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Abstract. A novel approach for risk-averse structural topology optimization under
uncertainties is presented which takes into account random material properties and
random forces. For the distribution of material, a phase field approach is employed
which allows for arbitrary topological changes during optimization. The state equation
is assumed to be a high-dimensional PDE parametrized in a (finite) set of random
variables. For the examined case, linearized elasticity with a parametric elasticity tensor
is used. Instead of an optimization with respect to the expectation of the involved
random fields, for practical purposes it is important to design structures which are
also robust in case of events that are not the most frequent. As a common risk-aware
measure, the Conditional Value at Risk (CVaR) is used in the cost functional during
the minimization procedure. Since the treatment of such high-dimensional problems
is a numerically challenging task, a representation in the modern hierarchical tensor
train format is proposed. In order to obtain this highly efficient representation of the
solution of the random state equation, a tensor completion algorithm is employed
which only required the pointwise evaluation of solution realizations. The new method
is illustrated with numerical examples and compared with a classical Monte Carlo
sampling approach.

1. Introduction

This work is concerned with structural topology optimization subject to a high-dimensional
parametric state equation. The general goal is to determine an optimal distribution of a
limited amount of material in some design domain such that an objective functional is
minimized. Known quantities for such a setting are usually the data of the underlying
PDE, e.g. applied loads and material properties, boundary (support) conditions, the
domain of the problem and possibly restrictions such as prescribed holes or solid areas.
Such an optimization problem already has to be considered quite challenging since the
shape and the connectivity (i.e. the topology) of the optimal structure is not known a
priori and the required computations can become quite involved, in particular in 3D. For
real-world engineering applications, however, the data of the problem usually is inherently
uncertain, for instance due to deviations in a production process (material perturbations)
or due to the random nature of some phenomenon such as wind forces acting on the
structure. With these assumptions, carrying out the optimization for only the most likely
events, i.e. especially the expectation of the random data, would lead to structures
which are not robust to events occuring more rarely. However, it usually is these rare
events which have to be considered in order to avoid unforseen damage or the brake
down of structures, i.e. failure of the engineering system. Hence, in order to setup an
optimization problem which is closer to realistic requirements, we extend the optimization
functional by some risk measure, namely the conditional value-at-risk (CVaR), which is
common in financial mathematics to implement risk-averse investment strategies. Based
on the concept of the value-at-risk (VaR), which is defined as the β-quantile of a random
variable for a specified probability level 0 < β < 1, the CVaR is the expected value of
the β-tail distribution. Hence, for large β, low probability events, which may become
critical for the structure from an engineering point of view, are emphasized during the
minimization procedure.
The uncertainty of the model data is specified by random fields, described by the common
(truncated) Karhunen-Loève expansion with finitely many terms. By this, the state
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equation depends on a finite set of parameters (or random variables) and the complexity
for the computation of the stochastic solution grows significantly. This consequently
also introduces a parameter dependence of the objective functional on the same set
of (random) parameters as part of the CVaR formalism. A straightforward approach
to obtain statistical information about the model problem (to be used subsequently in
the minimization procedure) is to employ a sampling technique such as the classical
Monte Carlo method. While this is simple to implement and test and hence is chosen
frequently as a reference method as in our case, the slow convergenc of O(N−1/2) with
N samples has lead to the development of more advanced numerical methods which
in many cases may converge at a (sometimes much) faster rate. A guiding idea is to
exploit additional properties such as regularity (in the parameters) and sparsity of the
stochastic solution manifold. With this, a functional representation of the stochastic
solution can be computed which then allows for an efficient evaluation of statistics and
arbitrary samples. We propose to exploit the low-rank structure of the parametric state
equation by using hierarchical tensor representations. These formats have only recently
attracted the attention in the numerical community, in particular for parametric PDEs,
although they have been known for several decades e.g. in physics and chemistry. In
principle, the representation is based on a singular value decomposition of a higher order
tensor representing the coefficients of some tensor operator or vector. A truncation of
this decomposition leads to a compression of the representation and the approach can
also be understood as a hierarchical subspace approximation. We introduce the notion
of this central tool in quite some depth and in particular describe our approach of the
construction of such a tensor representation, in particular the required algebraic solver.
While there are different ways to obtain a tensor of the stochastic solution, e.g. by
discretizing and solving a tensor equation system of the parametric PDE, we suggest an
approach which is based on basically the same information as the Monte Carlo method,
namely a number of realizations of the solution at certain parameter points. This so called
tensor reconstruction provides a functional approximation of the entire solution manifold
with a comparatively small number of samples, thus providing much more information
than what is obtained by Monte Carlo sampling.
For the complete functional representation, a basis of global orthonormal polynomials is
used in the parameter space. The physical space is discretized with first order conforming
finite elements. As a versatile representation of the topology, we employ a phase field
approach which allows for topological changes and the nucleation of new holes in the
structure. In order to speed up the computations, we describe a heuristic adaptive method
which iteratively refines the computational mesh at the formed interfaces based on some
simple error indicator.

The structure of this paper is as follows: In Section 2, the deterministic and the stochastic
settings are introduced, including the minimization functional and the state equations.
With the introduction of uncertainties in the linearized elasticity equation, the CVaR
risk measure enters the optimization formulation. Moreover, the adaptive discretization
with finite elements is described briefly. Section 3 scrutinizes hierarchical low rank tensor
formats as an adequate representation for high-dimensional parametric problems. Since
the use of these formats in numerical methods for PDEs is rather new and not widely
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known, a detailed introduction is given. This eventuallt leads to the treatment of the
actual problem at hand, namely the reconstruction of a compressed tensor for the solution
manifold of a parametric PDE via the evaluation of pointwise solutions in parameter
space. Here, also the functional representation of the parameter dependency is described.
Moreover, the solution algorithm employed for the tensor reconstruction is presented. In
Section 4, numerical examples illustrate the performance of the suggested approach. We
show computations for the deterministic and the stochastic case. The latter is computed
with Monte Carlo sampling as well as with the tensor reconstruction.

2. Setting

This section is concerned with the introduction of the state equation and the objective
functional used in the minimization. First, we describe the deterministic setting, which is
the basis for the extension to the parametrization subject to stochastic data. The model
used throughout is the vector-valued PDE of linearized elasticity depending (amongst
other data) on some material tensor. Second, for the stochastic model we introduce
randomness to the material tensor as well as the loading. This setting is relevant for
practical considerations, since the data is in fact usually inherently uncertain in reality.
In order to not only optimize with respect to the expected value of the state equation,
which would not be robust to less likely events, we introduce the Conditional Value at
Risk (CVaR) as a risk measure in the objective functional. Third, the discretization of
the state equation with finite elements (FE) and the optimization procedure is explained.
For more efficient calculations, a heuristic adaptive algorithm is described for the FE
discretization.

2.1. Deterministic Formulation. We describe the distribution of material in the domain
D by a phase field ϕ with 0 ≤ ϕ(x) ≤ 1 for all x ∈ D. The parts of the domain with
ϕ ≡ 0 are considered empty or void of material whereas ϕ ≡ 1 determines the parts
which are solid. Since the phase field is a smooth approximation by construction, for
practical reasons we allow an diffusive zone with 0 < ϕ < 1 for the material.
The state equation is described by the standard linear elasticity model with the strain
displacement E(u) = sym (∇u) as follows,

− div [C(ϕ)E(u)] = 0 in D,
u = 0 on ΓD,

[C(ϕ)E(u)] = g on Γg,
u · n = 0 on Γs,

[C(ϕ)E(u)]n = 0 on Γ0 = ∂D \ (ΓD ∪ Γg ∪ Γs) .

(2.1)

The material is fixed at the ΓD domain boundary part and the load g is applied at Γg. On
the boundary Γs the material is only bared from movement in the normal direction. This
is the case for roller bearings or slip conditions. For the definition of the elasticity tensor
we define the blend functional w(ϕ) = (ϕ3)+ = max {ϕ3, 0} for a smooth transition
between the phases.We then define the material tensor in the whole interval [0, 1] by

C = Cmatw(ϕ) + Cvoidw(1− ϕ),
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where we choose the isotropic material tensor for the solid phase to be Cmat = 2µmat +
λmat tr I with Lamé coefficients λmat and µmat. For the void we define the tensor as a
small fraction of the material phase tensor to ensure solvability of the state equation in
the whole domain. With the scaling factor ε > 0, we define Cvoid = ε2Cmat.
The Landau functional is given by

Eε(ϕ) =
∫
D

ε

2 |∇ϕ|
2 + 1

2ψ0(ϕ) dx. (2.2)

We choose the double well functional ψ0(ϕ) = (ϕ− ϕ2)2 and aim to minimize the
functional with the parameter γ > 0,

Jε(ϕ) =
∫
Γg

g · u(ϕ) ds+ γEε(ϕ). (2.3)

Without further restrictions the minimum of the above functional is trivial. Hence, we
introduce the cost limiting volume constraint

∫
D ϕ = m|D|. The weak formulation for

the state equation (2.1) reads: Find u ∈ H1
D(D;Rd) such that∫

D
E(u) : C(ϕ)E(vu) dx =

∫
Γg

g · vu ds for all vu ∈ H1
0 (D;Rd). (2.4)

After these definitions we can formulate the minimization problem at hand as follows,

minimize Jε(ϕ) over ϕ ∈ H1
D(D)

s.t. (2.4) holds, 0 ≤ ϕ(x) ≤ 1 for all x ∈ D, and
∫
D
ϕ dx = m|D|.

(2.5)

Our goal is to apply the Allen–Cahn gradient flow for the steepest descent method.
Therefore, the gradient DϕJ

ε needs to be approximated which can become very expensive
to compute directly as it involves the partial derivatives of the displacement u with respect
to ϕ. This computation requires the solution of the state equation in every direction vϕ
which is prohibitively expensive for sufficiently fine finite element discretizations of the
phase field ϕ. In order to remedy this problem, we introduce the Lagrange parameter
λ for the functional M =

∫
D(ϕ −m) dx = 0, the parameter p ∈ H1

D(D;Rd) and the
solution operator for the state equation

S =
∫
D
E(u) : C(ϕ)E(vu) dx−

∫
Γg

g · vu ds = 0 (2.6)

which gives the identity
Jε = Λ := Jε + λM + pTS (2.7)

and hence DϕJ
ε = DϕΛ. We can thus reformulate the gradient as

DϕΛ = ∂Jε

∂ϕ
+ ∂Jε

∂u

∂u

∂ϕ
+ λ

∂M

∂ϕ
+ ∂pT

∂ϕ
S + pT

(
∂S

∂u

∂u

∂ϕ
+ ∂S

∂ϕ

)

= ∂Jε

∂ϕ
+
(
∂Jε

∂u
+ pT

∂S

∂u

)
∂u

∂ϕ
+ λ

∂M

∂ϕ
+ ∂S

∂ϕ
pT

= ∂Jε

∂ϕ
+ λ

∂M

∂ϕ
+ ∂S

∂ϕ
pT with ∂Jε

∂u
= −pT ∂S

∂u
.

(2.8)
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The last condition for the parameter p is the adjoint equation and p is set as its unique
solution, therefore called the adjoint (solution). For Jε the adjoint problem is formulated
as: Find p ∈ H1

D(D;Rd) such that∫
D
E(p) : C(ϕ)E(vp) dx =

∫
Γg

g · vp ds for all vp ∈ H1
0 (D;Rd),

which is identical to the state equation. It thus holds the equivalence p = u. For linear
state equations the adjoint can always be represented as a linear combination of the
state solution. With the solution of the adjoint equation p we are able to compute the
gradient step (

ετ−1 (ϕ− ϕn) , 0
)T

= − (DϕΛ,DλΛ)T , (2.9)

according to (2.8) as the unique solution (ϕ, λ) ∈ H1
D(D) × R such that, for all

(vϕ, vλ) ∈ H1
0 (D)× R,

ε

τ

∫
D

(ϕ− ϕn) vϕ dx+ εγ
∫
D
∇ϕ · ∇vϕ dx+ γ

ε

∫
D

∂ψ0

∂ϕ
(ϕn)vϕ dx

−
∫
D
E(p) : ∂C

∂ϕ
vϕE(u) dx+

∫
D

(ϕ−m)vλ dx+
∫
D
vϕλ dx

 = 0.

2.2. Parametric Formulation. In the stochastic setting, material properties and load
scenarios are considered to be random. Consequently, the solution of the state equation
as well as the solution of the adjoint equation become random variables. As a result,
the gradient step itself is in fact a random distribution if one considers Jε from (2.3).
Another approach is to employ a risk measure of the functional instead, which then is
minimized. A common choice is the conditional value at risk (CVaR) which gives the risk
connected to the β-tail quantile for the given probability β. First, we define the value at
risk (VaR). For some random variable X and the probability β it reads

VaRβ[X] = inf {t ∈ R | P[X ≤ t] ≥ β} . (2.10)
The infimum value t of (2.10) can be interpreted as the value of X at the β quantile.
Now we can define the CVaR for X with the probability β as

CVaRβ[X] = E[X | X > VaRβ[X]] . (2.11)
The CVaR describes the expectation of the events considered as failure, as they are
beyond the chosen admissible value t associated with the probability β. It is the expected
value of the β tail quantile. These are all events which lie outside the β-quantile of the
distribution. Practically speaking, it represents the expected loss in the unaccounted
cases which lie outside of the safe (admissible) events with probability β. Minimizing this
expected failure in the worst case scenarios leads to risk averse optimization. We define
the risk aware functional for the probability β by

Jεβ(ϕ) = CVaRβ
[∫

Γg

g · u(ϕ) ds
]

+ γEε(ϕ). (2.12)

Note that for β = 0 we have

Jεβ = E
[∫

Γg

g · u ds
]

+ γEε(ϕ). (2.13)
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We now introduce the optimization problem
minimize Jεβ(ϕ) over ϕ ∈ H1

D(D)

s.t. (2.4) holds a.s., 0 ≤ ϕ(x) ≤ 1 for all x ∈ D, and
∫
D
ϕ dx = m|D|.

(2.14)

For the computation of the conditional value at risk we need to know the value at
risk t associated with the probability β, which is not known in advance. However, the
functional Jεβ can be augmented in such a way that the minimum is sought over ϕ and t
simultaneously as it holds

min
ϕ
Jεβ = min

ϕ,t

(
t+ 1

1− β E
[(∫

Γg

g · u ds− t
)

+

]
+ γEε(ϕ)

)
.

Similar to (2.8) we arrive at the adjoint problem to seek p ∈ H1
D(D;Rd) which fulfills,

for all vp ∈ H1
0 (D;Rd),∫

D
E(p) : C(ϕ)E(vp) dx =

0 for
∫
Γg
g · u ds− t ≤ 0,∫

Γg
(1− β)−1 g · vp ds else.

Hence, the unique solution of the adjoint equation is stochastic and can be represented
by the random variable

p =

0 for
∫
Γg
g · u ds− t ≤ 0,

(1− β)−1 u else.
Analogously, the gradient descent in ϕ and t is now given for step-widths τϕ and τt by(
ετ−1
ϕ (ϕ− ϕn) , 0, τ−1

t (t− tn)
)T

= −(DϕΛ,DλΛ,DtΛ)T which leads to the gradient
equation. The update is the unique solution (ϕ, λ, t) ∈ H1

D(D) × R × R such that it
holds for all (vϕ, vλ, vt) ∈ H1

0 (D)× R× R

0 =



ε

τϕ

∫
D

(ϕ− ϕn) vϕ dx+ ε

τt

∫
D

(t− tn) vt dx

+ εγ
∫
D
∇ϕ · ∇vϕ dx+ γ

ε

∫
D

∂ψ0

∂ϕ
(ϕn)vϕ dx−

∫
D
E(p) : ∂C

∂ϕ
vϕE(u) dx

+
∫
D

(ϕ−m)v` dx+
∫
D
vϕλ dx

+


∫
d vt dx for

∫
Γg
g · u ds− t ≤ 0∫

D

(
1− 1

1−β

)
vt dx else.

(2.15)
Note, that only for the initial value set to t = 0 we get the identical gradient descent as
in the case for the expected value instead of the CVaR in (2.12).

2.3. Discretization and Adaptivity. This section is concerned with the introduction
of the finite element (FE) discretization of the state, adjoint and gradient equations.
We assume that the design domain D is polygonal convex and is represented by a mesh
T` consisting of triangles T where ` is the iteration step of the optimization. The
mesh depends on the iteration step ` since we use some mesh adaptivity to resolve the
interfaces. For the current mesh, we denote the set of edges by E , the restriction to
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the edges of an element T ∈ T` by E(T ) and the element diameter by hT . Moreover,
the outer normal on some edge E ∈ E is denoted by nE. We employ a conforming
P1 FE discretization with the discrete space Vh := C(D) ∩ P1(T ) with P1(T ) := {v :
v|T is polynomial of degree 1 on every T ∈ T`}.
In the deterministic setting, discretizations in space and time have to be carried out.
Adaptive methods can be employed to reduce the computational cost. We discuss a
straightforward heuristical approach which already makes a significant difference in the
following.
The finite element discretization needs to be of sufficient quality such that the interface
region in the phase field ϕ and the solution of the state equation u are well represented.
This usually is achieved by suitable mesh refinement. We utilize the following heuristical
error indicator

η2
ϕ,T :=

∑
E∈E(T )

hT ||∇ϕ · nE||2L2(E) , η2
u,T =

∑
E∈E(T )

hT ||∇E[u]ϕ · nE||L2(E) .

With η2
ϕ = ∑

T∈T η
2
ϕ,T and η2

u = ∑
T∈T η

2
u,T , we derive the combined heuristical error

indicator
ηT = ηϕ,T/ηϕ + ηu,T/ηu. (2.16)

In ηu,T the weight ϕ is introduced because we are not interested in the displacement of
the void domain but only want to focus on the interface and the solid regions. Because of
the local constraints the gradient in ηϕ,T roughly represents the interface of ϕ, where the
material is not in either of the pure phases with ϕ = 0 or ϕ = 1. In the regions where ϕ is
in a pure phase, it is also constant. Hence, a coarse mesh suffices for the approximation.
With the refinement fraction parameter 0 < ϑ ≤ 1 we use the bulk criterion to chose the
minimal setM⊆ T` with ∑

T∈M
η2
T ≥ ϑ

∑
T∈T

η2
T (2.17)

as the elements for refinement to construct the next mesh level T`+1 with the well known
Dörfler marking [10]. In practice the interface do move during the optimization. So
instead of refining the last mesh, we start in every refinement with the initial mesh
interpolate the current solution and displacement onto that mesh, refine according to the
associated indicators and interpolate the current solution onto the finer mesh. We repeat
this process until we have a mesh T`+1, that is suitably finer than T`.
For the adaptation of the pseudo-time step τ we apply an evolutionary proportional integral
derivative controller (ePID) based on the relative changes en = ||ϕn+1 − ϕn|| ||ϕn+1||−1

given by the update

τn+1 =
(
en−1

en

)kP
(
TOL
en

)kI
(
e2
n−1

enen−2

)kD

τn. (2.18)

The experience presented in [18] suggests kP = 0.075, kI = 0.175, and kD = 0.01.
Furthermore we limit the change rate in each step to 0.5 ≤ τn+1τ

−1
n ≤ 2 and τmin ≤

τn+1 ≤ τmax with τmin = 10−12 and τmax = 10−5 unless stated otherwise.
Finally we would like to avoid non physical or highly porous (i.e. non connected or
oscillating) topologies. This is prevented by the interface functional in (2.3) weighted
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Algorithm 1: Discrete optimization
Input: mesh T0, initial values ϕ0, τ0
for ` = 0, 1, . . . until converged do

for n = 0, 1, . . . until converged do
solve state equation on mesh T` ⇒ un
solve adjoint equation on mesh T` ⇒ pn
solve gradient equation on mesh T` ⇒ ϕ∗n+1
project ϕ∗n+1 to [0, 1] ⇒ ϕn+1
adapt τ according to (2.18) ⇒ τn+1
adapt γ according to (2.19) ⇒ γn+1

adapt mesh according to (2.16) and (2.17) ⇒ T`+1
interpolate ϕn onto T`+1 as new ϕ0

by γ. We choose γ such that the two contributions in the functional are balanced with
respect to some factor

γ = cJE
ε(ϕ)−1

∫
Γg

g · u ds. (2.19)

In the numerical computations we set cJ = 0.1 if not given otherwise.
The combination of the above heuristics leads to the discrete optimization method
depicted in Algorithm 1. The initial mesh T0 has to be sufficiently fine to represent the
final topology of the optimized shape adequately. We then solve the discrete optimization
problem on that mesh, refine according to the described heuristics and iterate the progress.
The initial phase field on the new mesh is set to be the interpolation of the minimum on
the previous mesh. The procedure is formally depicted in Algorithm 1.
The stochastic setting requires the computation of the expected value of the gradient
step in each iteration. We first apply Monte Carlo estimators for this step and latter
the tensor reconstruction from Section 3. In each iteration we generate N samples of
the random input data and solve the state equation, the adjoint equation as well as the
gradient equation for each of them. Then we compute the mean of the next step as the
updated form ϕn+1. The computation of the samples is parallelized.

3. Hierarchical tensor approximations

As an alternative to classical Monte Carlo sampling as described previously, it often can
be beneficial to get a representaton of the entire parametric solution manifold of the
state equation for a more accurate approximation of the expectation value of ϕn+1 or of
other functionals depending on the solution. Assuming sufficient sparsity of the function
at hand, a promising approach is based on low rank tensor tensor representations for
which we discuss modern reconstruction techniques. The basis for such an approach
is the same as for Monte Carlo sampling, namely the pointwise (in parameter space)
evaluation of the state equation. Analogously to the well established methods of matrix
completion and matrix reconstruction, tensor reconstruction aims at reconstructing a
higher order tensor from highly incomplete measurements using a low rank assumption.
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Algorithm 2: Discrete stochastic optimization
Input: mesh T0, initial values ϕ0, τ0
for ` = 0, 1, . . . until converged do

for n = 0, 1, . . . until converged do
for i = 1, . . . , N do

sample random input data from ωi ∈ Ω
solve state equation on mesh T` ⇒ un(ωi)
solve adjoint equation on mesh T` ⇒ pn(ωi)
solve gradient equation on mesh T` ⇒ ϕ∗n+1(ωi)

compute the mean ϕ̄n+1 = 1
N

∑N
i=1 ϕ

∗
n+1(ωi)

project ϕ̄n+1 to [0, 1] ⇒ ϕn+1
adapt τ according to (2.18) ⇒ τn+1
adapt γ according to (2.19) ⇒ γn+1

adapt mesh according to (2.16) and (2.17) ⇒ T`+1
interpolate ϕn onto T`+1 as new ϕ0

In contrast to matrices there are several possible definitions of the rank of a higher order
tensor, e.g. the canonical rank, the Tucker rank and the Hierarchical Tucker (HT) rank
and its important special case the Tensor-Train (TT) rank, see for example [13]. In this
work we use the Hierarchical Tucker [14] and in particular the Tensor-Train (TT) format
[21] as it provides several unique advantages. Most importantly the TT-format allows a
linear scaling with respect to the tensors order for the storage requirements and common
operations for tensors of fixed rank.

3.1. Notations. For the course of this work we regard higher order tensors simply as
d-dimensional real arrays. To denote the contraction of two tensors along certain nodes
we use the ◦ symbol indexed with by the nodes that are contracted, e.g. A ◦(i,j),(k,l) B
means that the i-th and k-th mode of A and B are contracted, as well as the j-th and l-th
mode. If no indices are given, a contraction of the last mode of the left operand and the
first mode of the right operand is assumed. As writing this for larger tensor expressions
quickly becomes cumbersome we also use a diagrammatic notation to visualize them. In
this notation a tensor is depicted as a dot with edges corresponding to each of its modes.
If appropriate the cardinality of the corresponding index set is given as well. From left to
right the following shows this for an order 1 tensor (vector) v ∈ Rn, an order 2 tensor
(matrix) A ∈ Rm×n and an order 4 tensor T ∈ Rn1×n2×n3×n4 .

vn Am n Tn4 n1

n2

n3
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If a contraction is performed between two modes of two tensors the corresponding edges
are joined. The following shows this exemplarily for the inner product of two vectors
u,v ∈ Rn and a matrix-vector product with A ∈ Rm×n and v ∈ Rn.

u v Am vn n

There are two special cases concerning orthogonal and diagonal matrices. If a specific
matrification of a tensor yields an orthogonal or diagonal matrix, the tensor is depicted by
a half filled circe (orthogonal) or a circle with a diagonal bar (diagonal). The half filling
and the diagonal bar both divide the circle in two halves. The edges joined to either half,
correspond to the mode sets of the matrification, which yields the orthogonal or diagonal
matrix. As an example the diagrammatic notation can be used to depict the singular
value decomposition A = UΣV T of a matrix A ∈ Rm×n with rank r, as shown in the
following.

U

m

Σ V

n

r r

3.2. The Tensor Train Format. The idea of the TT-format is to separate the modes
of a tensor into two order two tensors and d− 2 order three tensors. This results in a
tensor network, that is exemplarily shown for an order four tensor T = U1 ◦ U2 ◦ U3 ◦ U4
in the following diagram.

U1 U2 U3 U4

n1

r1

n2

r2

n3

r3

n4

Formally the tensor train format can be defined as follows.

Definition 3.1 (Tensor-Train Format). Let T ∈ Rn1×...×nd be a tensor of order d. A
factorization

T = U1 ◦ U2 ◦ . . . ◦ Ud−1 ◦ Ud , (3.1)
of T , in component tensors U1 ∈ Rn1×r1 , Ui ∈ Rri−1×ni×ri , i = 2, . . . , d − 1 and
Ud ∈ Rrd−1,nd , is called a Tensor-Train (TT) representation of T . The tuple of the
dimensions (r1, . . . , rd−1) of the component tensors is called the representation rank
and is associated with the specific representation. In contrast the tensor train rank
(TT-rank) is defined as the minimal rank tuple r = (r1, . . . , rd) such that there exists a
TT representation of T with representation rank equal to r.

Proposition 3.2 ([21]). Every tensor T ∈ Rn1×...×nd admits a TT-representation with
minimal representation rank r = (r1, . . . , rd−1). Furthermore this minimal rank r, which
thereby is the TT-rank of T , is related to the ranks of certain matrification of T via

ri = rank
(
M̂(1,2,...,i) (T )

)
, (3.2)

where M̂(1,2,...,i) (T ) denotes the matrification of T which combines the first i modes
and the remaining d− i modes into a single mode each.



11

Such a TT-representation with minimal representation rank can be obtained by successive
singular value decompositions, called Higher order SVD or TT-SVD, as explained in
detail in [21]. Storing a tensor T ∈ Rn1×...×nd with TT-rank r = (r1, . . . , rd−1) in a
minimal TT representation requires Θ(dnr2) memory for the component tensors, where
n = maxi(ni) and r = maxi(ri). That is the storage requirement scales only linear in
the order.

It can easily be seen that a the TT decomposition is not unique. One can ”normalize“
the decomposition by enforcing that all component tensors with smaller index than a
given i, are left orthogonal, i.e. the matrification which combines all but the last mode is
an orthogonal matrix, and all component tensors with larger index are right orthogonal,
i.e. the matrification which combines all but the first mode is an orthogonal matrix. Note
however that this is not a real normalization as the representation is still not unique. The
component tensor which is not orthogonal is called the core – or more precisely is said to
carry the core.

As a natural generalization of the low rank matrix manifold [2], it is shown by [16] that
the setMr (Rn1×...×nd) of tensors with rank r forms a manifold. In particular they prove
the following theorem.

Theorem 3.3 (Tensor Train Manifold [16]). For fixed dimensions n1, . . . , nd and a fixed
rank r = (r1, . . . , rd−1) the setMr (Rn1×...×nd) is a smooth manifold of dimension

dim (Tr) =
d∑
i=1

ri−1niri −
d−1∑
i=1

r2
i , (3.3)

where as a convention r0 = rd = 1.

The dimension of the manifold also determines the degrees of freedom a tensor with
fixed TT-rank possesses. These degrees of freedom are important for the reconstruction
from incomplete measurements as they are a definite low bound on the number of
measurements needed.

3.3. Reconstruction of the UQ solution. In the parametric setting we can regard the
next iterate ϕn+1(x,ψ) as a function in the physical space and the stochastic parameters.
Using for example a truncated basis of Legendre polynomials, the continuous parameters
ψi can be mapped to the discrete parameter vectors ξi. This also yields a discrete tensor
approximation X of ϕn+1(x,ψ). Our pursued idea is to reconstruct the full solution tensor
X from a rather small set of solutions of (deterministic) problem samples (ξ(k)

1 , . . . , ξ
(k)
D )

with k = 1, . . . , N , i.e. the solution realizations used by the Monte Carlo simulation.

In an abstract setting we can formulate the tensor reconstruction problem analogously to
the well established matrix reconstruction setting, i.e.

minimize TT-Rank (X )
subject to Â (X ) = b .

(3.4)
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For tensors of degree two, i.e. matrices, this is exactly the matrix reconstruction problem.
In our particular case Â and b are given as

Â(X )k,x = (ξ(k)
1 ⊗ . . .⊗ ξ

(k)
D ) ◦(1,...,D),(1,...,D) X (x), (3.5)

bk,x = ϕn+1(x, ξ(k)
1 , . . . , ξ

(k)
D ) . (3.6)

For matrices it is established that under some assumptions on the measurement operator
A there is a unique solution to this problem, which is attained by solving the relaxed trace
norm minimization problem. The important result is that p measurements are sufficient,
where p scales as r(m + n) log(mn), see e.g. [8] and [23]. Unfortunately equivalent
results could not yet be obtained for higher order tensors. Nevertheless there is much
numerical evidence that also for higher order tensors reconstruction from incomplete
measurements is possible, see e.g. [17, 22]. One main problem in transferring the results
from the matrix case to low rank tensors is to find a convex relaxation for the NP-hard
rank minimization problem. In this work we make an educated guess on the optimal rank
of the solution, see Section 3.5, and thereby bypass this problem. If we assume that the
optimal rank r∗ is a priori known, (3.4) can be recast to an optimization problem on the
low rank manifoldMr∗

argminX∈Mr∗ |A(X )− b|. (3.7)
There are several algorithms which solve such optimization problems posed on the low
rank manifold, see e.g. [4] for a recent survey. Most popular is probably the alternating
least squares (ALS) and its extension the DMRG algorithm [15]. A second more recent
approach are Riemmanien optimization techniques which directly exploit the manifold
structure ofM, see for example [17] for an application to tensor completion. For this
work we use an alternating steepest decent algorithm which can be seen as being in
between those two groups of algorithms.

3.4. Alternating Steepest Decent. The alternating steepest descent algorithm used
in this work can be seen as an extension of the alternating directional fitting (ADF)
algorithm developed in [12]. Our derivation however is quite different and may provide
some additional insight.

As established in 3.3, Mr∗ forms a smooth embedded manifold. It is shown in [16,
Theorem 4.2] that the the tangent space at a point X = U1 ◦ . . . ◦ Ud is given by

TMr(X ) = V1 ⊕ . . .⊕ Vd (3.8)
where

Vj = {U1 ◦ . . . ◦ Uj−1 ◦∆ ◦ Uj+1 ◦ . . . ◦ Ud
| ∆ ∈ Rrj−1×ni×rj ,Ui ◦(1,2),(1,2) ∆ = 0

}
,

Vd =
{
U1 ◦ . . . ◦ Ud−1 ◦∆ | ∆ ∈ Rrd−1×nd×1

}
.

Based on this orthogonal decomposition of the tangent space [20] derive a closed form for
the projector P̂TXMr onto the tangent space TMr, which is composed by the projectors
onto the spaces Vi. Using this closed form of the projection operator, one could create an
Riemmanien optimization algorithm similar to the ones used by [17]. A problem however
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encountered independent of the choice of the retraction is that one has no direct control
on the update carried out in each iteration, which makes for example a ”good“ step size
hard to determine. The idea of the alternating steepest descent is instead to project
the gradient onto one of the spaces Vj at a time and perform an update. The main
advantage is that in this case no retraction is needed at all because one can easily show
that such an update never leaves the manifold, independent of the step size. Therefor the
optimal step size of a gradient descent with respect to the global optimization problem
can directly be calculated as

αi =
−
〈
Â(Xi)− b, Â(P̂j(Y))

〉
∥∥∥Â(P̂j(Y))

∥∥∥2

2

. (3.9)

Here P̂i denotes the orthogonal projectors onto the spaces Vi and Y denotes the update
direction, i.e. the negative gradient in this case. For the heuristics behind the algorithm
it is not necessary that the spaces Vi are orthogonal. In fact numerical experience has
shown that better results are obtained if

Vj =
{
U1 ◦ . . . ◦ Uj−1 ◦∆ ◦ Uj+1 ◦ . . . ◦ Ud | ∆ ∈ Rrj−1×ni×rj

}
is used instead for all j, i.e. for j < d each space is enlarged by the part parallel to Uj.
The individual projectors are given by

P̂j(Y)
= U<j ◦(j),(j) U<j ◦(1,...,j−1),(1,...,j−1) X ◦(j+1,...,d),(2,...,d−j+1) U>j ◦(1),(1) U>j,

where
U<j = U1 ◦ U2 ◦ . . . ◦ Uj−1, (3.10)
U>j = Uj+1 ◦ Uj+2 ◦ . . . ◦ Ud, (3.11)

and it is assumed that the core position is at i, i.e. the core is not part of the projector.
This can be expressed more intuitively by the graphical notation:

P̂j (Y) =
X
X
Y

A rough outline of the algorithm is given in listing 3. It uses a forward and a backward
stack, which save intermediate results of the subsequent calculations and allow for a very
efficient implementation. To be concrete, the stacks are defined as

F−1,k = Bd+1,k = 0,

Fj,k = Fj−1,k ◦ Uj ◦2,1 ξ
(k)
j ,

Bj,k = ξ
(k)
j ◦1,2 Uj ◦Bj+1,k.

Creating the complete backward stack costs O(dnr2N) and creating a single layer of
the forward stack costs O(nr2N). The calculation of the residual is carried out for any
position j with

Rk = (Fj−1,k ◦ Uj ◦Bj+1,k) ◦ ξ(k)
j − bk,
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Algorithm 3: Alternating Steepest Descent for Tensor Reconstruction
Input: mesh T0, initial values ϕ0, τ0
for i = 1, 2, . . . until converged do

Rebuild complete backward stack
for j = 0, 1, . . . , d do

Move core to position j
Advance forward stack to position j − 1
Calculate the residual Â(Xi)− b
Calculate the projected gradient P̂j(∇F (Xi))
Calculate the optimal step size according to (3.9)
Update Xi+1 = Xi = αP̂j(∇F (Xi))

which costs O(nr2N). The projected gradient can be represented in the same TT-format
as the current iterate with only the core being altered. Then, the core C of the projected
gradient is calculated as

C =
N∑
k=1

Rk Fj−1,k ⊗ ξ(k)
j ⊗Bj+1,k .

This can again be done in O(nr2N). At the same cost the optimal step size is calculated
using

α =
∑N
k=1 Rk(Fj−1,k ◦ C ◦Bj+1,k) ◦ ξ(k)

j )∑N
k=1((Fj−1,k ◦ C ◦Bj+1,k) ◦ ξ(k)

j )2
,

which assumes that the measurements are orthonormal. While this is not true in the
considered setting, this still provides a sufficiently good approximation. Finally moving
the core by one position has negligible costs of O(nr2). Putting all this together shows
that the complete algorithm has numerical costs scaling as O(dnr2N), i.e. it is linear in
the degree of the tensor as well as the number of measurements.

The algorithm is stopped if after three sweeps over all positions the residuum has not
significantly decreased.

3.5. Initial Guess. We use a perturbation based calculation to obtain an initial guess
on the solution. This initial guess is used for two purposes: to obtain an estimate on the
rank of the solution, as well as to get a starting point for the iteration.

Using Hermite polynomials as a basis, the solution up to first order is given by

ϕ(x,ψ) ≈ α(x) +
∑
j

βj(x) (2ψj) . (3.12)
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Let εj denote the vectors with the only non-zero entry ε at the j-th position. To obtain
an initial guess of the solution, we use a set of fixed stochastic variables, i.e.

ϕ(x,0) = α(x), (3.13)
ϕ(x, εj) = ϕ(x,0) + 2εβj(x). (3.14)

From this, the coefficients can be derived as
α(x) = ϕ(x,0), (3.15)
βj(x) = (ϕ(x, εi)− ϕ(x,0))/2ε. (3.16)

The coefficients correspond to single entries of the solution tensor X , i.e
X [0, . . . , 0] = α, X [0, . . . , 0, 1(at j), 0, . . . , 0] = βj. (3.17)

Setting all other entries to zero, we obtain a sparse and thereby low-rank initial guess for
the solution tensor.

3.6. Postprocessing. For the gradient iteration we are interested in the expectation
value of ϕ. After the successful reconstruction ofX , this is directly available as X [0, . . . , 0],
i.e. without any additional evaluation costs.

4. Numerical Experiments

We illustrate the described method with some numerical examples. In particular, we
The numerical implementation is realized in Python using the very versatile FEniCS
framework [11, 3, 19] which employs a C++ just-in-time compiler for the dynamic
generation of high-performance code. For the solution of the linear systems we utilize
PETSc [5, 6, 7] with the UMFPACK direct solver [9] for two dimensional problems and
gmres for three-dimensional problems. For the parallel computation of the samples in
the stochastic settings we use the Joblib python module [24]. The tensor algorithms
are implemented in the efficient open source C++ library xerus [1].

4.1. Experiment 1. The first experiment explores a load bearing framework. On the
domain D = [0, 2]×[0, 1] ⊂ R2 we define the boundaries ΓD = [−1,−0.9]×{0} on which
we set u = 0, Γg = [−0.02, 0.02]×{0} on which we apply the load g = (0,−5000)T and
an additional slip boundary condition on ΓS = [0.9, 1.0]× {0} on which we restrict the
displacement in the normal direction of the boundary as u ·n = 0. The Lamé–coefficients
λ and µ are set to 250 and the amount of material in the domain is set to m = 0.4.
The interface parameter is set as ε = 1/16. Figure 1 shows the setting, the optimized
sturcture, the stress, and the final mesh achieved after 258 iterations on meshes with
increasing resolution with an initial distribution of ϕ(x) = 0.5 for all x ∈ D. The initial
value does not need to fulfill the volume constraint as it is enforced in a relaxed manner
with a Lagrange multiplier.
The resulting material distribution exhibits a clear structure consisting of an arc resting
on the load bearing boundaries and six spokes connecting it to the load boundary. We
emphasis that this structure is solely a result of the optimization process, as only a
trivial uniform initial topology was given in the initial conditions. Despite the asymmetric
boundary conditions the result is almost symmetrical as the load is perpendicular to the
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D

m = 0.4

u = 0 g u · n = 0

Figure 1. Setting, final structure, stress and mesh fineness in the
deterministic setting.

load bearing boundaries. The peak stress is right at the load boundary and at the edges
of the Dirichlet boundary. The rest of the material filled domain has an almost uniform
stress distribution. Both the interface and the displacement are well resolved by the final
mesh.

4.2. Experiment 2. The second experiment is defined on the domain D = [0, 5] ×
[0, 2.5] × [0, 3] ⊂ R3 for which we set m = 0.5 as the target amount of material.
The displacement is fixed on the boundary ΓD = {0} × [0, 2.5] × [0, 3] and a load
g = (0, 0,−165) is applied at Γg = [4.75, 5]×[0, 2.5]×{0.0} whereas we set λ = µ = 5000.
Additionally we alter the adaptive update of the time step τ with τmax = 10−3 and set a
fixed γ = 1.0. A selection of the described setting and the computed structures is shown
in Figure 2 for an initial ϕ(x) = 0.5 for all x ∈ D.
Once again, the resulting topology is not prescribed by the initial conditions yet it exhibits
one hole and a thinner support beam. The peak stress is limited to the corners of the
Dirichlet boundary whereas the rest of the domain has an almost uniform stress. The
interfaces of ϕ and the displacement u are resolved well by the adaptive meshes.

4.3. Experiment 3. In the third experiment we modify the setting from the first experi-
ment with stochastic input data. The Lamé–coefficients µ(ω) = λ(ω) are modeled as a
truncated lognormal Karhunen–Loève expansion with 10 modes, a mean value of 150
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D

m = 0.5

u = 0

g

Figure 2. Setting and final structure cut at ϕ ≡ 0.5, stress and size of
tetrahedrons in 1/h of the deterministic cantilever setting in R3.

and a covariance length of 0.1 which is scaled by a factor of 100. The load is assumed as
a vector of length (0,−5000) with a random rotation angle given through a truncated
normal distribution with bounds [−π/2, π/2], standard deviation 0.3 and mean 0. The
setting with an example realization of the random field is depicted in Figure 3 alongside
the optimized structures for different choices of β with the initial t = 0. In each iteration
we use N = 224 samples which corresponds to a multiple of the numbers of processor
cores.
With this choice for the initial t the optimization for β = 0 is identical with the unweighted
expected value functional instead of CVaR. In this case we already observe the loss
of the symmetry compared to the deterministic case since the load is almost always
not perpendicular to the load bearing boundaries. The main difference is the side-wise
strain on the Dirichlet boundary, which is introduce by the moved left most spoke. In
contrast to this, the right-hand side closely resembles the deterministic case since the
slip boundary cannot absorb energy in the tangential direction. Increasing the probability
β will put more emphasis onto the introduced material weaknesses in the tensor C and
onto the more extreme deflection of the load. As a result, fewer but thicker spokes form
and especially the left-most spoke becomes thicker as this is the most efficient way to
absorb the side-facing energies. A further increase in the risk avoiding probability leads
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m = 0.4

C(ω)

u = 0 g(ω) u · n = 0

β = 0.0

β = 0.7 β = 0.8

Figure 3. Stochastic setting and final form for various β.

to a trivial bar-like structure without any holes.

For this third experiment, in addition to Monte Carlo sampling, we also employ the tensor
reconstruction algorithm described in 3. Figure 4 shows the final configuration found by
the optimization for various values of β. For β = 0 and β = 0.8 the resulting general
topology is the same as acquired by the Monte Carlo based optimization, although there
are slight deviations in the thickness and position of the spokes. For β = 0.7 the final
topology obtained using the tensor reconstruction approach resembles the one for β = 0.8,
i.e. only four spokes, while the respective Monte Carlo based result exhibit five spokes.
Unfortunately it is not trivial to give a comparable quantitative measure for the quality of
the solutions of the two methods. Hence it is not clear which solution actually provides a
more accurate result in this setting. However for both algorithm a transition from six
to five to four spokes is observed with increasing β and the exact transition points are
not deterministic since both algorithms rely on randomly chosen samples which most
certainly do vary.
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