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Corrector estimates for a class of
imperfect transmission problems

Sina Reichelt

Abstract

Based on previous homogenization results for imperfect transmission problems in two-component
domains with periodic microstructure, we derive quantitative estimates for the difference between
the microscopic and macroscopic solution. This difference is of order ερ, where ε > 0 describes
the periodicity of the microstructure and ρ ∈ (0, 1

2 ] depends on the transmission condition at
the interface between the two components. The corrector estimates are proved without assuming
additional regularity for the local correctors using the periodic unfolding method.

1 Introduction

This paper considers a class of linear elliptic equations with an imperfect transmission condition mod-
eling, for instance, heat conduction, diffusion, or stationary current flow in a composite material. The
macroscopic domain Ω consists of a connected component Ωε

1 and a second component Ωε
2, which is

the collection of periodically distributed inclusions or pores. The characteristic length scale of the mi-
crostructure, given by the distance between two such pores, is of order ε. On the interface Γε between
the two components, the flux is proportional to the jump of the solution across this interface, which
models e.g. a contact resistance. The corresponding proportionality factor is of order εγ with γ ∈ R.
More precisely, we consider for ε > 0 the problem

− div(Aε∇uε1) = f in Ωε
1,

− div(Aε∇uε2) = f in Ωε
2,

Aε∇uε1 ·nε1 = −Aε∇uε2 ·nε2 on Γε,
−Aε∇uε1 ·nε1 = εγhε (uε1 − uε2) on Γε,

uε1 = 0 on ∂Ω,

(1.1)

where nεi is the unit outer normal to Ωε
i for i = 1, 2. The matrix Aε(x) ∈ Rd×d

sym and the coefficient
hε(x) are ε-periodic and uniformly bounded. Moreover, we suppose that Aε is uniformly elliptic, hε is
strictly positive, and the source term f is square-integrable.

For ε tending to zero, the homogenization limit of problem (1.1) has already been well studied in the
literature. Based on Tartar’s method for oscillating test functions, the homogenization limit was derived
for all γ ≤ 1 in [Mon03, DoM04]; see references therein for earlier works. This problem was also
treated for two connected components [CaP97], poly crystals [Hum00], for stochastic microstructures
[Hei11], and evolution problems [DFM07, Jos09]. Recently, the homogenization limit and strong two-
scale convergence of the gradients were proved in [DLNT11] for γ ≤ 1 via the method of periodic
unfolding. However, up to now all publications contain qualitative results, whereas, this paper provides
quantitative corrector estimates.
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S. Reichelt 2

In the limit ε → 0, we obtain one homogenized elliptic equation posed in the whole macroscopic
domain

− div(A0
γ∇u) = f in Ω,

u = 0 on ∂Ω.
(1.2)

The constant matrix A0
γ ∈ Rd×d

sym depends on γ, whereby we distinguish the following three cases: (i)
for −1 < γ ≤ 1, (ii) for γ = −1, and (iii) for γ < −1. The case γ > 1 is not treated here, since it
allows for unbounded solutions as it is shown in [Hum00].

For γ < −1, the jump uε1 − uε2 across the interface Γε is negligibly small such that A0
γ is given via

the standard unit cell problem on the whole reference cell, see (6.2) for more details. In other words,
the model in (1.1) behaves for ε� 1 like a classical Poisson equation with ε-periodic coefficients in a
one-component domain.

For γ = −1, the matrix A0
−1 is obtained by solving a unit cell problem in two sub-domains of the

reference cell separated by an interface, see (5.2). In this case, the unit cell problem reflects the struc-
ture of (1.1) on the level of the reference cell and the effective matrix takes the imperfect transmission
condition into account. Indeed, this is the only case, where the effective matrix depends on the values
of the boundary term hε.

For−1 < γ ≤ 1, we obtain the same effective matrix A0
γ as in [CiP79], cf. (4.2), wherein the homog-

enization of the Poisson equation is considered in the perforated domain Ωε
1 with no-flux boundary

conditions at the holes. In their situation, the function f is multiplied by the ratio of the volume of the
occupied domain Ωε

1 divided by the total volume of Ω. However, this ratio does not appear in (1.2)
which shows that the exchange between the two components is sufficient in order to take into account
also the source term in Ωε

2.

The main result of this paper are the quantitative error estimates between the microscopic solution
(uε1, u

ε
2), the macroscopic limit u, and their corresponding correctors for the three different cases: (i)

in the Theorems 4.1 and 4.3, (ii) in Theorem 5.1, and (iii) in Theorem 6.3. In the special case γ = 1,
the jump across the interface Γε is of order O(1) and it depends on f, hε, and the volume fraction
of the component Ωε

2. To prove this result in Theorem 4.3, we require additional H2-regularity for the
source term f and that hε is constant. In the case γ < −1, Lipschitz continuity of the matrix Aε is
assumed for technical reasons.

For all γ ≤ 1, the L2-corrector estimates are of order ερ(γ) with 0 < ρ(γ) ≤ 1/2, and in the
special cases γ ∈ {−1, 0, 1} or γ ≤ −2 we recover the maximal convergence rate ρ = 1/2.
In order to prove these quantitative estimates, we need that the limit u is of higher H2-regularity,
whereas uε1 and uε2 as well as the local correctors are in general only H1-regular. The derivation
of the corrector estimates relies on the two-scale formulation of the limit (1.2) as in [DLNT11], the
periodic unfolding method as in [CDG08, CD∗12], and unfolding based error estimates as in [Gri04,
Gri05, Rei16]. The key step of the proofs is to construct the correct approximating sequences via
defining suitable recovery operators. Those operators recover the oscillations of the gradients in the
components Ωε

1 and Ωε
2 from the macroscopic limit and the local correctors. Especially for the case (i),

the new operatorHε
2 is introduced in (3.6) in order to capture the “flatness” of the gradient∇uε2 within

the inclusions.

The text is structured as follows. In Section 2, we present the model as well as all necessary as-
sumptions and notations. In Section 3, the periodic unfolding method is introduced and we define
the unfolding and folding (averaging) operator and, in particular, the recovery operators in Subsection
3.1. In the case (i), the corrector estimates are given in Section 4. Therein, we distinguish the cases
−1 < γ < 1 (Theorem 4.1) and γ = 1 (Theorem 4.3) in the Subsections 4.1 and 4.2, respectively,
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Corrector estimates for a class of imperfect transmission problems 3

although they share the same effective matrix. The remaining corrector estimates for the cases (ii)
and (iii) are given in the Sections 5, and 6, respectively. We conclude the presentation with a brief
discussion in Section 7 and a possible application to supercapacitors in Subsection 7.1.

2 The imperfect transmission problem posed in a two-component
domain

Throughout the text we postulate the following assumptions on the domain and the periodic microstruc-
ture as shown in Figure 1.

(D1) The macroscopic domain Ω is a d-dimensional polytope with d ≥ 2, i.e. it is

Ω =
d∏
i=1

[ai, bi) with ai < bi and ai, bi ∈ Z.

(D2) The reference cell Y = [0, 1)d is the disjoint union of the subsets Y1 and Y2, where Y2 ⊂ Y
is open, connected, and satisfies dist(Y2, ∂Y ) > 0. The inner boundary Γ = ∂Y2 is Lipschitz
continuous and it holds Y1 = Y \Y2.

(D3) Let Kε = {λ ∈ Zd | ελ ∈ Ω} denote the set of nodal points inside Ω. The two disjoint
components Ωε

1 and Ωε
2, and their common boundary Γε are given via

Ωε
1 =

⋃
λ∈Kε

ε(λ+ Y1), Ωε
2 =

⋃
λ∈Kε

ε(λ+ Y2), and Γε = ∂Ωε
2.

(D4) The microscopic period ε > 0 is given via ε = 1/n with n ∈ N such that Ω is the exact union
of translated cells ε(λ+ Y ) with λ ∈ Kε for all ε.

Figure 1: The two-component domain Ω (left) and the reference cell Y (right).

By construction, the set Ωε
1 is connected, bounded, and has a Lipschitz boundary, whereas the set Ωε

2

consists of isolated inclusions. The former implies the existence of extension operators mapping from
H1

D(Ωε
1) to H1

D(Ω), where the subscript D indicates homogeneous Dirichlet boundary conditions.
Indeed, ∂Ωε

1 is the disjoint union of Γε and ∂Ω, and it is

H1
D(Ωε

1) =
{
u ∈ H1(Ωε

1) |u = 0 on ∂Ω
}
.

The assumption that Y2 does not touch the boundary of the reference cell Y is essential for the con-
struction of the recovery operatorHε

2 in (3.6), see also Remark 3.1. This assumption is also contained
in [DLNT11].
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Remark 2.1. The Assumption (D4) significantly simplifies the presentation of the corrector estimates,
however, the results remain valid for arbitrary domains Ω with smooth boundary and ε ∈ R. In such
a case, one considers bigger domains Ω̃ε

i , i = 1, 2, satisfying again (D2)–(D4) and uses Lemma A.6
to control the error at the boundary (cf. [Gri04, Gri05, Rei16]). In any case, we have to avoid cells
ε(λ+ Y ) intersecting the boundary ∂Ω such that Ωε

1 is always a Lipschitz domain (cf. also [DLNT11,
Fig. 2]).

In order to obtain unique and bounded solutions for the microscopic respective homogenized problem,
we require the following assumptions for the given data. The dot “·” always denotes the scalar product
in Rd.

(A1) The matrix A ∈ L∞(Y ;Rd×d
sym) is Y -periodic, symmetric, and uniformly elliptic, i.e.

∃α > 0 : A(y)ξ ·ξ ≥ α|ξ|2 for all ξ ∈ Rd, and a.a. y ∈ Y.

(A2) The boundary term h is a Y -periodic function in L∞(Γ) and satisfies

∃h0 > 0 : h (y) ≥ h0 for a.a. y ∈ Γ.

(A3) It is f ∈ L2(Ω) and the coefficients of the microscopic problem are given via

Aε(x) = A
(
x
ε

)
and hε(x) = h

(
x
ε

)
.

Under the above assumptions, the Lax–Milgram theorem yields the existence of a unique solution
(uε1, u

ε
2) for the weak formulation of the microscopic problem (1.1) (cf. [Mon03, Sec. 1]), i.e. find

(uε1, u
ε
2) ∈ H1

D(Ωε
1)× H1(Ωε

2) such that∫
Ωε1

Aε∇uε1 ·∇ϕ1 dx+

∫
Ωε2

Aε∇uε2 ·∇ϕ2 dx+ εγ
∫

Γε
hε (uε1 − uε2)(ϕ1 − ϕ2) dσx

=

∫
Ωε1

fϕ1 dx+

∫
Ωε2

fϕ2 dx (2.1)

for all admissible test functions (ϕ1, ϕ2) ∈ H1
D(Ωε

1) × H1(Ωε
2). Moreover, this solution satisfies the

following a priori bounds.

Proposition 2.2 ([Mon03, Prop. 3.1]). Any solution of the microscopic problem (1.1) is bounded for all
γ ≤ 1 via

‖uε1‖H1(Ωε1) + ‖∇uε2‖L2(Ωε2) + ε
γ
2 ‖uε1 − uε2‖L2(Γε) ≤ C,

where the constant C > 0 is independent of ε.

The solution u ∈ H1
D(Ω) of the homogenized problem (1.2) is unique and bounded, too. Moreover, u

is of higher regularity, since the macroscopic domain Ω is a bounded convex polytope. Indeed, it holds
according to [Gri85, Thm. 3.2.1.3]

‖u‖H2(Ω) ≤ C‖f‖L2(Ω),

where C > 0 only depends on the effective matrix A0
γ ∈ Rd×d

sym and the domain Ω. The precise
definition ofA0

γ depends on the three different regimes (i)–(iii) for γ and it is given in the corresponding
section.
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3 Periodic unfolding

Following [CDZ06, DLNT11, CD∗12], we define the periodic unfolding operators T ε1 and T ε2 , which
map one-scale functions on the oscillating domains Ωε

1 and Ωε
2 to two-scale functions on the fixed

domains Ω×Y1 and Ω×Y2, respectively. Therefore, let x = [x]+{x} denote the standard two-scale
decomposition of every x ∈ Rd into its integer part [x] ∈ Zd and the remainder {x} := x− [x] ∈ Y .
For any Lebesgue measurable function u on Ωε

1 the periodic unfolding operator T ε1 is given via

(T ε1 u)(x, y) := u
(
ε
[
x
ε

]
+ εy

)
for a.a. (x, y) ∈ Ω× Y1

and it satisfies the integration formula∫
Ωε1

u dx =

∫
Ω×Y1

T ε1 u dx dy for u ∈ L1(Ωε
1). (3.1)

Within the inclusions, we define for any Lebesgue measurable function u on Ωε
2 the second periodic

unfolding operator T ε2 by (cf. [DLNT11, Def. 2.8])

(T ε2 u)(x, y) := u
(
ε
[
x
ε

]
+ εy

)
for a.a. (x, y) ∈ Ω× Y2.

In particular, both periodic unfolding operators are well-defined for functions u on Ω via the relation
T εi u = T εi (χΩεi

u), for i = 1, 2, with χΩεi
denoting the characteristic function of the set Ωε

i . Moreover,
the restriction of T εi to Lebesgue measurable functions u on Γε is also well-defined and it is T ε1 u =
T ε2 u almost everywhere in Ω× Γ. We recall that for Sobolev functions ui ∈W1,p(Ωε

i ) the unfolding
T εi ui belongs to the space Lp(Ω; W1,p(Yi)), for all 1 ≤ p ≤ ∞ and i = 1, 2. Then, if the traces of
u1 and u2 coincide in Lp(Γε), so do the traces of T ε1 u1 and T ε2 u2 in Lp(Ω × Γ). There holds the
following integration formula for boundary unfolding (cf. [CDZ06, Prop. 5.2])

ε

∫
Γε
u dσx =

∫
Ω×Γ

T ε1 u dx dσy =

∫
Ω×Γ

T ε2 u dx dσy for u ∈ L1(Γε). (3.2)

We complete this collection by introducing the folding operator (also called averaging operator) F εi :
Lp(Ω× Yi)→ Lp(Ωε

i )
1 for i = 1, 2 and 1 ≤ p <∞ via

(F εi U)(x) := −
∫
ε([xε ]+Y )

U
(
z, {x

ε
}
)

dz for a.a. x ∈ Ωε
i ,

where −
∫
O = |O|−1

∫
O denotes the usual average over the domain O ⊂ Rd. Here, and in the follow-

ing, |O| denotes the d-dimensional Lebesgue measure of domains respective the d−1-dimensional
Lebesgue measure of hypersurfaces.

According to [DLNT11, CD∗12], the folding operator F ε1 is the adjoint of T ε1 , i.e.∫
Ωε1

(F ε1 U)v dx =

∫
Ω×Y1

U(T ε1 v) dx dy for U ∈ L2(Ω× Y1), v ∈ L2(Ωε
1).

In the same manner, F ε2 is the adjoint of T ε2 . Finally, we note that the periodic unfolding respective
averaging operator, Tε and Fε, as introduced in [CDG08] are given via

Tε u =

{
T ε1 u in Ω× Y1

T ε2 u in Ω× Y2
and Fε U =

{
F ε1(U |Ω×Y1) in Ωε

1

F ε2(U |Ω×Y2) in Ωε
2

.

1Note that Lp(Ω× Y ) and Lp(Ω; Lp(Y )) can be identified for 1 ≤ p <∞, whereas this fails for p =∞.
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3.1 Construction of recovery operators

In this section we introduce two operators, Gε andHε
2, which will help us to construct suitable recovery

respective approximating sequences for the derivation of the corrector estimates. To do so, we define
the scale-splitting operator Qε : H1(Ω)→W1,∞(Rd) following [CDG08, Def. 4.1]. Let ũ ∈ H1(Rd)
denote the extension of u ∈ H1(Ω) according to [Neč67, Thm. 3.9]. For x ∈ ε([x/ε] + Y ) and every
κ = (κ1, . . . , κd) ∈ {0, 1}d, we set

x̄
(κl)
l :=

{
xl−ε[x/ε]l

ε
if κl = 1

1− xl−ε[x/ε]l
ε

if κl = 0

and

(Qε u)(x) :=
∑

κ∈{0,1}d
(Fε ũ)

(
ε[x
ε
] + εκ

)
· x̄(κ1)

1 · · · x̄(κd)
d .

The function Qε u interpolates the values of Fε u at the nodes ε[x/ε] via Q1-Lagrange elements as
customary in the finite elements methods. Since Qε u is (weakly) differentiable, in contrast to Fε u,
we can use the scale-splitting operator to construct oscillating one-scale functions that recover global
corrector-type functions û(x, y) =

∑d
i=1

∂u
∂xi

(x)·χi(y). Let H1
per(Y ) respective H1

per(Y1) denote the
space of Y -periodic Sobolev functions, i.e.

H1
per(Y1) =

{
ϕ ∈ H1(Y1) |ϕ is Y -periodic

}
.

For any Y -periodic function, we may identify x 7→ ϕ(x) with x 7→ ϕ({x}) for all x ∈ Rd.

For u ∈ H2(Ω) and χ ∈ H1
per(Y )d := H1

per(Y ;Rd), the approximating sequence (Gε û)ε ⊂ H1
D(Ω)

is given via (cf. [Gri04])

(Gε û) (x) := %ε(x)
d∑
i=1

Qε
(
∂u

∂xi

)
(x)·χi

(
x
ε

)
. (3.3)

The cut-off function %ε ∈ C∞c (Ω; [0, 1]) satisfies %ε(x) ≡ 1 for all x ∈ Ω with dist(x, ∂Ω) >
ε and |∇%ε| ≤ c0

ε
; and it guarantees the Dirichlet boundary condition on ∂Ω. We may also call

Gε :
(
H2(Ω),H1

per(Y )d
)
→ H1

D(Ω) recovery respective gradient folding operator, since it holds
Tε(Gε û) → û and Tε[ε∇(Gε û)] → ∇yû in L2(Ω × Y ). The uniform boundedness of the scale-
splitting operator ‖Qε u‖H1(Ω) ≤ C‖u‖H1(Ω) according to [CDG08, Prop. 4.5] implies the following
bound

‖ Gε û‖L2(Ω) + ε‖∇(Gε û)‖L2(Ω) ≤ C‖u‖H2(Ω)‖χ‖H1(Y1)d .

On the perforated domain Ωε
1, we adjust the construction of the approximating sequence as follows:

for χ1 ∈ H1
per(Y1)d, the sequence (Gε1 û)ε ⊂ H1

D(Ωε
1) is given via

(Gε1 û) (x) := %ε(x)
d∑
i=1

Qε
(
∂u

∂xi

)∣∣∣∣
Ωε1

(x)·χ1
i

(
x
ε

)
. (3.4)

In the same manner, we define for χ2 ∈ H1(Y2)d the sequence (Gε2 û)ε ⊂ H1(Ωε
2) via

(Gε2 û) (x) :=
d∑
i=1

Qε
(
∂u

∂xi

)∣∣∣∣
Ωε2

(x)·χ2
i

({
x
ε

})
. (3.5)
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Notice that %ε is skipped in (3.5), since the inclusions Ωε
2 is not equipped with Dirichlet boundary

conditions. Here, we also use {x/ε}, since χ2
i is in general not Y -periodic.

We introduce the second recovery operatorHε
2 in the inclusions as follows: define

H : H2(Ω)→ H1(Ω; C∞(Y2)); (Hu)(x, y) := ∇u(x)·y

and observe that the gradient ∇y(Hu) = ∇u is constant with respect to all y ∈ Y2. Recall that
for every x ∈ Ωε

2, the two-scale decomposition gives x = ε([x/ε] + {x/ε}) with [x/ε] ∈ Zd and
{x/ε} ∈ Y2. With this, the recovery operatorHε

2, given via

Hε
2 : H2(Ω)→ H1(Ωε

2); (Hε
2 u) (x) := ∇u(x)·

{
x
ε

}
, (3.6)

is well-defined and it holds ‖Hε
2 u‖L2(Ωε2)+ε‖∇(Hε

2 u)‖L2(Ωε2) ≤ 2‖∇u‖H1(Ω). Moreover, we recover
the convergences T ε2 (Hε

2 u)→ Hu and T ε2 (ε∇Hε
2 u)→ ∇u in L2(Ω× Y2).

Remark 3.1. We point out thatHu is in general not Y -periodic. However, since it holds dist(Y2, ∂Y )

> 0, we can periodically extendHu to H̃u ∈ H1(Ω; C∞per(Y )) and, by translation, also to the whole

space C∞(Rd). With this, we may also construct (H̃ε
2u)ε ⊂ H1(Ω) on the whole domain Ω. Notice

that this construction fails in the case ∂Y2 ∩ ∂Y 6= ∅.
Otherwise, if Ωε

1 and Ωε
2 are connected for d ≥ 3, there also exists a suitable extension operator

Eε2 : H1
D(Ωε

2)→ H1
D(Ω) and we may treat uε2 in a similar manner as uε1.

4 Corrector estimates for −1 < γ ≤ 1

We begin with recalling the two-scale convergence of the solutions (uε1, u
ε
2)ε of the microscopic prob-

lem (1.1) as it is shown in [DLNT11, Sec. 3.2 & 4.3]. There exist limit functions u ∈ H1
D(Ω) and

û1 ∈ L2(Ω; H1
per(Y1)) with

∫
Y1
û1 dy = 0 such that

T ε1 uε1 → u strongly in L2(Ω; H1(Y1)), T ε1 (∇uε1)→ ∇u+∇yû1 strongly in L2(Ω× Y1),

T ε2 (∇uε2)→ 0 strongly in L2(Ω× Y2).

Moreover, we distinguish the following two cases

if − 1 < γ < 1 : T ε2 uε2 ⇀ u weakly in L2(Ω; H1(Y2)),

if γ = 1 : T ε2 uε2 ⇀ u+ θf weakly in L2(Ω; H1(Y2)),

where θ := |Y2|(
∫

Γ
h dσy)

−1. The quantity θf characterizes the jump uε1 − uε2 across the interface
Γε. In the limit ε→ 0, the pair (u, û1) solves the weak two-scale formulation∫

Ω×Y1
A(y)[∇u+∇yû1]·[∇ϕ+∇yΦ] dx dy =

∫
Ω

fϕ dx (4.1)

for all ϕ ∈ H1
D(Ω) and Φ ∈ L2(Ω; H1

per(Y1)). The macroscopic function u is in particular the solution
of the homogenized equation (1.2), wherein the effective matrix A0

γ ∈ Rd×d
sym is constant and it is given

for all −1 < γ ≤ 1 via the formula

A0
γei :=

∫
Y1

A(y)(ei +∇yχ1
i ) dy.
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S. Reichelt 8

Here, {e1, . . . , ed} denotes the canonical basis of Rd and χ1
i ∈ H1

per(Y1) are the local correctors.
The latter are the solutions of the cell problem for i = 1, . . . , d

− divy (A[ei +∇yχ1
i ]) = 0 in Y1,

A[ei +∇yχ1
i ]·n1 = 0 on Γ,

χ1
i is Y -perioidc,

∫
Y1
χ1
i dy = 0,

(4.2)

where n1 denotes the unit outer normal to Y1. We point out that the effective matrix and the local
correctors only depend on the values of A(y) restricted to the subset Y1. In other words, the values
of A(y)|Y2 and h(y) do not enter the limit problem, as if the second component Ωε

2 contained only
“empty space” in the first place. The corresponding global corrector û1 ∈ L2(Ω; H1

per(Y1)) is given
via the formula

û1(x, y) :=
d∑
i=1

∂u

∂xi
(x)·χ1

i (y).

Note that the higher regularity of the limit solution u ∈ H2(Ω) implies also the higher x-regularity of
the global corrector û1 ∈ H1(Ω; H1

per(Y1)).

4.1 The case −1 < γ < 1

Theorem 4.1. Let the assumptions (D1)–(D4) on the microstructure and (A1)–(A3) on the data hold
true. Then, the solutions (uε1, u

ε
2) and u of the microscopic problem (1.1) and the homogenized equa-

tion (1.2), respectively, satisfy for −1 < γ < 1

‖uε1 − u− εGε1 û1‖H1(Ωε1) + ‖∇uε2‖L2(Ωε2) + ε
γ
2 ‖uε1 − uε2‖L2(Γε) ≤ ε

1−|γ|
2 C, (4.3)

where C is a positive constant independent of ε.

The derivation of the estimates follows the principle idea of the unfolding based estimates in [Gri04,
Gri05]. In particular the control of the periodicity defect of T ε1 ϕ ∈ L2(Ω; H1(Y1)), which is in general
not Y -periodic for arbitrary functions ϕ ∈ H1(Ωε

1), is proved in these two articles.

Proof. By assumption it holds |Y | = 1.

Step 1: Periodicity defect. In the weak formulation (4.1), we choose the two-scale test function Φε

according to Theorem A.3 such that it holds

‖ T ε1 (∇ϕ)− [∇ϕ+∇yΦε]‖L2(Y1;H1(Ω)∗) ≤ (ε+ ε
1
2 )C‖ϕ‖H1(Ω),

where C > 0 only depends on Ω and Y1. Exploiting this estimate with the higher x-regularity of
A[∇u + ∇yû1] ∈ H1(Ω; L2(Y1)) 2 as well as the duality of periodic unfolding operator T ε1 and
folding operator F ε1 yields with F ε1 A = Aε∣∣∣∣∣

∫
Ωε1

AεF ε1 [∇u+∇yû1]·∇ϕ dx−
∫

Ω

fϕ dx

∣∣∣∣∣ ≤ ε
1
2C‖ϕ‖H1(Ω).

2Notice that the spaces H1(Ω; L2(Y1)) and L2(Y1; H1(Ω)) can be identified.
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Corrector estimates for a class of imperfect transmission problems 9

Using u ∈ H2(Ω), the definition of Gε1 in (3.4), the boundedness of the linear operatorQε from H1(Ω)
into itself, the assumptions %ε(x) ∈ [0, 1] and |∇%ε| ≤ c0

ε
, as well as the Lemmas A.1, A.5, and A.6

give

‖F ε1 [∇u+∇yû1]− [∇u1 + ε∇(Gε1 û1)]‖L2(Ωε1)

≤ ‖F ε1(∇u)−∇u‖L2(Ωε1) + c0

∥∥∥∥∥
d∑
i=1

Qε( ∂u∂xi )·χ
1
i (
·
ε
)

∥∥∥∥∥
L2(Nε(∂Ω))

+

∥∥∥∥∥ε%ε
d∑
i=1

∇
[
Qε( ∂u∂xi )

]
·χ1

i (
·
ε
)

∥∥∥∥∥
L2(Ωε1)

+

∥∥∥∥∥F ε1(∇yû1)− %ε
d∑
i=1

Qε( ∂u∂xi )·∇yχ
1
i (
·
ε
)

∥∥∥∥∥
L2(Ωε1)

≤ ε
1
2C‖u‖H2(Ω),

where Nε(∂Ω) = {x ∈ Ωε
1 | dist(x, ∂Ω) ≤ ε} denotes the ε-neighborhood of the boundary ∂Ω.

We finish Step 1 with∣∣∣∣∣
∫

Ωε1

Aε[∇u+ ε∇(Gε1 û1)]·∇ϕ dx−
∫

Ω

fϕ dx

∣∣∣∣∣ ≤ ε
1
2C‖ϕ‖H1(Ω). (4.4)

Step 2: Admissible test functions. We test the weak formulation of the microscopic problem (2.1) with

ϕε1 := uε1 − u− εGε1 û1 ∈ H1
D(Ωε

1) and ϕε2 := uε2 − u+ εHε
2 u ∈ H1(Ωε

2) (4.5)

and arrive at∫
Ωε1

Aε∇uε1 ·∇ϕε1 dx+

∫
Ωε2

Aε∇uε2 ·∇ϕε2 dx+ εγ
∫

Γε
hε (uε1 − uε2)(ϕε1 − ϕε2) dσx

−
∫

Ωε1

fϕε1 dx−
∫

Ωε2

fϕε2 dx = 0. (4.6)

According to Theorem A.7, the extension ϕ := Eε1 ϕε1 satisfying ‖ϕ1‖H1(Ω) ≤ C‖ϕε1‖H1(Ωε1) is an ad-
missible test function for the limit problem in (4.4). Subtracting (4.6) from the left-hand side in estimate
(4.4) and recalling ϕ|Ωε1 = ϕε1 gives∣∣∣∣∣

∫
Ωε1

Aε∇ϕε1 ·∇ϕε1 dx+

∫
Ωε2

Aε∇uε2 ·∇ϕε2 dx+ εγ
∫

Γε
hε (uε1 − uε2)(ϕε1 − ϕε2) dσx

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ωε2

f (ϕ− ϕε2) dx

∣∣∣∣∣+ ε
1
2C‖ϕε1‖H1(Ωε1). (4.7)

With Young’s inequality and µ1 > 0 to be specified later, it holds

ε
1
2‖ϕε1‖H1(Ωε1) ≤ µ1‖ϕε1‖2

H1(Ωε1) + εC(µ1). (4.8)

Step 3: Approximation errors. Inserting ϕε1−ϕε2 = uε1−uε2−ε(Gε1 û1 +Hε
2 u) into (4.7), we estimate

the boundary term of lower order with µ2 > 0 and (A.2) via∣∣∣∣εγ ∫
Γε
hε (uε1 − uε2)ε(Gε1 û1 +Hε

2 u) dσx

∣∣∣∣
≤ µ2ε

γ‖uε1 − uε2‖2
L2(Γε) + ε2+γC(µ2)‖ Gε1 û1 +Hε

2 u‖2
L2(Γε)

≤ µ2ε
γ‖uε1 − uε2‖2

L2(Γε) + ε1+γC(µ2)‖u‖2
H2(Ω). (4.9)
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The source term on the right-hand side of (4.7) is estimated with (A.1) and µ3 > 0∣∣∣∣∣
∫

Ωε2

f [Eε1 uε1 − uε2 − ε(Eε1(Gε1 û1) +Hε
2 u)] dx

∣∣∣∣∣
≤ C

(
‖ Eε1 uε1 − uε2‖L2(Ωε2) + ε‖u‖H1(Ω)

)
‖f‖L2(Ω)

≤ C
(
ε

1
2‖uε1 − uε2‖L2(Γε) + ε

{
‖∇(Eε1 uε1)‖L2(Ωε2) + ‖∇uε2‖L2(Ωε2) + ‖u‖H1(Ω)

})
‖f‖L2(Ω)

≤ µ3ε
γ‖uε1 − uε2‖2

L2(Γε) + ε1−γC(µ3) + εC. (4.10)

Recalling that∇ϕε2 = ∇uε2 −∇(u+ εHε
2 u), we control the∇uε2-term in (4.7) via∣∣∣∣∣

∫
Ωε2

Aε∇uε2 ·[∇u− ε∇Hε
2 u] dx

∣∣∣∣∣ ≤ µ4‖∇uε2‖2
L2(Ωε2) + εC(µ4)‖u‖H2(Ω). (4.11)

Here, we used that ε∇(Hε
2 u)(x) = ε∇2u(x){x

ε
} + ∇u(x) for all x ∈ Ωε

2 (with ∇2 denoting the
Hessian) according to (3.6) and, hence, it is

‖∇u− ε∇Hε
2 u‖L2(Ωε2) ≤ εC‖u‖H2(Ω).

Combining the error estimates in (4.9)–(4.11) with (4.7)–(4.8) gives∣∣∣∣∣
∫

Ωε1

Aε∇ϕε1 ·∇ϕε1 dx+

∫
Ωε2

Aε∇uε2 ·∇uε2 dx+ εγ
∫

Γε
hε (uε1 − uε2)(uε1 − uε2) dσx

∣∣∣∣∣
≤ µ1‖ϕε1‖2

H1(Ωε1) + (µ2 + µ3)εγ‖uε1 − uε2‖2
L2(Γε) + µ4‖∇uε2‖2

L2(Ωε2)

+ (ε+ ε1+γ + ε1−γ)C. (4.12)

Exploiting that Aε is uniformly elliptic and hε ≥ h0 > 0, choosing µ1 = µ4 = α/2 and µ2 = µ3 =
h0/4, as well as applying Poincaré–Friedrich’s inequality to ϕε1 ∈ H1

D(Ωε
1) yields

α

2CPF

‖ϕε1‖2
H1(Ωε1) +

α

2
‖∇uε2‖2

L2(Ωε2) + εγ
h0

2
‖uε1 − uε2‖2

L2(Γε) ≤ ε1−|γ|C.

The desired estimate (4.3) follows by taking the square root.

Remark 4.2. To see that the H1(Ωε
1)-estimate in (4.3) is analogous to the H1(Ω)-estimate in [Gri04,

Prop. 4.3], we can control the term ‖ε(1 − %−1
ε )Gε1 û1‖H1(Ωε1) by

√
εC‖u‖H2(Ω) as in Step 1 and

obtain∥∥∥∥∥uε1 − u− ε
d∑
i=1

Qε
(
∂u
∂xi

)
·χ1

i

( ·
ε

)∥∥∥∥∥
H1(Ωε1)

+ ‖∇uε2‖L2(Ωε2) + εγ‖uε1 − uε2‖L2(Γε) ≤ ε
1−|γ|

2 C.

4.2 The case γ = 1

In order to characterize the jump uε1 − uε2 across the interface Γε, we impose two additional assump-
tions on the given data, i.e.

f ∈ H2(Ω) and h (y) ≡ h0 for all y ∈ Γ. (4.13)

With this, we simply have hε (x) ≡ h0 for all x ∈ Γε as well as θ = |Y2|(h0|Γ|)−1. The extra
regularity for the source term f is needed to apply the recovery operator Hε

2 and concerning h’s
regularity we refer to Remark 4.4.
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Theorem 4.3. Let the assumptions of Theorem 4.1 as well as in (4.13) hold true. Then, there exists a
positive constant C independent of ε such that it holds

‖uε1 − u− εGε1 û1‖H1(Ωε1) + ‖∇uε2‖L2(Ωε2) + ε
1
2‖uε1 − uε2 + θf‖L2(Γε) ≤ ε

1
2C. (4.14)

Proof. Step 1 of the proof is exactly as in the case −1 < γ < 1 and in what follows we only outline
the modifications in Step 2 and 3.

Step 2: Admissible test functions. For the weak formulation of the microscopic problem, we choose the
test functions ϕε1 as in (4.5) and

ϕε2 := uε2 − u1 + εHε
2 u− θ(f − εHε

2 f) ∈ H1(Ωε
2).

Thus, we arrive at∣∣∣∣∣
∫

Ωε1

Aε∇ϕε1 ·∇ϕε1 dx+

∫
Ωε2

Aε∇uε2 ·∇ϕε2 dx

+ε

∫
Γε
h0(uε1 − uε2)(ϕε1 − ϕε2) dσx +

∫
Ωε2

f (Eε1 ϕε1 − ϕε2) dx

∣∣∣∣∣ ≤ ε
1
2C‖ϕε1‖H1(Ωε1). (4.15)

Step 3: Approximation errors. Inserting ϕε1−ϕε2 = uε1−uε2− ε(Gε1 û1 +Hε
2 u) + θ(f − εHε

2 f) into
(4.15), we obtain for the boundary term

ε

∫
Γε
hε (uε1 − uε2)(ϕε1 − ϕε2) dσx ≥ εh0‖uε1 − uε2 + θf‖2

L2(Γε)

− ε
∫

Γε
h0θf (uε1 − uε2 + θf) dσx

− ε2

∫
Γε
h0(uε1 − uε2)[Gε1 û1 +Hε

2 u− θHε
2 f ] dσx.

The absolute value of the third term (on the right-hand side) above is bounded by εC as in (4.9). For
the source term in (4.15), we obtain∫

Ωε2

f (Eε1 ϕε1 − ϕε2) dx

=

∫
Ωε2

f (Eε1 uε1 − uε2 + θf) dx+ ε

∫
Ωε2

f [Eε1(Gε1 û1)−Hε
2 u− θHε

2 f ] dx

and again the absolute value of the second integral is bounded by εC . It remains to control the follow-
ing difference using the integration formula (3.2)∫

Ωε2

f (Eε1 uε1 − uε2 + θf) dx− ε
∫

Γε
h0θf (uε1 − uε2 + θf) dσx

=
1

|Γ|

∫
Ω×Γ

χΩε2
f (Eε1 uε1 − uε2 + θf) dx dσy −

∫
Ω×Γ

h0 T ε2 (θf) T ε2 (Eε1 uε1 − uε2 − θf) dx dσy,

where χΩε2
denotes the indicator function of the set Ωε

2. Recall that the traces of uε1 and Eε1 uε1 coincide
on Γε and, hence, it holds T ε1 uε1 = T ε1 (Eε1 uε1) almost everywhere in Ω×Γ. After suitably rearranging
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the integrands, we get∣∣∣∣∣ 1

|Γ|

∫
Ω×Γ

χΩε2
f {Eε1 uε1 − uε2 + θf − T ε2 (Eε1 uε1 − uε2 + θf)} dx dσy

+

∫
Ω×Γ

{
1

|Γ|
χΩε2

(f − T ε2 f) +

(
1

|Γ|
χΩε2
− h0θ

)
T ε2 f

}
T ε2 (Eε1 uε1 − uε2 + θf) dx dσy

∣∣∣∣∣
≤ C

(
‖ Eε1 uε1 − uε2 + θf − T ε2 (Eε1 uε1 − uε2 + θf)‖L2(Ωε2×Γ) + ‖f − T ε2 f‖L2(Ωε2×Γ)

)
+

∣∣∣∣∣
∫

Ω×Γ

{(
1

|Γ|
χΩε2
− h0θ

)
T ε2 f

}
T ε2 (Eε1 uε1 − uε2 + θf) dx dσy

∣∣∣∣∣ (4.16)

≤ εC.

Here, Lemma A.2 yields the L2(Ωε
2 × Γ)-estimate for f and Eε1 uε1 − uε2 + θf belonging to the

space H1(Ωε
2). Moreover, the integral term in (4.16) vanishes as follows: the function g(x, y) :=

(T ε2 f) T ε2 (Eε1 uε1 − uε2 + θf) is constant with respect to x in each microscopic cell ε(λ + Y ) and it
holds

1

|Γ|

∫
ε(λ+Y )×Γ

χΩε2
g dx dσy = εd

|Y2|
|Γ|

∫
Γ

g|ε(λ+Y2) dσy (4.17)

as well as with θ = |Y2|(h0|Γ|)−1∫
ε(λ+Y )×Γ

h0θg dx dσy = εd
|Y2|
|Γ|

∫
Γ

g|ε(λ+Y2) dσy. (4.18)

Since the difference (4.17)−(4.18) vanishes on each subset ε(λ + Y ) × Γ ⊂ Ω × Γ and Ω is the
exact union of translated cells, the whole integral vanishes in (4.16). Treating the gradient terms in
(4.15) as in (4.8) and (4.11), we overall arrive at

α

2CPF

‖∇ϕε1‖2
L2(Ωε1) +

α

2
‖∇uε2‖2

L2(Ωε2) + εh0‖uε1 − uε2 − θf‖2
L2(Γε) ≤ εC,

which gives estimate (4.14).

Remark 4.4. The extra assumption on the boundary function hε stems from the fact that the following
equality only holds true for constant functions h∫

Γ
hg dσ∫

Γ
h dσ

=
1

|Γ|

∫
Γ

g dσ for all g ∈ L2(Γ).

This identity is needed for the equality of (4.17) and (4.18). So far, the only generalization for functions
hε are small perturbations of order ε, i.e. hε(x) = h0 + εh1(x).

5 Corrector estimates for γ = −1

This case is in some sense more special than (i) and (iii), since the limit problem depends indeed on
all values of A(y) in the whole reference cell Y and the boundary term h(y). So, we recover on the
level of the reference cell again an imperfect transmission problem, see (5.2). According to [DLNT11,
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Sec. 3.4 & 4.2], there exist three limit functions u ∈ H1
D(Ω) as well as û1 ∈ L2(Ω; H1

per(Y1)) and
û2 ∈ L2(Ω; H1(Y2)) with

∫
Y1
û1 dy = 0 such that

T ε1 uε1 → u strongly in L2(Ω; H1(Y1)), T ε1 (∇uε1)→ ∇u+∇yû1 strongly in L2(Ω× Y1),

T ε2 uε2 ⇀ u weakly in L2(Ω; H1(Y2)), T ε2 (∇uε2)→ ∇u+∇yû2 strongly in L2(Ω× Y2).

Moreover, the triple (u, û1, û2) solves the weak two-scale formulation∫
Ω×Y1

A(y)[∇u+∇yû1]·[∇ϕ+∇yΦ1] dx dy

+

∫
Ω×Y2

A(y)[∇u+∇yû2]·[∇ϕ+∇yΦ2] dx dy

+

∫
Ω×Γ

h (y)(û1 − û2)(Φ1 − Φ2) dx dσy =

∫
Ω

fϕ dx (5.1)

for ϕ ∈ H1
D(Ω), Φ1 ∈ L2(Ω; H1

per(Y1)), and Φ2 ∈ L2(Ω; H1(Y2)). The macroscopic function u
solves indeed the homogenized equation (1.2) and the effective matrix A0

−1 is given via

A0
−1 = A1 + A2 with Akei :=

∫
Yk

A(y)[ei +∇yχki ] dy for k = 1, 2.

Here, χ1
i ∈ H1

per(Y1) and χ2
i ∈ H1(Y2) solve the following cell problem for i = 1, . . . , d

− divy (A[ei +∇yχ1
i ]) = 0 in Y1,

− divy (A[ei +∇yχ2
i ]) = 0 in Y2,

A∇yχ1
i ·n1 = −A∇yχ2

i ·n2 on Γ,
−A[ei +∇yχ1

i ]·n1 = h (χ1
i − χ2

i ) on Γ,
χ1
i is Y -perioidc,

∫
Y1
χ1
i dy = 0,

(5.2)

where, n1 and n2 denote the unit outer normal to Y1 and Y2, respectively. Thanks to the higher regular-
ity of the limit u, the corresponding global correctors û1 and û2 belong to the spaces H1(Ω; H1

per(Y1))
and H1(Ω; H1(Y2)), respectively. They are given via

ûk(x, y) :=
d∑
i=1

∂u

∂xi
(x)·χki (y) for k = 1, 2.

Theorem 5.1. Let the assumptions of Theorem 4.1 hold true. Then, there exists a positive constant
C independent of ε such that it holds

‖uε1 − u− εGε1 û1‖H1(Ωε1) + ‖∇uε2 −∇u− ε∇(Gε2 û2)‖L2(Ωε2)

+ ε−
1
2‖(uε1 − uε2)− ε(Gε1 û1 − Gε2 û2)‖L2(Γε) ≤ ε

1
2C. (5.3)

Proof. Step 1: Periodicity defect. In the weak formulation (5.1), we want to choose the two-scale test
functions

Φ1 = T ε1 (ε−1ϕ)−∇ϕ·y and Φ2 = T ε2 (ε−1ϕε2)−∇ϕ·y

with arbitraryϕε2 ∈ H1(Ωε
2), however, Φ1 does not respect the Y -periodicity in general. Compensating

the periodicity defect with Ψε ∈ L2(Ω; H1
per(Y1)) according to Theorem A.3 and Remark A.4(b) as
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well as using the duality of T ε1 and F ε1 respective T ε2 and F ε2 gives∣∣∣∣∣
∫

Ωε1

AεF ε1 [∇u+∇yû1]·∇ϕ dx+

∫
Ωε2

AεF ε2 [∇u+∇yû2]·∇ϕε2 dx

+

∫
Ω×Γ

h (y)(û1 − û2)[T ε1 (ε−1ϕ)− T ε2 (ε−1ϕε2)] dx dσy −
∫

Ω

fϕ dx

∣∣∣∣ ≤ ε
1
2C‖ϕ‖H1(Ω). (5.4)

For the boundary term, we also used the continuous embedding of H1(Y1) into L2(Γ) such that it
holds for U = h (û1 − û2) ∈ H1(Ω; L2(Γ)) and Φ = Ψε − T ε1 (ε−1ϕ) +∇ϕ·y ∈ L2(Ω; H1(Y1)),
with Ψε as in Remark A.4(b), 3∣∣∣∣∫

Ω×Γ

UΦ dx dσy

∣∣∣∣ ≤ Cemb‖U‖L2(Γ;H1(Ω))‖Φ‖H1(Y1;H1(Ω)∗) ≤ ε
1
2C‖ϕ‖H1(Ω).

Next, we want to replace û1 − û2 with T ε1 Gε1 û1 − T ε2 Gε2 û2 (recall (3.5) for Gε2) in the boundary
integral in (5.4) via the Lemmas A.1 and A.5. Together with the integration formula (3.1) as well as
∇y(T ε1 Gε1 û1) = T ε1 [ε∇(Gε1 û1)], we get

‖ T ε1 Gε1 û1 − û1‖L2(Ω×Γ)

≤ Cemb

(
‖ Gε1 û1 −F ε1 û1‖L2(Ωε2) + ‖ T ε1 F ε1 û1 − û1‖L2(Ω×Y1)

+‖ε∇(Gε1 û1)−F ε1(∇yû1)‖L2(Ωε2) + ‖ T ε1 F ε1(∇yû1)−∇yû1‖L2(Ω×Y1)

)
≤ εC‖u‖H2(Ω).

The same estimate holds for T ε2 Gε2 û2 − û2. Applying the integration formula (3.2) and treating the
gradient terms as in the case −1 < γ < 1 gives∣∣∣∣∣

∫
Ωε1

Aε[∇u+ ε∇Gε1 û1]·∇ϕ dx+

∫
Ωε2

Aε[∇u+ ε∇Gε2 û2]·∇ϕε2 dx

+ ε−1

∫
Γε
hεε(Gε1 û1 − Gε2 û2)(ϕ− ϕε2) dσx −

∫
Ω

fϕ dx

∣∣∣∣
≤ µ1‖ϕ‖2

H1(Ω) + µ2ε
−1‖ϕ− ϕε2|2L2(Γε) + εC(µ1, µ2). (5.5)

In particular, the integration formula (3.2) implies ‖ T ε1 (ε−1ϕ) − T ε2 (ε−1ϕε2)‖2
L2(Ω×Γ) ≤ ε−1‖ϕ −

ϕε2‖2
L2(Γε), cf. also [DLNT11, Eq. (2.8)].

Step 2: Admissible test functions. We test the weak formulation (2.1) with

ϕε1 := uε1 − u− εGε1 û1 ∈ H1
D(Ωε

1) and ϕε2 := uε2 − u− εGε2 û2 ∈ H1(Ωε
2)

and choose ϕ = Eε1 ϕε1 in (5.5) such that the difference between microscopic and reformulated macro-
scopic weak formulations reads∣∣∣∣∣

∫
Ωε1

Aε∇ϕε1 ·∇ϕε1 dx+

∫
Ωε2

Aε∇ϕε2 ·∇ϕε2 dx+ ε−1

∫
Γε
hε|ϕε1 − ϕε2|2 dσx

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ωε2

f (Eε1 ϕε1 − ϕε2) dx

∣∣∣∣∣+ µ1‖ϕ‖2
H1(Ω) + µ2ε

−1‖ϕε1 − ϕε2|2L2(Γε) + εC(µ1, µ2).

Estimating the Ωε
2-integral on the right-hand side as in (4.10), exploiting the uniform ellipticity of Aε

and hε ≥ h0, as well as choosing µ1 and µ2 suitably gives the desired estimate (5.3).

3Here, we also used the continuous embedding of L2(Ω) into H1(Ω)∗ and, hence, H1(Y1; L2(Ω)) ⊂
H1(Y1; H1(Ω)∗)) ⊂ L2(Γ; H1(Ω)∗).
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6 Corrector estimates for γ < −1

In this regime, we recover in the limit ε → 0 the standard unit cell problem. Indeed, there exist
according to [DLNT11, Sec. 3.3 & 4.1] two limit functions u ∈ H1

D(Ω) and û ∈ L2(Ω; H1
per(Y )) with∫

Y
û dy = 0 such that the microscopic solutions (uε1, u

ε
2)ε satisfy

T ε1 uε1 → u strongly in L2(Ω; H1(Y1)), T ε1 (∇uε1)→ ∇u+∇yû strongly in L2(Ω× Y1),

T ε2 uε2 ⇀ u weakly in L2(Ω; H1(Y2)), T ε2 (∇uε2)→ ∇u+∇yû strongly in L2(Ω× Y2).

In particular, the pair (u, û) is the unique weak solution of the two-scale limit problem∫
Ω×Y

A(y)[∇u+∇yû]·[∇ϕ+∇yΦ] dx dy =

∫
Ω×Y

fϕ dx (6.1)

for all ϕ ∈ H1
D(Ω) and Φ ∈ L2(Ω; H1

per(Y )). Moreover, u solves the macroscopic equation (1.2),
and the effective matrix A0

γ as well as the global corrector û are given via

A0
γei :=

∫
Y

A(y)[ei +∇yχi] dy and û(x, y) :=
d∑
i=1

∂u

∂xi
(x)·χi(y),

where the local correctors χi ∈ H1
per(Y ) solve the standard cell problem for i = 1, . . . , d

− divy (A[ei +∇yχi]) = 0 in Y,
χi is Y -perioidc,

∫
Y
χi dy = 0.

(6.2)

We aim to derive the corrector estimates in the case γ < −1 in two steps. First, we introduce the
standard homogenization problem in the whole domain without any interfaces, so to speak the perfect
transmission problem: find wε ∈ H1

D(Ω) such that∫
Ω

Aε∇wε ·∇ϕ dx =

∫
Ω

fϕ dx (6.3)

for all admissible test functions ϕ ∈ H1
D(Ω). This classical problem is well-studied in the literature,

and there exist error estimates for the difference of the microscopic solution wε and the macroscopic
solution u of (1.2).

Proposition 6.1 ([Gri04, Prop. 4.3]). Let the assumptions of Theorem 4.1 hold true. Then, there exists
a positive constant C independent of ε such that it holds

‖wε − u− εGε û‖H1(Ω) ≤ ε
1
2C.

In the second step, we control the difference of the solution wε of the standard homogenization prob-
lem and the solution (uε1, u

ε
2) of the imperfect transmission problem. In order to prove such error

estimates, we require the extra regularity Aε ∈W1,∞(Ω) such that the H1(Ωε
2)-norm of Aε∇wε can

be controlled.

Theorem 6.2. Let the assumptions of Theorem 4.1 as well as A ∈ W1,∞(Y ) hold true. Then, there
exists a positive constant C independent of ε such that it holds

‖wε − uε1‖H1(Ωε1) + ‖∇wε −∇uε2‖L2(Ωε2) + ε
γ
2 ‖uε1 − uε2‖L2(Γε) ≤ ε

−1−γ
2 C.
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Proof. In the weak formulations (6.3) and (2.1), we choose the admissible test functions ϕ = Eε1 uε1−
wε as well asϕ1 = uε1−wε andϕ2 = uε2−wε, respectively. Taking the difference of both formulations
gives ∫

Ωε1

Aε∇ϕ1 ·∇ϕ1 dx+

∫
Ωε2

Aε∇uε2 ·∇ϕ2 − Aε∇wε ·∇ϕ dx

+ εγ
∫

Γε
hε|uε1 − uε2|2 dσx =

∫
Ωε2

f (uε2 − Eε1 uε1) dx.

Adding ±Aε∇wε ·∇uε2 under the Ωε
2-integral and using partial integration yields∫

Ωε1

Aε∇ϕ1 ·∇ϕ1 dx+

∫
Ωε2

Aε∇ϕ2 ·∇ϕ2 dx−
∫

Ωε2

div(Aε∇wε)(uε2 − Eε1 uε1) dx

+

∫
Γε
Aε∇wε ·nε2 (uε2 − uε1) dσx + εγ

∫
Γε
hε|uε1 − uε2|2 dσx =

∫
Ωε2

f (uε2 − Eε1 uε1) dx.

While noting that − div(Aε∇wε) = f in Ωε
2 ⊂ Ω, the two Ωε

2-integrals containing the difference
uε2 − Eε1 uε1 cancel each other. It remains to control the additional boundary term. Applying Hölder’s
and Young’s inequality with µ > 0 gives∣∣∣∣∫

Γε
Aε∇wε ·nε2(uε2 − uε1) dσx

∣∣∣∣ ≤ ‖Aε∇wε ·nε2‖L2(Γε)‖uε1 − uε2‖L2(Γε)

≤ ε−γC(µ)‖Aε∇wε ·nε2‖2
L2(Γε) + εγµ‖uε1 − uε2‖2

L2(Γε). (6.4)

With estimate (A.2), we arrive at

‖Aε∇wε ·nε2‖2
L2(Γε) ≤ C

(
ε−1‖Aε∇wε‖2

L2(Ωε2) + ε‖∇[Aε∇wε]‖2
L2(Ωε2)

)
.

The additional regularity Aε ∈ W1,∞(Ω) implies the higher regularity of the solution wε ∈ H2(Ω).
Revisiting the proofs of the Theorems 3.1.3.3 and 3.2.1.3 in [Gri85] yields the existence of a constant
C > 0 only depending on the properties of the domain Ω and the ellipticity constant α such that

‖wε‖H2(Ω) ≤ C (1 +M) ‖f‖L2(Ω) with M = ‖Aε‖L∞(Ω)‖Aε‖W1,∞(Ω).

Using ∂xiA
ε(x) = ε−1∂yiA(x/ε), for i = 1, . . . , d, gives ‖∇[Aε∇wε]‖L2(Ωε2) ≤ ε−1C , which in

turn yields ‖Aε∇wε ·nε2‖2
L2(Γε) ≤ ε−1C . Inserting the latter into (6.4), yields overall∣∣∣∣∣

∫
Ωε1

Aε∇ϕ1 ·∇ϕ1 dx+

∫
Ωε2

Aε∇ϕ2 ·∇ϕ2 dx+ εγ
∫

Γε
hε|uε1 − uε2|2 dσx

∣∣∣∣∣
≤ ε−1−γC(µ) + εγµ‖uε1 − uε2‖2

L2(Γε).

Finally, choosing µ = h0/2 as well as exploiting the uniform ellipticity of Aε and hε ≥ h0 gives the
desired error estimate.

Combining the results of Proposition 6.1 and Theorem 6.2 gives immediately the main result of this
Section.

Theorem 6.3. Let the assumptions of Theorem 6.2 hold true. Then, there exists a positive constant
C independent of ε such that it holds for γ < −1

‖uε1 − u− εGε û‖H1(Ωε1) + ‖∇uε2 −∇u− ε∇(Gε û)‖L2(Ωε2) + ε
γ
2 ‖uε1 − uε2‖L2(Γε)

≤ C
(
ε
|γ|−1

2 + ε
1
2

)
.
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Remark 6.4. The Lipschitz continuity of Aε is indeed a quite restrictive assumption and we expect
that it can be generalized in some sense.

(a) Indeed, the difference uε1− uε2 belongs to the better space H1/2(Γε) and one could study the dual
paring

H−1/2(Γε) 〈Aε∇wε ·nε2, uε1 − uε2〉H1/2(Γε)

instead of the L2(Γε)-scalar product in (6.4). Unfortunately, the H1/2(Γε)-norm of uε1 − uε2 is only
of order O(1), which can been seen from ‖u‖H1/2(Γε) ≤ C

(
‖u‖L2(Γε) + ‖∇u‖L2(Ωε2)

)
. The same

problem also occurs when comparing the two solutions (uε1, u
ε
2) and u directly.

(b) There arises the question whether one can construct for any sequence (ξε)ε, which is uniformly

bounded in H1/2(Γε) and satisfies ‖ξε‖L2(Γε) . ε−γ/2, a sequence of extensions (ξ̃ε)ε ⊂ H1(Ωε
2)

with ‖∇ξ̃ε‖L2(Ωε2) . ερ and ρ > 0. If this were possible, one could choose more clever test functions
in the proof of Theorem 6.2 and would obtain the estimate ‖uε−wε‖H1(Ωε1) +‖∇uε2−∇wε‖L2(Ωε2) .
ερ (only assuming Aε bounded).

7 Discussion

The present corrector estimates do not require any additional regularity of the microscopic solution
or the local correctors. However, we need that the limit satisfies u ∈ H2(Ω), which is immediate for
convex Lipschitz domains or domains whose boundary is of class C2. In the case γ = 1, the more
restrictive assumptions f ∈ H2(Ω) and h is constant are necessary in order to characterize the jump
across the interface. It remains open whether these assumptions can be relaxed. Anyways, the source
term has to be more regular than in all the other cases, since we need f ∈ L2(Γε) for all ε > 0 in
estimate (4.14). In the third case γ < −1, we had to impose the Lipschitz continuity of Aε to control
the fluxes across the interface. It is to expect that this assumption can be relaxed to discontinuous Aε,
however, the proof remains open.

We point out that our corrector estimates recover the convergence rate
√
ε, in the special cases γ ∈

{−1, 0, 1} and γ ≤ −2. This rate seems to be optimal for corrector estimates up to the boundary of
the macroscopic domain as it was also obtained in [Gri04, Rei16] for elliptic equations with periodically
oscillating coefficients and without interfaces.

In order to treat double porosity models, which include degenerating terms such as div(ε2Aε∇uε2)
as in [DoŢ13, Ain15], we can introduce another gradient folding operator. For U ∈ H1(Ω; H1

per(Y )),

the one-scale function ĜεU := ûε is given via the solution ûε ∈ H1(Ω) of the elliptic problem (cf.
[Han11, MRT14])∫

Ω

(ûε −Fε U)ϕ+ (ε∇ûε −Fε(∇yU))·ε∇ϕ dx = 0 for all ϕ ∈ H1(Ω).

In [Rei15, Rei16] the folding mismatch between the averaging operator Fε and the gradient folding
operator Ĝε is quantified. We believe that the imperfect transmission problem can also be considered
with non-homogeneous Dirichlet boundary conditions, as it is done in the paper [Gri13] on error esti-
mates with boundary data in H1/2(∂Ω). It is an open problem whether similar corrector estimates can
also be proved for nonlinear transmission conditions as in [DoL15, Le 15]. However, we expect that
the present results carry over to systems of coupled semilinear parabolic equations with linear trans-
mission conditions. Previously, unfolding-based estimates for reaction-diffusion systems were proved
in [FMP12, Rei15].
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7.1 Application to supercapacitors

A prospective application of models containing imperfect transmission conditions is the supercapacitor,
which is a small electrochemical device to store energy. The high capacity of the device is obtained
by maximizing the surface area to volume ratio, which is achieved by taking a porous electrode, see
Figure 2.

Let us study the stationary current flow in such a device. First of all we note that discontinuities of
the potential are in principle nonphysical. However, when considering a double-layer4 Σε

δ, where the
thickness of the layer δ is much smaller than the pore size ε, we can reduce the double-layer model
to an interface model: In [DGM15], the asymptotic limit δ → 0 was studied for one single electrode
and one obtains that the normal of the electric displacement across the interface Γε is equal to the
surface charge density in one single layer5, i.e. D · n = QSL. Hereby, D = εrε0E depends on the
relative permittivity εr, the vacuum permittivity ε0, and the electric field E, where E = −∇ϕ is given
via the electrostatic potential ϕ. Using a linearization argument, we obtain that QSL is proportional
to the difference of the electric potential, i.e. QSL = C(ϕ1 − ϕ2), where the proportionality factor
C denotes the capacity per surface element6. Thus, we obtain the interface condition −εrε0∇ϕε1 ·
nε1 = C(ε)(ϕε1 − ϕε2) on Γε. Realizing that the total capacity of each electrode C(ε)A ∼ A/d is
proportional to the ratio of its surface area A divided by the distance between two electrodes d ∼ ε
yields C(ε) ∼ ε−1 as in the case (ii). For Carbon-based electrodes, characteristic pore sizes are
2− 50 nanometers, see e.g. [SiG08], and the macroscopic length scale of the device is about several
hundreds micrometers. Hence, the parameter ε is of order 10−5 − 10−4.

electrolyte

porous
electrode

current
collector

separator

V

double layer

interface

Figure 2: The main components of a supercapacitor (left) and the double layer (right).

A Auxiliary estimates

Lemma A.1. For all u ∈ H1(Ω) it holds

‖F ε1 u− u‖L2(Ωε1) ≤ εC‖∇u‖L2(Ω),

where the constant C > 0 only depends in the domain Y .

4The double-layer Σεδ ⊂ R3 is given via the δ-neighborhood of the interface Γε as sketched in Figure 2.
5The surface charge density QSL = limδ→0

∫ δ
0
qδ dx is the line integral of the charge density qδ .

6The relation between current flux and potential difference is in general not linear, since the capacity depends nonlin-
early on the electric potential, see e.g. [LGD16].
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Proof. For all one-scale functions u ∈ L2(Ω), the cell-average F ε1 u belongs indeed to the space
L2(Ω). Recalling that Ω is the union of translated cells ε(λ+Y ) with λ ∈ Kε, we can apply Poincaré–
Wirtinger’s inequality to each cell ε(λ+Y ) and obtain ‖F ε1 u−u‖L2(Ω) ≤ εC‖∇u‖L2(Ω) as in [Gri04,
Sect. 3].

Lemma A.2. For all u ∈ H1(Ωε
2) it holds

‖ T ε2 u− u‖L2(Ωε2×Γ) ≤ εC‖∇u‖L2(Ωε2),

where C > 0 only depends on the domains Y2 and Γ.

Proof. (The generalization of this proof to nonconvex inclusions Y2 is owed to the anonymous ref-
eree.) For u ∈ H1(Ωε

2), we define the piecewise constant function

ūε(x) := −
∫
ε([xε ]+Y2)

u(z) dz for a.a. x ∈ Ωε
2.

Due to the Poincaré–Wirtinger inequality, it holds

‖u− ūε‖L2(Ωε2) ≤ εC‖∇u‖L2(Ωε2).

Recalling (3.1) as well as noting T ε2 ūε = ūε and∇y (T ε2 u) = T ε2 (ε∇u) implies

‖ T ε2 u− ūε‖L2(Ω;H1(Y2)) ≤ εC‖∇u‖L2(Ωε2).

Exploiting the continuous embedding of L2(Ω; H1(Y2)) into L2(Ω× Γ), gives

‖ T ε2 u− u‖L2(Ωε2×Γ) ≤ ‖T ε2 u− ūε‖L2(Ω×Γ) + ‖ūε − u‖L2(Ωε2) ≤ εC‖∇u‖L2(Ωε2)

and the constant C > 0 only depends on the properties of the domains Y2 and Γ.

Theorem A.3 (Periodicity defect). For every ϕ ∈ H1(Ω), there exists a Y -periodic function Φε ∈
L2(Ω; H1

per(Y1)) such that

‖Φε‖H1(Y1;L2(Ω)) ≤ C‖ϕ‖H1(Ω) and ‖ T ε1 (∇ϕ)− (∇ϕ+∇yΦε)‖L2(Y1;H1(Ω)∗) ≤ ε
1
2C‖ϕ‖H1(Ω),

where the constant C > 0 only depends in the domains Ω and Y1.

Proof. For ϕ ∈ H1(Ω) the desired estimates hold with Φ̂ε ∈ L2(Ω; H1
per(Y )) according to [Gri05,

Thm. 2.3]. Choosing Φε = Φ̂ε|Ω×Y1 yields the assertion.

Remark A.4. (a) Note that the two-scale function Φε in Theorem A.3 is only unique modulo the
addition of a one-scale function ξε ∈ L2(Ω). We can choose for instance ξε =

∫
Y1

Φε dy such
that Φε − ξε has vanishing Y1-mean value.

(b) Moreover, introducing Φ1 = T ε1 (ε−1ϕ) −∇ϕ·y, ξ1 =
∫
Y1

Φ1 dy, and Ψε = Φε + ξ1 − ξε with
ξε as in (a), we obtain by Poincaré–Wirtinger’s inequality

‖Φ1 −Ψε‖H1(Y ;H1(Ω)∗) ≤ CPW‖ T ε1 (∇ϕ)− (∇ϕ+∇yΨε)‖L2(Y1;H1(Ω)∗).

Lemma A.5 (Folding mismatch). For u ∈ H1(Ω), χ ∈ L2(Yk), and k = 1, 2 it holds

‖(F εku−Qε u)χ( ·
ε
)‖L2(Ωεk) ≤ εC‖u‖H1(Ω)‖χ‖L2(Yk),

where C > 0 only depends on the domains Ω, Y , and Yk.
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Proof. Let χ̃ ∈ L2(Y ) denote the extension of χ ∈ L2(Yk) with zero. Then we have

‖(F εku−Qε u)χ( ·
ε
)‖L2(Ωεk) = ‖(Fε u−Qε u)χ̃( ·

ε
)‖L2(Ω) ≤ εC‖u‖H1(Ω)‖χ̃‖L2(Y )

according to [Rei15, Lem. 2.3.9], which is based on [Gri04, Prop. 3.2].

Lemma A.6 ([Gri05, Eq. (2.4)] or [Rei15, Lem. 2.3.3]). Let Ω denote an open, bounded domain
with Lipschitz boundary. Moreover, let Nε(∂Ω) ⊂ Ωε

1 denote the ε-neighborhood of the boundary
Nε(∂Ω) = {x ∈ Ωε

1 | dist(x, ∂Ω) ≤ ε}. Then, we have for all u ∈ H1(Ωε
1)

‖u‖L2(Nε(∂Ω)) ≤ ε
1
2C
(
‖u‖L2(Ωε1) + ε

1
2‖∇u‖L2(Ωε1)

)
,

where C > 0 only depends on the properties of the domain Ω.

Theorem A.7 ([CiP79]). There exists a family of linear operators Eε1 : H1
D(Ωε

1) → H1
D(Ω) such that

for every u ∈ H1
D(Ωε

1) it holds

(Eε1 u)|Ωε1 = u and ‖ Eε1 u‖H1(Ω) ≤ C‖u‖H1(Ωε1),

where C > 0 only depends on the domains Ω, Y , and Γ.

Lemma A.8 ([Mon03, Lem. 2.7 & Prop. 2.9]). For u ∈ H1(Ωε
2) it holds

‖u‖L2(Ωε2) ≤ C
(
ε

1
2‖u‖L2(Γε) + ε‖∇u‖L2(Ωε2)

)
, (A.1)

‖u‖L2(Γε) ≤ C
(
ε−

1
2‖u‖L2(Ωε2) + ε

1
2‖∇u‖L2(Ωε2)

)
, (A.2)

where C > 0 only depends on the domains Y2 and Γ.
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