
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Improved numerical solutions for the simulation 
of monolithic microwave integrated circuits 

Georg Hebermehl1 , R~iner Schlundt1, 

Horst Zscheile2 , Wolfgang Heinrich2 

submitted: 19th April 1996 

1 Weierstrass Institute 
for Applied Analysis 
and Stochastics 
Mohrenstrafie 39 
D - 10117 Berlin 
Germany 

2 Ferdinand-Braun-Institut 
fiir Hochstfrequenztechnik 
Rudower Chaussee 5 
D - 12489 Berlin 
Germany 

Preprint No. 236 
Berlin 1996 

1991 Mathematics Subject qassification. Microwave device, three-dimensional simulation, 
scattering matrix, orthogonality relation, Maxwellian equations, finite-volume method, finite--
difference method, eigenvalue problem, system of simultaneous linear equations. 
Key words and phrases. 35Q60, 35120, 65N22, 65F10, 65F15. · 

e-mail: hebermehl@wias-berlin.de, schlundt@wias-berlin.de, ULR: http://hyperg.wias-berlin.de 
e-mail: zscheile@fbh.fta-berlin.de, heinrich@fbh.fta-berlin.de,ULR:http://www.fta-berlin.de. 



Edited by 
Weierstraf3-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
Mohrenstraf3e 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



Abstract 
The electrical properties of the circuits are described in terms of 
their scattering matrix using Maxwellian equations. Using a finite-
volume scheme a three-dimensional boundary value problem for the 
Maxwellian equations in the frequency domain can be solved. This 
results in a two-step procedure: a time and memory consuming eigen-
value problem for nonsymmetric matrices and the solution of a large-
scale system of linear equations with indefinite symmetric matrices. 
Improved numerical solutions for these two linear algebraic problems, 
the computation of the scattering matrix and of the used orthogonal-
ity relation are treated in this paper. The numerical effort could be 
reduced considerably. 
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1 Introduction 
The model for the simulation of monolithic microwave integrated circuits, 
and the finite-volume method for the solution of the corresponding three-
dimensional boundary value problem for the Maxwellian equations [4], [5], 
[2] are in detail treated in [10]. We refer in this paper to [10]. 
The essential points of the method are : 

• Microwave devices can be described by an interconnection of infinitely 
long homogeneous transmission lines which are attached to a structure. 
The waveguides and the structure are shielded by electric or magnetic 
walls. The waveguides and the enclosures are cut at cross-sectional 
planes. The tangential electric or the tangential magnetic field is known 
on the whole surface. Figure 1 illustrates the principal structure under 
investigation. 

• The electrical properties of the circuits are described in terms of their 
scattering matrix using Maxwellian equations. 

• The scattering matrix can be computed if an orthogonal decomposi-
tion of the electric field can be calculated at a pair of two neighboring 
cross-sectional planes on each transmission line for a number of linear 
independent excitations of the transmission lines. 

• The boundary region is divided into elementary rectangular paral-
lelepipeds by using a three-dimensional nonequidistant Cartesian grid. 
The application of the finite-volume method to the three-dimensional 
boundary value problem for the Maxwellian equations in the frequency 
domain results in an eigenvalue problem for nonsymmetric matrices and 
the solution of a system of linear equations with indefinite symmetric 
matrices. 

We introduce in this paper improved numerical methods for the time and 
memory consuming eigenvalue problem and the solution of the system of 
linear equations of the program package F3D (Finite Differenzen dreidimen-
sional) [5], [2]. We represent the computation of the scattering matrix and 
of the orthogonality relation used in F3D. 
The program package F3D allows to simulate the electromagnetic field of 
nearly arbitrary shaped structures. 
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Figure 1: Structure under investigation 

Improving the eigenvalue procedure increased efficiency by factors of 25 until 
40 in typical medium-sized examples compared to the original version of this 
part of the package F3D. The storage requirements could be reduced by a 
factor of 20 in the example used for demonstration in this paper, since the 
sparse storage technique is applied. 
Furthermore, the execution time for the solution of the linear algebraic equa-
tions was reduced by a factor of 5. 
The improvements in the computing times and the storage requirements in-
crease essentially with the dimension of the problem. Especially the reduc-
tion of the storage requirements permits the solution of problems of higher 
dimensions because the size of the memory of the workstations is restricted. 

2 The Numerical Solution of the Eigenvalue 
Problem 

(1) and (2) form an eigenvalue problem for the transverse electric field on the 
transmission line region (see Figure l). The cross-sectional plane is located 
on the ( x, y )-plane of the enclosure. 
If the cross-sectional plane is located on· the ( x, z )-plane or on the (y, z )-plane 
of the enclosure, one can derive similar equations which correspond to ( 1) 
and (2). 
The eigenvalue problem is derived in [10]. 
1(h) are the eigenvalues. Exi,i,k' EYi,i,k' k = const, are the components of the 
eigenfunctions (transverse electric field). 
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(5) 

(i1,j1
, k 1

) are the indices of the elementary cell which is located ins-direction 
in front of the cell ( i, j, k ): 

s = x: 
s =y: 

i' = i - 1, j' = j, 
i 1 = i, j' = j - 1, 

k1 = k 
k1 = k . 

Because we use a Cartesian grid, we have 

Xi,j,k - Xi,j-1,k 

Yi,j,k - Yi+1,j,k 

Xi,j+l,k 

Yi-1,j,k 

There are the following relations between the quantities (complex permittiv-
ity £, permeability µ, conductivity /'i,' circular frequency w, wavenumber in 
vacuo x 0 ) (see [10]) 

(6) 

The quantities € and µ can be different from cell to cell. 
The cross-sectional planes can be located on the 6 different planes of the 
rectangular parallelepiped. 
Let be 

, ~ =Ex· ·1r., l 1.,3, 

e = Ey· .,_ -Yl 1.,3,,. 

(7) 
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with 

£ = (j - l)n:z: + i, i = l(l)n:z:, j = l(l)ny, 
(8) 

n:z:y = n:z:ny, and k = 1 or k = nz . 

The assumption k = 1 corresponds to the case, in which the cross-sectional 
plane (see Figure 1) is located on the left-handed (x, y)-plane of the enclo-
sure. 
On the transmission line wall, the tangential component Etang or the tangen-
tial component Htang must vanish. Because we reduced the wave propagation 
on the transmission line to a two-dimensional problem (see [10]), we have to 
take into account boundary conditions on the port of the structure only (see 
Figure 2). We consider the boundary condition 

Etang = 0 , (9) 
on the left-hand side and at the bottom of the port as an example, that is, 

~i = E:z:i.,1,1 = 0, l = i, i = l(l)n:z:, (10) 

and 

~Yi = Ey1,3,1 = 0, £ = (j - 1)n:z:+1, j = l(l)ny . (11) 
Let be M = (mp,q), p, q = 1(1)2n:z:y, the matrix of the eigenvalue problem 
(1, 2). Because of the boundary conditions (10) and (11) we get from the 
eigenvalue problem (1, 2) for i = l(l)n:z: and for j = l(l)ny: 

and 

m1,2E:z:2 i i + m1,n:c+l E:z:1 2 i + ', , , 
m1,n:cy+l EYl,1,1 + m1,n:cy+2Ey2,1,1 = 0, 

mi,i-1E:z:i.-1,1,1 + mi,i+1E:z:i+1,1,1 + mi,n:c+iE:z:i,2,1 + 
mi,n:cy+iEYi,1,1 + mi,n:cy+i+1EYi+1,1,1 = 0, (12) 
i = 2(1)n:z: - 1, 

mn:c,n:c-1E:z:Tl.:z:-1,1,1 + mn:c,n:c+n:cE:z:n:c,2,1 + 
mn:c,n:cy+n:cEYn:c,1,1 = 0 
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mn:::y+1,1Ex1,1,1 + mn:::y+1,n:::+1Ex1,2,1 + 
mn:::y+1,n:::y+2E'Y2,1,1 + mn:z:y+1,n:::y+n:::+1Ey1,2,1 = 0, 

mn:::y+(i-1)n:::+1,(j-1)n:::+iEx1,;,1 + 
mn:::y+(j-1)n:::+1,jn:::+1Ex1,;+1,1 + 
mn:::y+(j-1)n:::+i,n:::y+(j-2)n:::+lEY1,;-1,1 + (l

3
) 

mn:::y+(j-1)n:::+1,n:::y+(j-1)n:::+2EY2,;,1 + 
mn:::y+(j-1)n:::+1,n:::y+jn:::+1Ey1,H1,1 = 0, j = 2(1)ny - 1, 

mn:::y+(ny-1)n:::+1,(ny-1)n:::+1 Ex1,ny ,1 + 
mn:z:y+( ny-1 )n:::+l,n:z:y+( ny-2)n:::+l EYl ,ny-1,1 + 
mn:::y+(ny-1)n:::+1,n:::y+(ny-1)n:::+2EY2,ny,1 = 0 

That means, the Equations (12) and (13) have not to be taken into account. 
The corresponding components of the eigenvectors are known (see (10) and 
(11)). Thus, the dimension of the eigenvalue problem is reduced to 2nxy -nb, 
nb = nx + ny, in this case. We denote the matrix of the reduced eigenvalue 
problem with M. 
We have to remark that we generally have to take into account also boundary 
conditions at interior boundaries, which are to be treated in the same manner. 
The nxy components of the vector ?:x are the first nxy components of ex, and 
the nxy components of the vector 'i.y are the first nxy components of ey, 
both defined in ( [10], Equation (36)). After solving the eigenvalue problem 
these 2nxy components are used as boundary values for the three-dimensional 
boundary value problem described in [10] which results in the large scale 
system of linear equations with the 3nxynz unknowns ex, ey, ez. 
If the cross-sectional plane is located on the right-handed ( x, y )-plane of the 
enclosure, we have k = nz. In this case, the nxy components of ?:x are the 
last nxy components of ex, and the nxy components of f.y are the last nxy 
components of ey. 
If the cross-sectional planes are located on the ( x, z )- or (y, z )- planes of the 
enclosure, we can find easily in a similar way the appropriate components of 
F. and e. 
If the cross-sectional plane is located on the ( x, z )-plane, the y-direction is 
the longitudinal direction of the corresponding transmission line, and we have 

'ff.= (?:x, 'ff.zf ' ?:x = (~1 '~2" · · '~n:z:J 
'ff.z = (~z1 ' ~z2 ' · · · ' ~Zn:z:z ) 

(14) 

with 
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Figure 2: Boundary conditions on the port of the structure 

l = (k - l)nx + i, i = l(l)nx, k = l(l)nz, 
nxz = nxnz, and j = 1 or J = ny . 

(15) 

If the cross-sectional plane is located on the (y, z )-plane, the x-direction is 
the longitudinal direction of the corresponding transmission line, and we have 

~ = (~Yl ' ~Y2 ' • • • ' ~Ynyz) ' ~Yi. = EYi,j,k ' e = (e , e , ... , e ) , e.,. = Ez· . ,_ -z -z1 -z2 -Zn.yz -Ni. i,3 1"' 

(16) 

with 
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l = (k - l)ny + j, j = l(l)ny, k = l(l)nz, 
nyz = nynz, and i = 1 or i = nx . (17) 

We refer to the case (7) in the discussion to follow. 
The matrix M of the reduced eigenvalue problem (1 ), (2), (12), (13) depends 
on h 2 (see ( 4), ( 5)): 

M(h2 )ff. = r(h)ff. , dim(M) = (2nxy - nb, 2nxy - nb)· (18) 

The size of nb depends on the boundary conditions. 
The dependence of M on h can be used in numerical solution methods to 
scale the set of eigenvalues r of (18). 
The sparse matrix Mis nonsymmetric. There are 2nxy eigenvalues r = u+Jv 
and corresponding propagation constants -kz = f - JO.: 

The propagation constants kz can be computed from rafter the solution of 
the eigenvalue problem (1), (2), (12), (13). 
We get from (3) 

1 • ( J /;;"°) J 1 (fL kz£ = h arcsm 2V ri = 2h n 2 + 1 + (20) 

A propagation constant kz and its corresponding eigenfunction are called a 
mode. 
In the discussion to follow we denote sets of propagation constants kz with 
an indicated p and the corresponding eigenvalues in accordance with (19) 
with indicated p. 
Le be Ea the set of all propagation constants kz and Po the set of the corre-
sponding eigenvalues r of M. 
The energy of the complex and evanescent modes decreases exponentially 
with the distance from the structure. Thus, most of the modes can be ne-
glected within the limit of accuracy. Only some modes (see [10], section 
2) are taken into account. The other modes are assumed to vanish within 
a given distance d between the cross-sectional plane and the discontinuity. 
Generally speaking, the larger the magnitude of the imaginary part of kz the 
stronger the decay. Therefore, the propagation constants kzt) L = 1(1 )2nxy, 
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of the set .e.o are sorted in ascending order of I aL I· In the case if some I aL I 
have the same value the constants kz, are sorted in descending order of I fL 1-
Let be m 8 the number of propagation constants which are able to propagate. 
These m 8 propagation constants are then the first of the sorted list ~ and 
have to be taken into account. 
In the former version of the program package F3D the set ~ of all propaga-
tion constants was computed and sorted in order to select the set p f of the 
first m 8 propagation constants of ~. This way is very time-consuming. The 
sparse matrix is stored as a dense matrix. 
In order to avoid the time-consuming computation of all eigenvalues / we 
use an iterative method now, which is carried out twice to find the m 8 prop-
agation constants. 
Using the iterative method the computation of the needed propagation con-
stants in a typical example is 40-fold faster than in the old version. The re-
duction of the memory consumption amounts the 20-fold in the represented 
example, since the sparse storage technique is applied. 
We use the nonsymmetric version of the implicitly restarted Arnoldi iteration 
[17]' [15]' [13], [18]' [11]. 
The Arnoldi iteration produces a partial orthogonal factorization of a ma-
trix A of order m into an upper Hessenberg matrix Hr of order r, r :::; m. 
Using the eigenvalues of this small matrix an approximation of a subset of 
the eigenvalues of the matrix A can be obtained. The approximation of the 
eigenvalues of Hr to those of A is improved if r increases. But for higher r the 
algorithm needs more time and storage. To avoid the higher cost and stor-
age requirements the Arnoldi iteration is used with an implicitly re-starting 
technique. The implicitly re-started Arnoldi iteration can be considered as a 
truncation of the implicitly shifted QR algorithm. 
We can compute a set of eigenvalues of largest or smallest magnitude, real 
part or imaginary part in different modes with the help of the Arnoldi iter-
ation. The standard eigenvalue problem Ax_- .Ax can be solved using the 
regular mode Ax= .Ax or the inverse mode A-1x = -1-x [18]. The Arnoldi al-
gorithm is called iteratively to solve one of these problems generating Arnoldi 
vectors. Using the regular mode most of the cost in generating each Arnoldi 
vector is in the matrix-vector product. Using the inverse mode we have to 
solve a system of linear algebraic equations on each iteration. 
The method does not converge in the regular mode for our eigenvalue prob-
lem. Thus, the Arnoldi algorithm is called iteratively to solve the standard 
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eigenvalue problem using the inverse mode A-1x = -!-x with the more time-
consuming solution of linear algebraic equations. 
The process of solving the systems of linear algebraic equations consists of 
the factorization of the coefficient matrix and the subsequent forward and 
backward substitution. Because the matrix A does not change using the 
Arnoldi iteration, we have to factorize A only once at the beginning of the 
method. The forward and backward substitution is done on each iteration 
step. 
The coefficient matrix of the system of linear algebraic equations is sparse. 
We use a direct method, a Gaussian elimination for sparse matrices, [16], 
[3], [9] to solve the ill-conditioned system of linear equations. The Gaus-
sian elimination is carried out with a special pivoting (Markowitz criterion, 
[12]) which permits a compromise between a minimum fill-in (increase of 
the number of non-zero elements during elimination) and numerical stabil-
ity (connection of topological and numerical pivoting). We use the maximal 
numerical stability in this criterion. 
Thus, using iterative methods we are able to find a subset of the eigenval-
ues I of the high-dimensional problem. That is, first we need an estimation 
n 1 2:: m 8 of the number of propagation constants m 8 which have to be taken 
into account. The engineer is able to give a good estimation of n 1 . Then we 
compute a subset p 1 of n 1 eigenvalues/ of smallest magnitude. 
The real propagation constants are of course the propagation constants with 
the smallest magnitude of imaginary part. In most applications one has at 
least one propagation constant with zero imaginary part. These propagation 
constants have to be taken into account anyway. It is important, however, 
to know also some propagation constants of the sorted list which have the 
property I a: I> 0 (see (19)), in order to decide whether the eigenfunctions 
decrease strong enough in a given distance d. If we find real propagation 
constants only, we have to choice a greater n 1 for a new computation. If we 
also find propagation constants with imaginary parts which do not vanish, 
we can decide whether the eigenfunctions decrease strong enough in a given 
distance d between the cross-sectional plane and the discontinuity. If neces-
sary, we have to change the distance d in our model. 
In generally, we have p f n p

1 
# 0, but p f i p 1 . The relation between/ and 

kz is nonlinear. Because of (3) and (19) we have 
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i(h) e+Jk.::2h + e-Jk.::2h _ 2 = ( e+Jk.::h _ e-Jk.::h)2 

_ (e+o:2h + e-0:2h)(l - 2sin2 (fh)) - 2+ (21) 
21( e+o:2h - e-0:2h) sin (f h) cos (fh) . 

We consider special values of 'Y = u + JV and kz = f - Ja. 
Because of (21) we have 

a - 0: 'Y = -4sin2 (fh), u :::; 0, 
n 0: 1 = e+o:2h + e-0:2h _ 2, u ~ 0, /: -
f h 1r • 1 = -( e+o:2h + e-0:2h) _ 2, u :::; 0, 2· 

v = 0, 
v = 0, 
v = 0. 

We will come back to this special values in the discussion to follow. 

(22) 

How we can find the first m 8 propagation constants of the sorted list of fa 
and the appropriate value of the distance.d? 
We compute the set p1 of eigenvalues 'Y of smallest magnitude using the 
Arnoldi method in inverse mode looking for eigenvalues of largest magnitude. 
If we choose h small enough, we have (see ( 3)) 

I 'Y I = I -4 sin2 (hkz) I :::; I -4(hkz)2 I . (23) 

y = sin2 x and y = x are monotonically increasing functions in the intervals 
considered. Thus, the corresponding set of propagation constants p 1 is also 
a set of propagation constants of smallest magnitude. -
However, we have to find a set of propagation constants with the smallest 
possible magnitude of the imaginary part. 
We consider separately the subset fp of imaginary, the subset fp of real 

.:...e1 -r1 
and the subset p of complex propagation constants of the set fp : 

~1 -1 

el u fpr1 u fc1 = fpl' Eel n fpr1 n fc1 = 0 . (24) 
Imaginary propagation constants (f = 0) 
Because of (23) there cannot exist imaginary propagation constants in p 

. =--e1 

with a smaller magnitude than we find in the set p . 
-1 

Because of (22) the corresponding eigenvalues in p1 are positive real numbers. 
Complex propagation constants 
Let be p the subset of complex propagation constants which we find in 

=-c1 

p
1

. Let be kz~ the complex propagation constant of fc1 with the smallest 
magnitude of the imaginary part. The question in this case is: 
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Is there a subset fP , fP nfP = 0 and fP C fP , of other complex propagation 
=-c2 =-c2 =-c1 =-c2 £.....() 

constants with 

kzG? = fe - JCi.e with I Ci.e l:::;I Ci.>. j, {! = l(l)nc2 ? (25) 

But, we have not to decide this question in the lossless case (µ, E. real, K, = 
0, oo ), since always evanescent modes exist in this case, and it is sufficient to 
use the evanescent modes to judge the distance d between the cross-sectional 
plane and the discontinuity. 
Real propagation constants (a = 0) 
The set fP of real propagation constants of smallest magnitude belong to fP 

-r1 -1 
(see (24)). The corresponding set fPr 1 of eigenvalues consists of negative real 
numbers (see (22)): 
Now let be fPr2 the subset 

'Ye = Ue + JVe with Ue :::; 0, Ve= 0, {! = 1(1 )nr2 , (26) 

of negative eigenvalues of the set tp1 , which is computed. 
We note that also complex propagation constants can correspond to negative 
eigenvalues (see third row of (22)). We have fPr1 ~ fPr2 ~ fPl· We separate 
fPr2 from tp1 and compute the corresponding set fP of propagation constants 

-r2 

k •• = ~ arcsin ( ~.j'i£.), Ue ::; 0, {! = 1(1 )nr2 • (27) 

We are interested in the subset tp* of real propagation constants of the set 
-r2 

fP only (see remark after (26)). 
-r2 
Let be kzfl.. = f !1.. the propagation constant of smallest magnitude of tp;

2 
• 

The question is: 
Is there another set fP of propagation constants with fP n tp* = 0 and 

-rs -rs -r2 

fPrs n fP1 = 0 with 

We use the matrix ( -M) rather than M to decide this question. 
The corresponding set fPrs of nr8 eigenvalues consists of negative real numbers 
(see (22)). The set fPr2 U fPrs of negative eigenvalues of M corresponds one to 
one with a set of positive eigenvalues of the same modulus of (-M). 
The matrix ( -M) is extended by some, for example a set 1i1 of positive 
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elements 1'~.M*), r = l(l)nn.u adding nn.1 rows and nn.1 columns such that the 
(.M*) -elements 1'r are diagonal elements of the extended matrix M*. The other 

elements of the new rows and columns are chosen to be zero: 

M*= 

(M*) 
1'1 

-ii! 

(29) 

The spectrum of M* consists of the spect~um of - JfiJ extended by the added 
nh1 eigenvalues 1'~.M*). 
How should one choose the nn.1 additional eigenvalues? 
We can give an upper bound I 7(.M*) I for the smallest element of the set 
li1 of the nn.1 additional eigenvalues 1'~.M*) such that all interesting positive 
eigenvalues of M* are smaller than the bound j :=y(M*) j. 
Because of (6) we have 

(30) 
The quantities €and µ, can be different from cell to cell. We select the maxima 
of this quantities (see Eqn. (16) in [10] for the indices): 

-(max) {- } € = max Ei ·k 
i,j,k '3' ' 

-(max) {- } µ =max µi·k . . "k ,3, 
i,3,, 

(31) 

From (23), (6), (31) and (30) and with 

c - - 1 - Co -0 - FoiiO' Aof, w - 27rf (32) 

we obtain the following estimation 

with 

- ea [':] velocity of light in vacuo, 
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- Ao [m] wavelength of light in vacuo, 

- f [~] frequency. 

We use the following set li1 of additional eigenvalues 

(34) 

to build M* and compute a set li2 of nli2 = nli1 + nr2 eigenvalues of largest 
real part of M* using the Arnoldi method in inverse mode. Eigenvalues 
which fulfill the condition (28) belong to li2 rather than the eigenvalues of 
Iii, and we can separate the nli3 new eigenvalues from the set li2. Now we 
have nr2 + nn3 negative eigenvalues of M, and we have to select the corre-
sponding propagation constant's which are real. 
If we find nli3 < nn1 new eigenvalues, we need not change nli1 • Otherwise we 
have to increase nli1 for a new computation because we do not know whether 
more than nli1 new negative eigenvalues of M exist. If we demand more 
eigenvalues of largest real part of M* than positive eigenvalues of M* exist, 
the Arnoldi method does not converge for our problem. 

Factorization of M* 
The factorization of the sparse matrix M* (see (29)) is obviously a modifica-
tion of the factorization of M, i.e., we can avoid a second matrix factorization. 
We have to change the chain lists representing the sparse structure and to 
reorder the non-zeros of the rµ.atrix only. 

3 The Numerical Solution of the System of 
Linear Algebraic Equations 

In [10] we explained that the application of the finite-volume method to the 
three-dimensional boundary value problem for the Maxwellian equations in 
the frequency domain results in a system of linear equations with indefinite 
symmetric matrices. We remember the essential points. 
The matrix representations of the first and of the second Maxwellian equation 
are: 
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i g 1 -+-+ -:: · ds = (1w€eoµoE) · dfl 
anµ n 

(35) 

1 E·ds= r(-1wB)·dO =} ADse=-1wDAb. (36) Jan Jn 
e and bare the vectors of the electric and the magnetic field components, 
respectively. The matrices are defined in [10], section 6. 
Using the representation of x 0 (see (6)) we get from (35) and (36) the matrix 
representation of the system of linear equations (see [10], Eqns. (30)-(34)) 

(37) 

Taking into account the boundary conditions we get from (37) a.partitioning 
of the matrix Q1 into the sum of two matrices: 

(38) 
where Q1,re is known. 
That means we have to solve the following system of linear algebraic equa-
tions 

- -+ - -+ !.. _!.. !.. -+ 

Q - Q - n2 Q D 2 n2-+ -1,A e = - l ,re = - s 1,r s s e = T (39) 

with 

(40) 

As mentioned in [10], we do not solve the linear algebraic system of equations 
(39), but we substract the gradient of the electric-field divergence (see [10], 
section 6), which vanishes in our problems, 

(41) 

from (39). Thus, we get the system of linear equations (see (39), ( 40) and 
[10], Eqns. (63) and (64)) 

_!.. - !.. 
D 2Q n2-+ -+ s A se=r. (42) 
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The motivation for the addition of the gradient of the electric-field divergence 
is given in the discussion to follow (see also [2], [19], [20]). 
Let for simplicity be f and µ constant in contrast to our assumption men-
tioned after (6). Applying the curl operator to the differential form of the 
second Maxwellian equation (see [10], Eqn. (13)) gives: 

V x (V x E) = -1wV x B. (43) 

Substituting the first Maxwellian equation (see [10], Eqn. (13)) into (43) 
yields 

V x (V x E) - x 2 E = 0, x = w.jf.P,€0µ0. (44) 
Using the vector identity 

v x (v x E) = V(V · E)- (V · v)E = v(V · E)- ~E (45) 
we get from ( 44) the following form of the wave equation 

V(V . E) - ~E - x2 E = 0. (46) 
Combining the two Equations ( 44) and ( 46) yields 

V(V · E) + (\! x (\! x E) - x 2 E) = ~E + x 2 E. (47) 

The solution of ( 44) will also fulfill ( 4 7). 
The first term of the left-hand side of this equation contains the derivative 
of the third equation \! · E = 0 (£ = const. !) in ( [10], Eqn. (13)), that 
is, this term vanishes. The second term of the left-hand side of ( 47) can be 
interpreted as an analogy of the system of linear algebraic equations (37) if 
we neglect that f andµ may differ from cell to cell in (37). 
The Maxwellian equations also could be solved using a discretization of the 
wave equation ( 47) with the restriction that f and µ have to be constant. 
Thus, an addition of the derivative of the equation \! · fE = 0 to the grid 
equations (37) refers to the wave equation ( 47). 
We use the equation \I· fE = 0 in the form 

(48) 

The linear system of equations ( 42) can be solved numerically much faster 
than the original system (39) [2]. 
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Another physical interpretation of this method is described in [2], [20] taking 
into consideration the eigenvalues of the characteristic equation 

det(F - )d) = 0, F = DA:iAT Ds/µDA:1 ADs 
which is derived multiplying equation (37) with DA:i, 

(49) 

(50) 
and taking into account that the term -"'5 I, I identity matrix, causes only 
a shift. 
Let us consider how to compute £V(f1; V · £E) = 0 . 
We denote the divergence of £E with U: 

-1 -
U(Ex, Ey, Ez) = 2V. £E, 

£ 
that is, we have to compute the gradient of U: 

1 -£VU= £V( 2 v · £E). 
£ 

The gradient of a scalar can be defined as 

:f U dfi 
VU= limn V 

V-tO 

where n is the closed surface of the volume v. 

(51) 

(52) 

(53) 

Using Cartesian coordinates the surface integral from (53) can be computed 
as follow: 

J U dti = J Udy dz t., + J U dz dx Z,, + J U dx dy 'iz . (54) 
n nyz nz:c n:cy 

ix, ?:y and r.z are the unit vectors in x-, y- and z-direction, respectively. 
We consider the surface integral at the point (i,j, k) (see Figure 3): 
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~ u dti] (i,j,k) ( [n!, u dy dz Lj.k) _ [L. u dy d1+l.jJ ;,, + 

( ~! U dz dx] (i,j,k) - [l. U dz dx] (i,j+l.J i',, + 

([l. UdxdyL.j,k) - [n! UdxdyLj,kH) ;;' •. 

(55) 

The directional derivative of a scalar function W with respect to the distance 
L along an unit tangent T of a curve is 

~: =(VW)·T. (56) 

Thus, we get with W = U and T = ( dxi, dyj, dzkf from (53) and (55) 

(VU)ci,j,k) - Jxi ( [n!, :dydz] - [n!, :dydz] ) ix+ 
(i,j,k) (i+l,j,k) 

( [ 
§ Udzdx] [ § Udzdx] ) _1 nz:c - nz:z: r + 

~ v v y 
(i,j,k) (i,j+l,k) 

(57) 

( [ 

§ Udxdy] [ § Udxdy] ) 1 n:cy n:cy _ 

dz1e V - V 'Lz · 
(i,j,k) (i,j,k+l) 

The volume Vi,j,k consists of 8 partial volumes (see Figure 3), and we have 
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I 
I 

oEx, Ey, Ez 

•Bx, By, Bz 

Bx.:·k 
l ' 

I 

- - - ;I 
/ 

/ 

Figure 3: The dual elementary cell used for the computation of V (V · EE) 

\!i,j,k == ~ ( Xi-l,j-l,k-lYi-l,j-l,k-lZi-l,j-l,k-l EL1,j-l,k-l + 
Xi,j-l,k-lYi,j-l,k-lZi,j-l,k-l EL-1,k-l + 
Xi-l,j,k-lYi-l,j,k-lZi-l,j,k-l EL1 j k-l + 
x· · · · z· · E?. + '' 1,1,k-1Y1,1,k-1 1,1,k-1 1,1,k-1 

Xi-1,j-1,kYi-1,j-l,kZi-l ,j-l,k EL l ,j-l,k + 
x· . kY· · kZ· · kE? · + 1,3-l, 1,3-l, 1,3-l, 1,3-l,k 

X · · y · · Z · · E? · + X · · y · · Z · · E? · ) 1-l,3,k 1-l,3,k 1-l,3,k 1-l,3,k 1,3,k 1,3,k 1,3,k 1,3,k 
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Using the denotations (26), (27) and (28) from [10] we obtain for U 

(59) 

Thus, for the components of \JU along the unit vectors ix, iy and iy one has 

(€\JU)x· .... '1.,3,n;; (
U· · '-9y,z _1_ '1.,3,,. i,j,k 

Xi,j,k Vi,j,k 

U· . gy,z ) '1.+l,3,k i,j,k 

Vi+1,j,k 

_1 ( 
Xi,j,k 

'1.-1,3,k '1.,3,k E + i,j,k i,i,k + '1.,3,k '1.,3,k E _ g'!f•Z: . g'!!·~ (gy,z: gy,z: g'!!·~ g'!!·~ ) 
Vi,j,k Xi-1,j,k Vi,j,k Vi+1,j,k Xi,j,k 

y,z y,z: 9·+1. ,_g .. ,_ "' ,3,,. "'·1."' E 
Vi+1,j,k Xi+l ,j,k 

(€\JU)Yi,J,1c - _1_ 
Yi,j,k (

u :c,z: u :c,z ) i,j,k9i,j,k - i,j+1,k9i,j,k 
Vi,j,k Vi,i+l,k 
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g:=•'!' g'!!·~ 
'l.,3,1c-1 'l.,3,1c E + 

Vi,J,k Zi,j,k-1 

(60) 

(61) 



( €\7 U) . . = _1 _ i,3,,.. i,i,k _ i,3,k+1 i,j,k 
( 

U· · ,_g:r:,y U· · g:r:,y ) 

Zi,3,k Zi,j,k °Vi,j,k °Vi,j,k+l 

The Equations (60, 61, 62) describe the matrix Q2 (see [10], Eqn. (56)). 
We give now a short summary of the solution of the system of linear equations 
(42). 

Some symbols: 

A(N,N) 

B(N,N) 

M(N,N) 
x(N) 

b(N) 

N 

matrix containing the entries of the first and second 
Maxwellian equation (see [10], Eqn. (13)), A= Q1,A (39). 
matrix containing the entries of the third equation 
in (see [10], Eqn. (13)), B = Q2,A (see [10], Eqn. (63)). 
preconditioner for the matrix A. 
vector containing the electric field of the elementary 

- .!. cells, x = e = Dl e (see [10], Eqn. (49)). 
- .!. right-hand side, b = r = Dlr, r = -Q1,re 

(see [10], Eqn. (51)). 
number of equations, N = 3nxyz. 

We consi.der the solution of the non-singular system of N linear algebraic 
equations 

Ax =b. (63) 

Iterative methods for solving system (63) are attractive because their com-
plexity is O(N2 ), provided the number of iterations required for convergence 
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is small compared to N, whilst direct methods like LU and Cholesky decom-
positions are O(N3 ), which is prohibitive for very large N. 
The convergence rate of iterative methods depends on spectral properties of 
the coefficient matrix A of (63). Hence one may attempt to transform the 
linear system (63) into one that is equivalent in the sense that it has the 
same solution but more favorable spectral properties. A preconditioner is a 
matrix that performs such a transformation. 
For instance, if a matrix M approximates the coefficient matrix A (63) in 
some way, the transformed system 

(64) 

has the same solution as the original system (63), but the spectral properties 
of its coefficient matrix M-1 A may be mc:>re favorable. 
In devising a preconditioner, we are faced with the choice between finding 
a matrix M that approximates A, and for which solving a system is easier 
than solving one with A, or finding a matrix M that approximates A-1 , so 
that only multiplication by M is needed. The majority of preconditioners 
falls in the first category. 
The above transformation of the linear system (63) to (64) is not what is used 
in practice. A more correct way of introducing the preconditioner would be 
to split the preconditioner as M = M1 M2 and to transform the system as 

(65) 

The matrices M1 and M 2 are called the left- and right-hand preconditioners, 
respectively. 
Using the linear system Bx= 0 (B = Q2,A, see [10], Eqn. (63)) we construct 
a preconditioner M for the original system (63): 

(66) 

M-1 is a symmetric matrix. Equations (64) and (66) can be combined to 
(67) by substituting the matrix M-1 : 

(I+ BA-1 )Ax - (I+ BA-1 )b, 
Ax+BA-1Ax - b+BA-1b, 

(A+B)x - b+Bx=b. 

We get the system of linear equations: 

.Ax =b 
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with 
A=A+B, x=x, b=b. (69) 

The Equation ( 69) has more favorable spectral properties as the original 
system ( 63). 
We transform Equation (69) into Equation (80) and into Equation (83), 
respectively. 

1. Let be 
fJ ;,_ = diag(A) 

the diagonal matrix of A ( 69), then we set 

and combine (71) and (70) with the Equations (65) and (69): 

--!.--_!.-!. --!.-
D./AD;,_2Djx = D;,_ 2b. 

We obtain the system of linear equations: 

with 
,.. --!.--_!. - !. " --!.-
A=D- 2AD- 2 

A A 
,.. n2-x = .Ax , b = D.A2b. 

(70) 

(71) 

(72) 

(73) 

(74) 

We construct a preconditioner for the matrix A (73) with (74). The 
SSOR preconditioner can be derived from the coefficient matrix without 
any additional effort. If the original, symmetric, matrix (73) with (74) 
is decomposed as 

(75) 
in its diagonal, strict lower, and strict upper triangular part, the SSOR 
matrix [1] is defined as 

(76) 

or, parameterized by w 

(77) 
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with 0 < w < 2. 
The optimal value of the w parameter will reduce the number of itera-
tions to a lower order. 
The SSOR matrix is given in factorized form, so this preconditioner 
~hares many properties of other factorization-based methods. For in-
stance, its suitability for vector processors or parallel architectures de-
pends strongly on the ordering of the variables. On the other hand, 
since this factorization is given a priori, there is no possibility of break-
down as in the construction phase of incorp.plete factorization methods. 
The preconditioner Mw (77) is a symmetric matrix: 

M'J =((I+ wL)(I + wLT)f =(I+ wL)(I + wLT) = Mw , (78) 

and positive definite: 

(Mwy,y) ((I+ wL)(I + wLT)y,y) 

with z = (I+ wLT)y. 

- ((I+ wLT)y, (I+ wLT)y) 
(z,z) 

> 0 

We have to solve the system of linear equations 

(79) 

(80) 

2. A commonly used approach for solving large sparse linear systems is 
to resort to the general mlllti-color orderings. The simplest form of the 
general multi-color orderings is the red-black ordering. One may use a 
coloring scheme for reordering the unknowns, so that unknowns with 
the same color are not explicitly coupled. 
We first multi-color the matrix A (68}, and then we permute the matrix 
according to the multicolor ordering to get a matrix in the form 

- - -T ( fJ F ) PAP = - - , E H (81) 

where fJ is a diagonal matrix and F = ET. It is clear that the num-
bering of the colors is arbitrary. We can select the color yielding the 
largest color set to be first color. Finally, we reduce the system by 
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eliminating the unknowns of the first color, to get the reduced matrix 
via the formula. 

(82) 
The transformation used in the elimination process, i.e., the E, need 
not be saved but the upper _ET matrix must b_e since it will be used 
to solve for the remaining equation. Regarding the reordering, we can 
either permute the matrix or simply keep a permutation array. The 
process can be continued recursively a few times. 
One of the advantages of this approach comes from the fact that the 
last matrix for which we must solve a linear system (82) is usually 
much smaller than the original matrix (68). This, supported by the 
fact that it also usually takes fewer steps for the higher-level iterations 
to converge makes the scheme quite_ attractive. The drawbacks are its 
complexity and the fact that the reduced matrices may become quite 
dense. 
We permute the system (68) according to the multicolor ordering (81) 
into the form 

(83) 

with 
v p- - ( x1 ) x = x = x2 (84) 

Using (82) we have to solve the system of linear equations 
v - - - 1 -T v - - 1 v Ax2 = (H - ED- E )x2 = b2 - ED- b1 (85) 

for x2 (84). 
Thus, we get 

(86) 
Then we have to permute the solution vector x (85, 86) back to the 
original ordering x ( 68). 
The Equation (85) are to be transformed (see (80)) into equation 

(87) 

The Equations (80) and (87) are to be solved with algorithms described in 
[14], [8], [7]. 
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4 The Computation of the Scattering Matrix 
The transverse mode fields Et,l = Et,z(z) satisfy the orthogonality relation 
[6] 

J (Et,l X iit,m) · dfi = 1/m8l,mi (88) 
n 

where 8z,m is the Kronecker symbol. The mode fields Et,l and Ht,m are gener-
ally complex. The amplitudes of the transverse electric fields are normalized 
such that 

I 77m I= l[W], m = l(l)m(P), p = l(l)p . (89) 

We will see that we can calculate the scattering matrix by means of the 
orthogonality relation (88). 
Let be 

(90) 
any excited mode which propagates in the positive z-direction. az is the am-
plitude at z = 0. kzz is the propagation constant (see [10], section 8, and 
section 2 of this paper). 
In the discussion to follow we consider all modes (exciting modes with am-
plitudes az in positive z-direction and outgoing modes with amplitudes bz in 
negative z-direction). The transverse electric field for a fixed cross-sectional 
plane at z is 

(91) 

with 

(92) 

For z = Zp we get from (91) with Et(zp) = .E;P), m = m(P), kzz - k1f), 
Et,l = .Ei~) and wz(zp) = wiP) the boundary condition ( [10], Eqn. (14)). 
Using the orthogonality relation (88) for (91) gives 
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j (E,(z) X flt,m) · dfi = t wz(z) j (Et,! X fit,m) · dfi = wm(z)11m· (93) 
n l=l n 

The application of (93) with (92) at a pair of two neighboring cross-sectional 
planes p and p+Llp which cut the axis at z = Zp and at z = zp+Llzp = zp+Ap, 
respectively, gives 

_L f (F/P) X ii.(p)) · dfi 
'T/m. t t,m n 

W
(p) m, 

(94) 

with 

iJ"(q) ME {Et, Ht,m}, 
(95) 

q E {p,p +Lip}. 

Because the transmission lines are assumed to be longitudinally homoge-
neous, we have 

jjt(~Ap) = ii};l. (96) 

Thus, from the second equation of (94) one obtains 

~ j(E(p+Ap) X jj(P)) · dQ = a(p+Ap) + b(p+Ap) = w(p+Ap) (97) 
t t,m m m m · 

'f/m 
n 

What is known in the first equation of (94)? 
The values of the weighted mode amplitude sums w~) are given (see the dis-
cussion to follow). E~P) is known solving the eigenvalue problem. H};l can 
be computed from the known electric field of modem (see section 5). The 
numerical calculation of the orthogonality relation is treated in section 5. 
Thus, the normalization constant 'f/m can be computed by using the first 
equation of (94). 

28 



The weighted mode amplitude sums w~+L:l.p) are computed solving the bound-
ary value problem ( [10], Eqns. (13), (14) and (15)) evaluating the orthogo-
nality relation (97) (see section 5). 
The scattering matrix is defined with a~) and b~) (see [10], section 2). 
Because the weighted mode amplitude sums w~) and w~+L:l.p) are known now, 
the amplitudes a~) and b~) can be determined by means of Equations (94) 
and (97). Because of (92) we have 

-(p+Ap) a,(P) e-3k~) Azp am m ' 
(98) 

b~+L:l.p) -c ) (p) 
- bJ_ e+Jk::z Azp. 

Using (98) we eliminate a,~+Ap) and b~+A~) in (94) and obtain 

-(p) -am -

(99) 
w~+.o.p) -w~) e - 31c?,2 .O.zp 

e+3k~~.O.zp_e-31c~J.o.zp • 

With a~) and b~) reflection coefficients are defined: 

(100) 

Using ( 99) the reflection coefficients are written as 

-3k~A.zp w~+.o.p) e - (p) 
T(p) = Wm. 

m w(p+.O.p) + k(P) /\ 
m. - e J zmt...>.Zp 
w~) 

(101) 

The reflection coefficients are computed for all modes p = l(l)m8 (see [10], 
Eqn. (3)) and all excitations v = l(l)m8 . The linear independent excitations 
are given and can be described by the vectors 

(102) 

with, for example 

w~) = 1.0, m = l(l)m(P), p = l(l)p, (103) 
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p-1 

Wp,v = { I w~) I for 1 :::; p :::; m 9 + 1 - v 

-lw~)I for m-s + 2 - v:::; p:::; m-s 
p = m + L m(q). (104) 

q=l 

This choice of J;v guarantees that the excitations are linearly independent. 
-+ 

With this choice of Wp,v the vectors fv, cf:, and bv are built up analogously 
(see (99), (100) and (101) ): 

.... 
f v -
-+ 
liv -.... 
bv -

with 

(f1,v, · · ·, f p,v, · · · - f Tm3,v ' 
(a1,v, · · ·, lip,v, · · · - )T am3,v ' 
(b1,v, · · · , bp,v, · · · 

- T bm3,v) , 

p-1 

p=m+ Lm(q). 
q=l 

fp,v - r(P) 
m' 

-(p) (105) lip,v - am' 
bp,v - b(p) 

m' 

(106) 

That means, we have to solve m 9 boundary value problems ( [10], Eqns. (13), 
(15)) with the boundary condition (see [10], Eqn. (14)) 

p-1 

p = z+ Lm(q), p = 1(1)11, v = l(l)m9 , (107) 
q=l 

in order to compute w~+l:i.p) and :Pv. 
The scattering matrix S (see [10], Eqn. (1)) is defined by 

.... 
bv = Sav, v = l(l)m9, 

or 

m3 
bp,v = L Sp,cr · licr,v, p, V = l(l)m9. 

cr=l 

Because of (94), (100) we have for p, v = l(l)m9 

wp,v 
0 

lip,v + bp,v , 
Tp,vlip,v - bp,v 
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(109) 

(110) 



or 

ap,v(l + fp,v) = iilp,v, 
bp,v(l + fp,v) = fp,vWp,v· 

We multiply Equation (109) with the product IJ;;1 (1 + f µ,v) and get 

m-;- m-;- m-;-

(111) 

bp,v II (1 + fµ,v) = L Sp,uau,v II (1 + fµ,v), p, V = l(l)ms-. (112) 
µ=1 u=l µ=1 

Substitution of (111) into the relation (112) gives 

or 

with 

m-;-

Rp,v = L S p,u Wu,v 
u=l 

m-;-

p, v = l(l)m9 , 

Wp,v = Wp,v II (1 + fµ,v), Rp,v = fp,vWp,v• 
µ.=l 
µ.#p 

We can write (115) as matrix equation: 

R=SW. 

(113) 

(114) 

(115) 

(116) 

To compute the coefficients of the scattering matrix S we have to solve a 
system of complex linear algebraic equations for each row of S: 

That means, we have to solve only m 9 linear algebraic equations rather than 
(m9 ) 2 in order to compute the (m9 ) 2 coefficients of S. 
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5 The Orthogonality Relation 
In order to normalize the transverse electric mode fields we have to evaluate 
numerically the integral 

S' = J (E, x ii,,m). d6. = J (E.,Hy,m - EyHx,m)dQ (118) 
n n 

for the modem at a cross-sectional plane p. f2 is the area of the cross-sectional 
plane p. Because of ( [10], Eqn. (7) and (11)) it follows from (118) 

S' = J (E.,Hy,m - EyHx,m)dQ = J (E., P,~o By,m - Ey P,~o B.,,m)dQ . (119) 
n n 

Because the components of the electric field Et are defined on the centers of 
the edges of the elementary cells and the components of the magnetic field 
Ht,m are normal to the face centers (see [10], section 4), both are located on 
different grid planes. 
Let be f2 the grid plane which corresponds to the cross-sectional plane p. 
Let be Exi,j,k and EYi,i,k' ii ::; i ::; i2, ji ::; j ::; j2, k = canst. the 
transverse electric field components on the grid plane n. 
Let be Bxi,j,k,m and BYi,i,k•m' ii < i ::; i2, ji ::; j ::; j2, k = canst. the 
transverse magnetic flux density on the same grid plane f2 (see Figure 4). 
We use the lowest order integration formula ( [10], Eqn. (18)) to approximate 
the integral S: (see (119)). Because the material constants can be different 
between two different elementary cells of the primary grid, we have to divide 
the integration domain (see also [10], section 4, and Figure 4 in this paper). 
Thus, the grid plane f2 consists of (i2 - ii + l)(j2 - ji + 1) partial planes, 
and we get the following approximation of the integral: 

""°' E (x·. Yi,;-1,k i B +x·. Yi,i,k_i_iJ ) 
. <~<- Xi,j,k i,3,k 2 µofl.i,;-1,k Yi,j,k,m i,3,k 2 µofl.i,j,k Yi,j,k,m 
i1 _~_i2 
ii:5i:5'2 

(120) 
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or 

with 

I 
I 

I 
I 

I 

I 
I 

I 
I 

(i,j-1,k) 

.... ___ _ 
I I 

I t 
,' I 

(i-1,j,k) 

Figure 4: Integration domain for the orthogonality relation 

S:= ~ Ex··LGx·· .. m+ ~ Ey··•.Gy··Lm ~ "•'•"' "•'•"'' ~ "•'•"' "•'•""' 
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(122) 

or 

(123) 

with 

(124) 

If the boundary is considered to be electrically perfectly conducting, we have 
to take into account that Exi,i,k = 0 or E~.i,k = 0 on the boundary. 
If the boundary is considered to be magnetically perfectly conducting, we 
have to take into account that Xi,j,k = 0 or Xi-l,j,k = 0, and Yi,j,k = 0 or 
Yi,j-l,k = 0, respectively, that means, the areas which are located outside of 
the domain are not to be taken into consideration. 
The orthogonality relation (88) is applied at two neighboring planes cutting 
the longitudinal transmission line axis at Zp and Zp + .6..zp. With (89) the 
transverse mode fields .E1;2, are normalized, and we get from (121) 

_E(P) • Q(P) = '11 
t,m m ·1m (125) 

with 

We get from (97, 123, 125) 

The components Gxi,i,k,m and GYi,j,k,m contain the unknown quantities 
Bxi,j,k,m and BYi,i,k,m· We will see, they can be computed using the known 
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electric field. 
Because of ( [10], Eqn. (21)) we have for the modem 

L(-1-E - _1_E + 
w Yi,j,k Xi,j,k1m Yi,j,k Xi,j+1,k,m 

- L(_l_E +-1-E . -
w Yi,j-l,k Xi,j-1,k,m Xi,j-l,k Yi+1,j-1,k,m 

(128) 

Because of the longitudinal homogeneity of the transmission lines we assume 
similar to ( [10], section 8, Eqn. (87), see -also Figure 4 in this paper) 

By· "L m 'f.,,,,..' 
(129) 

with 

z· "k z· "k 1 h = i;, = i,12 - . (130) 

Using ( [10], Eqns. (86) and (87)), and substituting Bzi,j,k,m' Bzi,j-l,1e,m, 

BYi,j,k,m and BYi,j,k-1 ,m from (128, 129) into the first Maxwellian equation 
( [10], Eqn. (21)) gives 

;z_-1!:!_(_1_E - _1_E + _1_E - _1_E )-
w µ-· "L Yi3"k Xi,j,k,m Yi3"k Xi,j+1,1e,m Xi3"k Yi+1,j,k1m Xi3"k Yi,j,k,m 

t.,J,~ J I f J I J I J 

( Yi,j,k + Yi,j-1,k )B e-1kz-rnh - .L____M__(_l_E + 
µ- . . L P-i 3·-1 ,_ Yi,j,1e1m w P-i 3·-1 k Yi 3·-1 k Xi,j-1,1e,m 

't1J11"W I Jn;. I J I I 

( 
Yi,j-1,k-1 + Yi,j,k-1 )B +1kz:-rnh _ 2 y,z E 
- - . Yi,j,k,me - JWEoµo9i,j,k xi,j,k,m 
µi,j-1,k-1 µi,1,k-1 

(131) 

Using ( [10], Eqns. (35), (86), (88) and (100)) after transformation from 
(131) yields 
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t L1i~,k [ Xi~,lr. ( EYi+1,j,1r. ,m - EYi,j,1c,m) + Yi,~,k ( Exi,j,k,m - Exi,;+l,k1m)] + 

ili,i~l,k [ Xi,j~l,k (EYi,j-1,1r.1m - EYi+1,j-1,1r.,m) + Yi,j~l,k (Exi,j,1c,m - Exi,j-1,1r. 1m)] }-

~JWEoµo (Yi,j,kEi,j,k + Yi,j-1,k~,j-1,k)Exi,i,1r.,m 
(132) 

Because of 

(133) 

and 

1. sin( kz.m h) _ 
IID k h - 1, 

h---tO Zm 

(134) 

and using the definition of x 0 (see ( 6)), we have after multiplication of equa-
tion (132) with (- 1:;:n·~0 ) (see (122) for the definition of Gxi,;,1c,m): 

G = Xi,j,k ( Yi,j,lr. + Yi,j-1,k )B -
Xi,;,1r.,m 2µ.o iii,j,k ili,j-1,k Yi,j,1c,m -

Xi,j,lr. { 1 [ 1 (E E ) + 1 (E E )] - --- -- · · m - · · m -- x· · m - x· · m wkzmµ.o µ.i,j,k Xi,j,k Yt.+l,3,Jr., Yt.,3,k' Yi,j,k t.,3,Jc, t.,3+1,1c, 

+---1
- [-

1
-(Ey· · 1 km - Ey·+ · km)+ -

1 
-(Ex·· km - Ex·· km)] µ.i,j-1,k Xi,j-1,k t.,3- ' ' i l,3-l, ' Yi,j-1,k t.,3, ' t.,3-l, ' 

-lx2 ( · · f.· · + · · f.· · )E } 2 O Yi,3,k i,3,k Yi,3-l,k i,3-l,k Xi,j,Jc 1m · (135) 

The corresponding formula for Gy;.,;,1c ,m can be derived in a similar way. 

G = _Yi,j,Jc(Xi,j,k + Xi-1,j,lr.)B -
Yi,j,1r.,m 2µ.o iii.; Jc iii-1 .; 1r. :X:i,j,kim -,.,,, ,.,, 

Yi,j,k { 1 [ 1 (E E ) + 1 (E E )] --- -- x· · m - x· · m -- · · m - · · m wkzmµ.o µ.i,j,k Yi,j,k t.,3+1,Jc1 t.,3,Jc, Xi,j,k Yt. 13,k1 Yt.+1 13 1/c, 

1 _2( - - )E } --x;::. x· · · · x· · e· · 2 0 i,3,kf:i,3,k + i-l,3,k i-l,3,k Yi,;,1e 1m · (136) 

By using (135) and (136) we can compute the integral~ (see (121)). 
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6 Numerical Results 
Comparisons between the original version of the program package F3D and 
the new version are presented. 
The reduction of the computing times are demonstrated for the via hole 
represented in Figure 5. 

Figure 5: Via hole with a nonequidistant grid of rectangular parallelepipeds 
(dimensions in µm) 

The structure represented in Figure 5 is symmetric along the z-direction. 
Using appropriate boundary conditions it will do to discretize the right-hand 
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GaAs 

L 

GaAs GaAs 

Figure 6: Discretization of the right-hand side of the structure via hole 
(dimensions in µm) 
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side of the structure only. This right-hand side of the structure is divided 
into n:cyz = n:cnynz ( n:c = 33, ny = 28, nz = 66) elementary cells (see Figure 
6). 

The eigenvalue problem 
The examples were computed on a SUN SPARC Server 630 with 128 MBytes 
memory. 

9 modes 

15000 

6-modes 

4 modes 
~ 
~ 

~10000 e ·-...-
I 

~ u 

5000 

Figure 7: Comparisons of computing times for the eigenvalue problem 
between the original and the new version of F3D 

The dimension of the eigenvalue problem amounts to 2n:i:ny - nb = 1668. nb 
is caused by the boundary conditions (see section 2). 
The algorithm of the original version of the program package F3D requires a 
storage of 2(2n:cny- nb)2 elements for the eigenvalue matrix since the matrix 
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has to be stored twice. 
The total storage requirements is reduced by a factor of 20 in the new version 
for this example, since the sparse storage technique is applied. 
The maximum number of non-zeros in a row of the matrix is 9. The total 
number of non-zero elements of the matrix amounts to 11598 for the example 
via hole. The number of non-zeros of the matrix after the LU-decomposition 
(see section 2) is 89947 for this example. 
The reduction of the computing time depends essentially on the number of 
required eigenvalues and eigenvectors. The reduction of the computing time 
is represented in Figure 7 for the calculation of 4, 6 and 9 eigenvectors. The 
time measurements involve matrix generation, solving the eigenvalue problem 
and computation of the mode fields. 
The system of linear algebraic equations 
The examples were computed on a SUN SPARCstation 2 with 128 MBytes 
memory. 
The order of the system of linear algebraic equations is 3nzyz == 182952 (see 
section 3). The maximum number of non-zeros in a row of the matrix is 15. 
The total number of non-zero elements of the matrix amounts to 1328690 for 
the example via hole. 
The reduction of the computing time is represented in Figure 8. 
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2000 

~ 
t-
00 
0 
C'f') 

0-L---

c:::::::l 0 LD 
~NEW (see (80),[14]) 
~NEW (see (80),[8]) 
EZ2ll NEW (see (80),[7]) 
-NEW (see (87),[7]) 

~ ~ C'l 
C'l 0\ 
('f V') 

C'f') 0 
~ C'f') 

C'f') 
0\ 
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Figure 8: Comparisons of computing times for the system of linear 
algebraic equations 
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