(I×I)

)
with the hybrid topology, with good rate functional (c,w) 7→ I0

(
c(0)

)
+

J(0,T )(c,W), where we implicitly set J(0,T )(c,w) =∞ whenever limt↘0 w = 0 is violated.

We largely follow the ideas from [SW95, Ch. 5] and [PR16]. The assumption that µ > 0 is believed to
be technical, and has to do with the construction of the approximation sequence in the lower bound. A
similar assumption is used in for example [BDSG+07, Th. 2.1], although the approximation argument
is very different. In our Theorem 4.2 above, this assumption is no longer needed.

In Subsection 4.2 we prove that the sequence is exponentially tight, in Subsection 4.3 we prove the
large-deviation lower bound, and in Subsection 4.4 we prove the large deviation upper bound on
compact sets. Together, these results imply the large-deviation principle Theorem 4.1, with a good rate
functional [DZ87, Lem. 1.2.18]. In order to prove both bounds, we first need some results about the
rate functional, which are proven in Subsection 4.1 below. In Subsection 4.5 we prove large-deviation
Theorem 4.2 for the coupled system with random initial conditions.

4.1 Analysis of the rate functional

We now prove a number of properties of the rate functional that will be needed in the large-deviations
proof. For some of these properties, it is helpful to consider the system as a chemical reacting particle
system on the space I × I × I , where a one-particle jump i to j causes a state change of γ(ij) :=
(1j−1i,1ij), which occurs with intensity ciQij . Some conditions from the paper [PR16] are violated,
but the ones that we will need in this section are easily verified. We can then use the following result:
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Proposition 4.3. Let (c,w) ∈ BVflux such that J(0,T )(c,w) < ∞. Then (c,w) is absolutely con-
tinuous, that is, we can identify the path (c,w) with a function in W 1,1(0, T ;P(I) × l1(I × I)

)
.

Proof. For this theorem we can immediately apply [PR16, Prop. 4.1] after checking the following con-
ditions:

� 1 ≤ infi,j∈I:i 6=j|γ(ij)|1 = supi,j∈I:i 6=j|γ(ij)|1 = 3 <∞,

� sup(c,w)∈P(I)×l1(I×I)
∑∑

i 6=j ciQij =
∑∑

i 6=j Qij <∞.

As often in large deviation theory it will be beneficial to have a dual formulation of the rate functional
at hand. For any c ∈ L1

(
0, T ;P(I)

)
, j ∈ L1

(
0, T ; l1(I × I)

)
and ζ ∈ L∞

(
0, T ; l∞(I × I)

)
, let

G(c, j, ζ) := L∞〈ζ, j〉L1 −
∫ T

0

H
(
c(t), ζ(t)

)
dt and

H(c, ζ) :=
∑∑
i 6=j

ciQij

(
eζij − 1

)
, (17)

denoting L∞〈ζ, j〉L1 :=
∑∑

i 6=j
∫ T

0
ζij(t) jij(t) dt, again excluding the diagonal. We then have the

following:

Proposition 4.4. For any (c,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
∩ BVflux with initial condition

limt↘0(c(t),w(t)) = (µ, 0),

J(0,T )(c,w) = sup
ζ∈C2

b (0,T ;l∞(I×I))
G(c, ẇ, ζ).

Moreover, if J(0,T )(c,w) <∞ then

J(0,T )(c,w) = sup
ζ∈C2

c ([0,T );l∞(I×I))
G(c, ẇ, ζ). (18)

Proof. Fix a c ∈ BV
(
0, T ;P(I)

)
. For any ζ ∈ L∞

(
0, T ; l∞(I × I)

)
there holds

sup
j∈L1(0,T ;l1(I×I))

L∞〈ζ, j〉L1 −
∫ T

0

S
(
j(t)|c(t)⊗ Q

)
dt

≤
∫ T

0

sup
j(t)∈l1(I×I)

[
ζ(t) · j(t)− S

(
j(t)|c(t)⊗ Q

)]
dt =

∫ T

0

H
(
c(t), ζ(t)

)
dt. (19)

The point-wise maximiser on the right-hand side is j : (i, j, t) 7→ ci(t)Qij

(
eζij(t) − 1

)
, which lies

in L1
(
0, T ; l1(I × I)

)
. Hence the point-wise maximiser is also the global maximiser of the left-hand

side, and inequality (19) is in fact an equality. From the Moreau-Fenchel Theorem [Bré83, Th. I.10] it
follows that ∫ T

0

S
(
ẇ(t)|c(t)⊗ Q

)
dt = sup

ζ∈L∞(0,T ;l∞(I×I))
G(c, ẇ, ζ).
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We can now show that we can replace the supremum over L∞-functionals by a supremum over C2
b -

functions. To prove this, take any ζ ∈ L∞
(
0, T ; l∞(I × I)

)
and approximate it by ζ (ε) := ζ ∗ θ(ε)

where

θ(ε)(t) =
1

4πε
e−t

2/4ε, (20)

such that ζ (ε) ∈ C2
b

(
0, T ; l∞(I × I)

)
and ζ (ε) → ζ weakly in L∞

(
0, T ; l∞(I × I)

)
. Note that

by equality (19), the functional ζ 7→
∫ T

0
H
(
c(t), ζ(t)

)
dt is the supremum of weakly continuous

functionals, and hence it is itself weakly lower semicontinuous in L∞. Therefore we get

lim sup
ε→0

G(c, ẇ, ζ (ε)) ≤ lim sup
ε→0

L∞〈ζ (ε), ẇ〉L1 − lim inf
ε→0

∫ T

0

H
(
c(t), ζ (ε)(t)

)
dt

≤ G(c, ẇ, ζ),

which proves the claim.

Finally, we show (18), assuming J(0,T ) < ∞. Take a ζ ∈ C2
b

(
0, T ; l∞(I × I)

)
, and approximate it

by ζη(ε), where η(ε) : (0, T ) → [0, 1] is smooth such that η(ε)|(0,T−ε] = 1 and η(ε)|(T− 1
2
ε,T ] = 0. Let

gij(t, ζij) := ζijẇij(t)− ci(t)Qij

(
eζij − 1

)
and sij(t) = λB

(
ẇij(t)/(ci(t)Qij

)
ẇij(t). For almost

every t and any coordinate pair i 6= j, we can distinguish three different cases (see Figure 1):

(i) if ζij(t) < 0, then

gij
(
t, ζij(t)

)
≤ gij

(
t, ζij(t)η

(ε)(t)
)
≤ 0 ≤ s

(
ẇij(t)|ci(t)Qij

)
,

(ii) if ζij(t) ≥ 0 and gij
(
t, ζij(t)

)
≥ 0, then

0 ≤ gij
(
t, ζij(t)η

(ε)(t)
)
≤ s
(
ẇij(t)|ci(t)Qij

)
,

(iii) if ζij(t) ≥ 0 and gij
(
t, ζij(t)

)
< 0, then

gij
(
t, ζij(t)

)
≤ gij

(
t, ζij(t)η

(ε)(t)
)
≤ s
(
ẇij(t)|ci(t)Qij

)
.

In all cases we have the t-almost everywhere bounds

g−(t) :=
∑∑
i 6=j

gij(t, ζij(t)
)
∧ 0 ≤

∑∑
i 6=j

gij(t, ζij(t)η
(ε)(t)

)
≤
∑∑
i 6=j

sij(t).

The right-hand side lies in L1(0, T ) by the assumption that J(0,T )(c,w) < ∞, and the left-hand as
well since ‖g−(t)‖L1(0,T ) ≤ J(0,T ) − G(c, ẇ, ζ) < ∞ where G(c, ẇ, ζ) > −∞ as ζ is bounded.
Clearly ζη(ε) converges pointwise to ζ ; by dominated convergence it follows that G(c, ẇ, ζη(ε)) →
G(c, ẇ, ζ), which was to be proven.

The functional G(c, ẇ, ζ) is generally not hybrid-continuous in (c,w), but all we will need is the fol-
lowing:

Lemma 4.5. For any ζ ∈ C2
c

(
[0, T ); l∞(I × I)

)
, the functional (c,w) 7→ G(c, ẇ, ζ) is hybrid-

continuous on {J(0,T ) <∞}.

Proof. Paths for which J(0,T ) is finite satisfy the initial condition
(
c(0),w(0)

)
= (µ, 0). As ζ is

differentiable and 0 at the right boundary we can write:

G(c, ẇ, ζ) = −L∞〈ζ̇ ,w〉L1 −
∑∑
i 6=j

∫ T

0

ci(t)Qij(e
ζij(t) − 1) dt,

which is strongly continuous in L1
(
0, T ;P(I)× l1(I × I)

)
and hence also hybrid-continuous.
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ζij

s
(
jij(t)|ci(t)Qij

)
jij(t) > 0

ζij

s
(
jij(t)|ci(t)Qij

)
jij(t) = 0

Figure 1: The function gij(t, ζij).

4.2 Exponential tightness

As mentioned in Section 2, with the choice of the hybrid topology, the proof for the exponential tightness
becomes very simple. Define the total-variation balls:

Br :=
{(
c,w
)
∈ BVflux : epvar(w) ≤ r

}
. (21)

Note that by (9) the variation epvar(c) is automatically uniformly bounded within such balls.

Proposition 4.6 (Exponential tightness). Let u ∈ L∞
(
0, T ; l∞(I × I)

)
. For any η > 0, and for

r := η + T e‖u‖L∞|Q|1,
P(n)

u (Bc
r) ≤ e−nη,

and the balls Br are hybrid-compact in BV(0, T ;P(I)× l1(I × I)
)
.

Proof. Observe that the perturbed Markov jump process
∑∑

i 6=j W
(n)

i,j (t) is bounded by a Poisson

process 1
n
Nλ with intensity λ := n‖u‖L∞ |Q|1 ≥ n

∑∑
i 6=j ci(t)Qijuij(t). A standard Chernoff

bound therefore yields

P(n)(Bc
r) = P(n)

({
1
n
# jump(W(n)) > r

})
≤ Prob

(
Nλ > nr

)
≤ eλTe−nr = e−nη.

Moreover, by Proposition 2.2 the balls Br are automatically hybrid-compact.

4.3 Lower bound

We now prove the large-deviation lower bound. As usual in dynamic large deviations, the proof is
based on a Girsanov transformation together with an approximation argument.

Lemma 4.7 (Girsanov transformation). Fix an n ∈ N, C(n)(0) ∈ P(I) ∩ 1
n
NI and a function ζ ∈

C2
b

(
0, T ; l∞(I×I)

)
. Let P(n)

eζ ,r
be the path measure for the process with initial conditions (C(n)(0), 0)

and generator

(Q(n)

eζ(t),r
φ)(c,w) := n

∑∑
i 6=j

ciQije
ζij(t)1{wij(t)≤r− 1

n }
[
φ(ci→j,wij+)− φ(c,w)

]
.

Then
1

n
log

dP(n)

eζ ,r

dP(n)
(c,w) = −Gr(c,w, ζ), (22)

where

Gr(c,w, ζ) :=
∑∑
i 6=j

∫ inf{t̂∈(0,T ):wij(t̂)≥r}

0

[
ζij(t)ẇij(dt)− ci(t)Qij

(
eζij − 1

)
dt
]
.
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Proof. We can apply the Girsanov Theorem for jump processes [KL99, Ch. A.1, Th. 7.3] to the func-
tional Ft(w) := n ζ(t) · (w ∧ r) for w ∈ l1(I × I), which lies in C2

b

(
0, T ;L∞(l1(I × I))

)
.

Remark 4.8. The right-hand side of (22) does not involve the particle number n due to the indepen-
dence of the particles.

The next lemma shows that the following set constitutes of sufficiently regular paths that can be re-
trieved via the Girsanov transformation:

A :=
{

(c,w) ∈ W 1,1
(
0, T ;P(I)× l1(I × I)

)
: J(0,T )(c,w) <∞ and

t 7→ log
ẇ(t)

c(t)⊗ Q
∈ C2

c

(
[0, T ); l∞(I × I)

)}
. (23)

Lemma 4.9. For any hybrid-open set U ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
and any (c,w) ∈ U ∩ A,

lim inf
n→∞

1

n
logP(n)(U) ≥ −J(0,T )(c,w).

Proof. Let a hybrid-open U ⊂ BV
(
0, T ;P(I) × l1(I × I)

)
and a (c,w) ∈ U ∩ A be given, and

define ζ(t) := t 7→ log
ẇ(t)

c(t)⊗ Q
∈ C2

c

(
[0, T ); l∞(I × I)

)
. For an arbitrary ε > 0, let

Uε(c,w) :=
{

(ĉ, ŵ) ∈ BV
(
0, T ;P(I)× l1(I × I)

)
: G(ĉ, ŵ, ζ) < G(c, ẇ, ζ) + ε

}
.

By applying the transformation Lemma 4.7,

1

n
logP(n)(U) ≥ 1

n
logP(n)

(
U ∩ Uε(c,w) ∩Bn

)
≥ 1

n
logP(n)

eζ ,n

(
U ∩ Uε(c,w) ∩Bn

)
(24)

+
1

n
log P(n)- ess inf

(ĉ,ŵ)∈U∩Uε(c,w)∩Bn

dP(n)

dP(n)

eζ ,n

(ĉ, ŵ)

≥ 1

n
logP(n)

eζ ,n

(
U ∩ Uε(c,w) ∩Bn

)
− sup

(ĉ,ŵ)∈U∩Uε(c,w)∩Bn
Gn(ĉ, ŵ, ζ)

≥ 1

n
logP(n)

eζ

(
U ∩ Uε(c,w) ∩Bn

)
− sup

(ĉ,ŵ)∈U∩Uε(c,w)∩Bn
G(ĉ, ŵ, ζ). (25)

To bound the first term, observe that the perturbed limit equation (14) with u = eζ = ẇ/(c ⊗
Q) yields the given path (c,w). Hence by the many-particle limit (Theorem 3.3), P(n)

eζ
⇀ δ(c,w).

Furthermore, because of Lemma 4.5 the sets Uε(c,w) are hybrid-open, so that the Portemanteau
Theorem gives lim infn P(n)

eζ

(
U ∩ Uε(c,w)

)
≥ 1. Then we also have, exploiting the exponential

tightness (Proposition 4.6),

lim inf
n→∞

P(n)

eζ

(
U ∩ Uε(c,w) ∩Bn

)
≥ lim inf

n→∞

[
P(n)

eζ

(
U ∩ Uε(c,w)

)
− P(n)

eζ

(
Bc
n

)]
≥ 1,

which shows that the first term in (25) vanishes in the limes inferior.
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For the second term, we use the definition of the set Uε(c,w) together with the fact that ζ maximises
G(c, ẇ, ·). Putting everything together we find:

lim inf
n→∞

1

n
logP(n)(U) ≥ lim inf

n→∞

1

n
logP(n)

eζ

(
U ∩ Uε(c,w) ∩Bn

)
−G(c, ẇ, ζ)− ε

≥ −G(c, ẇ, ζ)− ε = J(0,T )(c,w)− ε.

Since ε was arbitrary the claim follows.

The next three approximation lemmas show that the rate fuctional can be approximated by taking
paths inA.

Lemma 4.10 (Lower bound approximation I). Let (c,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
with

J(0,T )(c,w) <∞. Then there exists a sequence (c(ε),w(ε))0<ε<ε̂ ⊂ W 1,1
(
0, T ;P(I)× l1(I × I)

)
such that J(0,T )(c

(ε),w(ε)) −−→
ε→0

J(0,T )(c,w) and ‖ẇ(ε)

ij ‖L1(0,T ) = 0 =⇒ ‖c(ε)

i Qij‖L1(0,T ) = 0 for

all i 6= j ∈ I × I and for all 0 < ε < ε̂.

Proof. If ‖ẇij‖L1(0,T ) = 0 =⇒ ‖ciQij‖L1(0,T ) = 0 for all i, j ∈ I then the construction is trivial.
Now assume that there is one and only one pair i 6= j ∈ I× I for which ‖ci‖L1|Qij| = ‖ciQij‖L1 >
0 but ‖ẇij‖L1 = 0. If there would be more pairs with this property then we can simply repeat the
construction below for each such pair separately.

Since J(0,T )(c,w) < ∞, by Proposition 4.3 the path c must be continuous, and so there exists an
ε̂ > 0 and a t̂ ∈ (0, T ) such that, see Figure 2:

0 ≤ (t− t̂)1(t̂,t̂+ε)(t) ≤ (t− t̂)1(t̂,t̂+ε̂)(t) ≤ ci(t)− ε̂ for all 0 < ε < ε̂.

Define the sequence:

w(ε)(t) := w(t) + (t− t̂)1(t̂,t̂+ε)(t)1ij, and

c(ε)(t) := µ− divw(ε)(t) = c(t)− (t− t̂)1(t̂,t̂+ε)(t)1i,

and note that by construction c(ε)(0) = µ, the continuity equation is satisfied, and we have that both
ẇ(ε)

ij (t) > 0 and c(ε)

i (t)Qij > 0, as required. To prove the convergence of the rate functional, we will
use formulation (5) which is equal to J(0,T ) by Proposition 4.4. Recall that ẇij ≡ 0 and note that the
continuous function ci(t) is uniformly bounded by some C > 0 on the compact interval [t̂, t̂ + ε̂], so
that 0 < ε̂ ≤ c(ε)

i (t) = ci(t)− t+ t̂ ≤ C on [t̂, t̂+ ε̂]. It follows that∣∣J(0,T )(c
(ε),w(ε))− J(0,T )(c

(ε),w(ε))
∣∣

≤
∫ t̂+ε

t̂

∣∣∣1 log
1

c(ε)

i (t)Qij

− 1 + c(ε)

i (t)Qij − ci(t)Qij

∣∣∣ dt
≤
∫ t̂+ε

t̂

(
|log(c(ε)

i (t)Qij)|+ 1 + t̂− t
)
dt→ 0.

Lemma 4.11 (Lower bound approximation II). Let (c,w) ∈ W 1,1
(
0, T ;P(I)×l1(I×I)

)
with µ > 0,

J(0,T )(c,w) <∞, and ‖ẇij‖L1(0,T ) = 0 =⇒ ‖ciQij‖L1(0,T ) = 0 for all i 6= j ∈ I×I . Then there
exists a sequence (c(ε),w(ε))ε>0 ⊂ W 1,1

(
0, T ;P(I) × l1(I × I)

)
such that J(0,T )(c

(ε),w(ε)) −−→
ε→0

J(0,T )(c,w) and log ẇ(ε)

c(ε)⊗Q ∈ C
2
b

(
0, T ; l∞(I×I)

)
for all ε > 0 (with the convention that log 0

0
≡ 0).
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0 T
t

t̂ t̂+ ε̂

ε̂

ci(t)

Figure 2: There exists a small triangle below the graph of ci(t).

Proof. Let θ(ε) be the heat kernel (20) and define the approximating sequence (coordinate-wise):

w(ε)(t) :=
µ

(c ∗ θ(ε))(0)

[
(w ∗ θ(ε))(t)− (w ∗ θ(ε))(0)

]
, and

c(ε)(t) := µ− divw(ε)(t) =
µ

(c ∗ θ(ε))(0)
(c ∗ θ(ε))(t). (26)

Here the convolutions run over the whole real line, where we extended (c(t),w(t)) = (µ, 0) for
t < 0 and

(
c(t),w(t)

)
=
(
c(T ),w(T )

)
for t > T ; these values are well-defined since func-

tions of bounded variation have left and right limits. Observe that by construction, the initial condition(
c(ε)(0),w(ε)(0)

)
= (µ, 0) and the continuity equation are satisfied, c(ε)(t) and ẇ(ε)(t) are non-

negative, and so is w(ε)(t).

We first prove that log
ẇ

(ε)
ij

c
(ε)
i ⊗Qij

∈ C2
b (0, T ) for all ε > 0 and i, j ∈ I . We distinguish between two

cases. If the path ci(t)Qij = 0 for almost every t ∈ (0, T ), then also ẇij(t) = 0 for almost every
t, since J(0,T ) < ∞ implies ẇ(t) � c(t) ⊗ Q. Then we also have c(ε)

i (t)Qij = 0 and w(ε)

ij (t) = 0

for almost every t ∈ (0, T ), and hence log
ẇ

(ε)
ij

c
(ε)
i Qij

= log 0
0

:= 0 ∈ C2
b (0, T ). For the second case

we can assume that ‖ci‖L1(0,T ) > 0 and Qij > 0, and so by the main assumption of the lemma also
wij(T ) = ‖ẇij‖L1(0,T ) > 0. Clearly (c(ε),w(ε)) ∈ C∞b

(
0, T ;P(I) × l∞(I × I)

)
, and in particular,

the function and all its derivatives are uniformly bounded. More precisely, we have the following bounds
from below, uniformly in t:

c(ε)

i (t) ≥ µ

(c ∗ θ(ε))(0)
θ(ε)(T )‖ci‖L1(0,T ) > 0 and

ẇ(ε)

ij (t) ≥ µ

(c ∗ θ(ε))(0)
θ(ε)(T )wij(T ) > 0. (27)

Therefore the three functions

log
ẇ(ε)

ij (t)

c(ε)

i (t)Qij

d

dt
log

ẇ(ε)

ij (t)

c(ε)

i (t)Qij

=
ẅ(ε)

ij (t)

ẇ(ε)

ij (t)
− ċ(ε)

i (t)

c(ε)

i (t)

d2

dt2
log

ẇ(ε)

ij (t)

c(ε)

i (t)Qij

=
ẇ(ε)

ij (t)
...
w(ε)

ij (t)− ẅ(ε)

ij (t)2

ẇ(ε)

ij (t)2
− c(ε)

i (t)c̈(ε)

i (t)− ċ(ε)

i (t)2

c(ε)

i (t)2
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are all bounded and continuous which was to be shown.

We now show that J(0,T )(c
(ε),w(ε)) −−→

ε→0
J(0,T )(c,w). Because (c,w) ∈ W 1,1

(
0, T ;P(I)× l1(I×

I)
)

we surely have (c(ε),w(ε))
W 1,1

−−−→
ε→0

(c,w). Since J(0,T ) is the supremum over W 1,1-continuous

functionals, J(0,T ) is lower semi-continuous, and so

lim inf
ε→0

J(0,T )(c
(ε),w(ε)) ≥ J(0,T )(c,w). (28)

We use the relative entropy formulation of J(0,T ) to prove the inequality in the other direction. Since
S(·|·) is jointly convex one finds by a two-dimensional Jensen inequality that∫ T

0

S
(
ẇ(ε)(t)|c(ε)(t)⊗ Q

)
dt

=
µ

(c ∗ θ(ε))(0)

∫ T

0

S
(∫ ∞
−∞

ẇ(t− s) θ(ε)(s) ds
∣∣∣ ∫ ∞
−∞

c(t− s)θ(ε)(s) ds⊗ Q
)
dt

≤ µ

(c ∗ θ(ε))(0)

∫ T

0

∫ ∞
−∞
S
(
ẇ(t− s)|c(t− s)⊗ Q

)
θ(ε)(s) ds dt

−−→
ε→0

∫ T

0

S
(
ẇ(t)|c(t)⊗ Q

)
dt = J(0,T )(c,w),

where the convergence follows from (c ∗ θ(ε))(0) → µ together with the fact that the non-negative
mapping t 7→ S(ẇ(t)|c(t) ⊗ Q) lies in L1(0, T ) since J(0,T )(c,w) < ∞ (see for example [Eva98,
App. C.4, Th. 6]).

Lemma 4.12 (Lower bound approximation III). Let (c,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
with

J(0,T )(c,w) < ∞ and log ẇ
c⊗Q ∈ C

2
b

(
0, T ; l∞(I × I)

)
(with the convention that log 0

0
≡ 0). Then

there exists a sequence (c(ε),w(ε))ε>0 ⊂ W 1,1
(
0, T ;P(I)×l1(I×I)

)
such thatJ(0,T )(c

(ε),w(ε))→
J(0,T )(c,w) and log ẇ(ε)

c(ε)⊗Q ∈ C
2
c

(
[0, T ); l∞(I × I)

)
for all ε > 0.

Proof. Let ψ(t) be the solution map from Proposition 3.2(ii), (where the perturbation factor u ≡ 0),
and define

(ĉ(ε)(t), ŵ(ε)(t)) :=

{
(c(t),w(t)), t ∈ (0, T − ε),
ψ(t− T + ε)

[
c(T − ε),w(T − ε)

]
, t ∈ (T − ε, T ).

Then clearly log
˙̂w(ε)

ĉ(ε)⊗Q hasC2
b -regularity on (0, T−ε], and it is constant 0 on (T−ε, T ). To deal with

the lack of regularity at time t = T − ε, we again mollify like in (26), but now with smooth, compactly
supported bump functions η(ε) ∈ C∞c (−1

2
ε, 1

2
ε),
∫
η(ε)(t) dt = 1, i.e.

w(ε)(t) :=
µ

(ĉ(ε) ∗ η(ε))(0)

[
(ŵ(ε) ∗ η(ε))(t)− (ŵ(ε) ∗ η(ε))(0)

]
, and

c(ε)(t) := µ− divw(ε)(t).

Due to the small compact support, we still have that (c(ε),w(ε)) follows the macroscopic flow on (T −
1
2
ε, T ), and so log ẇ(ε)

c(ε)⊗Q has the desired regularity.

We now prove that the rate functional converges. The convolution with the smooth kernel can be
dealt with in exactly the same manner as in the proof of Lemma 4.11, so we only need to prove the
convergence of J(0,T )(ĉ

(ε), ŵ(ε)). This follows immediately by monotone convergence:

J(0,T )(ĉ
(ε), ŵ(ε)) =

∫ T−ε

0

S
(

˙̂w(ε)(t)|ĉ(ε)(t)⊗ Q
)
dt→

∫ T

0

S
(

˙̂w(ε)(t)|ĉ(ε)(t)⊗ Q
)
dt.
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Proposition 4.13 (Large-deviation lower bound). Assume µ > 0. For any hybrid-open set U ⊂
BV
(
0, T ;P(I)× l1(I × I)

)
,

lim inf
n→∞

1

n
logP(n)(U) ≥ − inf

(c,w)∈U
J(0,T )(c,w).

Proof. Take an arbitrary hybrid-open U ⊂ BV
(
0, T ;P(I) × l1(I × I)

)
. As a consequence of

Lemmas 4.10, 4.11 and 4.12, any path with J(0,T )(c,w) < ∞ can be approximated by paths in the
set A from (23) such that the rate functional also converges. In particular, due to this denseness, the
set U ∩ A is never empty. Combining this approximation with Lemma 4.9 yields

1

n
logP(n)(U) ≥ − inf

(c,w)∈U∩A
J(0,T )(c,w) = − inf

(c,w)∈U
J(0,T )(c,w).

4.4 Upper bound

We now prove the large-deviation weak upper bound via a standard covering technique.

Proposition 4.14. For any compact set K ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
and any r > 0,

lim inf
n→∞

1

n
logP(n)

(
K ∩Br

)
≤ − inf

(c,w)∈K∩Br
J(0,T )(c,w).

where Br is the bounded-variation ball (21).

Proof. Fix an ε > 0, and observe that because of (18) one can find for any (c,w) ∈ BV
(
0, T ;P(I)×

l1(I × I)
)

a ζ[c,w] ∈ C2
c

(
[0, T ); l∞(I × I)

)
such that G(c, ẇ, ζ[c,w]) ≥ J(0,T )(c,w) − ε. Now

define for each (c,w) ∈ BV
(
0, T ;P(I)× l1(I × I)

)
the sets

Vε(c,w) :=
{

(c̃, w̃) ∈ BVflux : G(c̃, w̃, ζ[c,w]) > G(c, ẇ, ζ[c,w])− ε
}
,

which are open by Lemma 4.5. Surely
⋃

(c,w)∈K Vε(c,w) ⊃ K and so by compactness there exists

a finite subcovering ∪Kk=1Vε(c(k),w(k)) ⊃ K. We can then use Lemma 4.7 together with the fact that
Gr = G on Br, to estimate for every k = 1, . . . , K ,

lim sup
n→∞

1

n
logP(n)

(
Vε(c(k),w(k)) ∩Br

)
≤ lim sup

n→∞

1

n
logP(n)

eζ[c
(k),w(k)],r

(
Vε(c(k),w(k)) ∩Br

)
︸ ︷︷ ︸

≤0

+
1

n
log P(n)- ess sup

(c̃,w̃)∈Vε(c(k),w(k))∩Br

dP(n)

dP(n)

eζ[c
(k),w(k)],r

(c̃, w̃)

≤ − inf
(c̃,w̃)∈Vε(c(k),w(k))∩Br

Gr(c̃, w̃, ζ[c(k),w(k)])

= − inf
(c̃,w̃)∈Vε(c(k),w(k))∩Br

G(c̃, w̃, ζ[c(k),w(k)])

≤ −G(c(k), ẇ(k), ζ[c(k),w(k)])χ(c(k),w(k))(Br) + ε

≤ −J(0,T )(c
(k),w(k))χ(c(k),w(k))(Br) + 2ε,

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017



D.R.M. Renger 18

with the usual characteristic function: χ(c(k),w(k))(Br) = 0 for (c(k),w(k)) ∈ Br and ∞ otherwise.
Due to the finiteness of the covering one can use the Laplace Principle to get:

lim sup
n→∞

1

n
logP(n)(K ∩Br) ≤ max

k=1,...,K
lim sup
n→∞

1

n
logP(n)

(
Vε(c(k),w(k)) ∩Br

)
≤ max

k=1,...,K
−J(0,T )(c

(k),w(k))χ(c(k),w(k))(Br) + 2ε

≤ − inf
(c,w)∈K∩Br

J(0,T )(c
(k),w(k)) + 2ε.

Since ε was arbitrary, this proves the claim.

Corollary 4.15 (Large-deviation weak upper bound). For any compact set K ⊂ BV
(
0, T ;P(I) ×

l1(I × I)
)
,

lim inf
n→∞

1

n
logP(n)(K) ≤ − inf

(c,w)∈K
J(0,T )(c,w).

Proof. This is a consequence of the exponential tightness Proposition 4.6 and Proposition 4.14, as
follows. Note that the balls Br are defined as subsets of BVflux, and that J(0,T )|BVc

flux
=∞. For any

η > 0 and r := η + T e|Q|1 we can apply Laplace’s principle:

lim sup
n→∞

1

n
logP(n)(K) ≤ lim sup

n→∞

1

n
log
(
P(n)(K ∩Br) + P(n)(Bc

r)
)

≤ −
(

inf
K∩Br

J(0,T ) ∧ η
)
≤ −

(
inf
K
J(0,T ) ∧ η

)
.

Since η was arbitrary the claim follows.

4.5 Coupled large deviations

We can now use the conditional large deviations to prove the coupled large deviations.

Proof of Theorem 4.2. The coupled probabilities can be disintegrated as

Prob
(
C(n),W(n) ∈ dc dw)

=

∫
Prob

(
C(n),W(n) ∈ dc dw | C(n)(0) = c(0)

)
Prob

(
C(n)(0) ∈ dc(0)

)
,

where initial probabilities satisfy a large-deviation principle with rate I0, and the conditional probabili-
ties satisfy a large-deviation principle with rate J(0,T ) whenever c(0) > 0. Therefore, apart from the
condition c(0) > 0, we can immediately apply [Big04] to get the large deviations for the coupled sys-
tem. Observe that the condition c(0) > 0 is not needed in the conditional upper bound, Corollary 4.15,
and hence by [Big04] the coupled large-deviation upper bound holds. However, for the lower bound
we only get for any hybrid-open set U ⊂ BV

(
0, T ;P(I)× l1(I × I)

)
that

lim inf
n→∞

1

n
logP(n)(U) ≥ − inf

(c,w)∈U :
c(0)>0

I0

(
c(0)

)
+ J(0,T )(c,w).

In order to replace the infimum above by − inf(c,w)∈U I0

(
c(0)

)
+ J(0,T )(c,w), we need to show

that any (c,w) ∈ BV
(
0, T ;P(I) × l1(I × I)

)
can be approximated by trajectories (c(ε),w(ε)) with

c(ε)(0) > 0 such that J(0,T )(c
(ε),w(ε))→ J(0,T )(c,w).
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Take an arbitrary (c,w) ∈ BV
(
0, T ;P(I)× l1(I×I)

)
where c(0) lies on the boundary {c ∈ P(I) :

ci = 0 for some i ∈ I}. We apply two approximations. The first approximation is similar to (26) but
slightly different since c(0) might be zero:

w(ε)(t) := (w ∗ θ(ε))(t)− (w ∗ θ(ε))(0),

ĉ(ε)(t) := (c ∗ θ(ε))(0)− divw(ε)(t) = (c ∗ θ(ε))(t),

where as before we extend the functions constantly outside (0, T ). By the same argument as in
Lemma 4.11 we have J(0,T )(ĉ

(ε),w(ε)) → J(0,T )(c,w); we will use this below. Moreover by the
assumed continuity on the boundary we also have I0

(
ĉ(ε)(0)

)
= I0

(
(c ∗ θ(ε))(0)

)
→ I0

(
c(0)

)
.

For the second approximation, let î ∈ I be such that cî(0) > 0. For this coordinate, we have, similarly
to (27), the lower bound ĉ(ε)

î
(t) ≥ θ(ε)(T )‖cî‖L1(0,T ) > 0. We can then define

c(ε)(t) := c(ε)(0)− divw(ε)(t), where

c(ε)

i (0) :=

{
ĉ(ε)

î
(0)− εθ(ε)(T )‖cî‖L1(0,T ), i = î,

ĉ(ε)

i (0) + ε
|I|−1

θ(ε)(T )‖cî‖L1(0,T ), i 6= î.

Observe that by construction c(ε)(0) > 0 and c(ε)(t) remains positive. Moreover c(ε)(0) → c(0) and
hence I0

(
c(ε)(0)

)
→ I0

(
c(0)

)
. To prove convergence of J(0,T )(c

(ε)), we exploit the lower semicon-

tinuity as in (28); hence we only need to prove an upper bound. For any pair i 6= î, j we get∫ T

0

[
ẇ(ε)

ij (t) log
ẇ(ε)

ij (t)

c(ε)i (t)︸ ︷︷ ︸
≥ĉ(ε)i (t)

Qij
− ẇ(ε)

ij (t) + c(ε)

i (t)Qij

]
dt

≤
∫ T

0

[
ẇ(ε)

ij (t) log
ẇ(ε)

ij (t)

ĉ(ε)i (t)Qij
− ẇ(ε)

ij (t) + ĉ(ε)

i (t)Qij

]
dt+

Tε

(|I| − 1)
θ(ε)(T )‖cî‖L1(0,T )Qij︸ ︷︷ ︸

→0

.

On the other hand, for any pair î 6= j,∫ T

0

[
ẇ(ε)

îj
(t) log

ẇ(ε)

îj
(t)

c(ε)
î

(t)Qîj
− ẇ(ε)

îj
(t) + c(ε)

î
(t)Qîj

]
dt

=

∫ T

0

[
ẇ(ε)

îj
(t) log

ẇ(ε)

îj
(t)

ĉ(ε)
î

(t)Qîj
− ẇ(ε)

îj
(t) + ĉ(ε)

î
(t)Qîj

− εθ(ε)(T )‖cî‖L1(0,T )Qîj − ẇ(ε)

îj
(t) log

(
1−

εθ(ε)(T )‖cî‖L1(0,T )

ĉ(ε)
î

(t)︸ ︷︷ ︸
≥θ(ε)(T )‖cî‖L1(0,T )

)]
dt.

Putting both bounds together yields

lim sup
ε→0

J(0,T )(c
(ε),w(ε)) ≤ lim sup

ε→0
J(0,T )(ĉ

(ε),w(ε)) = J(0,T )(c,w),

which was to be proven.

In particular, as a consequence of Theorem 4.2 and Sanov’s Theorem, we have:
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Corollary 4.16. LetC(n)(0) = 1
n

∑n
k=1 1Xk whereX1, . . . , Xn are i.i.d. according to π ∈ P(I), the

unique invariant measure for the Markov chain with generator Q. Then (C(n),W(n)) satisfies a large-
deviation principle in BV

(
0, T ;P(I)× l1(I × I)

)
with the hybrid topology, with good rate functional

S
(
c(0)|π

)
+ J(0,T )(c,w).

Remark 4.17. The dynamic large deviations could also be proven by first proving the large devia-
tions of the empirical measure on the path space, and then contracting to the path of the empirical
measure-integrated flux pair. This is the strategy used in [Fen94, Léo95] to prove large deviations for
the empirical measure.

4.6 Large deviations for the reacting particle model

We now describe how a similar large-deviation principle as Theorem 4.2 can be derived for the more
general reacting particle system. The arguments are purely formal and so we will not be concerned
too much with the mathematical details. We use the framework as set out by [FK06, § 8.6.1.2], starting
from the generator (3).

To this aim we first define the following operator on test functions φ ∈ C1
b

(
l1(I)× l1(R)

)
,

(H(V )φ)(c,w) :=
1

V
e−V φ(c,w)

(
Q(V )eV φ

)
(c,w).

It is easily calculated that d
dt
U (V )(t)φ = H(V )

(
U (V )(t)φ

)
, where(

U (V )(t)φ
)
(c,w) :=

1

V
logE

[
eV φ(C(V )(t),W(V )(t))|(C(V )(0),W(V )(0)) = (c,w)

]
.

In this senseH(V ) is called the non-linear generator of the semigroup U (V )(t). This semigroup plays
an important role in the theory of large deviations of Markov processes, as the time-dependent version
of the functionals that appear in the Varadhan-Bryc Theorem [DZ87, Th. 4.4.13]. We can study the
asymptotics of this semigroup via its non-linear generator, formally (recall that V −1k(V,r) → k̄(r) as
V →∞),

(H(V )φ)(c,w) =
1

V

∑
r∈R

k(V,r)(c)
[
eV φ(c+V −1γ(r),w+V −11r)−V φ(c,w) − 1

]
−−−→
V→∞

∑
r∈R

k̄(r)(c)
[
e∇c φ(c,w)·γ(r)+∇w φ(c,w)·1r) − 1

]
.

Here · now denotes the dual pairing between l∞(R) and l1(R). To remain consistent with the notation
and results in Section 4, we ignore the fluctuations in c (there are none) and focus on the fluctuations
in w. This means that can restrict to test functions that depend on w only, as long as we implicitly set
c(t) = c(0) + Γw(t). Then, the last calculation shows that the limit non-linear generator depends on
φ through ζ := ∇φ(c,w) only; if this would not be true then the many-particle limit would not hold.
The limit non-linear generator thus defines the operator that will play the role of a Hamiltonian

H(c,w, ζ) =
∑
r∈R

k̄(r)(c)
(
eζr − 1

)
. (29)

Naturally, this is the reacting particle equivalent of the operator (17). Then we have the following:
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Formal Theorem 4.18 ([FK06, Th. 8.14]). Let the random variables C(V )(0) satisfy a large-deviation
principle in l1(I) with rate functional I0. Then the pair (C(V ),W(V )) satisfies a large-deviation principle
with rate functional (c,w) 7→ I0

(
c(0)

)
+ J(0,T )(c,w), where

I(c,w) = sup
ζ∈C2

b (0,T ;l∞(R))

∫ T

0

ζ(t) · ẇ(dt)−
∫ T

0

H
(
c(t),w(t), ζ(t)

)
dt

=

∫ T

0

S(ẇ(t) | k̄(c(t))
)
dt. (30)

and we implicitly set J(0,T )(c,w) =∞ whenever limt↘0 w = 0 or c(t) = c(0) + Γw(t) is violated.

By a direct calculation analogous to Proposition 4.4, it follows that the dynamic rate is indeed the same
as (8).

Remark 4.19. It is very difficult to turn Theorem 4.18 into a rigorous statement. Using the approach
from [FK06], one would need to show that the limit non-linear generator also generates a semigroup,
which is usually done via viscosity solutions.

Another approach would be to try to generalise the arguments of Section 4. However, the central step,
Lemma 4.11, is based on a two-argument Jensen inequality, but the functional S

(
· |k̄(·)

)
is now

only jointly convex if and only k̄ is concave. But even for concave rates k̄ it is not at all clear how to

mollify such that the test function ζr(t) := log ẇ
(ε)
r (t)

k̄(r)(c(ε)(t))
lies in C2

b , as k̄ could be zero, as well as its
derivatives along the boundary.

5 Implications for Macroscopic Fluctuation Theory

Using the large-deviation principle from the previous section, we now explore which parts of MFT
can be applied to one-way fluxes on discrete spaces. We will work with the general reacting particle
system with generator (3), implicitly assuming that the formal large-deviation Theorem 4.18 holds true.
To adopt the usual language of MFT, we consider the integrand of (30) as a Lagrangian:

L(c, j) := S
(
j | k(c)

)
. (31)

This section will be less rigorous; for example we always implicitly assume that curves (c,w) are
sufficiently regular so that the rate functional is finite, as in (5). We stress that although the dynamic
large-deviation rate J(0,T ) is known and completely specified by L, the quasipotential, i.e. the large-
deviation rate I0 for the invariant measure, is often not known, and we will make no such claims.

The key concept in MFT is time-reversal and corresponding symmetries. In Subsection 5.1 we show
how for finite V the Markov process can be reversed in time. From this we derive a time-reversal sym-
metry for the flux Lagrangian L in Subsection 5.2. We then derive a similar time-reversal symmetry for
the concentration large-deviations in Subsection 5.3. In Subsection 5.4 we discuss possible contrac-
tions and decompositions of the rate functionals, which in particular leads to the net flux Lagrangian;
from there on we shall need to work with net fluxes. In Subsection 5.5 we introduce the concept of a
dissipative structure, and its relation to generalised gradient systems in an abstract setting. Finally, in
Subsection 5.6 we study how these concepts apply to the reacting particle model studied in this paper.

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017



D.R.M. Renger 22

5.1 The time-reversed process

An essential role in MFT is played by the time-reversed process. In this subsection we construct this
process, which will we exploited in the next subsections.

We will assume that the effective stoichiometric vectors γ(r) are NI
0-valued, that the process C(V ) is

non-explosive on (0, T ), irreducible and positive recurrent, so that there exists a unique, coordinate-
wise positive invariant measure 0 < Π(V ) ∈ P( 1

V
NI

0). Note that this is not a trivial assumption, for the
following reasons. The whole space 1

V
NI

0 may be decomposed into separate so-called stoichiometric
compatibility classes

(
C(V )(0) + span{γ(r)}r∈R

)
∩ NI

0, depending on the initial condition C(V )(0),
see for example [AK11]. In this case we will implicitly assume that Π(V ) is supported inside one such
class, so that C(V )(0) ∼ Π(V ) remains within that class. This forces the irreducibility of the process,
apart from possible effects on the boundary of the compatibility class. Such boundaries correspond
to the case where some species is no longer present in the system. If that happens it could become
impossible for a reaction to take place, and hence the process might still be reducible. However, for
now we are only concerned with finite V , so we can always add a very small reaction rate away from
the boundary such that it vanishes in the limit 1

V
k(V,r) → k̄(r) as V →∞.

Usually in MFT, one defines the time-reversed path by simply replacing time t by T − t. However,
this would turn non-decreasing integrated fluxes into non-increasing ones, which are non-feasible
as we consider one-way rather than net fluxes. The solution is evident: if for the forward process a
reaction r takes place at time t, then for the reversed process a reverse reaction ←−r should take
place at time T − t, where←−r denotes the with effective stoichiometric vector γ(←−r ) := −γ(r). More

precisely, let
←−
R := {←−r : r ∈ R}, which may not be disjoint from R. For any given path (c,w) ∈

BV(0, T ; l1(I)×l1(R)), we then define the time-reversed path (←−c ,←−w ) ∈ BV(0, T ; l1(I)×l1(
←−
R))

by1:

←−c (t) := c(T − t) and ←−w (t) := wT(T )− wT(T − t),

using the notation wT
r := w←−r . Observe that the reversed integrated fluxes ←−w (t) are now indeed

non-decreasing, and the initial condition←−w (0) = 0 also holds. Moreover, if we extend the continuity

operator by setting Γw :=
∑

r∈R γ
(r)wr +

∑
←−r ∈
←−
R γ

(←−r )w←−r for w ∈ RR∪
←−
R , then the continuity

equation is invariant under time-reversal:

∂t(
←−c )(t)− Γ∂t(

←−w )(t) = −ċ(T − t) + Γẇ(T − t) = 0.

We can now characterise the time-reversed process as follows:

Proposition 5.1. Fix V > 0. Assume that all γ(r) ∈ NI
0, that the process C(V )(t) is non-explosive

on (0, T ), irreducible and positive recurrent, with unique, coordinate-wise positive invariant measure
0 < Π(V ) ∈ P( 1

V
NI

0). Let (C(V )(0),W(V )(0)) be distributed according to Π(V )(I) × δ0. Then the

process
(←−
C (V )(t),

←−
W(V )(t)

)
is again Markov, where

(←−
C (V )(0),

←−
W(V )(0)

)
is distributed according to

Π(V ) × δ0, and its generator is:

(
←−
Qφ)(c,w) =

∑
←−r ∈
←−
R

←−
k (V,←−r )(c)

[
φ(c+ 1

V
γ(←−r ),w + 1

V
1←−r )− φ(c,w)

]
, (32)

1In fact, a more precise definition would involve the left limit (T − t)− so that a time-reversed càdlàg path is again
càdlàg; for brevity we will ignore this issue.
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where

←−
k (V,←−r )(c) :=

Π(V )(c+ 1
V
γ(←−r ))

Π(V )(c)
k(V,r)(c+ 1

V
γ(←−r )). (33)

Moreover, for any hybrid-measurableA ⊂ BV
(
0, T ;NI

0 × l1(R)
)
,

Prob
(
(C(V ),W(V )) ∈ A

)
= Prob

(
(
←−
C (V ),

←−
W(V )) ∈ A

)
. (34)

Proof. For brevity we shall omit the superscripts V in this proof. Since the concentrations C(t) can
only take values in 1

V
NI

0 we can use discrete Markov chain theory. It should be noted that Π × δ0 is
not an invariant measure - in fact, W (t) does not have any. Nevertheless, the time-reversal can be
proven along the lines of the standard Markov time-reversal result [Nor97, Th. 3.7.1]; we only outline
how the proof needs to be adapted to account for the lack of an invariant measure on the integrated
fluxes.

Since the state space is discrete we can rewrite the operatorsQ,
←−
Q in terms of matrices, i.e.

Q(c,w→ ĉ, ŵ) =


k(r)(c), ĉ = c+ 1

V
γ(r), ŵ = w + 1

V
1r,

−
∑

r∈R k
(r)(c), ĉ = c, ŵ = w,

0, otherwise,

←−
Q(ĉ, ŵ→ c,w) =


←−
k (←−r )(ĉ), c = ĉ+ 1

V
γ(←−r ),w = ŵ + 1

V
1←−r ,

−
∑
←−r ∈
←−
R
←−
k (←−r )(c), c = ĉ,w = ŵ,

0, otherwise.

Hence, by translation invariance in the integrated fluxes, we have

Q(c,w→ ĉ, ŵ) =
Π(ĉ)

Π(c)

←−
Q(ĉ,w + (ŵ − w)T → c,w)

=
Π(ĉ)

Π(c)

←−
Q(ĉ, ŵT → c,wT). (35)

Let pt(c,w → ĉ, ŵ) be the transition probability corresponding to the generator matrix Q. We claim

that the transition probability for the time-reversed generator matrix
←−
Q is

←−p t(ĉ, ŵT → c,wT) =
Π(c)

Π(ĉ)
pt(c,w→ ĉ, ŵ).

This can be seen by using the Kolmogorov backward equation for pt to derive the Kolmogorov forward
equation for←−p t:

d

dt
←−p t(ĉ, ŵT → c,wT) =

Π(c)

Π(ĉ)

∑
c̃,w̃

Q(c,w→ c̃, w̃)pt(c̃, w̃→ ĉ, ŵ)

(35)
=
∑
c̃,w̃

←−p t(ĉ, ŵT → c̃, w̃T)
←−
Q(c̃, w̃T → c,wT).

It is then easily checked (through arbitrary finite-dimensional distributions) that←−p t defines a Markov

process, and that (34) holds. By construction (
←−
C (0),

←−
W(0)) is distributed according to Π× δ0.
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Remark 5.2. The processC(V )(t) is in detailed balance with respect to Π(V ) precisely when
←−
k (V,r) =

k(V,r) for all r ∈ R. In that case the limit rates also satisfy

←−̄
k (r) = k̄(r); (36)

we call this symmetry chemical detailed balance to distinguish it from detailed balance of a Markov
process.

Remark 5.3. In the case of independent particles we can calculate the reversed jump rates explicitly.
Set k(n,(i,j))(c) := nQijci, and let π ∈ P(I) be the invariant measure for one particle. The invariant
measure for C(n) is the multinomial distribution Π(n)(c) = n!

κ1!...κI !

∏I
i=1 π

nci
i . Then (33) becomes

←−
k (n,

←−−
(i,j))(c) = n πi

πj
Qijcj , which is not surprising as πj

πi
Qji is the reversed one-particle generator.

Hence the average jump rates are simply

k̄(i,j)(c) = Qijci and
←−̄
k (
←−
i,j)(c) =

←−̄
k (j,i)(c) =

πi
πj

Qijcj. (37)

5.2 Time-reversal symmetry for the fluxes

Let
←−
J(0,T )(c, w) :=

∫ T
0

←−
L
(
c(t),w(t)

)
dt be the large-deviation rate functional corresponding to the

time-reversed process (32), defined as in (8) where the sum now ranges over
←−
R and the average

jump rates k̄(r) are replaced by
←−̄
k (←−r ) := limV→∞

1
V

←−
k (V,←−r ). Moreover, let I0 be the quasi-potential,

that is, the large-deviation rate corresponding to Π(V ).

If we consider the forward and the backward processes initially distributed according to Π(V ) × δ0 as
in Proposition 5.1, then using the time-reversal (34) property together with Corollary 4.16, we find the
following time-reversal symmetry:

I0(c(0)) + J(0,T )(c,w) = I0(c(T )) +
←−
J(0,T )(

←−c ,←−w ). (38)

Following [BDSG+15, Sec. II.C], we replace the time-interval by (t − ε, t + ε) for some t ∈ (0, T ),
divide (38) by 2ε and then let ε→ 0, yielding the local time-reversal relation:

L(c, j)−
←−
L (c, jT) = DI0(c) · s, s+ Γj = 0 (39)

for all (c, j) ∈ l1+(I)× l1(R).

For the independent particles model, the reversed average jump rates are known a priori by (37), and
relation (39) can also be derived directly:

L(c, j)−
←−
L (c, jT)

= S(j|c⊗ Q)− S
(
jT
∣∣ c
π
⊗ QT ⊗ π

)
=
∑
i

[∑
j 6=i

(jij − jji)︸ ︷︷ ︸
=− divi j=s

log
ci
πi

+ ci
∑
j 6=i

(Qij −
1

πi
Qjiπj)︸ ︷︷ ︸

=0

]

= DS(c|π) · s.
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For the more general reacting particle model, the exact expressions for the backward rates may not
be known, and we can exploit (39) to derive a relation with the forward rates:

ΓTDI0(c) · j = DI0(c) · Γj = DI0(c) · s = S
(
j|k̄(c)

)
− S

(
jT|
←−̄
k (c)

)
=
∑
r∈R

jr log

←−̄
k (←−r )(c)

k̄(r)(c)
− k̄(r)(c) +

←−̄
k (←−r )(c), (40)

where (ΓTξ)r := ξ · γ(r) and jT←−r = jr. Since (40) has to hold for all c, j, the reversed rates have to
satisfy the following two conditions for all c:

(ΓTDI0(c)
)
r

= DI0(c) · γ(r) = log

←−̄
k (←−r )(c)

k̄(r)(c)
∀r ∈ R, (41)∑

r∈R

k̄(r)(c) =
∑
←−r ∈
←−
R

←−̄
k (←−r )(c).

The first condition is sometimes interpreted as a fluctuation-dissipation equation, see [BDSG+15,
Sec. II.C] and [MPR14, Sec. 3.5]. It also shows that there is a strong relation between mass-action
kinetics and relative entropy, see [MPPR, Sec. 3.5].

Remark 5.4. At least formally, the time-averaged flux

J(V,T ) := T−1

∫ T

0

Ẇ(V )(dt) = T−1W(V )(T )

satisfies a large-deviation principle as V →∞ and subsequently T →∞ with rate functional (or the
lower semicontinuous regularisation thereof):

j 7→ lim
T→∞

inf
(c,w)∈W 1,1(0,T ;l1(I)×l1(R)):

ċ=Γẇ,
w(T )/T=j

1

T
J(0,T )(c,w),

and so-called a Galavotti-Cohen time-reversal symmetry also holds for this functional. This is beyond
the scope of the current paper.

5.3 Time-reversal symmetry for the densities

As briefly mentioned in the introduction, by a simple contraction principle we retrieve the dynamic large
deviations of the empirical measure C(V ) with rate functional

I(0,T )(c) = inf
w∈BV(0,T ;l1+(I×I)):

ċ=Γẇ

J(0,T )(c,w) =

∫ T

0

inf
j∈l1+(R):

ċ(t)=Γj

L(c(t), j)

︸ ︷︷ ︸
L̂(c(t),ċ(t))

dt, (42)

see for example [Fen94, Léo95, SW95, PR16]. Let
←−
L̂ be the same functional, but for the time-reversed

process
←−
C (V ), i.e. the rates k̄ in L are replaced by the backward rates

←−̄
k . Taking the infimum over

feasible fluxes s = Γj of (39) yields the time-reversal symmetry for the densities:

L̂(c, s)−
←−
L̂ (c,−s) = DI0(c) · s. (43)
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Moreover, from this relation the quasi-potential can be retrieved via (again, see [BDSG+15, Sec. IV.A])

I0(c) = inf
ĉ∈BV(−∞,0;l1+(I)):

ĉ(0)=c

J(−∞,0](ĉ).

5.4 Net fluxes and other decompositions

The advantage of working with one-way fluxes is that the rate functional J(0,T ) has a nice explicit
formula, from which we can deduce additional structure as in (38). Of course the one-way fluxes
encode more information, and by a straight-forward contraction one finds the large-deviation rate for
the net integrated fluxes W

(V )

(t) := W(V )(t)−W(V )T(t):

J (0,T )(c,w) := inf
w∈W 1,1(0,T ;l1(R)):

w(t)−wT(t)=w(t)

J(0,T )(c, w) =

∫ T

0

inf
j∈l1(R):

j−jT=ẇ(t)

L
(
c(t), j

)
︸ ︷︷ ︸

=:L(c(t),ẇ(t))

dt. (44)

Observe that net (integrated) fluxes are always anti-symmetric, and so we can rewrite the continuity
operator:

Γj :=
∑
r∈Rfw

jrγ
(r) =

∑
r∈Rfw

(jr − j←−r )γ(r) =
∑

r∈Rfw∪Rbw

jrγ
(r) = Γj. (45)

Taking the infimum of (39) over j ∈ l1(R) : j − jT = j, which does not affect the velocity field s, we
find the time-reversal symmetry for the net fluxes:

L(c, j)−
←−
L (c,−j) = DI0(c) · s, s = Γj, (46)

where
←−
L is again the same as L with the reversed reaction rates

←−
k . The net flux Lagrangian L

will play a central in the derivation of dissipative structures in Subsections 5.5 and 5.6. For more
information, analysis and thermodynamic interpretation we refer to [BMN09].

Alternatively, if the non-negativity of the net fluxes is of importance, one could also split W(V )
r =

[W(V )
r ∧W(V )

←−r ] + [W(V )
r −W(V )

r ∧W(V )
←−r ], and apply contractions to find the large deviations for the

cancelling fluxes and the net fluxes respectively.

The net fluxes can be decomposed even further. It is however unclear how to do this in a meaningful
way. As common in MFT, we could decompose any flux into a gradient and a solenoidal part w =
w∇+ wsol, where w∇ = ∇ξ for some ξ ∈ RI , and divwsol = 0. However, one usually exploits
the quadratic structure of the rate functional to devise an orthogonal decomposition such that the rate
functional split into two parts. In the discrete setting of this paper however, the rate functional J(0,T ) is
entropic rather than quadratic, and so it lacks a natural orthogonality relation. Therefore it remains an
open question how a meaningful decomposition of the fluxes should look like, if there is any.

5.5 General theory of dissipative structures and gradient structures

In an ideal setting, the concentration large deviations satisfy a time-reversal symmetry of the form (39)

where
←−
L̂ = L̂; in that case the theory of [MPR14] shows that L̂ actually induces a natural generalised

gradient structure, as we explain below. A gradient structure holds precise physical information about
the dissipation mechanism and force that drives the system towards its equilibrium. In a much less
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ideal setting, the flux large deviations often induces a similar dissipative structure. For the setting
of this paper, it turns out to be impossible to induce such structure unless we consider the net flux
Lagrangian L. Therefore we shall from now on consider net fluxes rather than one-way fluxes.

To shed light on the key properties behind the arguments, we shall introduce the concepts and their
relation in a much more general setting. We nevertheless use the same symbols L, L̂,Γ, c, s and j,
etc. In the next subsection we discuss how this general theory applies to the reacting particles model.

Definition 5.5. Let X be a Banach space2. A function L̂ : X × X → R is called an L-function
whenever L̂ is non-negative, convex in the second argument, and for any c ∈ X there exists a unique
s ∈ X for which L̂(c, s) = 0.

A generalised gradient structure is a triple (X,F ,Ψ), where X is a Banach space, F : X → R is a
differentiable functional, and Ψ : X ×X → R is a dissipation potential, meaning that

1 Ψ(c, ·) is convex,

2 min Ψ(c, ·) = Ψ(c, 0) = 0.

We say that an L-function L̂ induces the generalised gradient structure (X,F ,Ψ) if one can write

L̂(c, s) = Ψ(c, s) + Ψ∗
(
c,−DF(c)

)
+ 〈DF(c), s〉, (47)

where

Ψ∗(c, ξ) := sup
s∈X
〈ξ, s〉 −Ψ(c, s) for ξ ∈ X∗.

A few comments about these definitions are in place. Firstly, observe that L̂(c(t), ċ(t)) = 0 uniquely
characterises an evolution equation; for the reacting particles model this would be the Reaction Rate
Equation (7). Hence if L̂ induces a generalised gradient structure then by Legendre duality that evo-
lution equation can be written as ċ(t) = DξΨ

∗(c(t),−DF(c(t))
)
. This can be interpreted as a

gradient flow or response theory, generalised to allow for nonlinear relations between the driving force
−DF(c) and velocities ċ. Moreover, the conditions on Ψ imply that both Ψ and Ψ∗ are non-negative,
therefore implying thermodynamic consistency: d

dt
F(c(t)) = 〈DF(c(t)), ċ(t)〉 ≤ 0. Finally, rela-

tion (47) says that the energetic cost to pay to deviate from the evolution equation is exactly the cost
function L̂.

Inspired by [MN08, Mae17, KJZ17], we study a more general dissipative structure, induced by a (net
flux) Lagrangian. In this definition we will need a second Banach space for the fluxes.

Definition 5.6. Let X, Y be Banach spaces. A dissipative structure is a quadruple (X, Y, F,Φ),
where F : X → Y ∗, and Φ : X × Y → R is a dissipation potential in the same sense as in
Definition 5.5.

Moreover, we say that the L-function (in the same sense as in Definition 5.5) L induces the dissipative
structure (X, Y, F,Φ) if one can write

L(c, j) = Φ(c, j) + Φ∗
(
c, F (c)

)
− 〈F (c), j〉, (48)

2We introduce the theory on a general Banach spaceX rather than on a manifolds to shorten notation. Possible issues
that can arise near boundaries of the manifold, e.g. where concentrations can become negative, can be easily dealt with
by setting the appropriate functionals to∞ whenever such restrictions are violated.
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where

Φ∗(c, ζ) := sup
j∈Y
〈ζ, j〉 − Φ(c, j) for ζ ∈ Y ∗.

As in the case of a gradient structure, the optimal net fluxes can be rewritten as j = DFΦ∗
(
c, F (c)

)
,

which now describes a relation between the force F (c) and the net flux j. For more background and
physical interpretation of this structure we refer to [MN08, Mae17].

We now study the relation between dissipative structures and generalised gradient structures. For this
we need to link generalised fluxes to velocities via a continuity operator Γ. To shorten notation we
restrict to L-functions that are differentiable in the second argument; the induced dissipation potentials
are then also differentiable. All arguments below can easily be generalised by using subdifferentials
rather than derivatives.

Proposition 5.7. Let X, Y be Banach spaces, let L : X × Y → R+ be a given L-function, dif-
ferentiable in the second argument, such that it induces a disipative structure (X, Y, F,Φ), and let
Γ : Y → X be a bounded linear operator. If there is a differentiable F : X → R such that

F (c) = −Γ
T
DF(c), (49)

then L̂(c, s) = inf
{
L(c, j) : j ∈ Y, s = Γj

}
induces the generalised gradient structure (X,F ,Ψ),

where F is unique up to constants, and

Ψ(c, s) := inf
j∈Y :s=Γj

Φ(c, j), and Ψ∗(c, ξ) = Φ∗(c,Γ
T
ξ). (50)

On the other hand, if L̂ induces a generalised gradient structure (X,F ,Ψ) then

ΓDΦ∗
(
c,Γ

T
DF(c) + F (c)

)
= 0. (51)

Naturally property (51) is a weaker statement than (49); since Φ is a dissipation potential there holds
DΦ∗(c, 0) = 0.

Proof. It is easily calculated that the potentials (50) are indeed dual to each other, and that they are
dissipation potentials.

Assume that (49) holds. We can then calculate:

L̂(c, s) = inf
j∈Y :s=Γj

Φ(c, j) + Φ∗
(
c, F (c)

)
− 〈F (c), j〉

= inf
j∈Y :s=Γj

Φ(c, j) + Φ∗
(
c,−Γ

T
DF(c)

)
+ 〈DF(c), s〉

= Ψ(c, s) + Ψ∗
(
c,−DF(c)

)
+ 〈DF(c), s〉.

This shows this L̂ induces the gradient structure (X,F ,Ψ) as claimed; uniqueness of F up to con-
stants follows from [MPR14, Th. 2.1(ii)].
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For the other direction, assume that L̂ induces a gradient structure (X,F ,Ψ). Then for any ξ ∈ X∗,

Ψ∗
(
c, ξ −DF(c)

)
−Ψ∗

(
c,−DF(c)

)
= sup

s∈X
〈ξ, s〉 −Ψ(c, s)−Ψ∗

(
c,−DF(c)

)
− 〈DF(c), s〉

= Ĥ(c, ξ)

= sup
s∈X
〈ξ, s〉 − inf

j∈Y :s=Γj
L(c, j)

= H(c,Γ
T
ξ)

= sup
j∈Y
〈ΓT

ξ, j〉 − Φ(c, j)− Φ∗
(
c, F (c)

)
+ 〈F (c), j〉

= Φ∗
(
c,Γ

T
ξ + F (c)

)
− Φ∗

(
c, F (c)

)
.

Differentiating both sides in ξ = DF(c) yields (51).

In fact, whenever condition (49) holds, then L(c, j) also induces a gradient structure in flux space, as
follows. By a change of variables we can redefine the energy functional in terms of the integrated net

flux w(t) :=
∫ t̂

0
j(t̂) dt̂:

F̃(w) := F
(
c(0) + Γw

)
.

Then clearly DF̃(w) = Γ
T
DF

(
c(0) + Γw

)
, and hence (48) can be written as

L̃(w, j) := L
(
c(0) + Γw, j

)
= Φ̃(w, j) + Φ̃∗

(
w,−DF̃(w)

)
+ 〈DF̃(w), j〉,

where Φ̃(w, j) := Φ
(
c(0) + Γw, j

)
.

5.6 Dissipative structure and gradient structure for the reacting particle model

We now study how the theory of the previous subsection can be applied to the reacting particle model.
We take X = l1(I), Y = l1(Rfw), and so 〈ζ, j〉 = ζ ·Rfw

j :=
∑

r∈Rfw
ζrjr. Moreover, L and L̂ are

now again given by (44) and (42) where L is (31), and Γ is given by (45). We will see that a necessary
and sufficient condition for the net flux Lagrangian to induce a dissipative structure is a condition which
is sometimes called weak detailed balance, and a sufficient condition for the concentration Lagrangian
to induce a generalised gradient system is chemical detailed balance.

Proposition 5.8. The net flux LagrangianL from (44) induces a dissipative structure (l1(I), l1(Rfw), F,Φ)
precisely when

k̄(r)(c) = 0 ⇐⇒ k̄(←−r )(c) = 0 ∀c ∈ l1+(I), r ∈ Rfw. (52)

In that case, the dissipative structure is unique on the support of k̄(r)(c), and given by

Fr(c) =
1

2
log

k̄(r)(c)

k̄(←−r )(c)
and Φ∗(c, ζ) =

∑
r∈Rfw

2
√
k̄(r)(c)k̄(←−r )(c)

(
cosh(ζr)− 1

)
. (53)
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Proof. Fix an arbitrary c ∈ l1+(I). We apply [MPR14, Prop. 2.1] to the net flux Lagrangian; the exis-
tence of the dissipative structure is equivalent to the existence of the derivative −F (c) = DjL(c, 0).

Since L is only implicitly defined through an infimum, it is easier to check the equivalent statement
that F (c) minimises H(c, ·), the convex dual of L(c, ·). In order to calculate this dual, we need will
need, for any ζ ∈ l∞(Rfw) its antisymmetric extension

ζr :=

{
ζr, r ∈ Rfw,

−ζ←−r , r ∈ Rbw.

With this notation,

H(c, ζ) = sup
j∈l1(R)

ζ · (j− jT)1Rfw
− L(c, j) = sup

j∈l1(R)

ζ · j− L(c, j) = H(c, ζ).

whereH is the Hamiltonian (29) corresponding to L. By straightforward differentiation with respect to
ζr (which occurs twice inH(c, ζ) because of the antisymmetry), we find thatH has the antisymmetric
minimiser−Fr(c) for all c, r if and only if (52) holds, and F (c) is unique up to c, r for which k̄(r)(c) =
0.

Finally, by [MPR14, Lem. 2.1], the desired dissipation potential can be calculated explicitly through the
formula Φ∗(c, ζ) = H(c, ζ − F (c))−H(c,−F (c)).

Remark 5.9. By the same arguments, it is easily seen that the (one-way) flux Lagrangian L never
induces a dissipative structure. Indeed, a minimiser ζ ofH(c, ·) should satisfy for all r ∈ R,

0 = ∂ζrH(c, ζ) = k̄(r)(c)eζr ,

which can only hold if k̄(r)(c) = 0.

If weak detailed balance (52) holds, then the backwards net flux Lagrangian
←−
L also induces a dissi-

pative structure, where
←−
Fr(c) =

1

2
log

←−̄
k (r)(c)
←−̄
k (←−r )(c)

. The forward and backward force fields characterise

two interesting quantities:

Fr(c) +
←−
F←−r (c) =

1

2
log

k̄(r)(c)
←−̄
k (←−r )(c)

←−̄
k (r)(c)k̄(←−r )(c)

, (54)

Fr(c)−
←−
F←−r (c) =

(
ΓTDI0(c)

)
r
. (55)

The first quantity can be seen as a measure for how far the system is from chemical detailed balance,
see Remark 5.2. The second equation, which follows from (41), relates the force field induced by the
net flux Lagrangian to the quasi-potential. It is then not difficult to show that chemical detailed balance
is a sufficient condition for the concentration Lagrangian L̂ to induce a generalised gradient flow:

Proposition 5.10. Assume chemical detailed balance (36) holds. Then the concentration Lagrangian

L̂ induces a generalised gradient system with F(c) =
1

2
I0(c) and Ψ∗(c, ξ) = Φ∗(c,−Γ

T
ξ) and Φ∗

is given by (53).

Proof. Since chemical detailed balance holds, weak detailed balance also holds, and so by Proposi-
tion 5.8 the net flux Lagrangian L induces the dissipative structure (l1(I), l1(Rfw), F,Φ). Moreover,

because of chemical detailed balance, we have F (c) =
←−
F (c), and so by the assymetry of F (c), (55)

becomes F (c) = 1
2
ΓTDI0(c). The claim then follows from Proposition 5.7.
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The generalised gradient structure induced by the concentration Lagrangian L̂ was already found
in [MPPR, Subsec. 3.4]; the arguments in this paper explain how the dissipation potential Ψ is related
to the dissipative structure (l1(I), l1(Rfw), F,Φ) and the continuity operator Γ.
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