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Abstract

Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are
not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that
pressure-robustness can be recovered by a non-standard discretization of the right hand side alone. This varia-
tional crime introduces a consistency error in the method which can be estimated in a straightforward manner pro-
vided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-
robust scheme with low regularity. The numerical analysis applies divergence-free H1-conforming Stokes finite
element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a-priori error es-
timates will be presented for the (first order) nonconforming Crouzeix–Raviart element. A key feature in the
analysis is the dependence of the errors on the Helmholtz projector of the right hand side data, and not on the
entire data term. Numerical examples illustrate the theoretical results.

1 Introduction

Nearly all inf-sup stable mixed finite elements methods for the incompressible Stokes problem on shape-regular
meshes (with constant ν > 0)

−ν∆u+∇p = f , in Ω,

−∇ · u = 0, in Ω

relax the divergence constraint and, as a result, their a priori velocity error estimates have the form

‖u− uh‖1,h ≤ C
(

inf
wh∈Xh

‖u−wh‖1,h + ν−1 inf
qh∈Qh

‖p− qh‖
)

with a constant C = O(1) ≥ 1 independent of h, ν, and (u,p) [14, 7, 24]. Here, Xh denotes the space of
discrete velocity functions, Qh denotes the space of discrete pressure functions, ‖·‖1,h denotes some (possibly
discrete) H1 norm, and ‖·‖ denotes the L2 norm. While such discretization schemes are relatively popular, they
may not be the best possible ones from a qualitative point of view. Indeed, it is possible to construct inf-sup stable,
H1-conforming schemes, which fulfill an a priori velocity error estimate of the form

‖∇u−∇uh‖ ≤ C inf
wh∈X̃h

‖∇u−∇wh‖,

with some (possibly different) constant C = O(1) ≥ 1, and some H1-conforming discrete velocity space X̃h.
Such schemes, which do not relax the divergence-free constraint, are called divergence-free [43, 42, 39], and
require the identity ∇ · X̃h = Qh; they have become — modestly — popular only very recently [44, 17, 18, 45,
37, 35, 16, 8, 32, 10, 30, 11, 38, 3, 29].

The main advantage of divergence-free schemes is that they are pressure-robust [19, 27, 26, 28], i.e., their velocity
error is independent of the pressure. Classical inf-sup stable schemes guarantee a small velocity error whenever
the velocity u and the scaled pressure 1

ν p can be accurately approximated on a given regular finite element mesh.
Numerical errors of classical mixed methods that arise in such a case are often called poor mass conservation
[19, 13, 2, 25, 23]. Instead, pressure-robust schemes guarantee a small velocity error whenever the velocity u
alone can be accurately approximated. Even further, for many pressure-robust schemes, it was recently proven that
even some discrete a-priori pressure estimates can be pressure-independent. In such cases one can show that
the difference of the discrete pressure to the best approximation [28, 19] or some projection [21] of the continuous
pressure is only velocity-dependent.

Quite recently it was realized that the pressure-dependence of the velocity error of inf-sup stable Stokes discretiza-
tions is due to a lack ofL2 orthogonality of gradient fields and discretely divergence-free velocity test functions [24].
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This means that nearly all inf-sup stable Stokes discretizations can be made pressure-robust [24, 28, 21, 20, 1] by
only replacing the standard discretization of the right hand side∫

Ω

f · vh dx →
∫

Ω

f · πF (vh) dx ,

while the Stokes stiffness matrix remains unchanged. Here, πF is an appropriate velocity reconstruction operator
that approximates discretely-divergence-free test functions by divergence-free ones in the sense ofH(div).

Using a non-standard velocity test function in the discretization of the right hand side introduces a variational
crime and a consistency error [24]. Classical estimates of the consistency error require a minimal regularity of
u ∈ H1+s(Ω) with s > 1/2 in order for edge integrals to be defined. For the nonconforming Crouzeix–Raviart
element with the standard BDM1 interpolator as velocity reconstruction operator πF := πBDM, such classical
arguments deliver optimal error estimates [4]. However, the behavior of the consistency error in the case of a
low regularity s ≤ 1/2 is not addressed. This question seems to be important, since assuming f ∈ L2(Ω)
and assuming homogeneous Dirichlet velocity boundary conditions for a (polygonal) slit domain yields a velocity
regularity u ∈ H3/2−ε(Ω). Further, assuming different kinds of boundary conditions such a low regularity is
typical [12].

New ideas have recently been proposed to handle consistency errors in the case of low regularity [15, 31, 22].
In the paper [31] the consistency error of nonconforming finite element methods for scalar diffusion equations is
represented as a Céa-lemma like term and a data oscillation term that vanishes with optimal order. This estimate is
performed using some finite element interpolation operator that maps nonconforming finite element functions toH1

conforming ones. In [22] this approach is extended to classical inf-sup stable discretizations of the incompressible
Stokes problem, which are not pressure-robust.

In this contribution, we will now extend the (scalar) approach of [31] to the pressure-robust modification of the
Crouzeix–Raviart Stokes element using the velocity construction operator πF = πBDM. The main challenge is
to avoid any pressure-dependent terms in the estimate of the consistency error. Moreover, the data (oscillation)
term should not depend on f , but only on its Helmholtz projection P(f), i.e., its divergence-free part, since the
irrotational part of f corresponds to the pressure gradient ∇p [24]. These goals will be achieved by constructing
some finite element interpolation operator that maps nonconforming discretely-divergence-free Crouzeix–Raviart
finite element functions to divergence-freeH1 conforming vector fields. The approach exploits recent progress on
the construction of divergence-free, inf-sup stable mixed methods for the Stokes equations and uses rational bubble
functions [17, 18, 19]. A preliminary version of this contribution was presented in F. Neumann’s master thesis [36].

2 Preliminaries

Let Ω ∈ Rd with d ∈ {2, 3} be a domain with polyhedral boundary ∂Ω. Slit domains are explicitly allowed. We
denote by (·, ·)D the L2 inner product over a d-dimensional domain D ⊂ Ω, and drop the subscript in the case
D = Ω. The L2 inner product over a k-dimensional domain D, with k < d, is denoted by 〈·, ·〉D . The L2 norm
over D is denoted by ‖ · ‖D , and again, we drop the subscript if D = Ω. For a number m > 0, we denote by
‖ · ‖m the Hm norm over Ω.

We consider the steady incompressible Stokes equations with homogeneous boundary conditions to be our model
problem

−ν∆u+∇p = f , in Ω,

−∇ · u = 0, in Ω,

u = 0, on ∂Ω.

(2.1)

Here, we assume f ∈ L2(Ω) := L2(Ω)d and ν > 0 denotes the kinematic viscosity. Introducing trial and test
spacesX := H1

0(Ω) := H1
0 (Ω)d, Q := L2

0(Ω) and bilinear forms

a(u,v) = ν

∫
Ω

∇u : ∇v dx, b(u, q) = −
∫

Ω

q(∇ · u) dx,
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the weak formulation of (2.1) reads: Find (u, p) ∈X ×Q such that for all (v, q) ∈X ×Q it holds

a(u,v) + b(v, p) = (f ,v),

b(u, q) = 0.
(2.2)

Over the space of weakly divergence-free functions

V :=
{
v ∈X : b(v, q) = 0 ∀q ∈ Q

}
, (2.3)

we can formulate (2.2) as an elliptic equation for the velocity alone: Seek u ∈ V such that for all v ∈ V it holds

a(u,v) = (f ,v). (2.4)

In the following, we recall some fundamental properties of the Helmholtz decomposition and of the corresponding
Helmholtz projector [40, 19]. First, we introduce the following space of divergence-free L2 vector fields

L2
σ(Ω) = {w ∈ L2(Ω) : −(w,∇φ) = 0 for all φ ∈ H1(Ω)}. (2.5)

Note that for a vector field w ∈ L2(Ω), the mapping φ ∈ C∞0 (Ω) → −(w,∇φ) denotes the distributional
divergence of w. Therefore, all vector fields in L2

σ(Ω) are weakly divergence-free. Further, it holds w · n = 0
at the boundary of Ω. From the definition (2.5), one recognizes that all divergence-free, smooth vector fields with
compact support belong to L2

σ(Ω). Indeed, L2
σ(Ω) is the topological closure of these vector fields with respect to

theH(div)-norm.

Theorem 2.1 (Helmholtz Decomposition). Let Ω ⊂ Rd be a polyhedral domain. Then, any vector field f ∈ L2(Ω)
can be uniquely decomposed into a gradient of a scalar potential φ ∈ H1(Ω)/R and a divergence-free vector
field ψ ∈ L2

σ(Ω):

f = ∇φ+ψ. (2.6)

Proof. For a given vector field f ∈ L2(Ω) one defines the following (well-posed) problem: Find φ ∈ H1(Ω)/R
such that for all χ ∈ H1(Ω)/R it holds

(∇φ,∇χ) = (f ,∇χ),

which allows us to introduce ψ := f − ∇φ ∈ L2(Ω). Obviously, it holds ψ ∈ L2
σ(Ω). Further, ∇φ and ψ are

orthogonal in L2(Ω) by the definition of L2
σ(Ω), thus implying the uniqueness of the Helmholtz decomposition.

q.e.d.

Definition 2.2. For f = ∇φ + ψ ∈ L2(Ω) with ψ ∈ L2
σ(Ω), one defines P(f) = ψ, i.e., P(f) is the

divergence-free component of f .

Remark 2.3. The most important property of the Helmholtz projector in the following is that it holds for all χ ∈
H1(Ω):

P(∇χ) = 0,

which is a consequence of the uniqueness of the Helmholtz decomposition (2.6).

3 Discrete formulations

In this section, we introduce the standard nonconforming Crouzeix–Raviart finite element method for discretising
the Stokes equations. To this end, we first require some notation. We denote by Th a conforming, shape-regular,
simplicial triangulation of Ω, and by FIh and FBh the set of (d− 1)-dimensional interior faces and boundary faces,
respectively. For a face f ∈ Fh := FIh ∪ FBh , we denote its barycenter by mf and its diameter by hf . For an
element T ∈ Th, we denote byFj(T ) and hT , the set of j-dimensional subsimplices of T , and the diameter of T ,
respectively. The set of interior and boundary j-dimensional subsimplices of T are denoted byFIj (T ) andFBj (T ),
respectively. We denote the outward unit normal of a (d − 1)-dimensional face f ∈ Fh by nf . For f ∈ Fj(T ),

let {Fi}d−ji=1 ⊂ Fd−1(T ) be the (d − 1)-dimensional faces such that f ⊂ ∂Fi. We then set n(i)
f = nFi

, and

note that {n(i)
f }

d−j
i=1 spans the orthogonal subspace of the tangent space of f .

DOI 10.20347/WIAS.PREPRINT.2374 Berlin 2017
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For an interior face f = ∂T+ ∩ ∂T− ∈ FIh , we define the jump of a scalar or vector-valued function v on f by

[v]|f = v+|f − v−|f , v± := v|T± .

For a boundary face f = ∂T+ ∩ ∂Ω ∈ FBh , we set [v]|f = v+|f . In addition, for a j-dimensional simplex f , we
define the average of v on f by

{v}f =
1

|Tf |
∑
T∈Tf

vT |f ,

where Tf ⊂ Th denotes the set of simplices that have f as a subsimplex, |Tf | is the cardinality of the set, and
vT := v|T . In the case j = d− 1, we shall omit the subscript, i.e., we write {v} = {v}f when f ∈ Fh
The Crouzeix–Raviart finite element spaces are given by

CR(Ω) := {vh ∈ P1(Th), vh(mf ) is single–valued, f ∈ Fh},
CR0(Ω) := {vh ∈ CR(Ω) : vh(mf ) = 0, ∀f ∈ FBh },

where Pk(Th) with k ∈ N+ denotes the space of piecewise kth degree polynomials with respect to the partition
Th. We set

Xh := CR0(Ω)d, Qh := L2
0(Ω) ∩ P0(Th),

and let∇h and∇h· denote the piecewise gradient and piecewise divergence operators respectively, i.e.,

∇h : Xh −→ L2(Ω)d×d, (∇hvh)
∣∣
T

= ∇
(
vh
∣∣
T

)
, ∀T ∈ Th,

∇h· : Xh −→ L2(Ω), (∇h · vh)
∣∣
T

= ∇ ·
(
vh
∣∣
T

)
, ∀T ∈ Th.

For the discrete analogs of the bilinear forms a(·, ·), b(·, ·) we define ah(·, ·), bh(·, ·) piecewise over each element
T ∈ Th:

ah : Xh ×Xh −→ R, ah(uh,vh) := ν(∇huh,∇hvh),

bh : Xh ×Qh −→ R, bh(uh, qh) := −(qh,∇h · uh).

The classical discrete formulation of (2.2) reads as follows: Find (uh, ph) ∈Xh×Qh such that for all (vh, qh) ∈
Xh ×Qh it holds

ah(uh,vh) + bh(vh, ph) = (f ,vh),

bh(uh, qh) = 0.
(3.1)

Over the space of discretely divergence-free functions,

V h :=
{
vh ∈Xh : bh(vh, qh) = 0, for all qh ∈ Qh

}
,

problem (3.1) can be reformulated solely in terms of the velocity unknown: Find uh ∈ V h such that for all
vh ∈ V h it holds

ah(uh,vh) = (f ,vh). (3.2)

The next two results are standard, and can be found, e.g., in [7] and [5], respectively.

Theorem 3.1. The Crouzeix–Raviart finite-element pair (Xh, Qh) is inf-sup stable. There exists a constant β∗ >
0 independent of h with

inf
qh∈Qh\{0}

sup
vh∈Xh\{0}

|bh(vh, qh)|
‖qh‖‖∇hvh‖

≥ β∗ > 0.

We note that for the discrete inf-sup constant of the Crouzeix–Raviart element holds β∗ ≥ β, where β denotes the
continuous inf-sup constant.

Lemma 3.2. There holds for all vh ∈Xh,∑
f∈Fh

h−1
f

∥∥[vh]
∥∥2

f
≤ C‖∇hvh‖2.

DOI 10.20347/WIAS.PREPRINT.2374 Berlin 2017
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3.1 A pressure-robust Crouzeix–Raviart element via velocity reconstructions

As argued in [24, 4], the classical Crouzeix–Raviart element is only discretely divergence-free, as it relaxes the
L2-orthogonality against arbitrary gradient fields. This leads to error estimates which are not pressure-robust, and
hence depend on the inverse viscosity ν−1 > 0 and the irrotational part of the right-hand side f ∈ L2(Ω). Here
we describe a relatively simple procedure that recovers pressure-robustness by mapping discretely divergence-free
test functions to L2

σ(Ω).

Set Y h = P1(Th) ∩H0(div; Ω) to be the lowest order Brezzi-Douglas-Marini space [6, 7], consisting of piece-
wise linear vector-valued functions. Here, H0(div; Ω) denotes the space of L2(Ω) functions with divergence in
L2(Ω), whose normal component vanishes on ∂Ω. We recall that any wh ∈ Y h is uniquely determined by the
moments ∫

f

wh · nfq ds ∀qh ∈ P1(f), ∀f ∈ FIh .

We define πBDM : X +Xh −→ Y h as the unique operator satisfying∫
f

(πBDMv) · nfqh ds =

∫
f

{v · nf}qh ds ∀qh ∈ P1(f), ∀f ∈ FIh . (3.3)

Lemma 3.3. There holds ∑
T∈Th

h−2
T ‖v − π

BDMv‖2T ≤ C‖∇hv‖2, (3.4)

‖∇hπBDMv‖ ≤ C‖∇hv‖ (3.5)

for all v ∈X +Xh, and ∑
T∈Th

h
−2(1+s)
T ‖v − πBDMv‖2T ≤ C‖v‖1+s, (3.6)

for all v ∈H1+s(Ω) ∩H1
0(Ω). Moreover,∇ · πBDMv ≡ 0 for all v ∈ V + V h.

Proof. The proof of (3.4)–(3.6) in the case v ∈X can be found in [7].

Let vh ∈ Xh and set vT := vh
∣∣
T

for some T ∈ Th. Since the values wh · nf
∣∣
f

(f ∈ Fd−1(T )) uniquely

determine any wh ∈ P1(T ), and since (vh − πBDMvh)
∣∣
T
∈ P1(T ), a scaling argument and the shape–

regularity of Th show that

h−2
T ‖vh − π

BDMvh‖2T ≤ C
∑

f∈Fd−1(T )

h−1
f ‖(vT − π

BDMvh) · nf‖2f .

Because (vT −πBDMvh) ·nf = ± 1
2 [vh ·nf ] on f ∈ FIh and (vT −πBDMvh) ·nf = vT ·nf on f ∈ FBh ,

we have by Lemma 3.2,∑
T∈Th

h−2
T ‖vh − π

BDMvh‖2T ≤ C
∑
f∈Fh

h−1
f ‖[vh]‖2f ≤ C‖∇hvh‖2.

This proves (3.4). The stability estimate (3.5) follows from (3.4) and an inverse estimate.

Finally, let v ∈ V + V h so that ∇h · v ≡ 0 and
∫
f
{v · nf} ds =

∫
f
v · nf ds for all f ∈ Fh. Then by the

divergence theorem, we have for each T ∈ Th,∫
T

∇ · πBDMv dx = −
∫
∂T

(πBDMv) · n ds = −
∫
∂T

(v · n) ds =

∫
T

∇ · v dx = 0.

Thus,∇ · πBDMv ≡ 0. q.e.d.
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Inspired by theL2-orthogonality (2.5) ofL2
σ(Ω) against all gradient fields, the following variational crime improves

the L2-orthogonality of discretely divergence-free vector fields vh ∈ V h against the irrotational part of f in the
sense of the Helmholtz decomposition [24, 4]:

ah(uh,vh) + bh(vh, ph) = (f ,πBDMvh) ∀vh ∈Xh

bh(uh, qh) = 0 ∀qh ∈ Qh.
(3.7)

Restricting (3.7) to V h and applying the Berger–Scott–Strang lemma gives us the following abstract error estimate
that decomposes the error into two parts: one that measures the interpolation error and another that measures the
consistency error.

Lemma 3.4 (Berger–Scott–Strang). Let u ∈ X be the continuous solution of (2.2) and uh ∈ V h the discretely
divergence-free solution of (3.7). Then the error satisfies

‖∇h(u− uh)‖ ≤ inf
vh∈V h

‖∇h(u− vh)‖+ ν−1 sup
wh∈V h\{0}

|Ch(u,wh)|
‖∇hwh‖

,

where the consistency error is given by Ch(u,wh) := ah(u,wh)− (f ,πBDMwh).

4 Conforming and divergence-free element

In this section we present the conforming and divergence-free finite-element introduced in [17, 18]. These elements
are constructed by enhancing a family ofH(div; Ω)-conforming elements with rational bubble functions such that
they possess tangential continuity.

For a simplex T ∈ Th, let {ai}di=0 = F0(T ) and {λi}di=0 ⊂ P1(T ) denote the vertices and barycentric
coordinates of T , i.e., λi is the unique linear polynomial satisfying λi(aj) = δi,j . In two dimensions, we label
the edges F1(T ) = {ei}2i=0 such that ai is not a vertex of ei. Likewise, in three dimensions, we label the faces
F2(T ) = {fi}3i=0 such that ai is not a vertex of fi.

The edge/face bubble functions and volume bubble function are given by

bi :=

d∏
j=0

j 6=i

λj ∈ Pd(T ), bT :=

d∏
j=0

λj ∈ Pd+1(T ),

and the rational edge/face bubble functions are given by (mod d)

Bi := bT bi
/ d∏
j=1

(λi + λi+j), for 0 ≤ λi ≤ 1, 0 ≤ λi+j < 1,

Bi(ai+j) = 0, else.

We note that Bi ∈ W 2,∞(T ), Bi|∂T = 0, ∇Bi|∂T = −|∇λi|binfi (cf. [17, 18] for details). In particular, the
rational bubble functions and its derivatives reduce to polynomial functions on the boundary of each element.

We setNm−1(T ) := {wh ∈ Pm−1(T ) : wh · x ∈ Pm−1(T )} to be the (local)H(curl; Ω) Nedelec space
of index m− 1 [33], and define the local space of divergence–free polynomials (m ≥ 1)

Qm(T ) :=
{
vh ∈ Pm(T ) : (vh,ρh)T = 0, ∀ρh ∈Nm−1(T ) and

〈vh · nf , κh〉f = 0 ∀κh ∈ Pm−1(f), f ∈ Fd−1(T )
}
.

Note that∇qh ∈Nm−1(T ) for qh ∈ Pm−1(T ), and therefore∫
T

(∇ ·wh)qh dx = −
∫
T

wh · ∇qh dx+

∫
∂T

(wh · n)qh ds = 0 ∀wh ∈ Qm(T ), qh ∈ Pm−1(T ).

DOI 10.20347/WIAS.PREPRINT.2374 Berlin 2017
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Thus, functions inQm(T ) are divergence–free as claimed. Moreover, since any vh ∈ Pm(T ) is uniquely deter-
mined by the moments (vh,ρh)T and 〈(vh · nf ), κh〉f for ρh ∈ Nm−1(T ) and κh ∈ Pm(f) (cf. [34]), we
conclude that the dimension of Qm(T ) is dimQm(T ) = (d + 1)

(
dimPm(Rd−1) − dimPm−1(Rd−1)

)
=

(d+ 1)
(
m+d−2
d−2

)
. This discussion also shows thatQm(T ) ∩Pm−1(T ) = {0}.

We set

Mk(T ) := Pk(T )⊕d−1
j=1 Qk+j(T ) ⊂ Pk+d−1(T ) (4.1)

to be the local H(div;T )-conforming finite element space with continuity at the vertices introduced in [17, 18]
(also see [9, 41])

To summarize the divergence-free finite element spaces constructed in [17, 18] we discuss the two and three
dimensional cases separately.

4.1 Two-dimensional construction

This section summarizes the two-dimensional family of divergence-free (yielding) finite elements constructed in
[17]. As a first step, for an integer k ≥ 1, we define the auxiliary space consisting of divergence-free rational
bubble functions:

U(T ) :=

2∑
i=0

curl(BiA
(i)
k−1(T )),

A
(i)
k−1(T ) : = {qh ∈ Pk−1(T ) : (qh, Biph)T = 0 ∀ph ∈ Pk−2(T )} (k ≥ 2),

and A(i)
0 (T ) = P0(T ). Here, curl = (∂/∂x2,−∂/∂x1)t is the two-dimensional vector curl operator. Note that

the dimension of A(i)
k−1(T ) is k, and therefore dimU(T ) = 3k. In addition, due to the properties of the rational

bubble functions, there holds zh|∂T ∈ Pk+1(∂T ) for zh ∈ U(T ).

The local space of the divergence-free conforming element is then given by

W k(T ) = Mk(T )⊕U(T ),

whereMk(T ) given by (4.1) with d = 2. Since dimQk+1(T ) = 3, we find that

dimW k(T ) = (k + 2)(k + 1) + 3 + 3k = (k + 5)(k + 1).

A unisolvent set of degrees of freedom is given in the next lemma (cf. [17, Lemma 5.1]). For completeness, we
provide the proof in the appendix.

Lemma 4.1. The following degrees of freedom are unisolvent overW k(T ):

vh(a) ∀a ∈ F0(T ) (4.2a)

〈vh,κh〉e ∀κh ∈ Pk−1(e), e ∈ F1(T ), (4.2b)

(vh,ρh)T ∀ρh ∈Nk−1(T ). (4.2c)

Remark 4.2. The rational bubble functions and local spaces are constructed such thatW k(T )|∂T ⊂ Pk+1(∂T ).
Since the boundary degrees of freedom (4.2a)–(4.2b) are the same as the Lagrange finite element space of degree
(k + 1), we see that the degrees of freedom (4.2) induce anH1(Ω)–conforming finite element space.

For given k ≥ 1 we set

W h = W k
h := {vh ∈X : vh

∣∣
T
∈W k(T ), ∀T ∈ Th}

as the two-dimensional, globally H1(Ω)-conforming finite element space. The degrees of freedom (4.2) induce a
Fortin operator which satisfies the following properties; see [17] for details.
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Proposition 4.3. There exists πh : X →W k
h such that, for all v ∈X ,∫

Ω

(∇ · πhv)qh dx =

∫
Ω

(∇ · v)qh dx ∀qh ∈ Pk−1(Th) ∩Q,

and

‖∇πhv‖ ≤ C‖∇v‖.

Furthermore, if k ≥ 2, then ∫
T

πhv dx =

∫
T

v dx ∀T ∈ Th.

The following lemma extends the results of Proposition 4.3 by constructing a Fortin-type operator on the Crouzeix–
Raviart element spaceXh in two dimensions.

Lemma 4.4. For each k ≥ 1, there exists an operatorEh : Xh →W k
h such that

(i)

∫
e

Ehvh ds =

∫
e

vh ds for all e ∈ Fh and vh ∈Xh,

(ii) ∇ · (Ehvh) = ∇ · (πBDMvh)
(

= ∇h · vh
)

for all vh ∈Xh,

(iii) Eh : V h →W k
h ∩ V ,

(iv) ‖∇Ehvh‖ ≤ C‖∇hvh‖ for all vh ∈Xh.

Proof. For T ∈ Th, we uniquely define the local operatorET : Xh −→W k(T ) such that(
ETvh

)
(a) = {vh}a, ∀a ∈ FI0 (T ) (4.3a)〈

(ETvh − {vh}),κh
〉
e

= 0, ∀κh ∈ Pk−1(e), e ∈ FI1 (T ), (4.3b)(
ETv − πBDMvh,ρh

)
T

= 0, ∀ρh ∈Nk−1(T ), (4.3c)

and ETvh(a) = 0 for a ∈ FB0 (T ), and 〈ETvh,κh〉e = 0 for κh ∈ Pk−1(e) and e ∈ FB1 (T ). Setting
Ehvh

∣∣
T

:= ETvh, we clearly see that property (i) is satisfied.

To show (ii), for e ∈ F1(T ), let Pe : L2(e) → Pmin{1,k−1}(e) denote the L2 projection onto Pmin{1,k−1}(e).
For vh ∈ Xh we have {vh · ne}

∣∣
e
∈ P1(e), and therefore, since (πBDMvh) · ne

∣∣
e
∈ P1(e), (4.3b)–(4.3c)

and integration by parts,

(∇ · (ETvh), qh)T = −(ETvh,∇qh)T +
∑

e∈FI
1 (T )

〈(ETvh) · ne, qh〉e

= −(πBDMvh,∇qh)T +
∑

e∈FI
1 (T )

〈{vh · ne},Peqh〉e

= −(πBDMvh,∇qh)T +
∑

e∈FI
1 (T )

〈πBDMvh · ne,Peqh〉e

= (∇ · (πBDMvh), qh)T

for all qh ∈ Pk−1(T ). Thus, due to ∇ · (ETvh) ∈ Pk−1(T ), the statement (ii) holds. Further, (iii) is a simple
consequence of (ii), restrictingEh to V h.

To show (iv), we set wT := ETvh and vT := vh
∣∣
T

for notational convenience. Since W k(T ) is finite dimen-
sional, a simple scaling argument shows that

‖∇(wT − vT )‖2T .
∑

a∈F0(T )

|(wT − vT )(a)|2 +
∑

e∈F1(T )

h−1
e

∣∣∣ sup
κh∈Pk−1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2 (4.4)

+ sup
ρh∈Nk−1(T )

‖ρh‖T =1

h−2
T

∣∣(wT − vT ,ρh)T
∣∣2.
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Note that {vh} − vT = ± 1
2 [vh] on e ∈ FI1 (T ) and wT = 0 on e ∈ FB1 . It then follows from (4.3) and the

Cauchy-Schwarz inequality that∑
e∈F1(T )

h−1
e

∣∣∣ sup
κh∈Pk−1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2 ≤ ∑

e∈F1(T )

h−1
e

∥∥[vh]
∥∥2

e
. (4.5)

We also have by (4.3), for a ∈ FI0 (T ),∣∣wT − vT (a)
∣∣2 =

∣∣{vh}a − vT (a)
∣∣2 ≤ C ∑

T ′∈Ta

|vT ′(a)− vT (a)|2

≤ C
∑

T ′,T ′′∈Ta
T ′ and T ′′ share a common edge

|vT ′(a)− vT ′′(a)|2.

Letting Fa ⊂ Fh denote the set of edges that have a as a vertex, we conclude from an inverse inequality that∣∣wT − vT (a)
∣∣2 ≤ C ∑

e∈Fa

‖[vh]‖2L∞(e) ≤ C
∑
e∈Fa

h−1
e ‖[vh]‖2e. (4.6)

Likewise, for a ∈ FB0 (T ), we havewT (a) = 0, and therefore,∣∣wT − vT (a)
∣∣2 = |vT (a)|2 ≤

∑
e∈FB

1 (T )

‖vT ‖L∞(e) ≤ C
∑
e∈Fa

h−1
e ‖[vh]‖2e. (4.7)

Combining (4.4)–(4.7), summing over T ∈ Th, and applying Lemmas 3.2 and 3.3 yield

‖∇h(Ehvh − vh)‖2 .
∑
e∈Fh

h−1
e ‖[vh]‖2e +

∑
T∈Th

h−2
T ‖vh − π

BDMvh‖2T . ‖∇hvh‖2.

An application of the triangle inequality now gives (iii). This completes the proof. q.e.d.

4.2 Three-dimensional construction

To describe the three dimensional, divergence-free conforming finite element space, we first label the six edges of
an element T as F1(T ) = {ei,j}3i<j such that ei,j = ∂fi ∩ ∂fj . The quadratic edge bubble functions are given
by

bi,j =

3∏
k=0

k 6=i,k 6=j

λk,

and the rational edge bubble functions are then defined as [18]

si,j =
bT bi,j

2
(
λiλj + bi,j(λi + λj)

)
(λi + λj)

(
∇(λ2

j − λ2
i ) + 4(λi∇λj − λj∇λi)

)
.

The (seemingly abstruse) function si,j is constructed such that [18, Lemma 2.2]

curl si,j ∈ C0(T̄ ) ∩W 1,∞(T ), curl si,j
∣∣
∂T

= bi,j(∇λi ×∇λj), si,j
∣∣
∂T

= 0.

Thus, similar to the rational face bubble functions, the rational edge bubble functions and its derivatives reduce to
polynomials on the boundary of the element.

We define the auxiliary spaces consisting of divergence–free rational face and edge bubbles:

U(T ) =

3∑
i=0

curl(BiP0(T )× nfi),

Z(T ) =
{ 3∑
i,j=0
i>j

curl(psi,j) : p ∈M (i,j)(T )
}
,
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where M (i,j)(T ) = span{λk, λ`} and k, ` 6= i, k, ` 6= j, and k 6= `.

The local space of the divergence-free element is obtained by enriching the local H(div;)-element (4.1) with
rational edge and rational face bubble functions:

W (T ) = M1(T )⊕U(T )⊕Z(T ). (4.8)

Note that, since the last two spaces in (4.8) are divergence-free, there holds ∇ ·W (T ) = ∇ ·M1(T ) =
∇ ·P1(T ) ⊂ P0(T ). Moreover, restricted to the boundary, we haveW (T )|∂T ⊂ P3(∂T ). A unisolvent set of
degrees of freedom that induce an H1-conforming finite element space is given in the next lemma [18, Theorem
3.1].

Lemma 4.5. The dimension ofW (T ) is 60, and a function vh ∈W (T ) is uniquely determined by the values

vh(a) ∀a ∈ F0(T ) (4.9a)

〈vh,κh〉e ∀κh ∈ P1(e), e ∈ F1(T ), (4.9b)

〈vh,κh〉f ∀κh ∈ P0(f), f ∈ F2(T ). (4.9c)

We set

W h := {vh ∈X : vh
∣∣
T
∈W (T ), ∀T ∈ Th}

Analogous to Proposition 4.3 (with k = 1), the degrees of freedom (4.9) induce a Fortin operator.

Proposition 4.6. There exists πh : X →W h such that, for all v ∈X ,∫
Ω

(∇ · πhv)qh dx =

∫
Ω

(∇ · v)qh dx ∀qh ∈ P0(Th) ∩Q,

and

‖∇πhv‖ ≤ C‖∇v‖.

Similar to Lemma 4.4, we construct a Fortin-type operator on the Crouzeix–Raviart element spaceXh.

Lemma 4.7. In three dimensions there exists an operatorEh : Xh →W h such that

(i)

∫
f

Ehvh ds =

∫
f

vh ds for all f ∈ Fh and vh ∈Xh,

(ii) ∇ · (Ehvh) = ∇ · (πBDMvh)
(

= ∇h · vh
)

for all vh ∈Xh,

(iii) Eh : V h →W h ∩ V ,

(iv) ‖∇Ehvh‖ ≤ C‖∇hvh‖ for all vh ∈Xh.

Proof. The proof closely follows the proof of Lemma 4.4, so we only sketch the argument.

For T ∈ Th, defineET : Xh −→W (T ) such that(
ETvh

)
(a) = {vh}a, ∀a ∈ FI0 (T ) (4.10a)〈

(ETvh − {vh}e),κh
〉
e

= 0, ∀κh ∈ P1(e), e ∈ FI1 (T ), (4.10b)〈
(ETvh − vh),κh

〉
f

= 0, ∀κh ∈ P0(f), f ∈ F2(T ), (4.10c)

and ETvh(a) = 0 for a ∈ FB0 (T ), and 〈ETvh,κh〉e = 0 for κh ∈ P1(e), for e ∈ FB1 (T ). Setting
Ehvh

∣∣
T

:= ETvh, we clearly see that property (i) is satisfied. Moreover, since (∇ · ETvh) ∈ P0(T ) and

(∇·vh)|T ∈ P0(T ), condition (4.10c) and integration by parts shows that∇·Ehvh = ∇h·vh = ∇·(πBDMvh).
Thus, (ii)-(iii) holds.
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SettingwT = ETvh and vT = vh
∣∣
T

, a scaling argument yields

‖∇(wT − vT )‖2T .
∑

a∈F0(T )

hT |(wT − vT )(a)|2 +
∑

e∈F1(T )

∣∣∣ sup
κh∈P1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2 (4.11)

+
∑

f∈F2(T )

∣∣∣ sup
κh∈P0(f)

‖κh‖f=1

h−1
F 〈wT − vT ,κh〉f

∣∣∣2
≤

∑
a∈F0(T )

hT |{vh}a − vT (a)|2 +
∑

e∈F1(T )

‖{vh}e − vT ‖2e.

Applying similar arguments found in the proof of Lemma 4.4, we have (cf. (4.6))∑
e∈F1(T )

‖{vh}e − vT ‖2e ≤ C
∑

e∈F1(T )

∑
f∈Fe

h−1
F

∥∥[vh]‖2f , (4.12)

where Fe denotes the set of faces that have e as an edge. Likewise, we have for a ∈ FI0 (T ),

|{vh}a − vT (a)|2 ≤ C
∑
T ′∈Ta

|vT ′(a)− vT (a)|2 (4.13)

≤ C
∑

T ′,T ′′∈Ta
T ′ and T

′′
share a common face

|vT ′(a)− vT ′′ (a)|2

≤ C
∑
f∈Fa

∥∥[vh]‖2L∞(f) ≤ C
∑
f∈Fa

h−2
f

∥∥[vh]
∥∥2

f
,

where Fa denotes the set of faces that have a as a vertex. For a ∈ FB0 (T ) we have

|{vh}a − vT (a)|2 = |vT (a)|2 ≤ C
∑
f∈Fa

h−2
f

∥∥[vh]‖2f . (4.14)

Combining the estimates (4.12)–(4.14) to (4.11) and summing over T ∈ Th yields

‖∇(Evh − vh)‖2 ≤ C
∑
f∈F

h−1
f ‖[vh]‖2f .

Applying Lemma 3.2 and the triangle inequality, we obtain (iv). This completes the proof. q.e.d.

5 Pressure-robust error estimates

Following the Berger-Scott-Strang-Lemma 3.4, estimates of the energy error contain a consistency errorCh(u,wh).
Classical estimates of the consistency error require a minimal regularity of u ∈ H1+s(Ω) with s > 1/2 in order
for edge-integrals to be defined. Together with the preceding section, we are now in position to estimate the energy
and L2 errors of the modified Crouzeix–Raviart element method (3.7) for arbitrary regularities

u ∈X ∩H1+s(Ω), s ≥ 0.

We will use the Fortin-type operator defined in Theorem 4.4 to estimate the consistency error by the velocity-best
approximations and additional higher-order oscillations.

Theorem 5.1. Let k ≥ 1 if d = 2, and k = 1 if d = 3. Let u ∈ V be the continuous solution of (2.4) and
uh ∈ V h be the discrete solution to the reconstructed scheme (3.7). There holds

‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1Rk−2

(
P(f)

))
,
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with

Rk−2(g)2 =

{∑
T∈Th h

2
T ‖g‖2T for k = 1,∑

T∈Th h
2
T infqh∈Pk−2(T ) ‖g − qh‖2T for k ≥ 2,

(5.1)

and C > 0 is independent of h, ν and (u, p).

Proof. Let vh,wh ∈ V h be arbitrary. Using the BDM reconstruction leads to the modified consistency error
Ch(u,wh) defined in Lemma 3.4. ForEhwh ∈ V being conforming and divergence-free, it holds ah(u,Ehwh)
= (f ,Ehwh), and therefore,

Ch(u,wh) = ah(u,wh)− (f ,πBDMwh)

= ah(u,wh −Ehwh)− (f ,πBDMwh −Ehwh)

= ah(u− vh,wh −Ehwh)︸ ︷︷ ︸
=:I1

+ ah(vh,wh −Ehwh)︸ ︷︷ ︸
=:I2

− (f ,πBDMwh −Ehwh)︸ ︷︷ ︸
=:I3

for arbitrary vh ∈Xh.

To bound the first term I1 we apply Lemmas 4.4 and 4.7, and the Cauchy–Schwarz inequality:

I1 ≤ ν‖∇h(u− vh)‖‖∇h(wh −Ehwh)‖ ≤ νC‖∇h(u− vh)‖‖∇hwh‖.

Since vh is piecewise linear, an integration by parts for the second term I2 yields

I2 = ν
∑
T∈Th

∫
T

∇vh : ∇
(
wh −Ehwh

)
dx

= −ν
∑
T∈Th

∫
T

∆vh︸︷︷︸
≡0

·
(
wh −Ehwh

)
dx+ ν

∑
T∈Th

∫
∂T

∂vh
∂n︸︷︷︸
≡ const

·
(
wh −Ehwh

)
ds

= 0. (5.2)

Concerning the last term I3, it follows for k ≥ 2 from (4.3c) that for any qh ∈ Pk−2(Th),

I3 =
(
f ,πBDMwh −Ehwh

)
=
(
P(f),πBDMwh −Ehwh

)
(5.3)

=
(
P(f)− qh,πBDMwh −Ehwh

)
.

In the case k = 1, a similar argument follows with qh = 0.

Next, it follows from Lemmas 4.4 and 4.7 that the integral of πBDMwh − Ehwh vanishes on each edge/face.
Applications of the Poincaré and Cauchy–Schwarz inequalities then lead to

I3 ≤
( ∑
T∈Th

h2
T ‖P(f)− qh‖2T

)1/2( ∑
T∈Th

h−2
T

∥∥πBDMwh −Ehwh

∥∥2

T

)1/2

≤ C
( ∑
T∈Th

h2
T ‖P(f)− qh‖2T

)1/2

‖∇h(πBDMwh −Ehwh)‖.

Using theH1-stability results ofEh and πBDM then yield

I3 ≤ CRk−2

(
P(f)

)
‖∇hwh‖.

A combination of all preceding estimates yields

Eh(u,wh) ≤ C
(
ν‖∇h(u− vh)‖+ Rk−2

(
P(f)

))
‖∇hwh‖.

Finally, inf-sup stability implies [5]

inf
vh∈V h

‖∇h(u− vh)‖ ≤ C inf
vh∈Xh

‖∇h(u− vh)‖.

Combining these results with Lemma 3.4 then gives the desired result (5.1). q.e.d.
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Remark 5.2. The dependence of the error estimate on the term ν−1P(f) is briefly discussed in a special case
here. For a more detailed discussion, see Subsection 5.1. Assume that it holds ∆u,∇p ∈ L2(Ω). Then, one
obtains

1

ν
P(f) =

1

ν
P(−ν∆u+∇p) = P(∆u),

due to Remark 2.3. Hence, ν−1P(f) is ν-independent. Note that ν−1f = ∆u + ν−1∇p is not ν-independent,
instead, and hence, any error estimate that depends on this term is not pressure-robust. Indeed, a dependence on
ν−1f indicates a locking-phenomenon, see the discussion in [1].

In order to estimate the L2 error, we follow the lines of Aubin-Nitsche [5]. First we define (φ,φh) ∈ V × V h as
the solutions to the following dual problems:(

∇φ,∇v
)

= (u− uh,v), ∀v ∈ V , (5.4a)(
∇hφh,∇hvh

)
= (u− uh,πBDMvh), ∀vh ∈ V h. (5.4b)

We assume that the continuous dual problem (5.4a) satisfies the following regularity

‖φ‖1+s0 ≤ C‖u− uh‖, (5.5)

with s0 ∈ [0, 1] and for some constant C > 0.

Lemma 5.3 (Dual energy error). Let φ ∈ V be the continuous solution of (5.4a) and φh ∈ V h be the discrete
dual solution of (5.4b). Then it follows that the dual energy error satisfies

‖∇h(φ− φh)‖ ≤ Chs0‖u− uh‖.

Proof. The dual energy error can be estimated by Theorem 5.1 for ν = 1 and k = 1:

‖∇h(φ− φh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(φ− vh)‖+

√∑
T∈Th

h2
T ‖u− uh‖2T

)
.

By standard approximation results and (5.5) we have

inf
vh∈Xh

‖∇h(φ− vh)‖ ≤ Chs0‖φ‖1+s0 ≤ Chs0‖u− uh‖. (5.6)

and hence, by the definition of Rk−2 in (5.1), for meshes satisfying hT ≤ 1

‖∇h(φ− φh)‖ ≤ hs0‖u− uh‖.

q.e.d.

Theorem 5.4. Let u ∈ V be the solution of (2.4) and uh ∈ V h be the discrete solution of the reconstructed
scheme (3.7). Then there holds

‖u− uh‖ ≤ Chs0
(

inf
vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)‖
)
, (5.7)

with s0 ∈ [0, 1] being the dual regularity (5.5).

Proof. Let us define the following terms

I1 :=
(
∇h(u− uh),∇h(φ− φh)

)
,

I2 :=
(
u− uh,πBDM(u− uh)

)
−
(
∇h(u− uh),∇φ

)
,

I3 := ν−1
(
P(f),πBDM(φ− φh)

)
−
(
∇u,∇h(φ− φh)

)
,

I4 :=
(
u− uh,u− uh − πBDM(u− uh)

)
,

I5 := ν−1
(
P(f),φ− πBDMφ

)
,
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such that the L2 error splits up as follows

‖u− uh‖2 = (u− uh,u− uh)−
(
∇h(u− uh),∇hφh

)
−
(
∇u,∇h(φ− φh)

)
(5.8)

+ ν−1
(
f ,φ− πBDMφh

)
=
(
∇h(u− uh),∇h(φ− φh)

)
−
(
∇h(u− uh),∇φ

)
−
(
∇u,∇h(φ− φh)

)
+
(
u− uh,u− uh − πBDM(u− uh)

)
+
(
u− uh,πBDM(u− uh)

)
+ ν−1

(
f ,φ− πBDMφh

)
= I1 + I2 + I4 + ν−1

(
P(f),φ− πBDMφ

)
+ ν−1

(
P(f),πBDM(φ− φh)

)
−
(
∇u,∇h(φ− φh)

)
= I1 + I2 + I3 + I4 + I5.

The transition to the Helmholtz-projection P(f) is admissible since φ ∈ V and πBDM(φ − φh) is divergence-
free.

For the first term we use the Cauchy-Schwarz inequality and apply the preceding Lemma 5.3 to estimate the dual
energy error ‖∇h(φ− φh)‖. It follows for mesh sizes h ≤ 1

I1 ≤ ‖∇h(u− uh)‖‖∇h(φ− φh)‖ ≤ Chs0‖∇h(u− uh)‖‖u− uh‖. (5.9)

In order to estimate the second term, we make use of the Fortin operators πh andEh given in Proposition 4.3 and
Lemma 4.4, respectively (with k ≥ 2). For vh ∈ V h arbitrary, it follows that

I2 =
(
u− uh,πBDM(u− uh)

)
−
(
∇h(u− uh),∇φ

)
(5.4a)
=
(
u− uh,πBDM(u− uh)− (πhu−Ehuh)

)
+
(
∇φ,∇h(πhu−Ehuh − (u− uh))

)
=
(
u− uh,πBDM(u− uh)− (πhu−Ehuh)

)
+
(
∇h(φ− vh),∇h(πhu−Ehuh − (u− uh))

)
+
(
∇hvh,∇h(πhu−Ehuh − (u− uh))

)︸ ︷︷ ︸
=0

=: J1 + J2.

Concerning the first contribution, we apply the Poincaré inequality, Lemma 3.3, Lemma 4.4, and Proposition 4.3 to
obtain

J1 ≤ ‖u− uh‖‖πBDM(u− uh)− (πhu−Ehuh)‖
≤ Ch‖u− uh‖

∥∥∇h(πBDM(u− uh)− (πhu−Ehuh)
)
‖

≤ Ch‖u− uh‖‖∇h(u− uh)‖.

Likewise, for the second contribution, we apply Lemmas 3.3 and 4.4 and Proposition 4.3:

J2 ≤ ‖∇h(φ− vh)‖
∥∥∇h(πhu−Ehuh − (u− uh)

)∥∥
≤ C‖∇h(φ− vh)‖‖∇h(u− uh)‖.

Altogether it holds for the second term I2

I2 ≤ C
(

inf
vh∈V h

‖∇h(φ− vh)‖+ h‖u− uh‖
)
‖∇h(u− uh)‖ (5.10)

≤ C
(

inf
vh∈Xh

‖∇h(φ− vh)‖+ h‖u− uh‖
)
‖∇h(u− uh)‖

≤ Chs0‖u− uh‖‖∇h(u− uh)‖.

The estimate of I3 follows from the same arguments as I2 by interchanging φ with u, πBDM(u − uh) with
πBDM(φ− φh) and u− uh with ν−1P(f); thus,

I3 ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)
)
‖∇h(φ− φh)‖ (5.11)

≤ Chs0
(

inf
vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)‖
)
‖u− uh‖.
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Next, applying Lemma 3.3 we obtain

I4 = (u− uh,u− uh − πBDM(u− uh)) ≤ Ch‖u− uh‖‖∇h(u− uh)‖.

In order to bound the last contribution I5 we again employ Lemma 3.3:

I5 = ν−1
(
P(f),φ− πBDMφ

)
≤ ν−1‖P(f)‖‖φ− πBDMφ‖ (5.12)

≤ Cν−1h1+s0‖P(f)‖‖u− uh‖.

Finally we combine the estimates (5.9)–(5.12) to (5.8) to obtain (5.7). The proof is complete. q.e.d.

Theorem 5.5. Let k ≥ 1 if d = 2 and k = 1 if d = 3. Let (u, p) ∈ V × Q be the solution of (2.2) and
(uh, ph) ∈ V h ×Qh be the discrete solution of the reconstructed scheme (3.7). Then there holds

‖πhp− ph‖ ≤ C
ν

β∗
‖∇h(u− uh)‖+

C

β∗
Rk−2

(
P(f)

)
, (5.13)

where πhp denotes the L2 best approximation of p in Qh.

Proof. For an arbitrarywh ∈Xh one obtains

(πhp− ph,∇h ·wh) = (πhp,∇ · (Ehwh))− (ph,∇h ·wh)

= (p,∇ · (Ehwh))− (ph,∇h ·wh),

since it holds for all elements T in the mesh, (∇h · wh)|T = (∇ · (Ehwh))|T (see Lemmas 4.4 and 4.7 (ii)).
Using the definitions of the continuous and the discrete Stokes problems (2.2) and (3.7), one obtains

(πhp− ph,∇h ·wh) = a(u,Ehwh)− ah(uh,wh)︸ ︷︷ ︸
I1

+
(
f ,πBDMwh −Ehwh

)︸ ︷︷ ︸
I2

.

The first term can be estimated using the arguments for (5.2)

I1 = a(u,Ehwh)− ah(uh,wh) = ah(u− uh,Ehwh) ≤ Cν‖∇h(u− uh)‖ ‖∇hwh‖.

For the second term, the right hand side data f is represented via the Helmholtz decomposition as f = P(f)+∇φ
with some φ ∈ H1(Ω), see Theorem 2.1. Hence, one obtains

I2 = (
(
f ,πBDMwh −Ehwh

)
= (
(
P(f),πBDMwh −Ehwh

)
− (φ,∇ · (πBDMwh −Ehwh)),

and the last term is zero, since it holds ∇ · (πBDMwh) = ∇ · (Ehwh) due to Lemma 4.4 ii). Now we remark
that I2 is the same term as I3 in (5.3). The discrete inf-sup stability concludes the proof. q.e.d.

Remark 5.6 (Pressure-robustness of the discrete pressure error). Assuming again that ∆u,∇p ∈ L2(Ω), we see
that the discrete pressure ph equals the best approximation πhp up to an error, which is only velocity-dependent,
since it holds in this special case

‖πhp− ph‖ ≤ C
ν

β∗
‖∇h(u− uh)‖+ C

ν

β∗
Rk−2

(
P(∆u)

)
,

In this sense, the discrete pressure error ‖πhp− ph‖ is pressure-robust.

Remark 5.7 (Hydrostatics). Classical mixed methods and pressure-robust mixed methods differ most dramatically
for hydrostatic problems with complicated pressures p ∈ Q. Assume that f = ∇φ for some φ ∈ H1(Ω) ∩ Q.
Then, the continuous solution of (2.2) is given by (u, p) = (0, φ). Due to P(f) = 0 it holds, according to
Theorems 5.1 and 5.5, for the discrete solution (uh, ph) = (0, πhφ). Therefore, the pressure-robust discrete
solution is the best possible on the given grid. On the contrary, the classical Crouzeix–Raviart element will show (at
least on unstructured grids) for ν � 1 extremely large errors, if φ is complicated, i.e., if it holds ν−1‖φ−πhφ‖ �
1.

Remark 5.8 (Pressure error). The full pressure error ‖p− ph‖ can be obtained by

‖p− ph‖2 = ‖p− πhp‖2 + ‖πhp− ph‖2.

The convergence order of ‖p− ph‖ is given by the minimum of the convergence order of the velocity error and the
order of the pressure best approximation error.
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ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 7.7508e-03 1.2310e-02 0.6296
9855 3.9152e-03 6.2873e-03 0.6227
39679 1.9652e-03 3.1713e-03 0.6197

Table 6.1: Comparison of the gradient errors of the classical and the modified Crouzeix–Raviart method for zero
pressure p1 and ν = 1 in the first example.

5.1 Impact of the velocity-reconstruction

In this section we study the advantages of the velocity reconstruction on the error estimates in Theorem 5.1. In
[22], it was shown that the classical Crouzeix–Raviart energy error satisfies

‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1 inf
qh∈Qh

‖p− qh‖+ ν−1Rk−2(f)
)
. (5.14)

On the contrary, let uh be the discrete solution to the reconstructed scheme (3.7). Then it follows from Theorem
5.1 that

‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1Rk−2

(
P(f)

)
. (5.15)

Remark 5.9. In Remark 5.2 it is argued that the term ν−1P(f) indicates a pressure-robust and locking-free error
estimate for ν � 1, if one assumes that f ∈ L2(Ω) and ∆u ∈ L2(Ω) hold, simultaneously.

Avoiding the assumption ∆u ∈ L2(Ω) requires first to extend the domain of the Helmholtz projector P fromL2(Ω)
toH−1(Ω) by simply restricting the application of f ∈H−1(Ω) to the divergence-free test space C∞0,σ(Ω), see

[40]. Again, an important property of the Helmholtz projector in theH−1-sense is that all gradients in distributional
sense vanish for divergence-free vector fields from C∞0,σ(Ω) [40]. Exploiting the weak formulation (2.4) for u, one

obtains for the Helmholtz projector in theH−1-sense

P(−∆u) =
1

ν
P(f) ∈ L2(Ω),

which shows that the expression ‖P(∆u)‖ has a precise meaning, even if the assumption ∆u ∈ L2(Ω) does not
hold. Therefore, the error estimate in Theorem 5.1 is pressure-robust and does not suffer from any kind of locking
phenomenon for ν � 1.

Remark 5.10. The operator Eh : Xh → W h for k = 1 is also a useful tool for the numerical analysis of
the classical Crouzeix–Raviart element, i.e., where one uses the classical right hand side discretization wh →
(f ,wh). Then, a similar reasoning as in Theorem 5.1 will deliver the a-priori error estimate

‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1R−1

(
f
))
. (5.16)

From a qualitative point of view, this is a better estimate than the estimate (5.14) presented in [22], since the new
estimate does not contain any terms depending explicitly on the pressure regularity. But note that also this estimate
is not pressure-robust, since ν−1R−1

(
f
)

depends implicitly on the pressure via the data term f = −ν∆u+∇p.

Please, note also that using the operator Eh for k ≥ 2 in a similar way for the analysis of the classical Crouzeix–
Raviart element (with the classical right hand side discretizationwh → (f ,wh)), does not deliver further qualita-
tive improvements of the estimate (5.16), since the inclusion of the BDM-operator in the definition ofEh (in order
to get H1-conforming divergence-free velocities Eh(wh) for all wh ∈ V h) is in contradiction to the necessary
property for the volume moments (4.3c), in order to get an oscillation term in the error estimate.

6 Numerical Experiments

6.1 Illustration of pressure-robustness

The first example studies the velocity field

u(x, y) := (∂/∂y,−∂/∂x)x2(x− 1)2y2(y − 1)2
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ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 2.7103e-02 1.2310e-02 2.2017
9855 1.4029e-02 6.2873e-03 2.2313
39679 7.1242e-03 3.1713e-03 2.2465

Table 6.2: Comparison of the gradient errors of the classical and the modified Crouzeix–Raviart method for pressure
p2 and ν = 1 in the first example.

ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 2.6109e+02 1.2310e-02 2121.0
9855 1.3540e+02 6.2873e-03 2153.5
39679 6.8819e+01 3.1713e-03 2170.1

Table 6.3: Comparison of the gradient errors of the classical and the modified Crouzeix–Raviart method for pressure
p2 and ν = 10−4 in the first example.

and two different pressure fields

p1 := 0 and p2 := x3 + y3 − 1/2

on the unit cube Ω := (0, 1)2 and the matching right hand sides f j := −ν∆u+∇pj for different values of ν and
j = 1, 2. The choice j = 1 yields a worst-case for the modified Crouzeix–Raviart method, since the pressure is
then in the pressure ansatz space and so the pressure-dependent term in the classical estimate vanishes. However,
the modified method makes a consistency error and by comparing the errors of both methods one can estimate the
size of this consistency error. Table 6.1 shows that the error of the modified method in this worst-case scenario is
about 60 percent larger than the error of the classical method.

In presence of a nonzero pressure that is not in the pressure ansatz space, like p2, the situation changes. Table 6.2
shows that the error of the classical method is more than 120 percent larger than the error of the modified pressure-
robust method, even for ν = 1. For smaller ν the quotient increases proportional to 1/ν, see Table 6.3 for ν =
10−4 which results in factors of more than 2100. Note, that the error of the modified Crouzeix–Raviart method is
the same in all three tables since its discrete velocity is pressure-independent.

6.2 The impact of quadrature rules

The second example employs the exact velocity u ≡ 0 on the square domain Ω := (−1, 1)2, where the pressure
is given (up to a constant) by

p(x, y) := 1/(0.01 + x2 + y2).

Since the pressure is non-polynomial, the right-hand side f = ∇p cannot be integrated exactly by simple quadra-
ture rules. This leads to some quadrature error that pollutes the pressure-robustness. The reason is that the ap-
plication of a quadrature rule in the right-hand side is similar to a projection of f onto some polynomial space.

‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR)
ν k=2 k=7 k=15 k=2 k=7 k=15
1 8.0921e-01 8.0951e-01 8.0951e-01 3.7434e-04 7.5452e-09 8.7045e-15

1e-1 8.0921e+00 8.0951e+00 8.0951e+00 3.7434e-03 7.5452e-08 2.3337e-14
1e-2 8.0921e+01 8.0951e+01 8.0951e+01 3.7434e-02 7.5452e-07 2.2706e-13
1e-3 8.0921e+02 8.0951e+02 8.0951e+02 3.7434e-01 7.5452e-06 2.3470e-12
1e-4 8.0921e+03 8.0951e+03 8.0951e+03 3.7434e+00 7.5452e-05 2.3913e-11
1e-5 8.0921e+04 8.0951e+04 8.0951e+04 3.7434e+01 7.5452e-04 2.4806e-10
1e-6 8.0921e+05 8.0951e+05 8.0951e+05 3.7434e+02 7.5452e-03 2.2993e-09
1e-7 8.0921e+06 8.0951e+06 8.0951e+06 3.7434e+03 7.5452e-02 2.4221e-08

Table 6.4: Comparison of the gradient errors of the classical and the modified Crouzeix–Raviart method on a fixed
mesh with 16173 degrees of freedom and different ν and three different quadrature orders k ∈ {2, 7, 15} in the
second example.
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Even if f is irrotational, its projection needs not to be exactly irrotational. Therefore, the error, though theoretically
pressure-independent, shows some pressure-dependence that can be reduced by better quadrature rules. For a
fixed mesh and different choices of ν, Table 6.4 compares the gradient errors of the classical and the modified
methods for three different quadrature rules of degrees 2, 7 and 15.
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A Proof of Lemma 4.1

Recall that the dimension ofW k(T ) is (k+ 5)(k+ 1). On the other hand, the number of conditions given in (4.2)
is equal to

2(3) + 3 dimPk−1(R) + dimNk−1(T ) = 6 + 6k + (k − 1)(k + 1) = (k + 5)(k + 1).

We show that vh ∈W k(T ) vanishes on (4.2) if and only if vh ≡ 0.

First, since vh|∂T ∈ Pk+1(∂T ), we have vh|∂T = 0. Now write vh = wh+zh withwh ∈ Pk(T )⊕Qk+1(T ),

zh =
∑2
i=0 curl(Biz

(i)
h ) and z(i)

h ∈ A
(i)
k−1(T ). Since Bi|∂T = 0 and ∇Bi|∂T = −|∇λi|binei , we find

that zh|ei = −|∇λi|biz(i)
h tei , where tei the unit tangent of ei, obtained by rotating nei counter-clockwise 90

degrees. Thus, zh · n|∂T = 0, and therefore 0 = vh · n|∂T = wh · n|∂T . In addition, by the definition of

A
(i)
k−1(T ) and (4.2b),

0 = (vh,ρh)T = (wh + zh,ρh)T = (wh,ρh)T +

2∑
i=0

(Biz
(i)
h , curl(ρh))T = (wh,ρh)T

for all ρh ∈ Nk−1(T ). In summary, we have wh · n|∂T = 0 and (wh,ρh)T = 0 for all ρh ∈ Nk−1(T ). We
now show that these conditions imply thatwh ≡ 0.

Writewh = ph + qh with ph ∈ Pk(T ) and qh ∈ Qk+1(T ). From the definition ofQk+1(T ) we see that

0 = (wh,ρh)T = (ph,ρh)T ∀ρh ∈Nk−1(T ),

and
0 = 〈wh · ne,ph · ne〉e = 〈ph · ne,ph · ne〉e ∀e ∈ F1(T ).

These two conditions imply that ph ≡ 0. Therefore qh · n|∂T , and by applying the definition of Qk+1(T ) once
again, we get qh ≡ 0 andwh ≡ 0.

Finally, we have

0 = 〈vh · tei , κ〉ei = 〈zh · tei , κ〉ei = −|∇λi|〈biz(i)
h , κ〉ei ∀κ ∈ Pk−1(ei),

which implies z(i)
h |ei = 0. Thus, z(i)

h = λip
(i)
h for some p(i) ∈ Pk−2(T ). Applying the definition of A(i)

k−1(T ) we
conclude that

0 = (Biz
(i)
h , p

(i)
h )T = (Biλip

(i)
h , p

(i)
h )T .

Since Biλi > 0 on T , we conclude that p(i)
h ≡ 0 and therefore vh ≡ 0.
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