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Abstract

We prove existence, uniqueness, and regularity for a reaction-diffusion system of coupled bulk-surface equa-
tions on a moving domain modelling receptor-ligand dynamics in cells. The nonlinear coupling between the three
unknowns is through the Robin boundary condition for the bulk quantity and the right hand sides of the two sur-
face equations. Our results are new even in the non-moving setting, and in this case we also show exponential
convergence to a steady state. The primary complications in the analysis are indeed the nonlinear coupling and
the Robin boundary condition. For the well posedness and essential boundedness of solutions we use several
De Giorgi-type arguments, and we also develop some useful estimates to allow us to apply a Steklov averag-
ing technique for time-dependent operators to prove that solutions are strong. Some of these auxiliary results
presented in this paper are of independent interest by themselves.

1 Introduction

In this paper, we are interested in a reaction-diffusion system (motivated by biology) involving an equation on
a moving bulk domain which has a nonlinear coupling to two surface equations on the boundary of the moving
domain. We address the issues of well posedness and regularity as well as convergence of the solution to
a steady state. The precise geometric setting is as follows. For each t ∈ [0, T ], let D(t) ⊂ Rd+1 be a
Lipschitz domain containing a C2-hypersurface Γ(t) which separates D(t) = I(t) ∪ Ω(t) into an interior
region I(t) and an exterior (Lipschitz) domain Ω(t) (see Figure 1). We suppose that the surface Γ(t) and

Figure 1: A sketch of the geometric set-up.

the outer boundary ∂D(t) both evolve in time with normal kinematic velocity fields V and Vo respectively. In
addition, the points in Ω(t) and Γ(t) are subject to material velocity fields VΩ and VΓ respectively. These
material velocity fields may arise from physical processes in the regions such as fluid flow. In order for the
material velocity VΓ to be compatible with the movement of the surface, its normal component must agree with
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the evolution: (VΓ · ν)ν = V. We propose to study the following reaction-diffusion system of equations

ut +∇ · (uVΩ)− δΩ∆u = 0 in Ω(t)

δΩ∇u · ν + u (VΓ −VΩ) · ν = r(u,w, z) on Γ(t)

∇u · ν = 0 on ∂D(t)

∂◦w + w∇Γ ·V +∇Γ · (wVτ
Γ)− δΓ∆Γw = r(u,w, z) on Γ(t)

∂◦z + z∇Γ ·V +∇Γ · (zVτ
Γ)− δΓ′∆Γz = −r(u,w, z) on Γ(t)

(1)

where ∂◦w = wt + ∇w · V is the normal time derivative (see [10, 21] and also Appendix A), ∇Γ stands
for the tangential gradient on Γ(t) and ∆Γ denotes the Laplace–Beltrami operator on Γ(t), understood as the
tangential divergence of the tangential gradient. In (1), ν means the unit normal on Γ(t) pointing out of Ω(t)
and Vτ

Γ means the tangential component of VΓ. The particular reaction term r we take to be

r(u,w, z) =
1

δk′
z − 1

δk
uw. (2)

The constants δΩ, δΓ, δΓ′ , δk and δk′ are positive (physically based) parameters and we supplement the system
above with non-negative and bounded initial data:

(u(0), w(0), z(0)) = (u0, w0, z0) ∈ L∞(Ω0)× L∞(Γ0)2 and u0, w0, z0 ≥ 0,

where Ω0 := Ω(0) and Γ0 := Γ(t). The system (1) is a reaction-diffusion system on an evolving space
and it can be derived using conservation and mass balance laws involving fluxes that reflect the presence of
the different velocity fields in the model we have in mind; details of this derivation can be found in Appendix A.
Although this paper is mainly focused on the mathematical analysis of (1), our motivation for studying the model
(with the particular reaction term, the geometry, range of parameters and initial data) stems from a biological
application to receptor-ligand dynamics that we shall describe in §1.3.

As we already wrote, we are interested in questions of existence and uniqueness of weak solutions and their
regularity. We will prove that solutions are in fact strong solutions, meaning that the equations hold pointwise
almost everywhere. To achieve this for u (which has a challenging Robin boundary condition) we apply a Steklov
averaging technique for which we develop some tools since the elliptic operators are time-dependent due to
the domain movement. These results have wider applicability: they can be used for showing regularity to other
parabolic equations on moving domains or with time-dependent coefficients. It is also worth highlighting that our
results, which we shall present in §1.2, are new even in the non-moving case when there is no domain evolution
or material flow. In this case, the system (1) simplifies to

ut − δΩ∆u = 0 in Ω

δΩ∇u · ν = r(u,w, z) on Γ

∇u · ν = 0 on ∂D

wt − δΓ∆Γw = r(u,w, z) on Γ

zt − δΓ′∆Γz = −r(u,w, z) on Γ.

(3)

Furthermore, we will specialise to this special case later on when we show exponential convergence to an
equilibrium as t→∞.

Apart from the domain evolution and the various velocity fields in the model, another interesting feature of (1)
is that it is a system with cross-diffusion [46, 38, 43]. Indeed, setting v := w+ z and eliminating for example z,
we see that v solves

∂◦v + v∇Γ ·V +∇Γ · (vVτ
Γ)− δΓ′∆Γv = (δΓ − δΓ′)∆Γw (4)

and the presence of the extraneous Laplacian of w justifies this classification. This cross term causes consider-
able problems in the existence proof as we shall we see later. Some papers emphasising the nature, difficulties
and peculiarities of systems with cross-diffusion that are somewhat related to ours include [8, 34, 35].

This paper extends the work by Elliott, Ranner and Venkataraman in [22] where the authors considered the
system (1) on a fixed domain with the z variable absent, i.e., they studied the 2× 2 system involving only u and
w. As we will see later, the inclusion of the z species considerably complicates the analysis. In [33], the authors
consider a two-component coupled bulk-surface system on a moving domain in a similar type of domain as ours.
Some other papers featuring bulk-surface interaction on moving domains are [36, 29, 3, 35]. The nearest models
to the 3× 3 system (1) with the nonlinear coupling (2) studied in the literature are all posed on the same domain
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with nonlinearities present as right hand side source terms (as opposed to a combination of source terms and
the Robin boundary condition as we have), i.e., systems of the form

ut − δ1∆u = r(u,w, z) in Ω

wt − δ2∆w = r(u,w, z) in Ω

zt − δ3∆z = −r(u,w, z) in Ω

(5)

with the reaction term (2) and appropriate boundary conditions and initial data on a stationary bounded domain
Ω. These are used to model chemical reactions [42]. The properties of such systems are well understood and
have a wide literature, eg. see [42, 37, 26] for existence results and [16] for asymptotic behaviour. The main
difficulty of the problem in consideration in the current paper is indeed the presence of the nonlinear coupling
through the boundary condition, which in some aspects requires a rather more delicate analysis.

1.1 Weak formulation of the problem

The system of interest is set in a domain which evolves with time and scalar fields are subject to a material
velocity field. Therefore, we have to make clear the precise functional setting we will work on and what we mean
by a solution to (1). One way to consider this problem is to define the evolution as a family of diffeomorphisms
that, for each time, pull back the domain to a fixed reference domain. In other words, the evolution of the domain
Ω(t) with boundary Γ(t) can be thought as the transport of a fixed reference domain Ω0 with boundary Γ0.
More precisely, we assume that there exists a flow Φ: [0, T ]× Rd+1 → Rd+1 such that

1 Φt := Φ(t, ·) : Ω0 → Ω(t) is a C2-diffeomorphism with Φt(Γ0) = Γ(t)

2 Φt solves the ODE

d

dt
Φt(·) = Vp(t,Φt(·))

Φ0 = Id.

Here, the map Vp : [0, T ]×Rd+1 → Rd+1 is a continuously differentiable velocity field representing a partic-
ular parametrisation of the domain, and it must satisfy

(Vp|Γ · ν)ν = V and (Vp|∂D · ν)ν = Vo

in order to be compatible with the prescribed evolution of Γ(t) and ∂D(t) given by the velocity fields V and
Vo. One may always choose Vp to coincide with V and Vo but for numerical realisations it can be beneficial
to choose Vp differently to avoid mesh degeneration, see [21, 23]. Moreover, this vector field Vp is essential in
deriving a useful notion of time derivative in a setting of moving domains. It is well known that for a sufficiently
smooth quantity u defined in Ω(t) its (classical or strong) material derivative is given by

∂•Ωu(t) = ut(t) +∇u(t) ·Vp(t) (6)

(see [2, 3] and references therein). This is equivalent to a total derivative (taking into account that space points
x also depend on time and their trajectory has been parametrized with a velocity given by Vp).

Under the circumstances given above, the mapping φ−t defined by φ−tu := u ◦ Φt defines a linear
homeomorphism between the spacesLp(Ω(t)),H1(Ω(t)) and the reference spacesLp(Ω0),H1(Ω0) [3, 1].
The same is true for the corresponding Sobolev spaces on Γ [1]. If we also assume

1 Φt := Φ(t, ·) : Γ0 → Γ(t) is a C3-diffeomorphism

2 Φ(·) ∈ C3([0, T ]× Γ0)

then the above property also holds for the fractional Sobolev space H1/2(Γ(t)) [3, §5.4.1].
We may then define the Banach spaces LpLq(Ω), L2

H1(Ω), LpLq(Γ), L2
H1(Γ), L2

H1/2(Γ)
, which are Hilbert

spaces for p = q = 2. Here, the notation LpX stands for

LpX :=

u : [0, T ]→
⋃

t∈[0,T ]

X(t)× {t}, t 7→ (û(t), t) | φ−(·)û(·) ∈ Lp(0, T ;X0)


where for each t ∈ [0, T ], the map φ−t : X(t)→ X0 is a linear homeomorphism; the corresponding norm is

‖u‖Lp
X

:=

(∫ T

0

‖u(t)‖pX(t)

) 1
p
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(for p = ∞ we make the obvious modification). These are generalisations of Bochner spaces to handle (suf-
ficiently regular) time-evolving Banach spaces X ≡ {X(t)}t∈[0,T ]. These spaces were first defined in the
(Hilbertian) Sobolev space setting by Vierling in [47] and the theory was subsequently generalised by the first
two of the present authors along with Stinner in [2] to an abstract Hilbertian setting and by the first two present
authors in [1] to a more general Banach space setting. In [2] it is also defined a notion of a weak time derivative
(or weak material derivative), which in the context of this paper is as follows. We say that a function u ∈ L2

H1(Ω)

has a weak material derivative ∂•Ωu ∈ L2
H1(Ω)∗ if∫ T

0

〈∂•Ωu(t), η(t)〉H1(Ω(t))∗,H1(Ω(t)) = −
∫ T

0

∫
Ω(t)

u(t)∂•Ωη(t)−
∫ T

0

∫
Ω(t)

u(t)η(t)∇ ·Vp

holds for all smooth and compactly supported (in time) functions η, where ∂•Ωη(t) is the classical material
derivative given by the formula (6). A similar formula with the correct modifications defines the weak material
derivative ∂•Γu ∈ L2

H−1(Γ) for a function u ∈ L2
H1(Γ) — for this, all the integrals and duality products involving

Ω are replaced by Γ and also the term∇ ·Vp becomes∇Γ ·Vp.
Instead of the cumbersome notation ∂•Ω, ∂

•
Γ, we will just write the weak material derivative as u̇; the reader

should bear in mind that this is an abuse of notation since there are two different derivatives on two different
domains.

With these objects at hand, we define the evolving Sobolev–Bochner spaces

H1
H1(Ω)∗ = {u ∈ L2

H1 (Ω) | u̇ ∈ L2
H1(Ω)∗} and H1

L2(Ω) = {u ∈ L2
L2(Ω) | u̇ ∈ L

2
L2(Ω)}

and the Sobolev–Bochner spaces on the surfaces in the obvious manner. We do not give the precise technical
details and properties of these spaces here but refer to [2, 3, 1] for the interested reader.

Remark 1.1. Strictly speaking, it is a misnomer to call u̇ as defined above the weak material derivative since
the velocity field Vp associated to it in its very definition is not (in general) the material velocity field but a
parametrised velocity field. We nonetheless persist with this terminology.

In the model (1) a material derivative does not feature explicitly, so, in order to be able to formulate the problem
in an appropriate functional analysis setting, we add and subtract the term ∇u · Vp to both sides of the first
equation in (1) to obtain (after some manipulation)

u̇+ u∇ ·VΩ − δ∆u+∇u · (VΩ −Vp) = 0,

and a similar equation can be derived for the surface PDEs. For convenience, we will define the jumps

JΩ := VΩ −Vp, JΓ := VΓ −Vp and j := (VΩ −VΓ) · ν = JΩ|Γ · ν

where j is the jump in the normal velocities on Γ. Observe JΓ = Vτ
Γ −Vτ

p has no normal component. Finally,
the problem (1) we consider can be rewritten as

u̇+ u∇ ·Vp − δΩ∆u+∇ · (JΩu) = 0 in Ω(t)

δΩ∇u · ν − uj = r(u,w, z) on Γ(t)

ẇ + w∇Γ ·Vp − δΓ∆w +∇Γ · (JΓw) = r(u,w, z) on Γ(t)

ż + z∇Γ ·Vp − δΓ′∆z +∇Γ · (JΩz) = −r(u,w, z) on Γ(t)

(7)

and it is this form of the system that we work with in the rest of the paper. Now we define what we mean by a
weak solution to (7).

Definition 1.2. A weak solution of (7) is a triple (u,w, z) ∈ H1
H1(Ω)∗ ∩ L

2
H1(Ω) × (H1

L2(Γ) ∩ L
2
H1(Γ))

2

with w ∈ L∞L∞(Γ) satisfying

〈u̇, η〉+

∫
Ω(t)

uη∇ ·Vp + δΩ

∫
Ω(t)

∇u∇η +

∫
Ω(t)

∇ · (JΩu)η =

∫
Γ(t)

r(u,w, z)η +

∫
Γ(t)

juη

〈ẇ, ψ〉+

∫
Γ(t)

wψ∇Γ ·Vp + δΓ

∫
Γ(t)

∇Γw∇Γψ +

∫
Γ(t)

∇Γ · (JΓw)ψ =

∫
Γ(t)

r(u,w, z)ψ

〈ż, ξ〉+

∫
Γ(t)

zξ∇Γ ·Vp + δΓ′

∫
Γ(t)

∇Γz∇Γξ +

∫
Γ(t)

∇Γ · (JΓz)ξ = −
∫

Γ(t)

r(u,w, z)ξ

for all η ∈ L2
H1(Ω) and ψ, ξ ∈ L2

H1(Γ), and for almost every t ∈ [0, T ].

4



Remark 1.3. Our definition of the weak solution is written in terms of the chosen parametrisation Vp and the
spaces we look for solutions in depend on Vp since they depend on Φ(·). So a natural and reasonable question
is whether we get a different solution if we pick a different parametrisation of the velocity field and different Φ(·).
Let us see that this is not the case, at least formally. Working in the regime of strong solutions, given two solutions
(ui, wi, zi) corresponding to parametrisations Vi

p solving (7), we know that they also solve the original model
(1), which has no dependence on Vi

p. Taking then the difference of the equations and testing appropriately, we
find then that u1 ≡ u2,w1 ≡ w2 and z1 ≡ z2 by the same uniqueness argument as the one we present below
in the proof of Theorem 1.8.

A consequence of one of the formulae in Appendix B allows us to rewrite the weak formulation for u given in
Definition 1.2 as

〈u̇, η〉+

∫
Ω(t)

uη∇ ·Vp + δΩ

∫
Ω(t)

∇u∇η −
∫

Ω

u(JΩ · ∇η) =

∫
Γ(t)

r(u,w, z)η for all η ∈ L2
H1(Ω).

By testing with unity the u and z equations and adding the resulting equalities together, and doing the same for
the w and z equations, we find

d

dt

(∫
Ω(t)

u(t) +

∫
Γ(t)

z(t)

)
= 0 and

d

dt

(∫
Γ(t)

w(t) +

∫
Γ(t)

z(t)

)
= 0

so that the following quantities are conserved for all t ∈ [0, T ]:∫
Ω(t)

u(t) +

∫
Γ(t)

z(t) = ‖u0‖L1(Ω0) + ‖z0‖L1(Γ0) =: M1∫
Γ(t)

w(t) +

∫
Γ(t)

z(t) = ‖w0‖L1(Γ0) + ‖z0‖L1(Γ0) =: M2.

(8)

Note that these results hold independently of the choice of r.

1.2 Main results

All of the following results are valid for dimensions in the physically relevant situations where Ω ⊂ Rd+1 for
d + 1 ≤ 3; some results hold even for d + 1 ≤ 4. These constraints on the dimension are due to the various
Sobolev-type functional inequalities that we shall use. We begin with the existence result, which we will prove
in §2 (the restriction on the dimension is a technical one, due only to the De Giorgi result of Lemma 3.1 that is
needed to prove the theorem).

Theorem 1.4 (Global existence). For dimensions d ≤ 3, for every non-negative initial data (u0, w0, z0) ∈
L∞(Ω0)×L∞(Γ0)2, there exists a non-negative weak solution (u,w, z) ∈ H1

H1(Ω)∗∩L
2
H1(Ω)×(H1

L2(Γ)∩
L2
H1(Γ))

2 to the system (7). Furthermore, w satisfies

‖w‖L∞
L∞(Γ)

≤ α

(
‖w0‖L∞(Γ0) +

C

δΓδk′
e

(
A

2δ
k′

+ 1
2
‖∇Γ·VΓ‖∞

)
T
(√

2 +A ‖w0‖L2(Γ0) +
√

2 ‖z0‖L2(Γ0)

))

where α = e(‖∇Γ·VΓ‖∞+δΓ)T and A ≥ max
(

1, C0
2δΓ

+
(δΓ−δΓ′ )

2

2δΓδΓ′

)
for C0 ≥ 0 chosen arbitrarily.

One expects not only w to be a bounded function but also u and z, and indeed we show that this is the case
for dimensions d ≤ 2. This restriction on d is again technical in nature due to another De Giorgi method (Lemma
3.3) we employ. Further details of this, and the proof of the following theorem will be given in §3.

Theorem 1.5 (Boundedness for w and z). For dimensions d ≤ 2, the solutions u and z of the system (7) are
bounded in space and time. In particular,

‖z‖L∞
L∞(Γ)

≤ e(‖∇Γ·VΓ‖∞+δΓ′ )T
(
‖z0‖L∞(Γ0) + C min(1/2, δΓ′)

−1 ‖w‖L∞
L∞(Γ)

‖u‖L2
H1(Ω)

)
‖u‖L∞

L∞(Ω)
≤ β

(
‖u0‖L∞(Ω0) + max (1, αC1) (C5 min(1, δΩ)−( 1

2κ
+ 1

2
) + C4)

)
where α = δ−1

k′ ‖z‖L∞
L∞(Γ)

+ ‖j‖∞ ‖u0‖L∞(Ω0), β = e(‖∇·VΩ‖∞+C1δ
−1
Ω (α+ 5

2
‖j‖∞)2)T , and κ is as in

§3.3.
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Remark 1.6. It is important to emphasise that the L∞ bounds do not depend on the chosen parametrisation
Vp of the evolution of the spaces but only on the material velocity fields VΩ and VΓ.

Remark 1.7. Even in the non-moving setting the proofs of the aboveL∞ bounds do not simplify as the technical
difficulties are mainly due to the nonlinear coupling. We will explain more during the course of this paper.

Using these L∞ bounds it is then easy to prove continuous dependence and uniqueness.

Theorem 1.8 (Continuous dependence). Suppose there are two triples of solutions (ui, wi, zi) corresponding
to two triples of initial data (ui0, wi0, zi0) for i = 1, 2. Then for dimensions d ≤ 2, the following continuous
dependence result holds:

‖u1(t)− u2(t)‖L2(Ω(t)) + ‖w1(t)− w2(t)‖L2(Γ(t)) + ‖z1(t)− z2(t)‖L2(Γ(t))

≤ C
(
‖u10 − u20‖L2(Ω0) + ‖w10 − w20(t)‖L2(Γ0) + ‖z10 − z20(t)‖L2(Γ0)

)
,

where C = C(δk, δk′ , ‖j‖∞ , ‖∇ ·VΩ‖∞ , ‖∇Γ ·VΓ‖∞ , ‖u2‖L∞
L∞

, ‖w1‖L∞
L∞

).

Proof. Denote the differences by du = u1 − u2 and so on. It is easy to write the weak formulation satisfied
by du, dw and dz ; then taking du, dw and dz as test functions respectively, writing u1w1 − u2w2 = (u1 −
u2)w1 + u2(w1 − w2) = w1d

u + u2d
w and using the L∞ bounds on the right hand side, we obtain

1

2

d

dt

∫
Ω(t)

|du|2 +
1

2

∫
Ω(t)

|du|2∇ ·VΩ + δΩ

∫
Ω(t)

|∇du|2 ≤ C
∫

Γ(t)

|du|2 + |dw|2 + |dz|2

1

2

d

dt

∫
Γ(t)

|dw|2 +
1

2

∫
Γ(t)

|dw|2∇Γ ·VΓ + δΓ

∫
Γ(t)

|∇Γd
w|2 ≤ C

∫
Γ(t)

|du|2 + |dw|2 + |dz|2

1

2

d

dt

∫
Γ(t)

|dz|2 +
1

2

∫
Γ(t)

|dz|2∇Γ ·VΓ + δΓ′

∫
Γ(t)

|∇Γd
z|2 ≤ C

∫
Γ(t)

|du|2 + |dw|2 + |dz|2.

Combining these three inequalities and moving the velocity terms onto the right hand side yields

d

dt

(∫
Ω(t)

|du|2 +

∫
Γ(t)

|dw|2 +

∫
Γ(t)

|dz|2
)

+ 2δΩ

∫
Ω(t)

|∇du|2

≤ C1

∫
Γ(t)

|dz|2 + |dw|2 +

∫
Ω(t)

C2(ε)|du|2 + ε|∇du|2

using the interpolated trace inequality (50) from Appendix B. We conclude by choosing ε < 2δΩ and applying
Gronwall’s lemma.

Note the regularity for w and z given by Theorem 1.4: they are strong solutions with the corresponding
equations holding pointwise almost everywhere in time. Regularity for u is a much more delicate matter. The
inhomogeneous Robin boundary condition is the source of the problem; surprisingly maximal regularity for such
types of boundary conditions for parabolic problems with time-dependent elliptic operators have only somewhat
recently been comprehensively answered, see the work of Denk, Hieber and Prüss [15]. See also [48, 39].
Unfortunately, it is not clear that the coefficients in our boundary condition have the desired smoothness to apply
the theorems in these papers. Therefore, in §4, we shall argue in a different way, making use of the L∞ bound
on u obtained in Theorem 1.5.

Theorem 1.9 (Regularity for u). For dimensions d ≤ 2, the time derivative of u satisfies u̇ ∈ L2
L2(Ω)(τ, T ) for

every τ > 0. That is, u is a strong solution. In the non-moving case, this means that u′ ∈ L2(τ, T ;L2(Ω0)).

We shall also consider exponential convergence of the solution to equilibrium in the stationary setting (see
system (3)) when the reaction rates are equal and when the diffusivity for the u equation is δΩ = 1. Associated
to (3) one can define the natural entropy functional

E(u,w, z) :=

∫
Ω

u(log u− 1) +

∫
Γ

w(logw − 1) +

∫
Γ

z(log z − 1) (9)

and its non-negative dissipation

D(u,w, z) := − d

dt
E(u,w, z) =

∫
Ω

|∇u|2

u
+ δΓ

∫
Γ

|∇Γw|2

w
+ δΓ′

∫
Γ

|∇Γz|2

z

+

∫
Γ

(uw − z) log
(uw
z

)
. (10)
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Let u∞, w∞ and z∞ be the unique non-negative constants determined by the system (35) on page 26. In §5,
following the methodology of Fellner and Laamri [24], we will prove the exponential convergence of solutions of
(3) to (u∞, w∞, z∞) using entropy methods. The main idea is to relate in a useful way the relative entropy
E(u,w, z) − E(u∞, w∞, z∞) to the entropy dissipation and then to (prove and) use a lower bound on the
relative entropy in terms of L1 distances to the equilibrium (in the sense of the Csiszar–Kullback–Pinsker in-
equality). We refer the reader to [30] for a detailed introduction to entropy methods in PDEs and also the paper
[16] and references therein for an exposition of entropy methods for reaction-diffusion equations. Equilibrium
convergence for systems of the form (5) where all equations are on the same domain have been studied in the
literature eg. [16, 24], whilst a two-component system with a heat equation on a domain and a surface heat
equation on its boundary coupled through a nonlinear Robin-type boundary condition was analysed in [7].

Theorem 1.10 (Convergence to steady state). For dimensions d ≤ 2 and if δk = δk′ = δΩ = 1, the solution
(u,w, z) of the system (3) converges to (u∞, w∞, z∞) as t→∞ in the following sense:

‖u(t)− u∞‖2L1(Ω) + ‖w(t)− w∞‖2L1(Γ) + ‖z(t)− z∞‖2L1(Γ)

≤ Ce−Kt(E(u0, w0, z0)− E(u∞, w∞, z∞))

where C and K are positive constants.

The restriction to dimensions d ≤ 2 above is not because we use L∞ bounds for u and z in the course
of the proof but because we need the u equation to hold pointwise almost everywhere, which is guaranteed by
Theorem 1.9.

1.3 Application to biology

Systems of equations of the form (3) arise in the mathematical modelling of biological and chemical processes
in cells (in particular those with interactions between processes on the cell membrane and processes inside or
outside the cell) such as cell motility and chemotaxis [36, 33] and cell signalling processes [40, 41, 27]. The
modelling of ligand-receptor dynamics is particularly pertinent for our model: u may represent the concentration
of ligands in the extracellular volume Ω, whilst w and z may be respectively the concentrations of surface
receptors on Γ and of ligand-receptor complexes formed by the binding of u with w. This justifies the choice of
the reaction term r in (2): we expect non-negative solutions u, w, and z so formally, when u and w combine,
the complex z is increased whilst the receptorw and ligand u are decreased. The non-trivial boundary condition
in (1), a combination of a diffusive flux and an advective flux, models the so-called windshield effect well known
in mathematical biology. The idea is that the front of the moving cell Γ will come into contact with ligands in Ω
and thus there will be a greater binding onto Γ, whilst at the back of the cell complexes tend to dissociate into
receptors and ligands. This effect was also taken into account in [33] in a similar geometric setting.

With particular choices of the various velocity fields in the model, we end up with special cases that are worth
mentioning.

� We have already mentioned the case VΩ = VΓ = V = Vo ≡ 0 where there is no evolution and
no material processes, which results in the system (3). This is the usual geometric setting in which many
related models (referenced in the introduction) are treated.

� Choosing VΩ ≡ 0 we end up in the physical setting of [33] where there is only a material velocity on Γ.

� If VΓ · ν = VΩ · ν on Γ, then there is no windshield effect. This make sense because, referring to the
explanation of the effect given above, if the material points in Ω are also moving with the normal velocity
of Γ near the surface Γ, one clearly cannot expect advection on or off the surface since the ligands are
also moving with the same velocity.

Regarding particular applications already modelled in literature, in [27], the authors consider models similar to

u̇+ u∇ ·VΩ −DL∆u = 0 on Ω

DL∇u · ν + u(VΓ · ν −VΩ · ν) = −konuw + koffz on Γ

DL∇u · ν = 0 on ∂0Ω

ẇ + w∇Γ ·VΓ −DΓ∆Γw = −konuw + koffz on Γ

ż + z∇Γ ·VΓ −DΓ′∆Γz = konuw − koffz on Γ

(11)

but with no velocities and on a stationary spherical domain in two and three dimensions. This system describes
ligand-receptor dynamics in cells where the interaction between extracellular ligands u and cell surface receptors
w leads (reversibly) to the creation of ligand-receptor complexes z. Here the various parameters appearing above
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are dimensional constants obtain from experimental data relating to a particular application. In Appendix C we
will prove that non-dimensionalising (11) gives rise to the system (7) with the parametrisation velocity Vp chosen
to coincide with the material velocities.

1.4 Outline of the paper

In §2 we prove existence of solutions (Theorem 1.4). The proof is divided in several steps which will be dealt with
in separate subsections. We establish in §3 the L∞ bounds on both z and u, in this order (Theorem 1.5) after
proving a lemma that is used to show boundedness for w. The proofs are rather technical and are based on the
De Giorgi L2-L∞ method. In §4 we prove that the solution u whose existence was established in §2 is actually
a strong solution (Theorem 1.9). The proof is divided in several steps, each devoted to bounding a different term
on the weak pulled-back formulation. In §5 we deal with the stationary setting, when all the velocity fields are
zero, and prove the exponential convergence to equilibrium (Theorem 1.10). We conclude in §6 with some open
issues.

Appendix A contains the derivation of the system (1). In Appendix B we state some classical results in the
form they will be used later on. We prove some auxiliary lemmas regarding interpolation inequalities and we also
establish some basic but useful calculus identities that will be used throughout the paper. Finally, in Appendix C
we give the details of the non-dimensionalisation of the system (11).

2 Existence

In this section we prove existence of solution to problem (7). This will be established by following these steps:

� STEP 1. Prove existence for the doubly truncated problem

u̇+ u∇ ·Vp − δΩ∆u+∇ · (JΩu) = 0

δΩ∇u · ν − ju =
1

δk′
Tn(z)− 1

δk
uTm(w+)

ẇ + w∇Γ ·Vp − δΓ∆Γw +∇Γ · (JΓw) =
1

δk′
Tn(z)− 1

δk
uTm(w+)

ż + z∇Γ ·Vp − δΓ′∆Γz +∇Γ · (JΓz) =
1

δk
uTm(w+)− 1

δk′
Tn(z)

(12)

where Tn(x) = min(n, x) + max(−n, x)− x is the usual truncation at height n

� STEP 2. Prove non-negativity of solutions to (12)

� STEP 3. Pass to the limit n→∞ in (12) and so removing the truncation on z

� STEP 4. Find an L∞ bound on w so that we can setm := ‖w‖∞ and remove the truncation on w. This
concludes the existence.

2.1 Existence for the truncated problem

We will now show that the truncated problem (12) has a solution (u,w, z) ∈ H1
H1(Ω)∗ ∩L

2
H1(Ω)×(H1

L2(Γ)∩
L2
H1(Γ))

2. Before we proceed let us just introduce some notation to ease readability. Define

WΩ = H1
H1(Ω)∗ ∩ L

2
H1(Ω) with ‖u‖2WΩ

:= ‖u‖2L2
H1(Ω)

+ ‖u̇‖2L2
H1(Ω)∗

and
WΓ = H1

L2(Γ) ∩ L
2
H1(Γ) with ‖w‖2WΓ

:= ‖w‖2L2
H1(Γ)

+ ‖ẇ‖2L2
L2(Γ)

.

Let now f, g ∈ L2
L2(Γ) be arbitrary and consider

u̇+ u∇ ·Vp − δΩ∆u+∇ · (JΩu) = 0

δΩ∇u · ν = δ−1
k′ Tn(g)− δ−1

k uTm(f+) + ju

u(0) = u0.

This is a linear problem so by [2, Theorem 3.6] it has a unique solution u ∈ WΩ which we will write as u =
U(f, g), where U : (L2

L2(Γ))
2 →WΩ. Testing with u, we easily obtain a bound on u in L2

H1(Ω) independent
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of f and g. Taking the supremum of the duality pairing of u̇ with a test function, we also obtain a bound on the
weak time derivative. Combining, we find

‖U(f, g)‖WΩ
≤ C1 (13)

with the constant independent of f and g. Then we define w = w(f, g) and z = z(f, g) as the solutions in
WΓ of

ẇ + w∇Γ ·Vp − δΓ∆Γw +∇Γ · (JΓw) = δ−1
k′ Tn(g)− δ−1

k U(f, g)Tm(f+)

ż + z∇Γ ·Vp − δΓ′∆Γz +∇Γ · (JΓz) = δ−1
k U(f, g)Tm(f+)− δ−1

k′ Tn(g)

(w(0), z(0)) = (w0, z0)

which exist now by [2, Theorem 3.13]. Define a mapping Θ: (L2
L2(Γ))

2 → W 2
Γ taking the functions f and g

to the solutions by Θ(f, g) = (w, z). We seek a fixed point of Θ. Firstly, note that testing with w and ẇ and z
and ż in the respective equations and using the bound on U(f, g), we again obtain

‖w‖WΓ
+ ‖z‖WΓ

≤ C2

with C2 independent of f and g. Therefore, defining the set

E := {(f, g) ∈W 2
Γ : ‖f‖WΓ

+ ‖g‖WΓ
≤ C2},

we have that Θ: E → E. Let us check that Θ is weakly continuous. For this purpose, let (fk, gk) ⇀ (f, g)
in W 2

Γ with (fk, gk) ∈ E. Defining (wk, zk) = Θ(fk, gk), we see that (wk, zk) lies in E and therefore
(wk, zk) ⇀ (w, z) in W 2

Γ for some w and z, and we need to show that Θ(f, g) = (w, z). Define also
uk = U(fk, gk) which again by (13) is bounded independent of k so uk ⇀ u in WΩ. We need to pass to the
limit in the weak formulation of following system

u̇k + uk∇ ·Vp − δΩ∆uk +∇ · (JΩuk) = 0

δΩ∇uk · ν =
1

δk′
Tn(gk)− 1

δk
ukTm(f+

k ) + juk

ẇk + wk∇Γ ·Vp − δΓ∆Γwk +∇Γ · (JΓwk) =
1

δk′
Tn(gk)− 1

δk
ukTm(f+

k )

żk + zk∇Γ ·Vp − δΓ′∆Γzk +∇Γ · (JΓzk) =
1

δk
ukTm(f+

k )− 1

δk′
Tn(gk).

It follows that for a subsequence (fk, gk) → (f, g) in (L2
L2(Γ))

2 by the compact embedding. By using the

(Lipschitz) continuity of the truncation between L2 and the continuity of the trace map, we may send k →∞ to
find

u̇+ u∇ ·Vp − δΩ∆u+∇ · (JΩu) = 0

δΩ∇u · ν =
1

δk′
Tn(g)− 1

δk
uTm(f+) + ju

ẇ + w∇Γ ·Vp − δΓ∆Γw +∇Γ · (JΓw) =
1

δk′
Tn(g)− 1

δk
uTm(f+)

ż + z∇Γ ·Vp − δΓ′∆Γz +∇Γ · (JΓz) =
1

δk
uTm(f+)− 1

δk′
Tn(g)

and this shows that U(f, g) = u and Θ(f, g) = (w, z) as required. We have shown that this holds for a
subsequence but it is also true for the full sequence by a standard argument (for example see [1]). Therefore, Θ
has a fixed point and we have a solution of the truncated problem (12).

2.2 Positivity of the truncated problem

In this section we prove that the solution (u,w, z) found in the previous section is non-negative; this is expected
since the initial data are non-negative. Testing the z and u equations with z− and u− respectively with the help
of (49) and (47), and adding yields

d

dt

(∫
Γ(t)

|z−|2 +

∫
Ω(t)

|u−|2
)

+

∫
Γ(t)

|z−|2∇Γ ·VΓ +

∫
Ω(t)

|u−|2∇ ·VΩ

+ 2δΓ′

∫
Γ(t)

|∇Γz
−|2 + 2δΩ

∫
Ω(t)

|∇u−|2 ≤ 2

∫
Γ(t)

δ−1
k uTm(w+)z− + δ−1

k′ Tn(z)u− +
j

2
|u−|2.
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The first two terms on the right hand side can be estimated as follows by splitting the domain of integration:∫
Γ(t)

δ−1
k uTm(w+)z− + δ−1

k′ Tn(z)u− ≤
∫
{z≤0}

(δ−1
k uTm(w+)z− + δ−1

k′ Tn(z−)u−)

≤
∫
{z≤0}

(δ−1
k u−Tm(w+)z− + δ−1

k′ Tn(z−)u−)

(writing u = u+ + u−)

≤ C
(∥∥u−∥∥2

L2(Γ(t))
+
∥∥z−∥∥2

L2(Γ(t))

)
.

Moving the terms involving the velocity to the right hand side, via the interpolated trace inequality we estimate∫
Γ(t)

δ−1
k uTm(w+)z− + δ−1

k′ Tn(z)u− +
j

2
|u−|2 +

‖∇Γ ·VΓ‖∞
2

∫
Γ(t)

|z−|2 +
‖∇ ·VΩ‖∞

2

∫
Ω(t)

|u−|2

≤ ε
∥∥∇u−∥∥2

L2(Ω(t))
+ Cε

∥∥u−∥∥2

L2(Ω(t))
+ C

∥∥z−∥∥2

L2(Γ(t))
.

This implies that if ε is small enough,

d

dt

(∫
Γ(t)

|z−|2 +

∫
Ω(t)

|u−|2
)
≤ C

(∥∥u−∥∥2

L2(Ω(t))
+
∥∥z−∥∥2

L2(Γ(t))

)
then Gronwall’s inequality gives z− and u− are zero, so that z, u ≥ 0. This easily implies that w ≥ 0 after
testing the equation for w with w− and using Gronwall again.

2.3 Passing to the limit in n

Now we wish to drop the truncation in z. To achieve this, test the u, w and z equations with u, w and z
respectively, use on the right hand sides the estimates

2δ−1
k′ Tn(z)u+ ju2 ≤ 1

δk′
z2 +

(
‖j‖∞ +

1

δk′

)
u2

Tnzw ≤
1

2
(w2 + z2)

uTmwz ≤
m

2
(u2 + z2)

and combine to find

1

2

d

dt

(∫
Ω(t)

u2 +

∫
Γ(t)

w2 +

∫
Γ(t)

z2

)
+ δΩ

∫
Ω(t)

|∇u|2 + δΓ

∫
Γ(t)

|∇Γw|2 + δΓ′

∫
Γ(t)

|∇Γz|2

≤
(

1

2δk′
+
‖∇Γ ·VΓ‖∞

2

)∫
Γ(t)

w2 +

(
1

2δk′
+

1

2δk′
+

m

2δk
+
‖∇Γ ·VΓ‖∞

2

)∫
Γ(t)

z2

+

(
1

2
‖j‖∞ +

1

2δk′
+

m

2δk

)∫
Γ(t)

u2 +

(
‖∇ ·VΩ‖∞

2

)∫
Ω(t)

u2.

Now using the interpolated trace inequality with ε = δΩ/(‖j‖∞ + 1
δk′

+ m
δk

), we obtain

‖un‖L∞
L2(Ω)

+ ‖wn‖L∞
L2(Γ)

+ ‖zn‖L∞
L2(Γ)

+ ‖∇un‖L2
L2(Ω)

+ ‖∇wn‖L2
L2(Γ)

+ ‖∇zn‖L2
L2(Γ)

≤ C(δΩ, δk, δk′ , δΓ, δΓ′ ,m) (14)

independent of n. We also have, using the trace inequality,

〈u̇, η〉 ≤ (‖∇ ·VΩ‖∞ + ‖∇ · JΩ‖∞) ‖u‖L2(Ω(t)) ‖η‖L2(Ω(t)) + (δΩ + CJ) ‖u‖H1(Ω(t)) ‖η‖H1(Ω(t))

+ C(δ−1
k′ ‖z‖L2(Γ(t)) +mδ−1

k ‖u‖L2(Γ(t)) + ‖j‖∞ ‖u‖L2(Γ(t))) ‖η‖H1(Ω(t))

where CJ is a constant depending on JΩ. Integrating and taking the supremum over η ∈ L2
H1(Ω), we find

‖u̇‖L2
H−1(Ω)

≤ C(δΩ, δk, δk′ ,m).
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Testing the w equation with ẇ and using Tn(z) ≤ z, and likewise with the z equation, we obtain, after some
manipulation,

‖ẇ‖L2
L2(Γ)

+ ‖ż‖L2
L2(Γ)

≤ C(δΩ, δk, δk′ ,m).

Using these uniform estimates and Aubin–Lions, we may pass to the limit in n and we shall find existence of

u̇+ u∇ ·Vp − δΩ∆u+∇ · (JΩu) = 0

δΩ∇u · ν − ju =
1

δk′
z − 1

δk
uTm(w)

ẇ + w∇Γ ·Vp − δΓ∆Γw +∇Γ · (JΓw) =
1

δk′
z − 1

δk
uTm(w)

ż + z∇Γ ·Vp − δΓ′∆Γz +∇Γ · (JΓz) =
1

δk
uTm(w)− 1

δk′
z.

It remains for us to remove the truncation on w by showing that w is bounded.

2.4 Proof of existence

Before we prove Theorem 1.4, let us remark that the L∞ bounds for w (and z) are easy to obtain if the diffusion
constants are the same for the two surface equations: one simply tests the equation satisfied by v by (v−M)+

for M := ‖w0‖L∞(Γ0) + ‖z0‖L∞(Γ0) and one finds a bound on v (and by non-negativity, on w and z) which
depends only on T and the initial data. In this simple case, we would not have needed to truncate z either earlier.
Clearly, in the general δΓ 6= δΓ′ case a weak maximum principle technique cannot work in trying to procure an
L∞ bound on w since we do not yet know if z is bounded or not. However, we know by iteration arguments
that the L∞ bound on parabolic equations should depend only on LrLq bounds on the (positive part of the) right
hand side. Indeed, classical results on stationary domains [31, §III.7], [5, 6, 32] lead us to expect an L∞ bound
on solutions to linear parabolic equations with the right hand side f ∈ LrLq(Γ) if the condition

1

r
+

d

2q
< 1 (15)

is satisfied. In our case, the corresponding right hand side is the variable z. But such bounds on z depend on w
(due to the uTm(w) term in the z equation) so this leads to a circular argument. However, if we rewrite the w
equation so as to eliminate z by using the substitution v = w + z (see (4)) we can eventually obtain what we
want. Let us proceed by recalling that v solves

v̇ + v∇Γ ·Vp +∇Γ · (JΓv) = δΓ′∆Γv + (δΓ − δΓ′)∆Γw.

Lemma 2.1. The following energy estimate holds independent of δk:

‖v‖L∞
L2(Γ)

+ ‖w‖L∞
L2(Γ)

+
A

δk

∥∥√uw∥∥
L2
L2(Γ)

+ δΓ′ ‖∇Γv‖L2
L2(Γ)

+ C0 ‖∇Γw‖L2
L2(Γ)

≤ C(T, δk′ , A(δΓ, δΓ′))

where A ≥ max
(

1, C0
2δΓ

+
(δΓ−δΓ′ )

2

2δΓδΓ′

)
and C0 ≥ 0 is chosen arbitrarily.

Proof. Test the equation for v with v itself to find

d

dt

∫
Γ(t)

v2 +

∫
Γ(t)

v2∇Γ ·VΓ + 2δΓ′

∫
Γ(t)

|∇Γv|2 ≤ 2|δΓ − δΓ′ |
∫

Γ(t)

ε|∇Γv|2 + Cε|∇Γw|2.

Test also the w equation with w and multiply by a number A > 0 to be determined to obtain

A
d

dt

∫
Γ(t)

w2 +A

∫
Γ(t)

w2∇Γ ·VΓ + 2AδΓ

∫
Γ(t)

|∇Γw|2 =
2A

δk′

∫
Γ(t)

(v − w)w − 2A

δk

∫
Γ(t)

uw2.

Now pick ε = δΓ′/2|δΓ − δΓ′ | and add the two inequalities together:

d

dt

∫
Γ(t)

(v2 +Aw2) +

∫
Γ(t)

(v2 +Aw2)∇Γ ·VΓ +

∫
Γ(t)

2A

δk
uw2 + δΓ′ |∇Γv|2 + 2AδΓ|∇Γw|2

≤ 2|δΓ − δΓ′ |
∫

Γ(t)

Cε|∇Γw|2 +
2A

δk′

∫
Γ(t)

vw.
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Recall that Cε = (4ε)−1. Now, for any C0 ≥ 0, pick A such that A ≥ max
(

1, C0
2δΓ

+
(δΓ−δΓ′ )

2

2δΓδΓ′

)
, then

d

dt

∫
Γ(t)

(v2 +Aw2) +
2A

δk

∫
Γ(t)

uw2 + δΓ′

∫
Γ(t)

|∇Γv|2 + C0

∫
Γ(t)

|∇Γw|2

≤ A

δk′

∫
Γ(t)

v2 + w2 + ‖∇Γ ·VΓ‖∞
∫

Γ(t)

(v2 +Aw2)

≤
(
A

δk′
+ ‖∇Γ ·VΓ‖∞

)∫
Γ(t)

(v2 +Aw2), (using 1 ≤ A)

which, with α :=
(
A/δk′ + ‖∇Γ ·VΓ‖∞

)
yields

‖v(t)‖2L2(Γ(t)) +A ‖w(t)‖2L2(Γ(t)) ≤ e
αT

∫
Γ0

(v2
0 +Aw2

0)

and

2A

δk

∥∥√uw∥∥2

L2
L2(Γ)

+ δΓ′ ‖∇Γv‖2L2
L2(Γ)

+ C0 ‖∇Γw‖2L2
L2(Γ)

≤
(
TαeαT + 1

)∫
Γ0

(v2
0 +Aw2

0).

We are ready to conclude the existence.

Proof of Theorem 1.4. The equation for w, with the right hand side written in terms of v reads

ẇ + w∇Γ ·Vp − δΓ∆Γw +∇Γ · (JΓw) =

(
1

δk′
v − 1

δk′
w − 1

δk
uTm(w)

)
.

Lemma 3.1 below guarantees an L∞ bound on w for dimensions d ≤ 3 whose dependence on the right hand
side data is only on the L∞L2(Γ) norm of the positive part of the right hand side. Since we proved in Lemma 2.1

that the L∞L2(Γ) norm of δ−1
k′ v is bounded independently of z and u, it follows that if we pick the truncation level

of w to be m := ‖w‖L∞
L∞(Γ)

we obtain existence for (1).

Actually, we know from Lemma 2.1 that v is bounded in the space Q(Γ), not just in L∞L2(Γ), so one might
expect to profit using this extra information somehow in the existence or boundedness result. We address this
question in Remark 3.2.

3 L∞ bounds

In this section, we will prove essential boundedness for z and u, as well as proving a lemma that we used to
prove boundedness of w (and existence for the system) in the previous section. We start with L∞ bounds for
solutions of an abstract linear parabolic PDE on an evolving surface with Lp right hand side data that we can
apply to the w and z equations. Clearly these results can also be used for many other problems on evolving
surfaces.

De Giorgi method. Since we will be using variations of the De Giorgi L2–L∞ scheme to prove the L∞ bounds
and the proofs are rather technical, it is worth emphasising the key steps. This method was introduced by De
Giorgi [12] in his paper regarding the regularity of solutions to nonlinear elliptic problems. His technique allowed
him to obtain boundedness and Hölder regularity of solutions with only L2 a priori estimates. This method has
since then been applied to several other problems, including parabolic equations. The starting point is to define
a sequence of positive numbers, say Uk. This is usually related to the L2 norm of uk = (u− ck)+, if u is the
function that we wish to bound. Then one has to establish a nonlinear recurrence estimate of the form

Uk ≤ CβkU1+s
k−1, where C, β, s > 0. (16)

Usual tools to achieve such estimate include Sobolev inequalities, energy estimates and the Chebyshev inequal-

ity. Then, if U0 is small enough, namely if U0 ≤ min(1, (2C)−1/sβ−1/s2), then Uk converges to zero as
k tends to infinity. If also ck converges to some number M we can say that u ≤ M in some appropriate set,
depending on the definition of Uk.

12



There is another formulation to this method, which relies on a different recurrence estimate. We now define a
function U ≥ 0 to be nonincreasing in [x,∞) and such that, for y ≥ x ≥ x,

(y − x)pU(y) ≤ CU(x)1+s where C, p, s > 0. (17)

Then U(y) = 0 for y ≥ x+B where Bp = CU(0)s2
p(s+1)
s . This result is due to Stampacchia [44]. To suit

our purpose U(y) will be related to the measure of the set {u > y}, where again u is the function we wish to
bound.

3.1 Boundedness for parabolic problems on evolving surfaces

We consider the following initial value problem set on Γ(t)

ȧ+ a∇Γ ·Vp −D∆Γa+∇Γ · (JΓa) = g

a(0) = a0

(18)

for a given constant D > 0 and data g ∈ L2
L2(Γ) and a0 ∈ L2(Γ0).

Lemma 3.1 (De Giorgi I). For dimensions d ≤ 3, the weak solution of the equation (18) given g ∈ L2
L2(Γ) with

g+ ∈ L∞L2(Γ) and a0 ∈ L∞(Γ0) satisfies

‖a‖L∞
L∞(Γ)

≤ e(‖∇Γ·VΓ‖∞+D)T

(
‖a0‖L∞(Γ0) + CD−1

∥∥g+
∥∥
L∞
L2

)
.

Proof. Let us consider the transformed problem

˙̃a+ ã(∇Γ ·Vp + λ)−D∆Γã+∇Γ · (JΓã) = e−λtg =: f

ã(0) = a0,

where ã = e−λta. For convenience, we do not write the tildes from now on. Testing with ak := (a − k)+ for
k ≥ k0 := ‖a0‖L∞(Γ0) and integrating by parts using (48), we find

1

2

d

dt

∫
Γ(t)

|ak|2 +

∫
Γ(t)

aak(∇Γ ·VΓ + λ)− 1

2
|ak|2∇Γ ·VΓ +D|∇Γak|2 ≤

∫
Γ(t)

f+ak.

Let λ = D+ ‖∇Γ ·VΓ‖∞. Then∇Γ ·VΓ + λ ≥ D. Using aak = a2
k + kak ≥ a2

k and integrating in time
we obtain

1

2

∫
Γ(t)

|ak(t)|2 − 1

2

∫
Γ(s)

|ak(s)|2 +D

∫ t

s

∫
Γ(τ)

(
|ak|2 + |∇Γak|2

)
≤
∫ t

s

∫
Γ(τ)

f+ak. (19)

Since the function Ik(t) :=
∫

Γ(t)
|ak(t)|2 is continuous, it has a maximum, say at t = σ > 0. Now, let us pick

a sequence δn → 0 such that, for σn := σ − δn, the following hold

1
∥∥f+(σn)

∥∥
L2(Γ(σn))

≤
∥∥f+

∥∥
L∞
L2(Γ)

2 σn is a Lebesgue point for the function

G(τ) :=

∫
Γ(τ)

f+(τ)ak(τ)−D
(
|∇Γak(τ)|2 + |ak(τ)|2

)
.

(If σ is a Lebesgue point for the above function then we can just set δn ≡ 0; otherwise we know the set
of Lebesgue points is dense and therefore we can choose σn)

3 Ik(σn)− Ik(σn− ε) ≥ 0 (this can be done if δn and ε are small enough, since Ik is continuous, starts
at zero and has a maximum on (0, T ]).

Choosing in (19) t = σn and s = σn − ε, we obtain

D

∫ σn

σn−ε

∫
Γ(τ)

(
|ak|2 + |∇Γak|2

)
≤
∫ σn

σn−ε

∫
Γ(τ)

f+ak

and now divide by ε and send ε→ 0 with the Lebesgue differentiation theorem to find

D ‖ak‖2H1(Γ(σn)) ≤
∫

Γ(σn)

f+ak. (20)
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Define Ak(t) := {x ∈ Γ(t) | a(t, x) > k} and µk := ess sup0≤t≤T |Ak(t)|. Clearly µk ≥ 0 is non-
increasing for k ≥ ‖a0‖L∞(Γ0). Using the Sobolev inequality (51), the above yields

DC2
I ‖ak‖pLp(Γ(σn)) ≤

(∫
Γ(σn)∩Ak(σn)

|f+|p
′
) 1
p′

‖ak‖Lp(Γ(σn))

where p′ is the conjugate to p and p satisfies the constraint in (51). Therefore,

DC2
I ‖ak‖Lp(Γ(σn)) ≤ |Ak(σn)|

1
rp′
∥∥f+(σn)

∥∥
Lr
′p′ (Γ(σn))

≤ µ
1
rp′
k

∥∥f+
∥∥
L∞
Lr
′p′

where r ≥ 1 is arbitrary for now. Now we wish to establish a similar inequality for Ik(σn). Using Holder’s
inequality with (p/2, p/(p− 2)) and the previous estimate,

Ik(σn) =

∫
Γ(σn)

|ak|2

≤

(∫
Ak(σn)

1p/(p−2)

) p−2
p
(∫

Γ(σn)

|ak|p
) 2
p

≤ 1

D2C4
I

µ
2
rp′ +

p−2
p

k

∥∥f+
∥∥2

L∞
Lr
′p′

.

Sending δn → 0 and using continuity of Ik we obtain

Ik(σ) ≤ 1

D2C4
I

µ
2
rp′ +

p−2
p

k

∥∥f+
∥∥2

L∞
Lr
′p′

.

Observe that for any h ≥ k,

Ik(t) =

∫
Ak(t)

|ak|2 ≥
∫
Ah(t)

|ak|2 ≥ (h− k)|2|Ah(t)|

which implies that

µh ≤

∥∥f+
∥∥2

L∞
Lp
′r′

D2C4
I (h− k))2

µ
2
rp′ +

p−2
p

k

which can be written as (h−k)2µh ≤ Cµγk whereC =
∥∥f+

∥∥2

L∞
Lp
′r′
/(D2C4

I ) and γ = 2/(rp′)+(p−2)/

p. This is the setting of the Stampacchia lemma [44], see (17). We need γ > 1 and this is satisfied if r < p−1.
Moreover, given the data to the problem we must impose p′r′ ≤ 2. This poses no problem in dimensions
d ≤ 2 since in that case p can be arbitrary as given by the Sobolev embedding. However, for higher dimensions,
p = 2d/(d− 2), hence, in order to satisfy the conditions above we must restrict ourselves to d < 4. Therefore,
µh = 0 for all h ≥ ‖a0‖L∞(Γ0) +B where

B =

∥∥f+
∥∥
L∞
Lr
′p′

DC2
I

2γ/(γ−1)|Γ|(γ−1)/2

which directly implies that (back to the tilde notation) ã ≤ ‖a0‖L∞(Γ0) +B. Transforming back, we find actually
that

a(t) ≤ eλt
‖a0‖L∞(Γ0) +

∥∥e−λtg+
∥∥
L∞
Lr
′p′

DC2
I

2
( 2
rp′ +

p−2
p

)/( 2
rp′−

2
p

)|Γ|
1
rp′−

1
p

 .

Remark 3.2. As we wrote at the end of §2, Lemma 2.1 shows that v is bounded in the space Q(Γ) and not
just in L∞L2(Γ), so we might expect a less strict restriction on the dimension for Theorem 1.4 were we to use this
in the De Giorgi method of the previous lemma to bound w (see §2.4). Were we to utilise the embedding (52)
instead of the Sobolev inequality (51) on (20), we would lose the L∞ requirement in time on the right hand side
data and instead require a bound in LrLq for r, q > 2 (the downside is the increased spatial regularity), with r
and q related through the condition in Lemma B.1. However, the condition (15) for such a right hand side f in
LrLq(Γ) again just translates to requiring d ≤ 3, so we do not gain anything by using (52).
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One might think that we could prove the bound on z using the previous lemma just like it was used to prove
the bound on w. The positive part of the right hand side of the z equation is precisely δ−1

k uw, which satisfies

1

δk
uw ≤

‖w‖L∞
L∞(Γ)

δk
u.

However, u is known only to be in L∞L2(Ω) whereas we need it bounded in L∞H1(Ω) (by the trace theorem) in
order to apply Lemma 3.1. Therefore, we need a different stipulation answered by the next lemma (but note the
condition on the dimension d cf. the previous lemma). Again we will employ a De Giorgi iteration scheme of the
type discussed earlier (see (16)).

Lemma 3.3 (De Giorgi II). For dimensions d ≤ 2, the weak solution of the equation (18) given g ∈ L2
L2(Γ)

with g+ ∈ L2
L2+ε(Γ) and a0 ∈ L∞(Γ0) satisfies

‖a‖L∞
L∞(Γ)

≤ e(‖∇Γ·VΓ‖∞+D)T

(
‖a0‖L∞(Γ0) + C(T ) min(1/2, D)−1

∥∥g+
∥∥
L2
L2+ε(Γ)

)
for almost every t ∈ [0, T ], where C is independent of t.

Proof. We will adapt [31, §III.7] for our setting of an evolving surface and our specific choice of exponents on
the right hand side data. Let us suppose that a0 = 0 for now. Like the proof of Lemma 3.1, we may transform,
relabel and manipulate the equation so that from (19), we have for k ≥ k0 := ‖a0‖L∞(Γ0),

min

(
1

2
, D

)
‖ak‖2Q(Γ) ≤

∥∥f+
∥∥
L2
L2+ε

‖ak‖L2

L

2+ε
1+ε

.

The spaces involved in the ak norm on the right hand side do not satisfy the conditions of Lemma B.1 so we will
apply first Hölder’s inequality with suitable exponents. If we define Ak(t) = {x ∈ Γ(t) | a(t, x) > k} (as
before),

‖ak‖L2

L

2+ε
1+ε

≤
(∫
|Ak(t)|

2(1+ε)
2+ε

) 1
2λ′

‖ak‖L2λ

L

2+ε
1+ε

λ

,

where λ = 2(1 + 1
d
)− 2

2+ε
. By Lemma B.1, the norm on the right hand side becomes

‖ak‖L2λ

L

2+ε
1+ε

λ

≤ C1(T ) ‖ak‖Q(Γ) .

Putting it all together we have, denoting m = min(1/2, D)

‖ak‖Q(Γ) ≤
C1(T )

m

∥∥f+
∥∥
L2
L2+ε

(∫
|Ak(t)|

2(1+ε)
2+ε

) 1
2λ′

.

Set now kn = (2− 2−n)N for some large N to be defined later. Note that k0 = N and that kn ↑ 2N as n
tends to infinity. Finally, define

zn =

(∫ T

0

|Akn(t)|
2(1+ε)

2+ε

) 1
λ

.

This sequence of positive numbers will play the role of Uk as presented in (16). From the previous inequality we
obtain

‖ak‖Q(Γ) ≤
C1(T )

m

∥∥f+
∥∥
L2
L2+ε

z
λ−1

2
n .

Now, from the definition of kn we see that if a > kn then a > kn−1 + 2−nN and this implies {a > kn} ⊂
{akn−1 > 2−nN} So, using Chebyshev’s inequality for some r to be defined later,

|{a > kn}| ≤ |{akn−1 > 2−nN}| ≤ 1

(2−nN)r

∫
{akn−1

>2−nN}
|akn−1 |

r

and thus

zn ≤

∫ T

0

(
1

2−nN

) 2r(1+ε)
2+ε

(∫
Γ(t)

|akn−1 |
r

) 2(1+ε)
2+ε


1
λ

=

(
1

2−nN

) 2r(1+ε)
λ(2+ε)

∫ T

0

(∫
Γ(t)

|akn−1 |
r

) 2(1+ε)
2+ε


1
λ

.
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Given our choice of λ, if we pick r = 2+ε
1+ε

λ then the norm on the right hand side satisfies the hypothesis of
Lemma B.1 and therefore

zn ≤
22n

N2
C1(T )

∥∥akn−1

∥∥2

Q(Γ)

≤ 22nC1(T )3

N2m2

∥∥f+
∥∥2

L2
L2+ε

zλ−1
n−1

= C2β
nz1+s
n−1,

where C2 := C1(T )3

N2m2

∥∥f+
∥∥2

L2
L2+ε

=: C3
N2 , β = 4 and s =

(
2
d
− 2

2+ε

)
and hence we are in the conditions

exposed in (16) if d < 2 + ε (needed to ensure s > 0). It remains only to show the bound on z0. It is
straighforward to see that

z0 ≤ T
1
λ |Γ|

2(1+ε)
λ(2+ε) =: C4

and so if we now choose N2 ≥ 2Cs4C3β
1/s, then z0 ≤ (2C2)−1/sβ−1/s2 and we conclude that zn con-

verges to zero as n tends to infinity. This implies that a(t) ≤ 2N almost everywhere on Γ(t).

3.2 The bound on z

Recalling that the positive part of the right hand side of the z equation is δ−1
k uw, we know by (14) that u is

bounded in L∞L2(Ω) ∩ L
2
H1(Ω) which, since H1/2(Γ) ↪→ L2+ε(Γ) [14, Theorem 3.81] for all dimensions

(where ε depends on the dimension), implies

‖u‖L2+ε(Γ(t)) ≤ C1 ‖u‖H1/2(Γ(t)) ≤ C2 ‖u‖H1(Ω(t)) ,

so that (the trace of) u is bounded in L2
L2+ε(Γ). This gain in the spatial regularity for u, combined with the L∞

bound for w, allows us to apply the previous lemma and conclude the boundedness of z since z satisfies an
equation of the form (18) with g+ = δ−1

k uw.

3.3 The bound on u

Boundedness for u is more complicated because we are dealing with two domains (Ω and its boundary) due to
the Robin boundary condition. Let us use the notation ũ = ue−λut so that u̇ = eλut∂•ũ+λuu. The equation
for ũ is

∂•ũ+ ũ(∇ ·VΩ + λu)− δΩ∆ũ+∇ · (JΩu) = 0

δΩ∇ũ · ν = δ−1
k′ e
−λutz − δ−1

k ũw + jũ

ũ(0) = u0.

Consider the following two problems:

ȧ+ a(∇ ·Vp + λu)− δΩ∆a+∇ · (JΩa) = 0

δΩ∇a · ν = δ−1
k′ e
−λutz − δ−1

k aw + j(a+ b)

a(0) = 0

(21)

and

ḃ+ b(∇ ·Vp + λu)− δΩ∆b+∇ · (JΩb) = 0

δΩ∇b · ν = −δ−1
k bw

b(0) = u0.

It is clear that (a + b) is a solution of the problem satisfied by ũ above. The L∞ bound b(t) ≤ ‖u0‖L∞(Γ0)

follows after testing the b equation with (b −M0)+ where M0 := ‖u0‖L∞(Γ0), taking λu ≥ ‖∇ ·VΩ‖∞,
using (46), the interpolated trace inequality and Gronwall’s lemma. So it remains for us to show that the solution
of (21) is bounded given b ∈ L∞L∞(Ω).

We will again apply a De Giorgi method. Of course there is a lot of similarity to Lemmas 3.1 and 3.3 but we
follow the work of Nittka [39] here, which offers several improvements and corrections over the similar material
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presented in [31, §III.7–8]. LetBk(t) := {x ∈ Γ(t) | a(t, x) ≥ k}. For k ≥ 0 let us test with ak = (a−k)+

and use (46) to get

1

2

∫
Ω(t)

|ak(t)|2 +

∫ t

0

∫
Ω(s)

δΩ|∇ak|2 + (∇ ·VΩ + λu)aak −
1

2
|ak|2∇ ·VΩ

+

∫ t

0

∫
Γ(s)

1

2
ja2
k − (δ−1

k′ e
−λutz − δ−1

k aw)ak − j(a+ b)ak = 0.

The two terms involving the velocity can be combined if we assume that λu ≥ ‖∇ ·VΩ‖∞ (we shall specify
λu later on) and use a = (a−k)+k. Now, since (a+b)ak = |ak|2 +kak+bak and ak = 1

k
k(a−k)+ ≤

1
k

(k2 + |(a− k)+|2), we have

(a+ b)ak ≤ (2 + ‖b‖L∞
L∞(Ω)

)|ak|2 +
‖b‖L∞

L∞(Ω)

k
k2 + k2

for k ≥ 1. Using this, the last term in the weak formulation above can be manipulated as

−
∫ t

0

∫
Γ(s)

1

2
ja2
k − (δ−1

k′ e
−λutz − δ−1

k aw)ak − j(a+ b)ak

≤
∫ t

0

∫
Γ(s)

δ−1
k′ ‖z‖L∞

L∞(Γ)
ak + ‖j‖∞

((
5

2
+ ‖b‖L∞

L∞(Ω)

)
|ak|2 +

‖b‖L∞
L∞(Ω)

k
k2 + k2

)

≤
∫ t

0

∫
Γ(s)

δ−1
k′ ‖z‖L∞

L∞(Γ)

k
(k2 + |ak|2) + ‖j‖∞

((
5

2
+ ‖b‖L∞

L∞(Ω)

)
|ak|2 +

‖b‖L∞
L∞(Ω)

k
k2 + k2

)

=

∫ t

0

∫
Γ(s)

α

k
k2 +

(
α+

5

2
‖j‖∞

)
|ak|2 + ‖j‖∞ k

2

where we defined α := δ−1
k′ ‖z‖L∞

L∞(Γ)
+ ‖j‖∞ ‖b‖L∞

L∞(Ω)
. Now we use the interpolated trace inequality

on the (integral of the) second term above with

ε =
δΩ

2(α+ 5
2
‖j‖∞)

and Cε =
C

ε
= 2δ−1

Ω C

(
α+

5

2
‖j‖∞

)
to find, taking k ≥ 1,

1

2

∫
Ω(t)

|ak(t)|2 ≤ −
∫ t

0

∫
Ω(s)

δΩ
2
|∇ak(t)|2 + (λu +

∇ ·VΩ

2
)|ak(t)|2 +

(α
k

+ ‖j‖∞
)∫ t

0

∫
Bk(s)

k2

+ 2Cδ−1
Ω (α+

5

2
‖j‖∞)2

∫ t

0

∫
Ω(s)

|ak(t)|2

≤ −δΩ
2

∫ t

0

∫
Ω(s)

|∇ak(t)|2 +
(α
k

+ ‖j‖∞
)∫ t

0

∫
Bk(s)

k2

where for the last inequality we picked λu = ‖∇ ·VΩ‖∞ + 2Cδ−1
Ω (α+ 5

2
‖j‖∞)2. This is

1

2

∫
Ω(t)

|ak(t)|2 +
δΩ
2

∫ t

0

∫
Ω(s)

|∇ak(t)|2 ≤ α

k

∫ t

0

∫
Bk(s)

k2 + ‖j‖∞
∫ t

0

∫
Bk(s)

k2,

and now take essential supremums over t, setting m = min(1, δΩ):

1

2
m ‖ak‖2Q(Ω) ≤

(α
k
k2 + ‖j‖∞ k

2
)∫ T

0

∫
Bk(s)

. (22)

By Holder’s inequality,(α
k

+ ‖j‖∞
)∫ T

0

∫
Bk(s)

≤
(α
k

+ ‖j‖∞
)
|Γ|1/qT 1/r ‖χBk‖Lr/(r−1)

Lq/(q−1)

≤ (1 + C1 ‖j‖∞) ‖χBk‖Lr/(r−1)

Lq/(q−1)

(23)
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where we have taken k ≥ α|Γ|1/qT 1/r and set C1 := |Γ|1/qT 1/r and also we constrain r and q so that

1

r
+

d

2q
<

1

2
. (24)

Now define κ, r∗ and q∗ by

1

r
+

d

2q
=

1

2
− κ(d+ 1)

2
, r∗ =

2(1 + κ)r

r − 1
, and q∗ =

2(1 + κ)q

q − 1
.

The condition (24) implies that κ > 0. Then (23) can be written like(α
k

+ ‖j‖∞
)∫ T

0

∫
Bk(s)

≤ (1 + C1 ‖j‖∞) ‖χBk‖
2(1+κ)

L
r∗
Lq∗

.

So we find that (22) becomes

1

2
m ‖ak‖2Q(Ω) ≤ (1 + C1 ‖j‖∞)k2 ‖χBk‖

2(1+κ)

L
r∗
Lq∗

= C2k
2

(∫ T

0

|Bk|r∗/q∗
)2(1+κ)/r∗

where we set C2 := 1 + C1 ‖j‖∞. This, as we said before, holds whenever

k ≥ max (1, αC1) . (25)

Now the proof is analogous to what is done in the proof of Lemma 3.3 where instead of the inequality of Lemma
B.1 we use Lemma B.2. Define kn := (2− 2−n)N for a large N and

zn :=

(∫ T

0

|Bkn(t)|r∗/q∗
)2/r∗

.

Then we in fact find
zn+1 ≤ 26m−1C2CI4

nz1+κ
n

(here CI is the constant from Lemma B.2) and if we take k̂ such that it satisfies (25), then

(N − k̂)2z0 ≤ 2m−1C2CI k̂
2C0.

Defining C3 := |Γ|2(1+κ)/q∗T 2(1+κ)/r∗ and picking N = k̂(
√
C32

1
2

+ 3
κ

+ 1
κ2 (m−1C2CI)

1
2κ

+ 1
2 + 1), we

have

z0 ≤ (26m−1C2CI)
−1/κ4−1/κ2

.

By [31, II, Lemma 5.6], we have zn → 0 as n→∞. This suggests, since kn → 2N , that a(t) ≤ 2N almost
everywhere on Γ(t). Putting everything together, we find

u(t) ≤ e‖∇·VΩ‖∞T+C1δ
−1
Ω (α+ 5

2
‖j‖∞)2T

(
max (1, αC1) (C4m

−( 1
2κ

+ 1
2

) + C5) + ‖u0‖L∞(Ω0)

)
.

4 Strong solutions for u

In order to show that u̇ is in fact a function and not just an element of a dual space, we would like to test with
u̇ but obviously this is not possible. We may try a smoothing technique like using the Galerkin approximation for
the u equation and testing with the finite-dimensional time derivative u̇n but this does not help either since we
would actually need a uniform bound in L∞ on the un which does not necessarily follow from the L∞ bound on
u. Instead we mollify in time the u equation and try to make use of theL∞ bound obtained for u in Theorem 1.5.
Essentially we will test the u equation with an approximation of u̇ by Steklov averaging [18, 19, 31]. Actually, we
will do this for the equation pulled back onto a reference domain. Before we proceed, let us discuss the Steklov
averaging technique and some properties. For a function v ∈ Lp(0, T ;X) where X is a Banach space, we
define its Steklov average vh by

vh(t) =

{
1
h

∫ t+h
t

v(s) ds : 0 < t ≤ T − h
0 : T − h < t ≤ T
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for 0 < h < T . For p 6= ∞, it is well known that for any ε ∈ (0, T ), we have vh ∈ Lp(0, T − ε;X) with
‖vh‖Lp(0,T−ε;X) ≤ ‖v‖Lp(0,T ;X) for all h ∈ (0, ε), and vh → v in Lp(0, T − ε;X) as h → 0. Also, vh
has the (strong) a.e. derivative

∂tvh(t) =
v(t+ h)− v(t)

h
=: Dhv(t).

Now, to obtain the weak form corresponding to the equation on the reference domain, we introduce some nota-
tion. We have defined in Section 1.1 the flow Φ such that

Φt : Ω0 → Ω(t) with
d

dt
Φt(·) = Vp(t,Φt(·)).

Let DΦt be the Jacobian matrix of Φt with inverse M(t) := (DΦt)
−1 and let Jt = detDΦt be its de-

terminant. Define A(t) := δΩJtM(t)M(t)T and ωt := |M(t)T ν0|, where ν0 is the outward normal to
Γ0.

Below, g̃ : Ω0 × [0, T ]→ R denotes the pullback of a function g ∈ L2
X by g̃(ξ, t) = g(Φt(ξ), t); we use

the same notation for the pullback of functions defined on Γ(t). Pulling back the weak form of the u equation
gives (see [13, Chapter 9, §4.2] for the boundary integral)

〈ũt, Jtϕ̃〉+
∫

Ω0

A(t)∇ũ∇ϕ̃+ ũϕ̃V0Jt+JtJ̃Ω ·M(t)T∇ũϕ̃ =

∫
Γ0

(
z̃

δk′
− ũw̃

δk

)
ϕ̃Jtωt+j0ũϕ̃Jtωt,

where V0 = ∇̃ ·VΩ is the pullback of∇·VΩ, and similarly for j0 = ˜(VΩ −VΓ) · ν̃. Now setting ψ = Jtϕ̃,
this becomes

〈ũt, ψ〉+

∫
Ω0

A(t)∇ũ∇(J−1
t ψ) + ũψV0 + J̃Ω ·M(t)T∇ũψ =

∫
Γ0

(
z̃

δk′
− ũw̃

δk

)
ψωt + j0ũψωt.

Since A(t)∇ũ∇(J−1
t ψ) = J−1

t A(t)∇ũ∇ψ + ψA(t)∇ũ∇J−1
t , setting B(t) := J−1

t A(t), integrating
by parts in time and relabelling to remove all the tildes from ũ, we obtain

d

dt

∫
Ω0

uψ +

∫
Ω0

B(t)∇u∇ψ + ψA(t)∇u∇J−1
t + uψV0 + J̃Ω ·M(t)T∇uψ

=

∫
Γ0

(
z

δk′
− uw

δk

)
ψωt + j0uψωt

(26)

if ψ is independent of time. To write the weak form associated to the function uh (see [18, Chapter II]), in (26),
divide by h and integrate over (t, t+ h):∫

Ω0

∂tuh(t)ψ +
1

h

∫
Ω0

∫ t+h

t

B(s)∇u∇ψ +
1

h

∫
Ω0

∫ t+h

t

ψA(s)∇u∇J−1
s +

1

h

∫
Ω0

∫ t+h

t

uψV0

+
1

h

∫ t+h

t

∫
Ω0

J̃Ω ·M(s)T∇uψ =
1

h

∫
Γ0

∫ t+h

t

(
z

δk′
− uw

δk
+ j0u

)
ψωs. (27)

The idea is to test with ∂tuh(t) and integrate over t and try to find a bound on u′h inL2(0, T ;L2(Ω0)) indepen-
dent of h. This requires us to handle the various terms in the equality above, which is not at all straightforward
since the coefficients are time-dependent. For example, in the non-moving setting where the elliptic operator
such as the Laplacian is independent of time, we have

(〈−Au, v〉)h = 〈−Auh, v〉,

i.e., the Steklov average commutes with elliptic operator. In our case of a moving domain this equality is no
longer true (in fact some extra terms appear) because the coefficients of the operatorA depend on time. For this
purpose, we need the following auxiliary results.

4.1 Preliminary results

We begin with the following fundamental lemma, which follows by a simple integration by parts argument.

Lemma 4.1. Let ϕ : [0, T ]→ R be absolutely continuous and f ∈ L1(0, T ). We have

1

h

∫ t+h

t

ϕ(s)f(s) = ϕ(t+ h)fh(t) +Dhϕ(t)

∫ t

0

f(s)− 1

h

∫ t+h

t

ϕ′(s)

∫ s

0

f(r).
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Given functions g, ϕ and k defined on [0, T ]× Ω0, it is convenient to define a map Lh by the expression

Lh(g, ϕ, k)(t) := g(t)

(
Dhϕ(t)K(t)− 1

h

∫ t+h

t

ϕ′(s)K(s)

)
where K(t) =

∫ t

0

k(s).

Thus the equality of Lemma 4.1 can be rewritten as

1

h

∫ t+h

t

ϕ(s)f(s) = ϕ(t+ h)fh(t) + Lh(1, ϕ, f)(t).

A form of Lemma 4.1 for matrix-vector products is given by the following corollary, which can be proved by writing
the products componentwise and using the formula for Lh.

Corollary 4.2. Let ψ ∈ H1(Ω0), f ∈ L2(0, T ;H1(Ω0)) and let N(t) = [nij(t)] be a matrix with
nij : [0, T ]→ Ω absolutely continuous and n′ij ∈ L1(0, T ;L∞(Ω)). Then

1

h

∫
Ω0

∫ t+h

t

N(s)∇f(s)∇ψ =

∫
Ω0

N(t+ h)∇fh(t)∇ψ +
∑
ij

∫
Ω0

Lh(ψxj , nij , fxi)(t).

Since Lh appears a number of times, it is useful to bound it in terms of its arguments. First, define the space

X := {ϕ ∈ Lip(0, T ;L∞(Ω0)) | ϕ is differentiable a.e. t ∈ [0, T ]}.

This is indeed a proper subset (that is, the constraint is not redundant) because L∞(Ω0) does not have the
Radon–Nikodym property [4, Example 1.2.8].

Lemma 4.3. The map Lh : L2(0, T ;L2(Ω0)) ×X × L2(0, T ;L2(Ω0)) → L1(0, T ;L1(Ω0)) and for g,
k ∈ L2(0, T ;L2(Ω0)) and ϕ ∈ X ,∫ T

0

∫
Ω0

Lh(g, ϕ, k)(t) ≤ 4 Lip(ϕ)
√
T − h ‖g‖L2(0,T−h;L2(Ω0)) ‖k‖L2(0,T ;L2(Ω0)) .

Proof. By adding and subtracting the same term in the definition of Lh,

Lh(g, ϕ, k)(t) = g(t)K(t)
(
Dhϕ(t)− ϕ′(t)

)
+ g(t)

(
ϕ′(t)K(t)− 1

h

∫ t+h

t

ϕ′(s)K(s)

)
.

The assumptions on ϕ mean that it is Lipschitz continuous in time with a global Lipschitz constant, and therefore
Dhϕ(t) ≤ Lip(ϕ). After integrating the above expression for Lh in space and over t ∈ (0, T − h), the first
term on the right hand side is∫ T−h

0

∫
Ω0

g(t)K(t)
(
Dhϕ(t)− ϕ′(t)

)
≤ 2 Lip(ϕ) ‖g‖L2(0,T−h;L2(Ω0)) ‖K‖L2(0,T−h;L2(Ω0))

and the second term can be dealt with as follows:∫ T−h

0

∫
Ω0

g(t)

(
ϕ′(t)K(t)− 1

h

∫ t+h

t

ϕ′(s)K(s)

)
≤
∫ T−h

0

∫
Ω0

|g(t)|
∥∥ϕ′∥∥∞(|K(t)|+ 1

h

∫ t+h

t

|K(s)|
)

= Lip(ϕ)

∫ T−h

0

∫
Γ0

|g(t)||K(t)|+ |g(t)|(|K(t)|)h

≤ 2 Lip(ϕ) ‖g‖L2(0,T−h;L2(Ω0)) ‖K‖L2(0,T ;L2(Ω0)) .

The claim follows once we note that

‖K‖2L2(0,T−h;L2(Ω0)) ≤
∫ T−h

0

∫
Ω0

∫ t

0

t|k(s)|2 ≤ (T − h) ‖k‖2L2(0,T−h;L2(Ω0)) .
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4.2 Obtaining the bound

As we mentioned before, we want to establish a bound on u′h inL2(0, T ;L2(Ω0)) and to do so we will integrate
(27) in time for a specific test function ψ. Let ξ ∈ C∞c ((0, T ]) be a smooth function vanishing near t = 0 and
equal to one near t = T with 0 ≤ ξ ≤ 1 and pick ψ = ξ(t)∂tuh(t) in (27) (this cutoff function is necessary to
deal with the Laplacian term: we cannot bound ∇uh(0) in L2(Ω0) independent of h). Our aim is to prove the
following lemma, which we will do by addressing each term in the next subsections.

Lemma 4.4. With ψ = ξ(t)∂tuh(t), the following lower bound

1

h

∫ T−h

0

∫
Ω0

∫ t+h

t

B(s)∇u∇ψ ≥ (λT − (d+ 1)ρ) ‖∇uh(T − h)‖2L2(Ω0) − Cρ (28)

and the following upper bounds

1

h

∫ T−h

0

∫
Ω0

∫ t+h

t

ψA(s)∇u∇J−1
s + J̃Ω ·M(s)T∇uψ + uψV0 ≤ ε‖

√
ξu′h‖2L2(0,T−h;L2(Ω0)) + Cε

(29)

1

h

∫ T−h

0

∫
Γ0

∫ t+h

t

(z − uw + j0u)ψωs ≤ C (30)

hold, where λT > 0 is as in (31), ρ, ε > 0 can be chosen arbitrarily and all constants on the right hand sides
are independent of h.

4.2.1 The Laplacian term

Clearly, the most troublesome term in (27) is the one involving the gradient of the test function ψ = ξ∂tuh.
We must manipulate it in such a way as to extract a positive contribution of

∫
Ω0
|∇uh(T − h)|2 (a term that

we cannot bound from above since it would require pointwise control on the gradient of u). This is trivial when
B is independent of time but in our case the extra terms arising from the time dependency generate unwanted
negative contributions of (the square root of) the above integral, which we will overcome by Young’s inequality.
Let us begin by using Corollary 4.2 to write

1

h

∫
Ω0

∫ t+h

t

B(s)∇u∇ψ

=

∫
Ω0

ξ(t)B(t+ h)∇uh∇∂tuh(t)

+
∑
ij

∫
Ω0

ξ(t)(∂tuh(t))xj

(
Dhbij(t)

∫ t

0

uxi(s)−
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
=

1

2

d

dt

∫
Ω0

ξ(t)B(t+ h)∇uh(t)∇uh(t)

− 1

2

∫
Ω0

(ξ′(t)B(t+ h) + ξ(t)B′(t+ h))∇uh(t)∇uh(t)

+
∑
ij

∫
Ω0

ξ(t)(∂tuh(t))xj

(
Dhbij(t)

∫ t

0

uxi(s)−
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
︸ ︷︷ ︸

=:Iij

Above, we wrote the Lh term out explicitly as Lemma 4.3 does not produce a useful estimate in this instance
and it requires some preparation. Before that, consider the first term on the right hand side. We have, since ξ
vanishes near zero and equals one near T and B(T ) is a positive-definite matrix,

1

2

∫ T−h

0

d

dt

∫
Ω0

ξ(t)B(t+ h)∇uh(t)∇uh(t) =
1

2

∫
Ω0

ξ(T − h)B(T )∇uh(T − h)∇uh(T − h)

≥ λT
∫

Ω0

|∇uh(T − h)|2, (31)

where the constant λT is independent of x. This term, which is a positive contribution of the gradient evaluated
at a point, will be used to absorb negative terms that arise below. Regarding the second term on the right hand
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side, it is straighforward to bound

1

2

∫ T−h

0

∫
Ω0

(ξ′(t)B(t+ h) + ξ(t)B′(t+ h))∇uh(t)∇uh(t) ≤ C1 ‖∇uh‖2L2(0,T ;L2(Ω0)) . (32)

This leaves us with the integral Iij which in its current form is not helpful since we cannot bound the term
(∂tuh(t))xj . However, we can use the convenient properties of the Steklov averaging allowing us to swap the
order of spatial and temporal derivatives:

(∂tuh(t))xj =

(
u(t+ h)− u(t)

h

)
xj

=
uxj (t+ h)− uxj (t)

h
= ∂t((uxj )h(t)),

thus we may integrate by parts in time to yield

Iij =
d

dt

∫
Ω0

ξ(t)(uxj )h(t)

(
Dhbij(t)

∫ t

0

uxi(s)−
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
−
∫

Ω0

ξ(t)(uxj )h(t)
d

dt

(
Dhbij(t)

∫ t

0

uxi(s)−
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
−
∫

Ω0

ξ′(t)(uxj )h(t)

(
Dhbij(t)

∫ t

0

uxi(s)−
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
. (33)

Expanding the brackets above leaves us with six terms to control. We do this in a few steps.
STEP A (the first, third and fifth term). After expanding the brackets, we see that the sum of the first term and the
third term is

d

dt

∫
Ω0

ξ(t)(uxj )h(t)Dhbij(t)

∫ t

0

uxi(s)−
∫

Ω0

ξ(t)(uxj )h(t)
d

dt

(
Dhbij(t)

∫ t

0

uxi(s)

)
=

d

dt

∫
Ω0

ξ(t)(uxj )h(t)Dhbij(t)

∫ t

0

uxi(s)

−
∫

Ω0

ξ(t)(uxj )h(t)

(
Dhb

′
ij(t)

∫ t

0

uxi(s) +Dhbij(t)uxi(t)

)
.

Let us integrate in time and handle each of these terms on the right hand side.
STEP A.1. Since ξ vanishes near zero, we have∫ T−h

0

d

dt

∫
Ω0

ξ(t)(uxj )h(t)Dhbij(t)

∫ t

0

uxi(s)

=

∫
Ω0

ξ(T − h)(uxj )h(T − h)Dhbij(T − h)

∫ T−h

0

uxi(s)

≤ ‖bij‖Lip

∫
Ω0

|(uxj )h(T − h)|
∫ T−h

0

|uxi(s)|

≤ C1

∥∥(uxj )h(T − h)
∥∥
L2(Ω0)

∫ T−h

0

‖uxi(s)‖L2(Ω0)

= C1

∥∥(uxj )h(T − h)
∥∥
L2(Ω0)

‖uxi‖L1(0,T−h;L2(Ω0))

≤ ρ

2

∥∥(uh)xj (T − h)
∥∥2

L2(Ω0)
+ Cρ ‖uxi‖

2
L1(0,T ;L2(Ω0))

since derivatives and the Steklov averaging commute.
STEP A.2. We also have∫ T−h

0

∫
Ω0

ξ(t)(uxj )h(t)Dhb
′
ij(t)

∫ t

0

uxi(s) ≤
∥∥b′ij∥∥Lip

∫ T−h

0

∫
Ω0

|(uxj )h(t)|
∫ t

0

|uxi(s)|

≤ C1

∫ T−h

0

∫ t

0

∫
Ω0

|(uxj )h(t)||uxi(s)|

≤ C2 ‖uxi‖L1(0,T ;L2(Ω0))

∫ T−h

0

∥∥(uxj )h(t)
∥∥
L2(Ω0)

≤ C3 ‖uxi‖L1(0,T ;L2(Ω0))

∥∥uxj∥∥L1(0,T−h;L2(Ω0))
.
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The fifth term in (33) can be dealt with in exactly the same manner.
STEP A.3. Finally, we have∫ T−h

0

∫
Ω0

ξ(t)(uxj )h(t)Dhbij(t)uxi(t) ≤ ‖bij(t)‖Lip

∫ T−h

0

∫
Ω0

|(uxj )h(t)||uxi(t)|

≤ C1

∥∥uxj∥∥L2(0,T−h;L2(Ω0))
‖uxi‖L2(0,T ;L2(Ω0)) .

STEP B (The second and fourth terms). Now let us handle (the negative of) the second and fourth terms in (33).
STEP B.1. We have∫ T−h

0

d

dt

∫
Ω0

ξ(t)(uxj )h(t)

(
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
=

∫
Ω0

ξ(T − h)(uxj )h(T − h)

(
1

h

∫ T

T−h
b′ij(s)

∫ s

0

uxi(r)

)
≤
∥∥b′ij∥∥∞
h

∫ T

T−h

∫ s

0

∫
Ω0

|(uxj )h(T − h)||uxi(r)|

≤ C1

h

∥∥(uxj )h(T − h)
∥∥
L2(Ω0)

∫ T

T−h
‖uxi‖L1(0,T ;L2(Ω0))

= C1

∥∥(uxj )h(T − h)
∥∥
L2(Ω0)

‖uxi‖L1(0,T ;L2(Ω0))

≤ ρ

2

∥∥(uxj )h(T − h)
∥∥2

L2(Ω0)
+ Cρ

STEP B.2. Since

d

dt

(
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
=

1

h

(
b′ij(t+ h)

∫ t+h

0

uxi − b
′
ij(t)

∫ t

0

uxi(r)

)
,

we find the fourth term to be∫ T−h

0

∫
Ω0

ξ(t)(uxj )h(t)
1

h

(
b′ij(t+ h)

∫ t+h

0

uxi − b
′
ij(t)

∫ t

0

uxi(r)

)
=

1

h

∫ T−h

0

∫
Ω0

ξ(t)(uxj )h(t)

(
b′ij(t+ h)

[∫ t+h

0

uxi −
∫ t

0

uxi

]
+
[
b′ij(t+ h)− b′ij(t)

] ∫ t

0

uxi(r)

)
=

∫ T−h

0

∫
Ω0

ξ(t)(uxj )h(t)b′ij(t+ h)
1

h

∫ t+h

t

uxi(r)

+
1

h

∫ T−h

0

∫ t

0

∫
Ω0

ξ(t)(uxj )h(t)
[
b′ij(t+ h)− b′ij(t)

]
uxi(r)

≤
∥∥b′ij∥∥∞ ∫ T−h

0

∫
Ω0

|(uxj )h(t)||(uxi)h(t)|+
∥∥b′ij∥∥Lip

∫ T−h

0

∫ t

0

∫
Ω0

|(uxj )h(t)||uxi(r)|

≤ C1

∥∥(uxj )h
∥∥
L2(0,T−h;L2(Ω0))

‖(uxi)h‖L2(0,T−h;L2(Ω0))

+ C2

∥∥(uxj )h
∥∥
L1(0,T−h;L2(Ω0))

‖uxi‖L1(0,T ;L2(Ω0))

STEP C (The final term). It remains for us to bound the last term in (33):∫ T−h

0

∫
Ω0

ξ′(t)(uxj )h(t)

(
1

h

∫ t+h

t

b′ij(s)

∫ s

0

uxi(r)

)
=

∫ T−h

0

∫
Ω0

ξ′(t)(uxj )h(t)[b′ijUxi ]h(t)

≤
∥∥ξ′∥∥∞ ∥∥(uxj )h

∥∥
L2(0,T ;L2(Ω0))

∥∥[b′ijUxi ]h
∥∥
L2(0,T ;L2(Ω0))

≤
∥∥ξ′∥∥∞ ∥∥b′ij∥∥∞ ∥∥uxj∥∥L2(0,T ;L2(Ω0))

‖uxi‖L2(0,T ;L2(Ω0))

where we defined Uxi(t) =
∫ t

0
uxi .

CONCLUSION. Combining all of the steps and summing (33) over i and j, we find∑
ij

∫ T−h

0

Iij ≤ (d+ 1)ρ ‖∇uh(T − h)‖2L2(Ω0) + C1

for a constant C1 not depending on h. Taking this into account with (31) and (32), we end up with (28).
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4.2.2 The remaining terms on the left hand side

The remaining integrals over Ω0 are lower order in ∂tuh so we can be a bit more crude in how we deal with them
but since we already have the more precise machinery of Lemmas 4.1 and 4.3 let us take more care. Denoting
the components of J̃Ω as ki, using

A(s)∇u∇J−1
s + J̃Ω ·M(s)T∇u =

∑
ij

aij(s)jxjuxi +
∑
ij

kjmijuxi =
∑
ij

(aij(s)jxj + kjmij)︸ ︷︷ ︸
=:nij

uxi

we see that, using Lemma 4.1, and the definition of ψ,

1

h

∫
Ω0

∫ t+h

t

ψA(s)∇u(s)∇J−1
s + J̃Ω ·M(s)T∇u(s)ψ

=

∫
Ω0

ξ(t)∂tuh(t)A(t+ h)∇uh(t)∇J−1
t+h +

∑
ij

Lh(t; ξ∂tuh, nij , uxi)

≤
∫

Ω0

ε

4
ξ(t)|∂tuh(t)|2 + Cε|A(t+ h)∇uh(t)∇J−1

t+h|
2 +

∑
ij

Lh(t; ξ∂tuh, nij , uxi)

and

1

h

∫
Ω0

∫ t+h

t

uψV0

=

∫
Ω0

ξ(t)∂tuh(t)

(
V0(t+ h)uh(t) +DhV0(t)

∫ t

0

u(s)− 1

h

∫ t+h

t

V ′0 (s)

∫ s

0

u(r)

)
≤
∫

Ω0

ε

4
ξ(t)|∂tuh(t)|2 + Cε|V0(t+ h)uh(t)|2 + Lh(t; ξ∂tuh, V0, u).

Integrating both of these and combining, we find with the aid of Lemma 4.3,

1

h

∫ T−h

0

∫
Ω0

∫ t+h

t

ψA(s)∇u(s)∇J−1
s + J̃Ω ·M(s)T∇u(s)ψ + u(s)ψV0

≤ ε

2

∥∥∥√ξ∂tuh∥∥∥2

L2(0,T−h;L2(Ω0))
+ Cε

∫ T−h

0

∫
Ω0

|∇uh(t)|2|A(t+ h)T∇J−1
t |2

+ C
∥∥∥√ξ∂tuh∥∥∥

L2(0,T−h;L2(Ω0))
‖uxi‖L2(0,T ;L2(Ω0))

+ C
∥∥∥√ξ∂tuh∥∥∥

L2(0,T−h;L2(Ω0))
‖u‖L2(0,T ;L2(Ω0))

and this leads to (29) after using the boundedness of |A(t+ h)T∇Jt| and Young’s inequality with ε.

4.2.3 Dealing with the boundary quantities

We have an issue with ∂tuh on the boundary, since the trace theorem would insist on gradient control on ut.
The workaround is to integrate by parts and to use a trick involving the chain rule to deal with the u∂tuh term.

First, to ease the notation, let ẑ = δ−1
k′ ξωz, ŵ = δ−1

k ξωw, ĵ0 = ξωj0 and define f = ŵ − ĵ0. The right
hand side of (27) is then

1

h

∫
Γ0

∫ t+h

t

(
z

δk′
− uw

δk
+ j0u

)
ψωs =

∫
Γ0

∂tuh(t)
1

h

∫ t+h

t

ẑ − u(ŵ − ĵ0)

=

∫
Γ0

∂tuh(t)[ẑh − (uf)h]

=
d

dt

∫
Γ0

ẑhuh −
∫

Γ0

∂tẑhuh −
d

dt

∫
Γ0

[uf ]huh

+

∫
Γ0

∂t[uf ]huh. (34)

The final term above still contains explicitly a derivative of u, so let us rewrite it by first using

∂t[uf ]h =
u(t+ h)− u(t)

h
f(t+ h) + u(t)

f(t+ h)− f(t)

h
= f(t+ h)∂tuh + u∂tfh
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so that ∫
Γ0

∂t[uf ]huh =
1

2

∫
Γ0

f(t+ h)∂t(u
2
h) +

∫
Γ0

uuh∂tfh

=
1

2

d

dt

∫
Γ0

f(t+ h)u2
h −

1

2

∫
Γ0

f ′(t+ h)u2
h +

∫
Γ0

uuh∂tfh.

(On Γ0 by ∂tuh we mean ∂t[(u|Γ0)h] where of course (u|Γ0)h(t) = 1
h

∫ t+h
t

u|Γ0 .) Plugging this into (34)
above and integrating over t ∈ (0, T − h), we find the right hand side of (34) to be∫

Γ0

(ẑh(T − h)uh(T − h)− ẑh(0)uh(0))−
∫ T−h

0

∫
Γ0

∂tẑhuh

−
∫

Γ0

([uf ]h(T − h)uh(T − h)− [uf ]h(0)uh(0)) +
1

2

∫
Γ0

(f(T )uh(T − h)2 − f(0)uh(0)2)

− 1

2

∫ T−h

0

∫
Γ0

f ′(t+ h)u2
h +

∫ T−h

0

∫
Γ0

uuh∂tfh.

We discuss each term in turn. Writing

uh(s)2 =

(
1

h

∫ s+h

s

u

)2

≤ 1

h

∫ s+h

s

u2

hence
∫

Γ0
f(T )uh(T −h)2 ≤ 1

h

∫ T
T−h

∫
Γ0
|f(T )|u2 ≤ h ‖f(T )‖L1(Γ0) ‖u‖

2
L∞(0,T ;L∞(Γ0)), so that the

fourth integral is bounded. Similarly to this we may deal with the first integral. The third term we deal with as
follows: ∫

Γ0

[uf ]h(s)uh(s) =
1

h2

∫
Γ0

(∫ s+h

s

u(r)f(r)

)(∫ s+h

s

u(p)

)
=

1

h2

∫ s+h

s

∫ s+h

s

∫
Γ0

u(r)f(r)u(p)

≤ 1

h2
‖f‖L∞(0,T ;L∞)

∫
Γ0

(∫ s+h

s

u(r)

)2

≤ |Γ|2 ‖f‖L∞(0,T ;L∞(Γ0)) ‖u‖
2
L∞(0,T ;L∞(Γ0))

thanks to Jensen’s inequality. The second and last terms become∫ T−h

0

∫
Γ0

uuh∂tfh − uh∂tẑh

≤ ‖u‖L∞(0,T ;L∞(Γ0)) ‖∂tfh‖L2(0,T−h;L2(Γ0)) ‖uh‖L2(0,T−h;L2(Γ0))

+ ‖∂tẑh‖L2(0,T−h;L2(Γ0)) ‖uh‖L2(0,T−h;L2(Γ0)) .

The time derivatives of fh and ẑh are bounded because the Steklov average commutes with time derivative
and we know that wt and zt are bounded in L2(0, T ;L2(Γ0)). The same holds for j0 since Φ is a C2-
diffeomorphism. Finally, like above,∫ T−h

0

∫
Γ0

f ′(t+ h)u2
h ≤

1

h

∫ T−h

0

∫
Γ0

|f ′(t+ h)|
∫ t+h

t

u2(r)

≤ ‖u‖2L∞(0,T ;L∞(Γ0))

∥∥f ′(·+ h)
∥∥
L1(0,T−h;L1(Γ0))

.

4.3 Conclusion

Integrating (27) (tested with ξu′h of course) and combining (28), (29) and (30) from Lemma 4.4, we find

(1− ε)
∫ T−h

0

∫
Ω0

ξ(t)|∂tuh(t)|2 + (λT − (d+ 1)ρ) ‖∇uh(T − h)‖2L2(Ω0) ≤ C

Then if we just pick ε and ρ sufficiently small, we obtain∫ T−h

0

∫
Ω0

ξ(t)|∂tuh(t)|2 ≤ C
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independent of h. Since ξ is compactly supported around zero, we have (for a subsequence) that ∂tuh → v for
some v in L2(τ, T ;L2(Ω0)) for every τ . Since uh → u in L2(0, T − δ;H1(Ω0)) for every δ, we conclude
that on (τ, T − δ), ut = v. Therefore it follows for τ > 0 that ut ∈ L2(τ, T ;L2(Ω0)) and we have proved
Theorem 1.9.

5 Exponential convergence to equilibrium

In this section we prove that the solution of the system (3) with δΩ = δk = δk′ = 1 (repeated here for
convenience)

ut −∆u = 0 in Ω

∇u · ν = z − uw on Γ

∇u · ν = 0 on ∂D

wt − δΓ∆Γw = z − uw on Γ

zt − δΓ′∆Γz = uw − z on Γ

converges to an equilibrium (u∞, w∞, z∞) consisting of the non-negative constants uniquely determined by
the well-posed system

|Ω|u∞ + |Γ|z∞ = M1

|Γ|(w∞ + z∞) = M2

u∞w∞ = z∞,

(35)

where M1 and M2 were defined in (8). It is instructive to give the outline for the proof of Theorem 1.10 now and
leave the details to be filled in below.

Proof of Theorem 1.10. Recall from §1.2 the definition of the entropy and dissipation functionalsE andD given
by (9) and (10). Theorem 5.4 gives the differential inequality

d

dt
(E(u,w, z)− E(u∞, w∞, z∞) = −D(u,w, z) ≤ −K(E(u,w, z)− E(u∞, w∞, z∞))

where K > 0, and Gronwall’s inequality along with the lower bound on the relative entropy from Theorem 5.1
leads to

C
(
‖u(t)− u∞(t)‖2L1(Ω) + ‖w(t)− w∞(t)‖2L1(Γ) + ‖z(t)− z∞(t)‖2L1(Γ)

)
≤ e−Kt(E(u0, w0, z0)− E(u∞, w∞, z∞)).

Let us now introduce some functional inequalities on M = Ω or Γ that we will use in proving some of the
steps outlined above. Recall the standard Poincaré inequality:

‖u− u‖L2(M) ≤ CP (M) ‖∇Mu‖L2(M) .

We need also the logarithmic Sobolev inequality [45]: for u 6= 0,∫
M

u log
(u
u

)
≤ 4CL(M)

∫
M

|∇M
√
u|2. (36)

See [17] where we learn that this is in fact a consequence of the Poincaré inequality and the Sobolev inequality
(51). Another estimate we require is a lower bound for the entropy called the Csiszar–Kullback–Pinsker inequality
[11]: for u 6= 0, ∫

M

u log
(u
u

)
≥ 1

2|M |u ‖u− u‖
2
L1(M) . (37)

5.1 The Csiszar–Kullback–Pinsker inequality

The following theorem is a type of Csiszar–Kullback–Pinsker inequality for functions satisfying the conservation
laws (8).

Theorem 5.1. Let u : Ω→ R and w, z : Γ→ R be non-negative measurable functions satisfying the conser-
vation laws (8) with M1,M2 > 0. There exists a constant C depending on M1 and M2 such that

E(u,w, z)− E(u∞, w∞, z∞) ≥ C
(
‖u− u∞‖2L1(Ω) + ‖w − w∞‖2L1(Γ) + ‖z − z∞‖2L1(Γ)

)
.
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Proof. We follow the proof of Lemma 2.4 in [25]. Since u log u − u∞ log u∞ = u log (u/u∞) + (u −
u∞) log u∞ and (using z∞ = u∞w∞)∫

Ω

(u− u∞) log u∞ +

∫
Γ

(w − w∞) logw∞ +

∫
Γ

(z − z∞) log z∞

= log u∞

(∫
Ω

(u− u∞) +

∫
Γ

(z − z∞)

)
+ logw∞

∫
Γ

(w − w∞ + z − z∞)

= 0,

we find

E(u,w, z)− E(u∞, w∞, z∞)

=

∫
Ω

u log
(u
u

)
+

∫
Γ

w log
(w
w

)
+

∫
Γ

z log
(z
z

)
+ |Ω|

(
u log

(
u

u∞

)
− (u− u∞)

)
+ |Γ|

(
w log

(
w

w∞

)
− (w − w∞)

)
+ |Γ|

(
z log

(
z

z∞

)
− (z − z∞)

)
(using u/u∞ = (u/u)× (u/u∞))

≥ 1

2

(
1

M1
‖u− u‖2L1(Ω) +

1

M2
‖w − w‖2L1(Γ) +

1

M2
‖z − z‖2L1(Γ)

)
+
|Ω|2

4M1
(u− u∞)2

+
|Γ|2

4M2
(w − w∞)2 +

|Γ|2

4M2
(z − z∞)2

(by the Csiszar–Kullback–Pinsker inequality (37) and (38) below)

≥ C1

(
‖u− u‖2L1(Ω) + ‖w − w‖2L1(Γ) + ‖z − z‖2L1(Γ) + ‖u− u∞‖2L1(Ω) + ‖w − w∞‖2L1(Γ)

)
+ C1 ‖z − z∞‖2L1(Γ)

where C1 := min (1/4M1, 1/4M2) and we used the inequality

x log

(
x

y

)
− (x− y) ≥ (x− y)2

2x+ 2y
(38)

with x = u and y = u∞ and the bounds u, u∞ ≤ M1/|Ω|. Finally, we obtain the result by using on the right
hand side of the above calculation

‖u− u‖2L1(Ω) + ‖u− u∞‖2L1(Ω) ≥
1

2

(
‖u− u‖L1(Ω) + ‖u− u∞‖L1(Ω)

)2

≥ 1

2

(∫
Ω

√
|u− u|2 + |u− u∞|2

)2

≥ 1

2
‖u− u∞‖2L1(Ω)

(since |u− u∞|2 = |u− u|2 + |u− u∞|2).

5.2 Entropy entropy-dissipation estimate

The aim now is to relate the dissipiation with the relative entropy. More precisely, we want to show that

D(u,w, z) ≥ K(E(u,w, z)− E(u∞, w∞, z∞))

for a positive constant K . This will require some technical results in the form of the next two lemmas. The above
inequality will then be proved in Theorem 5.4. We denote U∞ =

√
u∞ and similarly for w∞ and z∞. The next

lemma is established along the same method as Lemma 3.1 in [24] so we shall omit the proof.

Lemma 5.2. Let a, b, c ≥ 0 be constants such that the equalities

|Ω|a2 + |Γ|c2 = M1 = |Ω|U2
∞ + |Γ|Z2

∞

|Γ|(b2 + c2) = M2 = |Γ|(W 2
∞ + Z2

∞)

hold. Then
(a− U∞)2 + (b−W∞)2 + (c− Z∞)2 ≤ C(ab− c)2.
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The next lemma is a version of Lemma 5.2 for functions.

Lemma 5.3. Let A : Ω → R and B,C : Γ → R be non-negative measurable functions with A ∈ H1(Ω)
satisfying the conservation laws

|Ω|A2 + |Γ|C2 = M1 = |Ω|U2
∞ + |Γ|Z2

∞

|Γ|(B2 + C2) = M2 = |Γ|(W 2
∞ + Z2

∞).

Then there exist constants L1, L2 and L3 such that

‖A− U∞‖2L2(Ω) + ‖B −W∞‖2L2(Γ) + ‖C − Z∞‖2L2(Γ)

≤ L1 ‖AB − C‖2L2(Γ) + L2(ρ)
(∥∥A−A∥∥2

L2(Ω)
+
∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
+ ρ ‖∇A‖2L2(Ω)

for ρ > 0 arbitrarily small.

Proof. We shall adapt techniques presented in the proofs of [7, Lemma 3.5] and [24, Lemma 3.2]; the latter
paper covers our type of reaction term but all quantities are on a single (bulk) domain, whilst the former has a
rather different reaction term to the one in our case but there is a bulk-surface coupling between the quantities.

The proof is split into two steps. It is important to bear in mind that below all mean values of A or A2 are
taken over the domain Ω and never on Γ.
STEP 1. In the first step, we shall prove

‖AB − C‖2L2(Γ) ≥
|Γ|
2
|AB − C|2 −K1

(∥∥A−A∥∥2

L2(Γ)
+
∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
.

This inequality establishes a relationship between the L2 norm ofA on Γ and the mean value ofA on Ω. Define
δ1 = A−A on Ω and δ2 and δ3 on Γ similarly. Define the set

S := {x ∈ Γ | |δ1(x)|, |δ2(x)|, |δ3(x)| ≤ K}

which is sensible due to the trace theorem. Since AB = (A + δ1)(B + δ2) = AB + Aδ2 + Bδ1 + δ1δ2
and C = C + δ3, we have with the aid of the identity 2ab ≤ a2/2 + 2b2 that

‖AB − C‖2L2(S) ≥
1

2

∥∥AB − C∥∥2

L2(S)
−
∥∥Aδ2 +Bδ1 + δ1δ2 − δ3

∥∥2

L2(S)

≥ 1

2

∥∥AB − C∥∥2

L2(S)
− 2 max

(
M1

|Ω| ,
M2

|Γ| ,K
2, 1

)
︸ ︷︷ ︸

=:K1

∫
S

|δ2|2 + |δ1|2 + |δ3|2. (39)

where we used that A
2 ≤ A2 ≤M1/|Ω|. Now we work on S⊥ = {x ∈ Γ | |δ1(x)| or |δ2(x)| or |δ3(x)| >

K}. By Chebyshev’s inequality,

|{δ2
i > K2}| ≤ 1

K2

∫
Γ

|δi|2

and therefore |S⊥| ≤ (3/K2)(
∫

Γ
|δ1|2 + |δ2|2 + |δ3|2). Hence

∥∥AB − C∥∥2

L2(S⊥)
≤
(
M1

|Ω| + 1

)
M2

|Γ| |S
⊥| ≤ K2

(∫
Γ

|δ1|2 + |δ2|2 + |δ3|2
)

where K2 = (3M2/K
2|Γ|) (M1/|Ω|+ 1). This leads to

‖AB − C‖2L2(S⊥) ≥
∥∥AB − C∥∥

L2(S⊥)
−K2

(∫
Γ

|δ1|2 + |δ2|2 + |δ3|2
)

since the right hand side is non-positive, and finally, combining this with (39),

‖AB − C‖2L2(Γ) ≥
|Γ|
2
|AB − C|2

−
(
K1 +

K2

2

)
︸ ︷︷ ︸

=:K3

(∥∥A−A∥∥2

L2(Γ)
+
∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
. (40)
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STEP 2. Define µi by√
A2 = U∞(1 + µ1),

√
B2 = W∞(1 + µ2),

√
C2 = Z∞(1 + µ3)

and observe that µi ≥ −1. We see that |Ω|δ2
1 =

∥∥A−A∥∥2

L2(Ω)
= |Ω|(A2 −A2

) which implies

A =
√
A2 − δ2

1√
A2 +A

= U∞(1 + µ1)− δ2
1√

A2 +A
. (41)

Thus the terms on the left hand side of the statement to be proved can be written as

‖A− U∞‖2L2(Ω) = |Ω|

(
U2
∞(1 + µ1)2 − 2U2

∞(1 + µ1) +
2U∞δ2

1√
A2 +A

+ U2
∞

)

= |Ω|

(
µ2

1U
2
∞ +

2U∞δ2
1√

A2 +A

)

which is unbounded for vanishing A2 (and A2 ≥ A2
). So we consider two subcases:

CASE 1 (A2, B2, C2 ≥ ε2). Now, observe that the left hand side of the statement to be proved is

‖A− U∞‖2L2(Ω) + ‖B −W∞‖2L2(Γ) + ‖C − Z∞‖2L2(Γ)

= |Ω|

(
µ2

1U
2
∞ +

2U∞δ2
1√

A2 +A

)
+ |Γ|

(
µ2

2W
2
∞ +

2W∞δ2
2√

B2 +B

)
+ |Γ|

(
µ2

3Z
2
∞ +

2Z∞δ2
3√

C2 + C

)

≤ |Ω|µ2
1U

2
∞ + |Γ|µ2

2W
2
∞ + |Γ|µ2

3Z
2
∞ +

2

ε
max

(√
M1

|Ω| ,

√
M2

|Γ|

)
︸ ︷︷ ︸

=:K4

(
δ2
1 + δ2

2 + δ2
3

)
.

To deal with the right hand side of the statement to be shown, first defining

FA :=
1√

A2 +A
≤ 1√

A2
≤ 1

ε
and GU,B := U∞(1 + µ1)FB =

√
U2FB ≤

1

ε

√
M1

|Ω| ,

note that, with (41),

AB − C =
(
U∞(1 + µ1)− δ2

1FA
)(

W∞(1 + µ2)− δ2
2FB

)
−
(
Z∞(1 + µ3)− δ2

3FC
)

= Z∞((1 + µ1)(1 + µ2)− (1 + µ3))− δ2
2GU,B − δ2

1GW,A + δ2
1δ

2
2FAFB + δ2

3FC

≥ Z∞((1 + µ1)(1 + µ2)− (1 + µ3))−
√
K5√

2CM
(δ2

1 + δ2
2 + δ2

3) (42)

where we used δ2
1 ≤ A2 + A

2 ≤ 2M1/|Ω| and K5 = K5(ε,M1,M2) is defined so that the inequality

holds, and CM is the upper bound (δ2
1 + δ2

2 + δ2
3) ≤ CM . So the right hand side of the claimed inequality

becomes, recalling (40) and the interpolated trace inequality

L1 ‖AB − C‖2L2(Γ) + L2

(∥∥A−A∥∥2

L2(Ω)
+
∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
+ ρ ‖∇A‖2L2(Ω)

≥ L1|Γ|
2
|AB − C|2

− L1K3

(
Cρ
∥∥A−A∥∥2

L2(Ω)
+

ρ

K3L1
‖∇A‖2L2(Ω) +

∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
+ L2

(∥∥A−A∥∥2

L2(Ω)
+
∥∥B −B∥∥2

L2(Γ)
+
∥∥C − C∥∥2

L2(Γ)

)
+ ρ ‖∇A‖2L2(Ω)

≥ |Γ|L1

4

(
Z2
∞((1 + µ1)(1 + µ2)− (1 + µ3))2 −K5(δ2

1 + δ2
2 + δ2

3)
)

+ (L2 −K3L1 max(Cρ, 1))
(
|Ω|δ2

1 + |Γ|(δ2
2 + δ2

3)
)

(by (42))

≥ L1|Γ|
4

(
Z2
∞((1 + µ1)(1 + µ2)− (1 + µ3))2)

+

(
(L2 −K3L1 max(Cρ, 1)) min(|Ω|, |Γ|)− |Γ|L1K5

4

)
︸ ︷︷ ︸

=:K6

(
δ2
1 + δ2

2 + δ2
3

)
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where when we recalled (42) we used that if a ≥ b − c for non-negative constants then 2a2 ≥ b2 − 2c2 and
the fact that the δ2

i are bounded. It suffices to prove that

|Ω|µ2
1U

2
∞ + |Γ|µ2

2W
2
∞ + |Γ|µ2

3Z
2
∞ ≤

L1|Γ|
4

(
Z2
∞((1 + µ1)(1 + µ2)− (1 + µ3))2)

+ (K6 −K4)
(
δ2
1 + δ2

2 + δ2
3

)
which follows by Lemma 5.2 provided K6 ≥ K4 and this is the case if L2 is chosen sufficiently large.
CASE 2 (A2 or B2 or C2 ≤ ε2). In this case, we bound the L2 norm of A− U∞ explicitly in terms of the Mi:

‖A− U∞‖2L2(Ω) + ‖B −W∞‖2L2(Γ) + ‖C − Z∞‖2L2(Γ) ≤ 2M1 + 4M2.

Consider the case that A2 ≤ ε2. Just like at the start of Step 2, we have C
2

= C2 − δ2
3 and thus

C
2

=
M1

|Γ| −
|Ω|
|Γ|A

2 − δ2
3 ≥

M1

|Γ| −
|Ω|
|Γ| (ε

2 + δ2
1)− δ2

3 .

With this, we may write, using A
2 ≤ A2 ≤ ε2,

|C −AB|2 ≥ M1

|Γ| −
|Ω|
|Γ| (ε

2 + δ2
1)− δ2

3 − 2BCε (43)

and so if L2 is large enough and ε is small enough,

|C −AB|2 + L2(δ2
1 + δ2

2 + δ2
3) ≥ M1

|Γ| −
|Ω|
|Γ| ε

2 − 2BCε+

(
L2 −

|Ω|
|Γ|

)
δ2
1 + L2δ2

2 + (L2 − 1)δ2
3

≥ C∗ > 0.

From the top, we find

‖A− U∞‖2L2(Ω) + ‖B −W∞‖2L2(Γ) + ‖C − Z∞‖2L2(Γ)

≤ 2M1 + 4M2

C∗

(
|C −AB|2 + L2(δ2

1 + δ2
2 + δ2

3)
)
.

The B2 ≤ ε2 case can be dealt with similarly. For the C2 ≤ ε2 case, we see that, like above,

A
2 ≥ M1

|Ω| −
|Γ|
|Ω| (ε

2 + δ2
3)− δ2

1 and B
2 ≥ M2

|Γ| − (ε2 + δ2
3)− δ2

2

and so in lieu of (43)

(C −AB)2 ≥ (AB)2 − 2ABC ≥
(
M1

|Ω| −
|Γ|
|Ω| (ε

2 + δ2
3)− δ2

1

)(
M2

|Γ| − (ε2 + δ2
3)− δ2

2

)
− 2ABε

and the same argument as before gives the result.

Finally we are able to state and prove the desired entropy-dissipation estimate.

Theorem 5.4. There exists a constant K > 0 such that

D(u,w, z) ≥ K(E(u,w, z)− E(u∞, w∞, z∞)).

Proof. This theorem can be proved like Proposition 3.1 in [24]. Define the continuous functionϕ : (0,∞)2 → R
by

ϕ(x, y) =
x log(x

y
)− (x− y)

(
√
x−√y)2

= ϕ

(
x

y
, 1

)
which is increasing in its first argument and satisfies ϕ(u, u∞) = ϕ( u

u∞
, 1) and u/u∞ ≤ M

u∞
so that ϕ(u/

u∞, 1) ≤ CM where CM depends on the conservation law constants and the equilibrium values. Then

u log

(
u

u∞

)
− (u− u∞) ≤ CM (

√
u−
√
u∞)2 (by definition of ϕ and the bound above)

= CM (U∞(1 + µ1)−
√
u∞)2

= CMU
2
∞µ

2
1
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where we used u = U2 = U2
∞(1 + µ1)2 by definition of the µi in the proof of Lemma 5.3. Using this and the

log Sobolev inequality (36), we find

E(u,w, z)− E(u∞, w∞, z∞)

=

∫
Ω

u log
u

u
+

∫
Γ

w log
w

w
+

∫
Γ

z log
z

z

+ |Ω|
(
u log

u

u∞
− (u− u∞)

)
+ |Γ|

(
w log

w

w∞
− (w − w∞)

)
+ |Γ|

(
z log

z

z∞
− (z − z∞)

)
≤ 4 max(CL(Ω), LΓ)

(∫
Ω

|∇U |2 +

∫
Γ

|∇ΓW |2 +

∫
Γ

|∇ΓZ|2
)

+ |Ω|CMU2
∞µ

2
1 + |Γ|CM (W 2

∞µ
2
2 + Z2

∞µ
2
3).

On the other hand, using (uw − z)(log(uw)− log z) ≥ 4(UW − Z)2, we find

D(u,w, z)

≥ 4

(∫
Ω

|∇U |2 + δΓ

∫
Γ

|∇ΓW |2 + δΓ′

∫
Γ

|∇ΓZ|2
)

+ 4

∫
Γ

(UW − Z)2

≥ 4 ‖UW − Z‖2L2(Γ) + 4CP θmin(1, δΓ, δΓ′)
(∥∥U − U∥∥2

L2(Ω)
+
∥∥W −W∥∥2

L2(Γ)
+
∥∥Z − Z∥∥2

L2(Γ)

)
+ 4(1− θ) min(1, δΓ, δΓ′)

(∫
Ω

|∇U |2 +

∫
Γ

|∇ΓW |2 +

∫
Γ

|∇ΓZ|2
)

where in the final inequality we simply wrote 1 = θ + (1 − θ) and employed Poincaré’s inequality on one part
of this separation. To conclude, we need to prove that the right hand side of the above exceeds

4K max(CL(Ω), LΓ)

(∫
Ω

|∇U |2 +

∫
Γ

|∇ΓW |2 +

∫
Γ

|∇ΓZ|2
)

+K
(
|Ω|CMU2

∞µ
2
1 + |Γ|CM (W 2

∞µ
2
2 + Z2

∞µ
2
3)
)

for a positive constantK . If we choose K so that 4(1− θ) min(1, δΓ, δΓ′)− 4K max(CL(Ω), LΓ) ≥ ε for
ε sufficiently small (see below), we are left to prove that

4 ‖UW − Z‖2L2(Γ) + 4CP θmin(1, δΓ, δΓ′)
(∥∥U − U∥∥2

L2(Ω)
+
∥∥W −W∥∥2

L2(Γ)
+
∥∥Z − Z∥∥2

L2(Γ)

)
+ ε

(∫
Ω

|∇U |2 +

∫
Γ

|∇ΓW |2 +

∫
Γ

|∇ΓZ|2
)

≥ KCM
(
|Ω|U2

∞µ
2
1 + |Γ|(W 2

∞µ
2
2 + Z2

∞µ
2
3)
)
.

Indeed, setting A(ε) := min(4, 4CP θmin(1, δΓ, δΓ′), ε) min(L−1
1 , L2(ε)−1, ε−1), the left hand side of

the above is greater than

A(ε)
(
L1 ‖UW − Z‖2L2(Γ) + L2(ε)

(∥∥U − U∥∥2

L2(Ω)
+
∥∥W −W∥∥2

L2(Γ)
+
∥∥Z − Z∥∥2

L2(Γ)

))
+A(ε)ε ‖∇U‖2L2(Ω)

≥ A(ε)
(
‖U − U∞‖2L2(Ω) + ‖W −W∞‖2L2(Γ) + ‖Z − Z∞‖2L2(Γ)

)
(by Lemma 5.3)

≥ A(ε)(|Ω|U2
∞µ

2
1 + |Γ|W 2

∞µ
2
2 + |Γ|Z2

∞µ
2
3).

Now, fix ε so that

0 < K̂ :=
4(1− θ) min(1, δΓ, δΓ′)− ε

4 max(CL(Ω), LΓ)

then we pick K to satisfy 0 < K ≤ K̂ and A(ε) ≥ KCM .

6 Conclusion

The extension of these results to higher dimensions is an open issue and perhaps the stage where we use the
De Giorgi method can be improved to utilise the fact that the equations are coupled and thus it may make sense
to treat the full 3×3 system in a unified approach to derive theL∞ bounds. In terms of the model, we could also
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consider equations on the interior of the surface Γ(t), i.e. on I(t); including such equations may result in more
realistic models for certain applications and there is biological motivation [27] to do so. We did not have time
to consider some fast reaction and diffusion limits for the system. The idea is to send some of the parameters
appearing in (7) to zero and study the resulting problems, which in fact turn out to be free boundary problems.
The rigorous justification of these limits needs the resolvement of some technical issues so we will address this
limiting behaviour in separate paper.

A Derivation of the model

In this section we derive the model system (1) from conservation laws and transport theorems applied to the bulk
and to the surface. We begin by addressing the bulk equation. LetM(t) ⊂ Ω(t) be a portion of the bulk domain
with boundary ∂M(t) moving with a velocity field Va (which has to be such that the normal component of Va

agrees with V on Γ and Vo on ∂D). Consider the conservation law

d

dt

∫
M(t)

u = −
∫
∂M(t)

~q · νM

where νM = νM (t) is the outward normal vector to ∂M(t) and no reaction term inside the domain is consid-
ered. Then, by the divergence theorem and Reynolds transport theorem we find that∫

M(t)

ut +∇ · (uVa) = −
∫
M(t)

∇ · ~q.

Now we choose ~q = −D∇u+ u(VΩ −Va) where the advective term takes into account the fact that points
in Ω(t) are subject to a material velocity field VΩ, and we use the arbitrariness of M(t) to obtain

ut +∇ · (uVΩ)−D∆u = 0. (44)

We derive now the equations on the surface, along the same lines as in [20]. As before let M(t) ⊂ Γ(t) be a
portion of the surface with boundary ∂M(t) which is moving with the normal velocity V. The conservation law
now admits a reaction term inside M in addition to the flux along the boundary ∂M

d

dt

∫
M(t)

ϑ =

∫
M(t)

f −
∫
∂M(t)

~q · µ

where f is the forcing term to be defined later and µ is a conormal vector, that is, it is an outward unitary vector
normal to ∂M and tangential to Γ. The flux is given by the vector ~q. Now, using the integration by parts formula∫

∂M(t)

~q · µ =

∫
M(t)

(∇Γ · ~q + ~q · νH)

and the transport theorem on surfaces, we may write∫
M(t)

∂◦ϑ+ ϑ∇Γ ·V +∇Γ · ~q + ~q · νH =

∫
M(t)

f,

where ∂◦ϑ = ϑt +∇ϑ ·V is the normal time derivative [10, 21], which is the material derivative with respect
to a velocity field V that is purely normal. Similar to before we choose ~q = −Dϑ∇Γϑ + ϑ(VΓ −V) which
gives the pointwise equation

∂◦ϑ+ ϑ∇Γ ·V +∇Γ · (ϑVτ
Γ)−Dϑ∆Γϑ = f. (45)

Equations (44) and (45) correspond to those on the model problem (1) by taking f = r and Dϑ = δΓ for the
equation for w and f = −r and Dϑ = δΓ′ for the equation for z.

B Preliminary results

In this section we collect some technical facts that are used in the paper. Here and below, Ω ⊂ Rd+1 is a
sufficiently smooth bounded domain with ∂Ω =: Γ.
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B.1 Calculus identities

Observe that for sufficiently regular functions a and b defined on Ω and vector fields J,∫
Ω

(J · ∇a)b+ (∇ · J)ab =

∫
Ω

∇ · (aJ)b =

∫
Ω

∇ · (aJb)− aJ · ∇b =

∫
Γ

abJ · ν −
∫

Ω

a(J · ∇b).

From this we can deduce several expressions that will be useful throughout the paper.
Bulk identities. ∫

Ω

(J · ∇a)a =
1

2

∫
Γ

a2J · ν − 1

2

∫
Ω

(∇ · J)a2∫
Ω

∇ · (Ja)ak =

∫
Ω

(∇ · J)aak +
1

2

∫
Γ

a2
k(J · ν)− 1

2

∫
Ω

a2
k∇ · J (46)∫

Ω

∇ · (JΩa)a+ =
1

2

∫
Ω

|a+|2(∇ · JΩ) +
1

2

∫
Γ

j|a+|2 (47)

Here, we used that ∇a = ∇ak in supp{ak} to write ∇ · (Ja)ak = (∇ · J)aak + (J · ∇ak)ak, and we
recalled that j is the jump on the velocities defined before. In a similar way we can deduce formulae if a, b and
J are now defined on Γ.
Surface identities∫

Γ

(J · ∇Γa)a = −1

2

∫
Γ

a2HJ · ν − 1

2

∫
Γ

(∇Γ · J)a2∫
Γ

∇Γ · (Ja)ak =

∫
Γ

(∇Γ · J)aak −
1

2

∫
Γ

a2
kH(J · ν)− 1

2

∫
Γ

a2
k∇Γ · J (48)∫

Γ

∇Γ · (JΓa)a+ =
1

2

∫
Γ

|a+|2∇Γ · JΓ (49)

Above, we used the divergence theorem
∫

Γ
∇Γ · J = −

∫
Γ
HJ · ν on closed surfaces [21, Theorem 2.10].

The final equalities in the two sets of identities also hold when a+ is replaced with a−.

B.2 Useful inequalities

We frequently use the interpolated trace inequality [28, Theorem 1.5.1.10]: given u ∈ H1(Ω), the following
holds for any ε > 0: ∫

Γ

|u|2 ≤ ε
∫

Ω

|∇u|2 +
C

ε

∫
Ω

|u|2. (50)

We also use the standard Sobolev inequality: for v ∈ H1(Γ),

CI ‖v‖Lp(Γ) ≤ ‖v‖H1(Γ) where

{
1 ≤ p <∞ : d ≤ 2

p = 2d
d−2

: d > 2.
(51)

Interpolation inequalities. Let us record some interpolation inequalities related to the quantities

‖u‖Q(Γ) := max
t∈[0,T ]

‖u(t)‖L2(Γ(t)) + ‖∇Γu‖L2
L2(Γ)

and
‖u‖Q(Ω) := max

t∈[0,T ]
‖u(t)‖L2(Ω(t)) + ‖∇u‖L2

L2(Ω)

.

Lemma B.1. For r∗ > 2 and q∗ defined by

1

q∗
=
d− 2

r∗d
+
r∗ − 2

2r∗
,

we have
‖u‖Lr∗

Lq∗ (Γ)
≤ C1(T ) ‖u‖Q(Γ) (52)

where C1(T ) = C1

√
T if T > 1, otherwise C1 is independent of T .
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Proof. The Gagliardo–Nirenberg inequality (eg. [9, §1.2]) states

‖u‖Lq∗ (Γ) ≤ C ‖u‖
θ
H1(Γ) ‖u‖

1−θ
L2(Γ)

where 1/q∗ = θ(d− 2)/2d+ (1− θ)/2 for θ ∈ (0, 1). This implies that

‖u‖Lr∗
Lq∗ (Γ)

=

(∫ T

0

‖u‖r∗Lq∗ (Γ(t))

) 1
r∗
≤ C

(∫ T

0

‖u‖r∗θ
H1(Γ(t))

) 1
r∗

max
t
‖u(t)‖(1−θ)

L2(Γ(t))
.

For r∗ > 2, choosing θ = 2/r∗, this reads

‖u‖Lr∗
Lq∗ (Γ)

≤ C ‖u‖
2
r∗
L2
H1(Γ)

max
t
‖u(t)‖

1− 2
r∗

L2(Γ(t))
.

An application of Young’s inequality with exponents (r∗/2, (r∗/2)′) implies

‖u‖Lr∗
Lq∗ (Γ)

≤ 2C

r∗
‖u‖L2

H1(Γ)

+ C

(
1− 2

r∗

)
max ‖u(t)‖L2(Γ(t)) ,

and we conclude by using

‖u‖L2
H1(Γ)

≤
√
T max

t
‖u(t)‖L2(Γ(t)) + ‖∇Γu‖L2

L2(Γ)

.

The result of the next lemma is similar to the inequality in Lemma B.1 but it relates the left hand side to a
norm on the bulk domain. For more details see [39, (A.1)] and references therein.

Lemma B.2. For r∗ ∈ [2,∞] and q∗ ∈ [2, 2d/(d− 1)] satisfying

1

r∗
+

d

2q∗
=
d+ 1

4
,

we have
‖u‖Lr∗

Lq∗ (Γ)
≤
√
CI ‖u‖Q(Ω) .

C Non-dimensionalisation

In order to non-dimensionalise the system (11), we use the new variables

x = x/L t = t/S u = u/U w = w/W z = z/Z VΩ = SVΩ/L

and VΓ defined similarly, under the notation f(t, x) = f(t, x)/F . Here L is a length scale, S is a time scale
and U,W,Z are typical concentration values for u,w, z respectively. Observe by the chain rule that

ut =
U

S
u′ ∇u =

U

L
∇u ∇ ·VΩ =

1

S
∇ ·VΩ (VΓ −VΩ) · ν =

L

S
(VΓ −VΩ) · ν =:

L

S
j

and hence u̇ = U
S
∂•u. The u equation then reads

U

S
∂•u+

U

S
u∇ ·VΩ −

DLU

L2
∆u = 0,

which we can multiply through by S
U

to obtain

∂•u+ u∇ ·VΩ − δΩ∆u = 0

where we have set δΩ := SDL/L
2. The boundary condition becomes

DLU

L
∇u · ν +

UL

S
ju = Zkoffz − UWkonuw

which we can write as (multiplying by S/LU )

δΩ∇u · ν + uj =
SZ

LU
koffz −

SW

L
konuw.
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In a similar fashion, we derive the equations for w and z:

∂•w + w∇Γ ·VΓ −
SDΓ

L2
∆Γw =

SZ

W
koffz − USkonuw

∂•z + z∇Γ ·VΓ −
DΓ′S

L2
∆Γz = −(Skoffz −

SUW

Z
konuw)

Defining

δΓ :=
DΓS

L2
δΓ′ :=

SDΓ′

L2
γ :=

LU

W
dk :=

L

WSkon
γ′ :=

LU

Z
dk′ :=

UL

SZkoff
,

so that

γ

dk
= USkon

γ′

dk
=
WUS

Z
kon

γ

dk′
=
ZSkoff
W

and
γ′

dk′
= Skoff ,

we can write

δΩ∇u · ν + uj =
1

dk′
z − 1

dk
uw

∂•w + w∇Γ ·VΓ − dΓ∆Γw = γ(
1

dk′
z − 1

dk
uw)

∂•z + z∇Γ ·VΓ − dΓ′∆Γz = −γ′( 1

dk′
z − 1

dk
uw).

Now set w = w/γ and z = z/γ′ and the above then becomes

δΩ∇u · ν + uj =
γ′

dk′
z − γ

dk
uw

∂•w + w∇Γ ·VΓ − dΓ∆Γw =
γ′

dk′
z − γ

dk
uw

∂•z + z∇Γ ·VΓ − dΓ′∆Γz = −(
γ′

dk′
z − γ

dk
uw).

Finally, set
1

δk
:=

γ

dk

1

δk′
:=

γ′

dk′

and relabel all variables (and write j := −j) to obtain (recalling the equation for u)

∂•u+ u∇ ·VΩ − δΩ∆u = 0

δΩ∇u · ν − uj =
1

δk′
z − 1

δk
uw

∂•w + w∇Γ ·VΓ − dΓ∆Γw =
1

δk′
z − 1

δk
uw

∂•z + z∇Γ ·VΓ − dΓ′∆Γz =
1

δk
uw − 1

δk′
z.

This is exactly the model (7) with the parametrisation velocity Vp chosen to be the corresponding material
velocities.
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