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Abstract 

In this paper the system of field equations governing the one-dimensional mag-
netoelastic evolution in a ferromagnet, which is immersed in an electromagnetic 
field and subjected to mechanical loads at a constant temperature below the Curie 
point, is considered. It is assumed that displacement currents are negligible and 
that all field quantities depend on one space variable only. The hysteretic relation 
between the applied magnetic field and the magnetization in the ferromagnet are 
modeled using the notion of hysteresis operators; in particular, hysteresis operators 
of Preisach type are included. It is shown that an initial-boundary value problem 
for the system admits global solutions for arbitrary initial data, if viscosity present 
in the material, and for small initi~l data, if not. The considered field equations 
may be regarded as a model for the effect of magnetostriction in ferromagnets. 

1 Introduction 
In this paper, we consider the system of PDEs 

bt - h:r;x + (b Ut)x = f , 
Utt - U:r;x - 'f/ Ux:r;t + h:r; b = g , 

b = h + m = h + P[h], 
-

(l.la) 
(l.lb) 
(1.lc) 

which are to be satisfied in nT, where n = (0, 1) and, for t > 0, nt = n x (0, t). In 
this connection, f, g are given functions, 'fJ ~ 0 is a constant, and P denotes a hysteresis 
operator whose properties will be specified below. We complement the equations (l.la -
c) by the initial and boundary conditions 

u(x, 0) = u0(x), Ut(x, 0) = v0(x), h(x, 0) = h0(x), X E fl, 
u( 0, t) = u( 1, t) = 0 = h( 0, t) = h( 1, t) , t E [ 0, T] . 

(1.ld) 
(I.le) 

The system ( l. la - e) may be regarded as a simplified model for the one-dimensional 
·magnetoelastic or magnetostrictive developments in ferromagnets. To confirm this, con-
sider a sample of ferromagnetic material of unit length immersed in an electromagnetic 
field which is possibly subjected to mechanical loads. The temperature is maintained 
constant below Curie temperature so that the material is ferromagnetic. Let us make the 
following simplifying assumptions. 

(i) The electric displacement (together with the charge density) is negligible. 

(ii) The displacement vector u is parallel to the x-axis, i. e. u = ( u, 0, 0). 

(iii) All field quantities depend on the coordinate x and on the time t only. 

(iv) The medium is isotropic with constant electric conductivity uE > 0, magnetic 
permeability µH > 0, elastic (Lame) coefficients Ae, µe, and viscosity coefficient 
'f/ ~ 0. 
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Under these assumptions the governing field equations are 

(l.2a) 

1 
B3t - -H3xx + (B3ut)x = 0, 

' UE ' 
(1.2b) 

(l.2c) 

and are to be satisfied in OT . 
The variables have the following physical meaning: p is the mass density; H = 

(H1, H2 , H 3 ) is the magnetic field; B =(Bi, B 2 , B3 ) is the magnetic induction; g are the 
distributed volume forces in x-direction. 

Let us give a brief derivation of the equations (l.2a - c). At first, we recall that under 
the assumption {i) the magnetic field H is described by the equations ( cf. [5, p. 219]) 

1 
Bt - curl (ut x B) - -curl (curlH) = 0, 

UE 

divB = 0, 

(1.3a) 

(l.3b) 

where the term Ut x B corresponds to the Lorentz force. Invoking (ii), {iii), we obtain 
(l.2a, b ). 

Next, we consider the equations of motion which under {iv) have the form 

putt - (.:\e + µe) grad div u - µe .6..u - 'f/ ~Ut - curl H X B = g, (1.4) 

where g is the load vector. Using (ii), {iii), and denoting by g the first component of 
g, we arrive at (1.2c). 

It remains to specify the relation between B and H. We have 

(1.5) 

where M denotes the magnetization. Since the sample is ferromagnetic, the relation 
between M and H has the form of a hysteresis, i. e. it has to be expressed as 

M = 'P[H], (1.6) 

where 'P is a vector-valued hysteresis operator. If we assume that the hysteretic relation 
is diagonal, i. e. of the form 

(1.7) 

then (I.la- c) can be regarded as the system (l.2a- c) if (1.2b) is discarded, b := B 2 , h := 
H2, m := M2, and if all physical constants are normalized to unity. Notice that from 
the mathematical viewpoint it makes no difference whether (l.2b) is included or not; the 
arguments generalize easily. 

2 



In our analysis, it will turn out that the cases 'T/ > 0 (with viscosity) and 'T/ = O 
(no viscosity) differ considerably: for 'T/ > 0 the system is parabolic, and the existence 
of global solutions for large data can be shown, while for 'T/ = 0 equation (1.lb) is 
hyperbolic, and global existence can only be expected for small data that guarantee that 
h remains within the convexity domain of the hysteresis operator P (see Fig. 1.). A 
similar phenomenon has been observed in the case of a single equation with hysteresis, 
where parabolic equations admit global solutions for large data ( cf. Visintin [6, 7, 8]), 
while hyperbolic equations require the convexity of hysteresis loops ( cf. Krejci [3, 4]). 

m 

I 
I 

-M 

Fig. 1. Hysteresis diagram m = P(h). 

/ 
I 

I 

/ 
/ 

/ 

h 

The paper is organized as follows. In Section 2, we give a precise statement of the 
problem under investigation, in particular, of the properties of the hysteresis operator P. 
In addition, the main results of this paper (existence for both 1J > 0 and 1J = 0 ) are 
formulated. In Section 3, we approximate the system (1. la - e) using a space discretization, 
and we prove a number of a priori estimates for the ::i.pproximating solutions. In the 
concluding Sections 4 and 5 we use compactness arguments and a passage-to-the-limit 
procedure to prove the existence results for 1J > 0 (Section 4) and 1J = 0 (Section 5), 
respectively. 

2 Statement of the Problem 
Consider the initial-boundary value problem (1.la - e). We do not prescribe any specific 
form of the operator P, although the properties that are assumed to hold are typical in 
particular for the Preisach hysteresis model of one-dimensional ferromagnetism. 

We suppose that there exists an operator P : C[O, T] -+ C[O, T] such that the value 
of the operator P for each input function h E C(OT) and each x E [O, 1] is given by the 
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formula 

P[h](x, t) = P[h(x, ·)](t). (2.1) 
We generally assume: 

(Hl) 

(i) The operator P is continuous and has the Volterra property, i. e. if hi, h2 E C[O, T] 
satisfy h1(t) = h2(t) for all t E [O, to], then P[h1](to) = P[h2](to). 

(ii) There exists some Lipschitz continuous function 'if; : lR--+ lR such that 'l/;(O) = 0 
and P[h](O) = 'l/;(h(O)) for all h E C[O, T]. 

(iii) There exists a Lipschitz continuous inverse (I+ P)-1 : C[O, T] --+ C[O, T], where 
I denotes the identity operator. 

(iv) P and (J + P)-1 map W 1,P(O, T) into W 1,P(O, T) for every p E [O, oo], and there 
exists a constant a > 0 such that 

dh d p [ h] ( dh) 2 - 1 1 
0 :=:; dt · dt :=:; a dt , a.e., for every h E W ' (0, T) . (2.2) 

( v) There exists an internal energy density operator U : W1'1 ( 0, T) --+ W1'1 ( 0, T) such 
that 

U[h](t) ~ 0, V h E W1'1 (0, T), V t E- [O, T], (2.3) 

3 c > 0 : U[h](O) ::; ch2(0), V h E W1'1(0, T), (2.4) 

d d 
dt U[h](t) ::; h(t) dt P[h](t) a.e., V h E W1

,
1 (0, T). (2.5) 

(vi) There exists a constant M > 0 (saturation) such that 

IP[h](t)I ::; M' v h E C[O, T], v t E [O, T]. (2.6) 

The properties (i)-(vi) of hypothesis (Hl) are rather general and do not necessar-
ily imply the occurence of hysteretic effects; for instance, the superposition operator 
P[h](t) = 'l/;(h(t)) generated by a bounded, Lipschitz continuous and non-decreasing 
function 'if; : lR--+ lR with 'l/;(O) = 0 satisfies (Hl). This is no longer the case for the 
following hypothesis which is typical for hysteresis operators having convex increasing and 
concave decreasing branches for inputs restricted to the interval [- H0 , Ho] (see Fig. 1). 

(H2) There exists a co:r;istant Ho > 0 such that the following holds: whenever h E 
W1'00 (0, T) with maxo9~T lh(t)I ::; Ho is given and b := (I+ P)[h] E W2'1(0, T), then, 
for almost every 0 < t 1 < t 2 < T, 

(2.7) 
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(Here, and throughout this paper, the superimposed dot denotes the time derivative.) 

A detailed discussion of the connections between the convexity of hysteresis loops 
and higher order energy-type inequalities can be found in [4]. Note also that the Preisach 
model of ferromagnetism generated by a regular measure satisfies (HI) and (H2), 
see [2, 3, 4]. 

Next, we state the existence results for the system (I.la - e) for the cases 'f/ > 0 and 
TJ 2::: 0, respectively. 

Theorem 2.I Let TJ > 0, let P satisfy (HI), and suppose that 

0 0 

h0, v0 E W 1'2(n), u0 E w2,2 (n) n w112(n), f, g E L2(nT). (2.8) 

Then there exist functions h, u E C (OT) satisfying ( 1.1 d, e) and 

hx, Uxx, Uxt E L00 (0, T; L2(0)), ht, Utt, Uxxt E L~(OT), (2.9) 

such that for almost every ( x, t) E nT it holds 

L [ ( (h + 'P[h])t - !) (x, t) w(x) + h,,(x, t) w'(x) 
- 0 

-((h + P[h]) Ut)(x, t) w'(x)] dx = 0' v w E W 112(0)' (2.lOa) 

Utt - Uxx - 'f/ Uxxt + hx b = 9 , (2.lOb) 

where P is the operator defined in {2.1}. 

In the case 'f/ 2::: 0, we obtain a weaker result. 

Theorem 2.2 Let 7J 2::: 0, and suppose that P satisfies (HI) and (H2). Then there 
exists some 8 > 0 such that for every 

0 

u0, v0, h0 E w2'2(n) n w1,2(n), f, 9 E w1,1 (0, T; L2 (D)), (2.11) 

satisfying the inequalities 

llu0 1lw2.2(n) + llv0 llw2,2(n) + llh0 llw2.2(n) < 8, 

1T (llf(t)ll2 + llg(t)112 + llft(t)ll2 + ll9t(t)ll2
)

112 dt < 8, 

there exist functions h, u E C(nT) such that {1.1d, e}, {2.10a, b} and 

(2.12a) 

(2.12b) 

ht, Utt, Uxt E L00 (0, T; L2 (0)), hx,'hxt, Uxx, TJ Uxxt E L2 (0T), (2.13) 

hold. 
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(Here, and throughout the paper, we denote by II · II the L2 (0)-norm.) 

We note that both Theorem 2.1 and Theorem 2.2 give existence results for global 
solutions to the system (l.la - e); however, in Theorem 2.2 only small data are admitted. 
It should also be noted that even in the hyperbolic case rJ = 0 no shocks can develop for 
small data. This fact is a consequence of the hysteresis (see also [1] and [4]). In physical 
terms this means that the effect of magnetostriction in a one-dimensional ferromagnet is 
a "smooth" effect if either the fields are small or (mechanical) viscosity is present. 

3 Space Discretization and A Priori Estimates 
Let n E 1N be fixed. For k = 1, ... , n - 1 , we consider the system of ordinary differential 
equations 

(3.la) 

(3.lb) 

Uo =Un= ho= hn = bo = bn = 0, (3.lc) 

where 

(3.ld) 

1(k+l)/n 
9k(t) := n g(x, t) dx, 

k/n 1(k+l)/n 
fk(t) := n f (x, t) dx, 

k/n 
(3.le) 

together with the initial conditions 

1(k+l)/n 
hk(O) = n h0 (x) dx, 

k/n 

1(k+l)/n 
uk(O) = n u0 (x) dx, 

k/n 1(k+l)/n 
itk(O) = n v0 (x) dx. 

k/n 
(3.lf) 

Owing to hypothesis {Hl), the operator (I+ Pt1 is Lipschitz continuous on C[O, T]; 
hence there is some (maximal) Tn E (0, T] such that the initial value problem (3.la - f) 
admits a unique solution (hk, uk) E W1,2 (0, Tn) x W 2,2 (0, Tn), 1 :::; k :::; n - 1. 

In the sequel, we will derive some a priori estimates for (hk, uk), 1 :::; k < n -1, that 
will ensure that Tn = T and that a passage to the limit as n -+ oo is possible. To this 
end, we will denote by Ci, 6i, i E 1N, constants that may depend on the data but neither 
on n nor on TJ • 
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Lemma 3.1 There is some 61 > 0 satisfying 

(3.2) 

Proof. We multiply (3.la) by ~hk and (3.lb) by ~it,k, add the results, and sum over 
k. Using the boundary conditions (3.lc), we find that 

where 

n-1 n-1 n-1 

_!:. 2:,. bk hk + n 2:,.(hk+i - hk)2 + _!:. 2:,. uk uk n n 
k=l k=O k=l 

n-1 

+ n L, [(uk+i - uk)(uk+i - uk) + TJ(iik+i - uk)2
] 

k=O 
n-1 

.!:. L,uk hk + 9k uk) n k=l 

( 
1 n-1 2) l/

2 
( l n-1 2) 

1
/
2 

< -~1k -Lhk + n L.-t n - L.gk _!. L. it,~ . ' ( 
l n-1 2) 

1
/
2 

( n-1 ) 
1

/
2 

n k=l _n k=l k=l k=l 

n-1 

~ L,u~(t) < 1 g2(x, t) dx. 
n k=l n 

Using (Hl), (v) and (2.8), we conclude (3.2) from Gronwall's lemma. 

(3.3) 

(3.4) 

0 

l,From Lemma 3.1 it follows, in particular, that T = Tn . To derive further estimates, 
we need the following discrete Nirenberg inequality. 

Lemma 3.2 Let z1 , ... , Zn ER. Then it holds 

(3.5) 

Proof. For any j E {1, ... , n} it holds 
j-1 

zJ :::; z~ + L, lzl+l - zl I , if j ~ k , (3.6a) 
i=l 

n-1 

zJ :::; z~ + L, I zl+l - zl I , if j :::; k . (3.6b) 
i=j 
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Therefore, 

n (n-1 ) 1/2 (n-1 ) 1/2 zJ ::.; ; ~ z~ + ~{z;+1 - z,)2 ~{z;+1 + z,)2 
, (3.7) 

whence the assertion easily follows. D 

Lemma 3.3 Let TJ > 0. Then there exists some 02 > 0 such that 

n-1 n-1 t 

71n3 L (uk+1(t) - 2 uk(t) + uk-1(t))2 +n3L1 (uk+1 - 2uk + uk-1)2 (7) dr 
k=l k=l 0 

< 62 ( 1 + ~) , for any t E [O, T] . {3.8) 

Proof. Let t E [O, T] be arbitrary. We multiply (3.lb) by - n( Uk+i - 2 Uk + uk-1) and 
sum over -k in order to obtain -

n-1 

n3 L [(uk+l - 2uk + uk-1)2 + ~ ! (uk+l - 2uk + uk-1)2] 
k=l 

n-1 d n-1 

- nLdt[uk(uk+l - 2uk + Uk-1)] + nL(uk+l - uk) 2 

k=l k=O 
n-1 n-1 

+ n2 L bk (hk+l - hk) (uk+l - 2 Uk + uk-1) - n L 9k (uk+l - 2 Uk + uk-1). 
~=1 k=l . 

(3.9) 

The initial conditions (3.lf) entail that 

n-1 

n3 L(uk+l - 2 uk + Uk-1)2(0) - 2u0 (x) + 
k=l 

(3.10) 

where we have put u0 (x) = 0 for x E 1R\[O, I]. Hence, 
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Integrating (3.9) over [O, t] , we obtain 

n-1 n-1 t 

~n3 ~(uk+l - 2uk + Uk-1)2(t) + n3~1 (uk+l - 2uk + uk_1)2 (r)dr 

( 

n ) 1/2 ( n-1 ) 1/2 

< C1 + ~~U~ n3 ~(uk+1 - 2uk + uk_i)2 (t) 

+n f fn\uk+l - uk)2(r)dr+lt (M + ~ax lhil). 
0 0 l<3<n-l 

k=O - -

· ( n ~(hk+1 - hk)2
) 

112 

( n3 ~ (uk+1 - 2uk + uk_1)2) 
112

(r) dr 

+ l ( ~ ~g~) 112 

( n3 ~ (uk+l - 2 Uk + uk_1 )
2

) 

112

(r) dr 

< C2 [1 + _!. + t (n f (hk+l - hk)2
) 

314 (n3 f (uk+l - 2~k + uk_1)
2

) 

112

(r) dr] 
'lJ J 0 k=O k=l 

n-1 n-1 t 

+ ~ n3 L (uk+l - 2 Uk + uk-1)2 (t) + ~ n3L1 (uk+l - 2uk + Uk-1)2(r) dr, 
k=l k=l 0 - (3.12) 

where we have used the inequalities (2.6), (3.2) and (3.5). In addition, using Holder's and 
Young's inequalities, 

(3.13) 

where (3.2) has been employed. Combining (3.12) and (3.13), and taking the maximum 
with respect to t on both sides, we obtain (3.8). D 
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Lemma 3.4 Let 7J > 0. Then there exists some 03 > 0 such that, for any t E [O, T], 

Proof. We multiply (3.la) by *hk and (3.lb) by *iik, add the resulting equations, and 
sum over k. It follows 

< 

(3.15) 

Integrating (3.15) over [O, t], we obtain from {Hl), (iv), Young's inequality, and (2.11), 
that 

n-1 n-1 t i L [(hk+l - hk)2 + 11 (uk+l - udJ (t) + 2
1
n L 1 ( h~ + u~) (rl dr 

k=O k=l 0 
n-1 n-1 t 

< C1 + L [(hk+l - hk) bkitk](t) + L 1 ihk-1 - hkl (ibk itkl + 2lbk uki) (r) dr 
k=O k=O O 

(3.16) 

The expressions on the right-hand side of (3.16) are estimated individually. At first, 
we infer from (3.2), (3.5), and Young's inequality, that 
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< (M + ~ax max lhi(r)I) (~ ~ U~(t)) 
112 (n ~(hk+l _ hk)2(t))

112 

l<1<n-l O<r<t nL......J L......J 
- - - - k=l k=O 

( 

n-1 3/4) 
< C2 1 + ~~. ( n {;(hk+1 - hk)2(r)) 

n-1 
< '!!:.

8 
max ~(hk+l - hk)2 (r) + C3 • 
O<r<t L......J 

- - k=O 

Next, observe that (3.8) implies that 

IA3l:SC4(l+~r (~ ~ j U~(r)drr2 

n-1 t 

:S 4~ L j U%{r) dr + Cs (i + ~)-. 
k=l 0 ry 

We also have, using (2.2), (3.2), (3.5), and Holder's and Young's inequalities, 

n-1 t 

L j lhk+l - hkl ibk Ukl(r) dr 
k=O o 

< 

< 

< 

< 

11 

(3.17) 

(3.18) 

(3.19) 



Finally, we have 

n-1 t 

L J lhk+l - hkl lbkl liikJ(7) d7 
k=O o 

< 0~a;:_1 ( M + Jf~t ihj{7)1) (i n ~ (hk+l - hk)2 (7) d7) 

112

. 

· (i n= Ui (7) d7) 

112 

=: A4. (3.20) 
0 k=l 

Using (3.2) and (3.5) again, we find that 

A4 < C10 ( 1 + Jf~ n ~ (hk+l - hk)2
(7)) 

114 

· (i ~ ~ Ui(7) d7 ) 

112 

t n-1 n-1 

< -4
1 J .!. "'u~ (T) dT + ~8 max "'(hk+l - hk)2(T) + Cn. n~ O<r<t ~ 

o k=l - - k=O 

(3.21) 

-
Combining (3.16) to (3.21), and taking the maximum with respect to t on both sides, we 
conclude that (3.14) holds. The assertion is proved. D 

We now come to the final a priori estimate. 

Lemma 3.5 Let 'fJ > 0. Then there exists a constant C4 > 0 such that, for all t E [O, T], 

(3.22) 

Proof Let t E [O, T]. We multiply (3.lb) by -n(uk+1 - 2uk + uk_1) and integrate over 
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[O, T]. Summation over k yields 

n-1 3 n-1 i L ( UH1 - uk)(t) + ~ L ( uk+1 - 2uduk-1)(t) + 
k=O k=l 

n-1 t 

+ 17 n3 L J ( Uk+l - 2Uk + uk-1) (r) dr 
k=l 0 

n-1 t 

< C1+~n3L j (uk+1-2Uk+Uk-1)(r)dr 
k=l 0 

2 ft ( 1 n-l ( 2) +~ 
0 

:;;: ~ gi+n2 b%(hk+1-hk) (r)dr. (3.23) 

Using (3.14), (3.2) and (3.5), we easily obtain (3.22). D 

4 Proof of Theorem 2.1 
In this section, we will prove Theorem 2.1 using compactness arguments and a passage-
to-the-limit procedure for n--+ oo. To this end, we define for every n E IN the functions 
(where the index n is added to the functions considered in the last section in order to 
stress the dependence on n ) -

h(nl(x,t) .- hin)(t) + n (x - ~) (h~~1 (t) - h~n)(t)), 
h,(n)(x,t) .- hin)(t), 

u(nl(x, t) .- ~ ( uin) + ui~1) (t) + n ( x - ~) ( uin) - ui~1) (t) 
2 ( k)2 . + ~ x - ~ ( u~1 - 2 uf) + ui~1) (t), 

u(n)(x, t) := uin)(t)' 

for x E [~, k!l), 0 ~ k ~ n - 1, t E [O, T], where we have put 

u~i (t) := - u~n) (t). 

(4.la) 

(4.lb) 

(4.lc) 

(4.ld) 

(4.le) 

In terms of these functions, the a priori estimates (3.2), (3.8), (3.14), and (3.22), respec-
tively, take the form 

sup (11h(n)(t)ll2 + llh{n)(t)ll2 + llu~n)(t)ll 2 + llu~n)(t)ll 2) 
t E (O,T) 

+ 1T (11h~nl(t)ll 2 + 77 llu~~)(t)il2) dt :=' 61, (4.2a) 

sup (11 llu~~(t)ll 2) + 1T llu~~(t)ll 2 dt ~ 62 (1 + !.) , (4.2b) 
t E (O,T) 0 'fJ 
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sup (llh~n) (t) 11 2 + 1/ llu~~) (t) 11 2) + {T (lliiln) (t) 11 2 + llh)nl (t) 11 2 + llii.);'l (t) 112 

tE (O,T) lo 
+llu);'l (t)ll 2

) dt:::; Ca (i + ~) , (4.2c) 

Hence there exist functions h, u E C(nT) such that, possibly taking subsequences, we 
have 

u~ -7 Uxx, u~~) -7 Uxt, h~n) -7 hx , all weakly-star in L00 (0, T; L2(0)), (4.3a) 

(n) (n) 
Utt -7 Utt ' Uxxt -7 Uxxt ' (4.3b) 

and, by compact imbedding, 

u(n) -7 u u(n) -7 u 
' x x' h(n) -7 h , all strongly in C(nT). (4.3c) 

In addition, thanks to (3.14) we have, for all (x, t) E nT' 

(4.4b) 

so that 

U(n) -7 U, u}n) -7 Ut, h,(n) -7 h , all uniformly. ( 4.5a) 

Therefore, in view of ( 4.2c), we also have 

-(n) h- h Utt -7 Utt , t -7 t , weakly in L2 (0T). (4.5b) 

We will now prove that (h, u) satisfies (Lld - e) and (2.lOa, b), i.e. is a solution to 
(l.la - e) in the sense of Theorem 2.1. To this end, note first that (3.lf) and (4.5a) 
imply that the initial conditions (l.ld) are satisfied. Moreover, we have by construction 
that h(n) (0, t) = h(n) (1, t) = 0 for all n E JN and t E [O, T] , so that ( 4.3c) yields 
h(O, t) = h(l, t) = 0 for all t E [O, T] . On the other hand, 

1 
lu(n)(O, t)I + lu(n)(l, t)I = 2 (lu1(t)I + lun-1(t)I) 

< H~(uk+l - uk)2 (t)r '.':'. Jn Ca, (4.6) 
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and hence u(O, t) = u(l, t) = 0 for all t E [O, T] . 
Next, observe that (3.lb) can be rewritten in terms of the functions defined in ( 4.la -

e) as 

u(n) - u(n) - Tl u(n) + h(n) (h,(n) + p [h,(n)]) - g(n) tt xx • / xxt x - , (4.7) 

where 

for x E - , , 0 ::=; k ::=; n - 1 . l (k+l)/n 
g(n) (x, t) := n g(x, t) dx, 

k/n 
[
k k + 1) 
n n (4.8) 

Now observe that g(n) --+ g strongly in L 2(f!T) and, owing to ( 4.5a) and to the continuity 
of P (cf. (Hl), {i)), h,(n) + P[h,(n)]--+ h + P[h] strongly in C(f!T). Hence, passing to 
the limit as n--+ oo in (4.7), we find that h, u satisfy (2.lOb). 
To conclude the proof of Theorem 2.1, it remains to confirm that h, u satisfy (2.lOa). To 

0 

this end, let w EW1,2 (f!) be arbitrary. Multiplying (3.la) by ~w(~), summing over k, 
and using summation by parts and (3.lc), we find after a straightforward computation 
that the fUnctions h(n), h,(n), u(n), U,(n) satisfy for almost every t E (0, T) 

j [ ( (h<n> + P[h<nl])t - f) (x, t)w(x) + ( h~n) - u)nl (ii<n> + P[h<n>])) (x, t)w'(x)] dx 
n 

1 [ (k+l)/n (k+l)/n _ l 
=~ bk(t) i (w(x)-w(~))dx+ i f(x,t)(w(~)-w(x))dx, 

(4.9) 

where the right-hand side is bounded from above by 

1 1 n-1 

( 
1 ) v'n llw'll / lf(x, t)ldx +;;: {; ibk(t)I , 

which, by (2.8), (2.2), (3.14) and Holder's inequality, tends to zero as n--+ oo for almost 
every t E (0, T). Hence it remains to show that 

(4.10) 

By (2.2) and ( 4.2c), we may without loss of generality assume that (P[h(n)])t--+ q weakly 
in L 2 (f!T) for some q E L 2 (f!T ). Since P[h(n)] --+ P[h] uniformly, it follows for every 
r.p E C0 (f!T) that 

T T 

0 = nli_.~ J J ( (P[h(n)J) t - q) <p dx dt = - J J (P[h] - Z )'Pt dx dt, (4.11) 
o n o n 

where Zt = q. Hence q = (P[h])t, and the assertion of Theorem 2.1 is completely proved. 
D 
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5 Proof of Theorem 2.2 
Suppose that P satisfies (Hl) and (H2) and that (2.11) holds. Let us assume that 
(2.12a, b) hold for some fixed 8 > 0 (which is yet to be determined). As in the proof of 
Theorem 2.1, the functions ho, ... , hn, u0 , ... , Un will denote the solutions to the system 
(3.la - f) in [O, T]. We shall denote in the sequel by Ki, ki, i E lN, constants that are 
independent of n, 'fJ and 8. From (3.3) we immediately get an estimate that is analogous 
to (3.2), namely 

n-1 n-1 t 

.!. L (h~ + U~ + n2 (uk+1 - uk}2) (t) + n L 1 ((hk+i - hk)2 
n k=O k=O O 

+ 'fJ ( uk+i - uk)2) ( r) dr :::;; K1 82 , "\/ t E [O, T]. (5.1) 

We further have, by (3.lf), 

max lhk(O)I :::;; ma_?C lh0(x)I ::;; K2 llh0
llw2,2cn) < k2 8. 

O~k~n xE!2 

Therefore~ choosing 

Ho 8 < -..... -, 
K2 

we can find a maximal T~ E ( 0, T] such that 

Next, we show the following result. 

(5.2) 

(5.3) 

(5.4) 

Lemma 5.1 There exist constants 8 > 0, K3 > 0, K4 > 0 such that for any 8 E (0, 8] 
it holds {5.3), T~ = T, 

max lhk(t)I < Ho, 'V t E [O, T], 
O~k~n 

(5.5) 

and 
n-1 

1 "'"" (h. 2 00 2 2 ( . . )2) ( ) ;; L.-J k + Uk + n Uk+l - Uk t 
k=O 

+n ~ [ ((hk+l - hk)2 + 77(iik+l - uk)2) (r)dr:::;; k 3 82 /'<482
t, 

k=O O 

"\/ t E [O, T] . (5.6) 

Proof. The functions hk, bk, uk belong to W1,1 (0, T), and since ft, 9t E L1 (0, T; L 2(0)), 
we even have uk, bk E W2,1 (0, T). Differentiating (3.la) and (3.lb) with respect to t, 
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multiplying by ~hk and ~ilk , respectively, adding the results and summing over k, we 
find that a.e. in [O, T~] it holds , 

l n-1 n-1 [ 2 
; LO;k hk + "iik Uk) + n L ( hk+l - hk) + 1] (uk+l - uk)2 

k=l k=O 
n-1 

+ ( Uk+l - ilk) ( Uk+l - Uk)] + L bk [Uk (hk+l - hk) - Uk ( hk+l - hk)] 
k=O 

(5.7) 

Using {Hl), (iv) and (H2), we see that for all k and almost every 0 < t 1 < t 2 < T~ it 
holds 

(5.8) 

- . 
Hence, owing to the continuity of bk, 

[ bk(-r) hk(-r) d-r :?: ~ (hi (t) - b% (0)) , for a.e. t E (0, T~), (5.9) 

where (3.la) entails that 

(5.10) 

Similarly, from (3.lb ), 

(5.11) 

Integrating (5. 7) over time, we therefore find that for a.e. t E [O, T~] 

n-1 

2
1
n L (h% + ui + n (uk+l - ud) (t) 

k=O 

+n ~[ [ (hk+l - hk)2 + 11(uk+l - uk)2
] (-r)d-r 

< Ks (82 + ~ [ lhkl (lhk+l - hkl li.ikl + lhk+1 - hkl lit.kl) (-r) d-r) 

+ 1t[(~ I:R)112 

(~ i>i)112

+ (~ tili)
112

(~ t ui)
112

] (r) dr. (5.12) 
0 k=l k=l k=l k=l 
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Using the discrete Nirenberg inequality (3.5), as well as (5.1), we can infer that 

Similarly, we obtain for a.e. t E [O, T~] the estimate 

< 

< 

< n ~1t (. . )2 2 1 ~1t .2 4 L.J hk+l - hk (r) dr + Ks 6 -;;, L.J hk(r) dr. 
k=O O k=l O 

(5.14) 
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Combining (2.12b), and (5.12) to (5.14), we obtain that for a.e. t E [O, T;] 

max (.!. ~ (h~ + ii~ + n2 
( uk+I - uk)

2
) ( r )) 

O<r<t n L.J 
- - k=O 

+ n I: t ( (iik+l - hk r + 1] ( i.ik+l - i.ik)2
) ( r) dr 

k=O lo 
n-1 t 

< K9 82 +K10 82 ~"f1 (ii~ +u~) (r)dr. 

Gronwall's lemma, applied to (5.15), yields 

max (.!. ~ (h~ + ii~ + n 2 
( uk+1 - uk)

2
) (t)) 

O<r<t n L.J 
- - k=O 

+ n I: t ((hk+l - hk r + 1] (i.ik+l - ud) (r) dr 
k=O lo 

< K9 82 eKio 
02 t, for a.e. t E [O, T~] . 

(5.15) 

(5.16) 

Next, observe that for all j E {O, ... , n} and t E [O, T;] it holds, using (3.5) and (5.16), 

lh;(t)I ~ lh;(O)I + [ 1h;(r)I dr 

< Ku (8+ l [ (~~h~r + (n%(hk+l - hkrr}r)dr) 

Choosing 8 > 0 so small that (5.3) holds and that 

K12 8 eK1362 < H0 , 

(5.17) 

(5.18) 

we conclude that T; = T and that (5.5) and (5.6) are satisfied. This concludes the proof 
of the assertion. D 

For the conclusion of the proof of Theorem 2.2, we still need another a priori estimate. 

Lemma 5.2 Let 8 > 0 denote the constant defined in Lemma 5.1. Then there are 
constants K5 > 0, K6 > 0, such that for every 8 E (O)J and every t E [O, T] it holds 

n-1 t n-1 

n3"f1 (uk+l - 2 Uk + Uk-1)
2 (r) dr + 7]n3 "f (uk+l - 2 Uk + uk-1)

2 (t) 

< Ks 82 ekso2T' (5.19a) 

n-1 t 
2 3 "\:""""' r ( . 2 . . ) 2 ( ) d < K" .A2 ks t52 T 'f/ n L.J l 

0 
Uk+I - Uk + Uk-1 r r _ 5 u e . 

k=l 0 
(5.19b) 
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Proof. As in the proof of Lemma 3.3, we multiply (3.lb) by - n(uk+l - 2uk + Uk-i), 
sum over k, and integrate over time. Using Young's inequality, (2.12a, b), (3.11), and 
(5.6), we arrive at the estimate 

Owing to (2.12b) and (5.6), 

(5.21) 

and (2.6), (5.1) and (5.5) imply that 

n ~ r bi (hk+i - hk)2(T) dT :::; K4 82 (M + m~x max jhk(r)I) 
2 

-8 Jo 05J~n 05r9 

< K4 82 (M + H0 ) 2 . (5.22) 

Combining (5.20) to (5.22), we have confirmed the validity of (5.19a). Finally, using 
(5.19a), (5.20) and (5.21), we obtain (5.19b) directly from (3.lb). D 

After these preparations, we may now conclude the proof of Theorem 2.2. To this 
end, consider the functions h(n), h,(n), u(n), u<n) defined in ( 4.la - e). As in Section 4, we 
can infer from the a priori estimates (5.1), (5.6), (5.19a), and (5.19b), that there exist 
functions h, u E C(OT) such that, possibly selecting subsequences, for n-+ oo it holds 

h(n) h (n) (n) 
t -+ t , Utt -+ Utt , Uxt -+ Uxt, all weakly-star in L00 (0, T; L 2 (0)), (5.23a) 

l,From this point, we can follow the lines of the proof of Theorem 2.1 to verify that (h, u) 
satisfy (2.lOa, b). This concludes the proof of the assertion of Theorem 2.2. D 

6 Concluding remarks 
We conclude our' paper by adding some comments. 

(i) The question whether the solutions found in the Theorems 2.1, 2.2 are unique is 
still open. 
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(ii) It seems that the above line of argumentation does not apply if the displacement 
current is not discarded. 

(iii) The hypothesis of linear elasticity can be relaxed considerably. In fact, if the equa-
tion of motion (1.lb) is replaced by 

(6.1) 

then the result stated in Theorem 2.1 remains valid, provided that F , together 
with its inverse p- 1 , is a Lipschitz continuous increasing function on lR ( nonlinear 
elasticity). In addition, weak solutions are obtained in the context of Theorem 2.2 
if Pp := p- 1 - I, where I is the identity, is a hysteresis operator satisfying (Hl) · 
and (H2). This case corresponds to rate independent elastoplasticity. 
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