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Abstract

We study functions of bounded variation with values in a Banach or in a metric space. We
provide several equivalent notions of variations and provide the notion of a time derivative in
this abstract setting. We study four distinct topologies on the space of bounded variations
and provide some insight into the structure of these topologies. In particular, we study the
meaning of convergence, duality and regularity for these topologies and provide some useful
compactness criteria, also related to the classical Aubin-Lions theorem. We finally provide
some useful applications to stochastic processes.

1 Introduction

Functions of bounded variation have a broad range of applications, including materials science,
chemistry, image processing, or more generally, models that involve jumps and intervals of differ-
entiability or even quiescence. There are even some applications to random processes, e.g. [24, 18],
which was in fact one of the motivations behind the current work, see [28]. Many properties of
functions of bounded variation and their corresponding topologies can be found in the standard
works [17] and [4]. Considerable research has been carried out on functions of bounded variations
on an infinite-dimensional domain, see e.g. [2, 12, 6, 3]. In this paper we study functions of
bounded variation BV(0, T ;Z) mapping an interval (0, T ) to an infinite-dimensional codomain,
see for example [1, 10, 21]. In the general setting we take Z to be a metric space; of particular
interest is the case where Z =X∗, the Banach dual of a Banach space X.

The aim is to collect a number of results which to the best of our knowledge are not yet in-
cluded in the literature. First, we introduce the usual concepts as variations and time derivatives
in Banach and metric spaces, and study some of their basic properties. Many of these are general-
isations of the finite-dimensional theory outlined in [4]. The main ideas behind the generalisation
to metric spaces is certainly not new, see for example [1], but an overview of the basic properties
seems to be lacking in the literature. Secondly, we introduce a number of different topologies on
the space of functions of bounded variation, and study their properties. These topological results
are often subtly different from the results in the finite-dimensional setting. In particular, we find a
new topology, which we call hybrid. Among the topological properties that we study, the charac-
terisation theorems for compactness are of particular relevance. From the compactness result we
will also derive a generalised Aubin-Lions result. Lastly, we will see that some of the topological
properties imply generalised Prokhorov and Portemanteau Theorems, which are important for
probabilistic applications.

In the remainder of this introduction we introduce functions of bounded variation and many
of the related concepts in the setting of infinite dimensional Banach space codomains before
generalising to metric spaces, which we do not require to be locally compact. We then define
the different topologies on the space of functions of bounded variation, discuss applications to
stochastic processes and end with a brief overview of the paper.

1.1 Functions of bounded variation with Banach codomains

To explain the main concepts we first assume that Z =X∗ is the Banach dual of some Banach space
X; in Section 1.2 we explain how these concepts can be generalised to metric spaces. Classically,
the space of functions of bounded variation is defined via the pointwise variation (see for example
[9, 15]), that is for f ∶ (0, T )→X∗,

pvar(f) ∶= sup
0<t0<t1<⋅⋅⋅<tn<T

n∑
i=1

∥f(ti−1) − f(ti)∥X∗ , (1.1)

where the supremum runs over all finite partitions of the interval (0, T ). The pointwise variation
is often used to define functions of bounded variation in fields where one is interested in the
values at every single timepoint, like the field of energetic solutions for rate-independent systems
and in nonsmooth mechanics, see [25] and Chapter 1 of [27], which is closely connected to our
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theory for the Banach-valued case. However, pointwise defined functions of bounded pointwise
variation have some mathematical drawbacks, for example, one can not define weak derivatives.
Therefore, functions of bounded variation are usually defined as a subset of the L1 functions,
which are strictly speaking equivalence classes of functions differing on sets of measure 0. This
means that (1.1) must be extended and one introduces the essential pointwise variation, i.e. for
f ∈ L1(0, T ;X∗),

epvar(f) ∶= inf
g∼f pvar(g), (1.2)

where g ∼ f ∶⇐⇒ g(t) = f(t) for almost every t ∈ (0, T ). One can now define the Banach space of
BV functions:

Definition 1.1.
BV(0, T ;X∗) ∶= {f ∈ L1(0, T ;X∗) ∶ ∥f∥BV ∶= ∥f∥L1 + epvar(f) <∞}.

(Essential) Pointwise variation works very well for functions whose domain is a real interval.
An equivalent notion of variation, which generalises better to functions with multi-dimensional
domains, involves integrating against test functions φ ∈ C0(0, T ;X). To this end we introduce the
notation ⟪φ, f⟫ ∶= ∫ T

0
⟨φ(t), f(t)⟩dt (1.3)

where ⟨⋅, ⋅⟩ is the duality pairing between the Banach space X and its Banach dual X∗ (see
Section A.2). It is now possible to introduce two integral-based variations for f ∈ L1(0, T ;X∗):

var(f) ∶= sup
φ∈C1

0(0,T ;X)∶∥φ∥∞≤1

−⟪φ̇, f⟫, (1.4)

and
varw(f) ∶= sup

φ∈C1
b (0,T ;X)∶∥φ∥∞≤1

⟨φ(T ), f(T−)⟩ − ⟨φ(0), f(0+)⟩ − ⟪φ̇, f⟫, (1.5)

provided the right limit f(0+) at 0 and the left limit f(T−) at T exist; otherwise we set the value
to +∞. In many settings all these notions of variation are known to be equivalent. As one of the
main results of this paper, we will prove in Corollary 2.8 that this equivalence also holds in the
infinite-dimensional setting, i.e. for all f ∈ BV(0, T ;X∗):

epvar(f) = var(f) = varw(f).
Note that the concept of epvar generalizes directly to the metric case, while for var and varw this
is more involved; for this reason, we chose epvar in Definition 1.1.

On the other hand, the notion of var(⋅) is very useful for example to introduce the notion
of a derivative, in the following sense (see also Theorem 2.13). For an f with var(f) < ∞, the
mapping φ ↦ −⟪φ̇, f⟫ is a uniformly continuous linear functional with operator norm var(f)
on C1

0(0, T ;X) viewed as a subspace of C0(0, T ;X). Therefore it has a unique, operator-norm
preserving extension to an element of C0(0, T ;X)∗. In Theorem A.7, the space C0(0, T ;X)∗ will
be seen to be isometrically isomorphic to rca (0, T ;X∗), the space of regular, X∗-valued measures
with the total variation norm ∥⋅∥TV, defined by (A.4). Therefore the extended operator is a weak
derivative ḟ in the sense that

−⟪φ̇, f⟫ = ⟪φ, ḟ⟫ for all φ ∈ C1
0(0, T ;X) (1.6)

and var(f) = ∥ḟ∥TV. Here, we extended the notation from (1.3) by setting, for φ ∈ C0(0, T ;X)
and µ ∈ rca(0, T ;X∗),

⟪φ,µ⟫ ∶= ∫ T

0
⟨φ(t), µ(dt)⟩ . (1.7)

2



This extension is consistent with (1.3) if one identifies elements of L1(0, T ;X∗) with densities of
measures.

We briefly note that there are related notions of derivatives, such as the reduced derivative [26,
App. A] and Darboux-sums [25, App. B.5]. The Kurzweil Integral provides a further approach to
the integrals in (1.6), see e.g. [19] and [20].

1.2 Generalisation to metric space codomains

Many of the concepts, like the notions of pvar(⋅) and epvar(⋅), can be easily generalised to BV-
functions taking values in a metric space (Z,d). On the other, some notions, like the time deriva-
tive, the variation and the various notions of convergence described above are less straight-forward.
To define these notions we will use the embedding of the metric space Z in the Banach space
Lip(Z)∗; the resulting notions are consistent with an alternative generalisation of Ambrosio [1].

We first define the metric space BV(0, T ;Z). Fix a point z0 ∈ Z. This point will play the role
of the zero element in a Banach space; all results that we present are trivially invariant under the
choice of this point. We define

ρL1(f, g) ∶= ∫ T

0
d(f(t), g(t))dt.

and write f ∼ g if f = g a.e., that is, if ρL1(f, g) = 0. Then, the space

L1(0, T ;Z) ∶= {f ∶ (0, T )→ Z for which ∫ T0 d(f(t), z0)dt <∞}/ ∼,
endowed with the metric ρL1(⋅, ⋅) is a complete metric space whenever Z is complete. We write

fn
L1Ð→ f whenever ρL1(fn, f) → 0. The pointwise variation of a function f ∶ (0, T ) → Z is easily

generalisable as follows:

pvar(f) ∶= sup
0<t0<t1<⋅⋅⋅<tn<T

n∑
i=1

d(f(ti−1), f(ti)),
where the supremum runs over all finite partitions of the interval (0, T ). The essential pointwise
variation epvar(f) is defined as in (1.2). Analogously to Definition 1.1, we define the space of
functions of bounded variation by

Definition 1.2.
BV(0, T ;Z) ∶= {f ∈ L1(0, T ;Z) ∶ epvar(f) <∞},

endowed with the metric ρBV(f, g) that we introduce below in (1.9).

Observe that defining a metric ρBV is a non-trivial task since epvar(f − g) is not well-defined.
To make progress we introduce an embedding into a larger space that does have a linear structure.
Following for example [1], one can note that in the Banach valued case, every predual element x ∈X
induces a Lipschitz functional x∗ ↦ ⟨x,x∗⟩ for which ⟨x,0⟩ = 0. Motivated by this observation, the
predual space is replaced by the (potentially much larger class of) Lipschitz functions,

Lip(Z) ∶= {ξ ∶ Z → R for which ∥ξ∥Lip(Z) <∞ and ξ(z0) = 0},
equipped with the Lipschitz constant as norm:

∥ξ∥Lip(Z) ∶= sup
z1,z2∈Z∶
z1≠z2

∣ξ(z2) − ξ(z1)∣
d(z2, z1) .

This Lipschitz norm is basically the global metric slope of ξ, see [5, Defn. 1.2.4], and is sometimes
also known as the Cheeger derivative. To mimic the notation for the Banach case while emphasizing
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the one-sided linearity, we write

⟨ξ, z] ∶= ξ(z) for ξ ∈ Lip(Z) and z ∈ Z, and

⟪φ, f]] ∶= ∫ T

0
⟨φ(t), f(t)]dt for φ ∈ C0(0, T ; Lip(Z)) and f ∈ L1(0, T ;Z).

We now introduce the canonical embedding

δ⋅ ∶ Z → Lip(Z)∗, z ↦ δz with

Lip(Z)⟨ξ, δz⟩Lip(Z)∗ ∶= ⟨ξ, z] = ξ(z) ∀ξ ∈ Lip(Z). (1.8)

This extends in the obvious way to functions taking values in Z so that for f ∈ BV(0, T ;Z)
one has a Banach space valued function δf given by δf(t) = δf(t) and one can try to analyse
f through δf which now fits into the framework of Paragraph 1.1. However, the space Lip(Z)
should be interpreted as a generalisation of the dual of Z rather than the predual; this leads to
some differences between the Banach and the metric cases. For example we can only define a
measure-valued derivative δ̇f that takes values in Lip(Z)∗ rather than in Z. Moreover, if Z =X∗
happens to be dual Banach space and we use the embedding, it is not immediately clear whether
the notions of variation in X∗ coincide with the notions in Lip(X∗)∗. In Theorem 2.10 we prove
that in the metric setting epvar(f) = epvar(δf); we then find in Corollary 2.11 that for Z =X∗ all
notions of variations coincide. This shows that the following metric on the space BV(0, T ;Z),

ρBV(f, g) = ρL1(f, g) + epvar(δf − δg), (1.9)

generalises the distance induced by the norm ∥⋅∥BV on BV(0, T ;X∗).
1.3 Topologies on BV(0, T ;X∗) and BV(0, T ;Z)
The strong topology (induced by ∥⋅∥BV) on BV is too fine for many purposes and in order to achieve
convergence and compactness results one introduces coarser topologies. For related discussions
see Ambrosio et al. [4, Defn. 3.11], and for a closely related approach developed from a stochastic
process perspective, Jakubowski [18] and Bertini et al. [7].

We now present four distinct topologies for the space BV(0, T ;X∗), in decreasing order of
fineness. All four topologies have equivalent formulations in terms of open (semi-)balls. To sim-
plify presentation we define these topologies by their corresponding notions of convergence. We
emphasize that the definition of vague convergence given in Definition A.12 uses dual pairings with
functions in C0(0, T ;X) and not just Cc(0, T ;X). This is important because we are not simply
dealing with probability measures.

It should be noted that the hybrid and weak* topologies are not necessarily first-countable, so
the topologies are defined through their convergent nets rather than through convergent sequences,
see for example [11, Section A.2].

Definition 1.3 (Topologies on BV (0, T ;X∗)). Let X∗ be a dual Banach space, and let (fn)n be
a net and f an element in BV(0, T ;X∗). We say that

fn converges to f in the norm or strong topology whenever:

fn →→ f ∶⇐⇒ fn
L1Ð→ f and ∥ḟn − ḟ∥TV

→ 0, (1.10)

fn converges to f in the strict topology whenever:

fn
strict⇀→ f ∶⇐⇒ fn

L1Ð→ f and ∥ḟn∥TV → ∥ḟ∥TV, (1.11)

fn converges to f in the hybrid topology whenever:

fn ⇀→ f ∶⇐⇒ fn
L1Ð→ f and ḟn

vagueÐÐÐ→ ḟ , (1.12)
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fn converges to f in the weak-* topology whenever:

fn ⇀⇀ f ∶⇐⇒ fn
vagueÐÐÐ→ f and ḟn

vagueÐÐÐ→ ḟ . (1.13)

Observe that the strong topology is induced by the norm ∥⋅∥BV. The term strict convergence is
used in [4, Def. 3.14]. It is slightly stronger than the hybrid convergence, see Proposition A.14, and
it is clearly metrisable, see (3.3). The term weak-* convergence is appropriate since BV(0, T ;X∗)
is isometrically isomorphic to a dual space, see [4, Rem. 3.12] and Proposition 3.3. We named
the convergence (1.12) hybrid since it is a combination of the strong convergence for the functions
and weak-* convergence for the distributional time derivatives. We have not (yet) been able to
determine if the hybrid topology is a mixed topology in the sense of Wiweger [31]; it certainly
topologises the two-norm convergence of sequences, which was one of Wiweger’s motivations.

For finite-dimensionalX, weak-* and hybrid convergence coincide whenever the net is uniformly
bounded in the BV-norm. Therefore, the distinction between the two is rarely made explicit.
However, this is no longer true in the infinite-dimensional setting, as the following example shows.

Example 1.4. Suppose X = X∗ is a separable Hilbert space with orthonormal basis (en)n∈N0 ,
and define the sequence of constant functions fn(t) ≡ en. This sequence has uniformly bounded
norm ∥fn∥BV = ∥fn∥L1(0,T ;X∗) = T , and fn ⇀⇀ 0 but certainly not fn ⇀→ 0. In particular, since
BV(0, T ;X∗) can be identified with a dual space, Banach-Alaoglu gives compactness of bounded
BV-balls in the weak* topology, but not in the hybrid topology.

Using the canonical embedding δ ∶ Z → Lip(Z)∗ and Theorem 2.10 one can easily generalise
Definition 1.3 to the metric case:

Definition 1.5 (Topologies on BV (0, T ;Z)). Let Z be a metric space and let (fn)n be a net and
f an element in BV(0, T ;Z). We say that

fn converges to f in the strong topology whenever:

fn →→m f ∶⇐⇒ fn
L1Ð→ f and ∥δ̇fn − δ̇f∥TV

→ 0, (1.14)

fn converges to f in the strict topology whenever:

fn
strict⇀→m f ∶⇐⇒ fn

L1Ð→ f and ∥δ̇fn∥TV → ∥δ̇f∥TV, (1.15)

fn converges to f in the hybrid topology whenever:

fn ⇀→m f ∶⇐⇒ fn
L1Ð→ f and δ̇fn

vagueÐÐÐ→m δ̇f , (1.16)

fn converges to f in the weak-* topology whenever:

fn ⇀⇀m f ∶⇐⇒ δfn
vagueÐÐÐ→ δf and δ̇fn

vagueÐÐÐ→m δ̇f . (1.17)

Observe that the strong topology is indeed induced by the metric (1.9). In our notation,
we have included the subscript m, since it is not a priori clear whether these notions coincide
with the notions of Definition 1.3 if Z = X∗ is a dual Banach space. However, we will show
in Proposition 3.22 that the notions of strict convergence indeed coincide, and similarly for the
strong convergence, see Remark 3.23. In Propositions 3.2 and 3.11 we show that the metric and
Banach versions of the weak-∗ and hybrid topologies agree at least on sequences; it is still an open
question whether the topologies are the same, i.e. whether they agree on all nets.

Our main topological results, which also apply to our generalisations to metric space codomains,
are

� that the strict and hybrid and weak-* topologies are separable (Propositions 3.26, 3.13 and
3.7),

� sufficient conditions for precompactness in the weak-*, hybrid and strict topologies (Corol-
lary 3.8, Theorem 3.18 and Proposition 3.27).
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1.4 Application to stochastic processes

Most stochastic processes in the literature have càdlàg paths. The most commonly used topology
on the space of càdlàg paths is the Skohorod (J1-) topology, which makes the path space into
a Polish space [16, Sec. 3.5]. This fact is very useful since general probability theory works
very well in Polish spaces, in particular: (i) the Portemanteau Theorem, giving several equivalent
formulations of narrow convergence of probability measures, (ii) Prohorov’s theorem, which relates
relative compactness to tightness of a sequence of measures, and (iii) the fact that tightness plus
convergence of the time-slices (‘finite-dimensional distributions’) implies convergence in path space.

A natural question is then whether these general results are still true on the space of BV paths
with any of the topologies that we introduced in Section 1.3. However, none of these topologies are
Polish: the strong topology is metrisable but not separable, the strict topology is metrisable but
not complete, and the hybrid and weak-∗ topologies are not metrisable. Therefore the standard
tools mentioned above may no longer work in those topologies. Although the weak-∗ topology is
probably too weak for many practical purposes, the hybrid topology turns out to be strong enough
to be useful but weak and regular enough to be tractable. We will show in Section 3.2 that it is
perfectly normal and completely regular. We will see in Section 4 that this is sufficient to establish
the validity of the three results just mentioned. In Corollary 4.4 and Theorem 4.5 we show that the
Borel σ-algebra generated by the hybrid topology coincides with the Borel σ-algebra generated
by the L1 topology restricted to BV and also coincides with the product σ-algebra. In 4.6 we
show that the Portemanteau Theorem is still valid in the strong, strict and hybrid topologies. In
Proposition 4.7 we show that the forward version of the Prohorov Theorem is true for the hybrid
topology, and in Theorem 4.8 we show that tightness plus convergence of the finite-dimensional
distributions imply convergence of the path measures.

1.5 Overview

The structure of the article is as follows. In Section 2, we study some fundamental properties of
BV(0, T ;Z)-functions such as the existence of càdlàg-representatives, equivalence of the various
notions of variation, and the existence of time derivatives.

In Section 3 we study the properties of the three weaker topologies that we have introduced
above and provide a number of convergence, duality, regularity and compactness theorems for
each of them.

In Section 4 we derive a number of important results related to stochastic processes. Most no-
tably, we first show a number of facts about the σ-algebras corresponding to the strong, strict and
hybrid topologies. Next we provide generalised versions of the Portemanteau Theorem, Prohorov’s
Theorem, and a criteria for convergence of measures on BV-paths.

In the appendix we recall the notions of Banach-valued measures, integrals against Banach-
valued measures, regularisation, and topologies on Banach-valued measures.

2 Properties of BV-functions

We devide this section into four parts. In the first part, we show some continuity properties of
BV-functions that follow from purely metric considerations. In particular, we show that every
BV-function is continuous up to countably many points and that the minimizer of epvar(⋅) is
attained by the cadlag representative. In the second part, we show that all concepts of variation
coincide in the Banach case, and we prove the same statement for metric valued functions in the
third part. The fourth part deals with the existence of a time derivative and its properties.

2.1 Continuity-related properties of BV-Functions

In this section we work with pointwise variation and so we can work with functions taking values
in a metric space. A crucial fact will be the existence of right and left limits, which will lead to a
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proof of Theorem 2.10. The first step is to show the existence of such limits for pointwise defined
functions.

Proposition 2.1 (Existence of right and left limits). Let Z be a complete metric space and
g ∶ (0, T ) → Z satisfy pvar(g) <∞. Then g is continuous up to a countable subset of (0, T ) and g
has left and right sided limits:

g(t−) ∶= lim
s→t
s<t

g(s) ≡ lim
s↗t g(s), and g(t+) ∶= lim

s→t
s>t

g(s) ≡ lim
s↘t g(s)

for all t ∈ (0, T ), and one sided limits at the end points.

Proof. Let us write

pvar(g; (0, t]) ∶= sup
0<t0<t1<⋅⋅⋅<tn≤t

n∑
i=1

d(g(ti−1), g(ti)). (2.1)

This is a monotonely increasing function of t and bounded above by pvar(g) so it has at most
countably many jumps. Let t be a continuity point of pvar(g; (0, t]). Then we find

lim
τ→td (g(t), g(τ)) ≤ lim

τ→t ∣pvar(g; (0, t]) − pvar(g; (0, τ])∣ = 0 .

Let t ∈ [0, T ). If there were a monotone sequence tn ↘ t such that g(tn) did not converge then
the sequence cannot be Cauchy, i.e. for some ε > 0 one can pass to a subsequence such that
d(g(tn), g(tn+1)) ≥ ε for all n. This would imply that pvar(g) = ∞, which is a contradiction.
Similarly, we prove existence of left limits on (0, T ].

Using this fact, we can now prove that the right and left limits of a BV-equivalence class are
well-defined.

Proposition 2.2 (Uniqueness of right and left limits). Let Z be a complete metric space and
f ∈ BV(0, T ;Z). For a g ∶ (0, T ) → Z with g = f almost everywhere and pvar(g) < ∞, define
f(t+) ∶= g(t+) for all t ∈ [0, T ) and f(t−) ∶= g(t−) for all t ∈ (0, T ]. Then the right and left limits
of f are invariant under the choice of the representative g.

Proof. Take two representatives g1, g2 of f with g1(t) = g2(t) almost everywhere and pvar(g1),pvar(g2) <∞. By Proposition 2.1 there exists a countable set I ⊂ N such that g1∣[0,T ]/I and g2∣[0,T ]/I are
continuous and thus g1(t) = g2(t) for all t /∈ I. Using the triangle inequality we infer that

pvar(d(g1, g2)) = pvar(∥δg1 − δg2∥) ≤ pvar(δg1) + pvar(δg2) = pvar(g1) + pvar(g2) .
Therefore, the left and right limits of d(g1, g2) = 0 exist in all t ∈ (0, T ) with one sided limits at
the end points. Hence, g1(t−) = g2(t−) for all t ∈ (0, T ] and g1(t+) = g2(t+) for all t ∈ [0, T ).

By Proposition 2.2 we can construct a càdlàg version of a BV-function. We prove here that
this version is in fact a minimiser for essential pointwise variation. Later on in Corollary 2.19 we
prove that the càdlàg version can be related to the derivative.

Proposition 2.3. Let Z be a complete metric space and f ∈ BV(0, T ;Z). Define fcadlag(t) ∶=
f(t+). Then fcadlag = f a.e. and epvar(f) = pvar(fcadlag).

Proof. First note that fcadlag(t) = f(t) wherever f is continuous and by Proposition 2.1 the
discontinuity points are a countable set and thus of measure 0, which proves the first statement.
Because of this, one has epvar(f) ≤ pvar(fcadlag). Suppose the inequality to be strict, then there
exists an a g = f a.e. such that pvar(g) < pvar(fcadlag). By Proposition 2.2 fcadlag ≡ gcadlag and
so pvar(g) < pvar(gcadlag), thus there exists an ε > 0 and a finite partition 0 < t0 < t1 < ⋅ ⋅ ⋅ < tn <
tn+1 = T such that

pvar(g) + ε ≤ n∑
i=1

d (gcadlag(ti−1), gcadlag(ti)) .
7



However we may also find si ∈ (ti, ti+1) such that

max
i=0,...,n

d (g(si), gcadlag(ti)) < ε

3n

and thus pvar(g) + ε ≤ pvar(g) + 2ε
3

, which is a contradiction since pvar(g) <∞.

We end this sub-section with two results that are instrumental in proving our Compactness
Theorem 3.18. For an open subinterval I ⊂ (0, T ) let

pvar(f ; I) ∶= sup
0<t0<t1<⋅⋅⋅<tn<T ∶

t0,tn∈I
n∑
i=1

d(f(ti−1), f(ti)),
then the following rule for combining variation holds:

Proposition 2.4. Let Z be a complete metric space, 0 < T1 < T2 and f ∈ BV(0, T2;Z), then

pvar(f ; (0, T2)) = pvar(f ; (0, T1)) + pvar(f ; (T1, T2)) + d(f(T1−), f(T1)) + d(f(T1), f(T1+))
Lemma 2.5. Let Z be a complete metric space, f ∈ BV(0, T ;Z), ε > 0 and σ∶ (0, T ) → (0, T ) be
measurable and satisfy ∣σ(t) − t∣ ≤ ε for all t ∈ (0, T ), then

∫ T

0
d(f(t), f (σ(t)+))dt ≤ 3ε epvar(f).

Proof. By Proposition 2.3 one may replace f(t) with fcadlag(t). Let n be the largest integer no
greater than T /ε, then, implicitly intersecting domains of integration with (0, T ) the integral can
be broken into smaller integrals:

∫ T

0
d(f(t), f (σ(t)+))dt = n+1∑

i=1
∫ iε

(i−1)ε d(fcadlag(t), fcadlag (σ(t)))dt
However, for t ∈ ((i − 1)ε, iε) ∩ (0, T ) it follows that σ(t) ∈ ((i − 2)ε, (i + 1)ε) ∩ (0, T ) and so

d(f(t), f (σ(t)+)) ≤ pvar(fcadlag; ((i − 2)ε, (i + 1)ε) ∩ (0, T )).
Thus

∫ T

0
d(f(t), f (σ(t)+))dt ≤ εn+1∑

i=1

pvar(fcadlag; ((i − 2)ε, (i + 1)ε) ∩ (0, T ))
and the result follows after allowing for some triple counting since pvar is subadditive by Propo-
sition 2.4 .

2.2 Equivalence of notions of variation for Banach-valued functions

We now prove in two parts that all notions of variations coincide.

Proposition 2.6. Let X∗ be a dual Banach space and let f ∈ BV(0, T ;X∗), then

var(f) = epvar(f).
Proof. By Proposition 2.2 we can canonically identify any f ∈ BV(0, T ;X∗) with its càdlàg version,
and then by Proposition 2.3 one sees that epvar(f) = pvar(f). We can choose 0 < t0 < t1 < ⋅ ⋅ ⋅ <
tn < T and ξi, ζi ∈X with ∥ξi∥X , ∥ζi∥X = 1 such that

pvar(f) ≤ n∑
i=1

∥f(ti−1) − f(ti)∥ + ε
≤ n∑
i=1

{ ∥f(ti−1) − f(ti−)∥ + ∥f(ti−) − f(ti)∥ } + ε
≤ n∑
i=1

{ ⟨ξi, f(ti−1) − f(ti−)⟩ } + n∑
i=1

{ ⟨ζi, f(ti−) − f(ti)⟩ } + 2ε. (2.2)
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We now estimate both sums separately. Since ξi ○ f ∈ BV(0, T ;R), each term in the first sum is
bounded by the variation var(ξi ○ f ; (ti−1, ti)) of ξi ○ f , restricted to the interval (ti−1, ti). Due to
this BV-regularity, we can take φi ∈ C1

c (0, T ;R) with suppφi ⊂ (ti−1, ti), 0 ≤ φi ≤ 1 and

⟨ξi, f(ti−1) − f(ti−)⟩ ≤ var(ξi ○ f ; (ti−1, ti)) ≤ ∫ ti

ti−1
φ̇i(t) ⟨ξi, f(t)⟩ dt + ε

n
.

Now define Φ∶ (0, T )→X by Φ(t) ∶= ∑ni=1 φi(t)ξi. Then Φ ∈ C1
c (0, T ;X) with ∥Φ∥∞ ≤ 1 and,

n∑
i=1

{ ⟨ξi, f(ti−1) − f(ti−)⟩ } ≤ ⟪Φ̇, f⟫ + ε .
For some δ > 0 one has Φ ∣∪ni=1(ti−δ,ti+δ)≡ 0. We now exploit this flexibility to deal with possible

jumps at the ends of the intervals in the second sum of (2.2). Define ψ ∈ C1
c (R;R) through

ψ̇(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4s if 0 ≤ s < 1

2

4(s − 1
2
) − 2 if 1

2
≤ s < 1

0 if s ≥ 1

, ψ̇(s) = −ψ̇(−s) , ψ(−1) = 0 .

Since ζi ○ f is right continuous and has left limits, we obtain that

lim
δ→0

1

δ∫ ti+δ
ti−δ ψ̇( t − ti

δ
)⟨ζi, f(t)⟩dt = ⟨ζi, f(ti−) − f(ti)⟩ .

Thus we can pick δ sufficiently small so that Ψ(t) ∶= ∑ni=1 ψ ( t−ti
δ

) ζi ∈ C1
c (0, T ;X) with ∥Ψ∥∞ ≤ 1

and suppΦ ∩ suppΨ = ∅, and

n∑
i=1

{ ⟨ζi, f(ti−) − f(ti)⟩ } ≤ ⟪Ψ̇, f⟫ + ε.
Continuing with (2.2) we find that

pvar(f) ≤ ⟪Φ̇ + Ψ̇, f⟫ + 4ε (2.3)

where even Φ +Ψ ∈ C1
c (0, T ;X) with ∥Φ +Ψ∥∞ ≤ 1. Since for all ε > 0 we can construct Φ,Ψ such

that (2.3) holds, we obtain

pvar(f) ≤ sup
Φ∈C1

c (0,T ;X)∶∥Φ∥∞≤1

⟪Φ̇, f⟫ = var(f).

For the converse it is sufficient to establish var(f) ≤ pvar(f) = epvar(f) since we still identify
f with its càdlàg representative. For n ∈ N define fn ∈ BV(0, T ;X∗) by the piecewise constant
approximation

fn(t) ∶= n∑
i=1

f( (i−1)T
n

)1[ (i−1)Tn , iTn )(t)
and note that these are càdlàg by construction and satisfyρL1(fn, f)→ 0. Further

var(fn) = sup
Φ∈C1

0(0,T ;X)∶∥Φ∥∞=1

n∑
i=1
∫ iT

n

(i−1)T
n

⟨Φ̇(t), f( (i−1)T
n

)⟩dt

= sup
Φ∈C1

0(0,T ;X)∶∥Φ∥∞=1

n∑
i=1

⟨Φ( iT
n
) −Φ( (i−1)T

n
), f( (i−1)T

n
)⟩

≤ n−1∑
i=1

∥f( (i−1)T
n

) − f( iT
n
)∥ ≤ pvar(f).
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Since var(f) is the supremum over functionals continuous in the L1 topology, it is lower semicon-
tinuous, so that:

var(f) ≤ lim inf
n

var(fn) ≤ pvar(f).

The next result can also be proved by explicit estimates in the style of the previous proof, the
proof given uses material presented in the following sections and is therefore somewhat shorter.

Proposition 2.7. Let X∗ be a dual Banach space and let f ∈ BV(0, T ;X∗), then

var(f) = varw(f).
Proof. By definition, we find var(f) ≤ varw(f). For the other direction of the equality var(f) =
varw(f), chose a sequence of functions ψη ∈ C1

b ([0,1);R) such that ψη(0) = 1, ψη is non-increasing
and ψη(η) = 0. For an arbitrary φ ∈ C1

b (0, T ;X) we write φη(t) ∶= φ(t) (1 − ψη(t) − ψη(T − t))
which is now in C1

0(0, T ;X). Then

⟨φ(T ), f(T−)⟩ − ⟨φ(0), f(0+)⟩ − ⟪φ̇, f⟫
= ⟨φ(T ), f(T−)⟩ − ⟨φ(0), f(0+)⟩ − ⟪φ̇η, f⟫ + ⟪φ̇η − φ̇, f⟫≤ ⟨φ(T ), f(T−)⟩ − ⟨φ(0), f(0+)⟩ + var(f) − ⟪(ψη + ψη(T − ⋅)) φ̇, f⟫ − ⟪φ (ψ̇η − ψ̇η(T − ⋅)) , f⟫
→ ⟨φ(T ), f(T−)⟩ − ⟨φ(0), f(0+)⟩ + var(f) − ⟨φ(T ), f(T−)⟩ + ⟨φ(0), f(0+)⟩ = var(f)

where we used the continuity of φ and the existence of left and right limits of f together with∫ T0 ψ̇(t)dt = 1. Taking the supremum over φ ∈ C1
b (0, T ;X) proves the claim.

To summarize the results of Propositions 2.3, 2.6 and 2.7, we now have the equivalence of all
notions of variations:

Corollary 2.8. Let X∗ be a dual Banach space, then for all f ∈ BV(0, T ;X∗)
epvar(f) = pvar(fcadlag) = var(f) = varw(f).

2.3 Equivalence of notions of variations of metric-valued functions

In this short section we investigate the relation between the variations in the metric and the
Banach setting. As explained in Section 1.2, the canonical embedding δ ∶ Z → Lip(Z)∗ plays a
crucial role. We note that the space Lip(Z) is never empty—just consider ξ(z) ∶= d(z, z0), and
that the embedding is continuous and injective, due to the following result. The following result
is trivial to obtain but it can be considered the heart of the concept of δf .

Lemma 2.9. For all z1, z2 ∈ Z
∥δz1 − δz2∥Lip(Z)∗ = sup

ξ∈Lip(Z)∶∥ξ∥Lip(Z)=1

⟨ξ, z1] − ⟨ξ, z2] = d(z1, z2). (2.4)

Proof. The inequality sup∥ξ∥Lip(Z)=1⟨ξ, z1] − ⟨ξ, z2] ≤ d(z1, z2) holds by definition. Equality follows

for the choice ξ(z) ∶= d(z, z2).
This lemma guarantees that δf ∈ BV(0, T ; Lip(Z)∗)) if f ∈ BV(0, T ;Z). More precisely, we

have

Theorem 2.10. Let Z be a complete metric space. For every g ∶ (0, T )→ Z,

pvar(g) = pvar(δg).
and for every f ∈ BV(0, T ;Z),

epvar(f) = epvar(δf).
10



Proof. The first statement is a simple consequence of equation (2.4).
For the second statement, use δf(t) = δf(t) and continuity of the mapping δ to see that(δf)cadlag ≡ δ(fcadlag). Together with the first statement this implies that

epvar(f) = pvar(fcadlag) = pvar(δ(fcadlag)) = pvar((δf)cadlag) = epvar(δf).

Combining this result with Theorem 2.8 yields:

Corollary 2.11. Let X∗ be a dual Banach space, then for every f ∈ BV(0, T ;X∗)
var(f) = varw(f) = epvar(f) = epvar(δf) = varw(δf) = var(δf).

Remark 2.12. (i) As a by-product of Corollary 2.11 it also follows that

var(f) = sup
φ∈C1

0(0,T ;X)∫
T

0
⟨φ̇(t), f(t)⟩dt

= sup
ψ∈C1

0(0,T ;Lip(X∗))∫
T

0
⟨ψ̇(t), f(t)]dt = var(δf),

and so the space of test functions used in defining var(⋅) for BV(0, T ;X∗) can be extended
from C0(0, T ;X) to C0(0, T ; Lip(X∗)) (which includes C0(0, T ;X∗∗)) without changing what
is meant by variation.

(ii) There is another well-established concept for the variation of a metric-valued function, which
was studied by Ambrosio [1]: Given f ∶ (0, T ) → Z, the variation of f is defined to be the
smallest measure σf ∈ rca(0, T ;R) such that

∀ϕ ∈ Lip(Z), B ⊂ (0, T ) σf(B) ≥ ∣Dϕ(f)∣(B) .
This definition is shown by Ambrosio to coincide with epvar(f). Our approach allows us to
identify σf with ∣δ̇f ∣.

2.4 Time derivatives of BV-functions

In this section we introduce the measure-valued time derivative of a function of bounded variation,
and prove a number of properties related to this derivative. Firstly, such a derivative exists:

Theorem 2.13 (Existence of measure-valued derivatives). Let f ∈ BV(0, T ;Z).

(i) If Z =X∗ is a dual Banach space, then there exists a unique finite measure ḟ ∈ rca(0, T ;X∗)
with ∥ḟ∥TV = var(f) and such that

−⟪φ̇, f⟫ = ⟪φ, ḟ⟫ for all φ ∈ C1
0(0, T ;X) . (2.5)

(ii) If Z is a complete metric space, then there exists a unique finite measure δ̇f ∈ rca(0, T ; Lip(Z)∗)
with ∥δ̇f∥TV = var(f) and such that

−⟪φ̇, f]] = ⟪φ, δ̇f⟫ for all φ ∈ C1
0(0, T ; Lip(Z)) . (2.6)

Proof. The proof is as outlined in the introduction (see (1.6)). The mapping φ↦ −⟪φ̇, f⟫ is clearly
linear and ∣−⟪φ̇, f⟫∣ ≤ ∥φ∥C0(0,T ;X)var(f) ∀φ ∈ C1

0(0, T ;X) .
By denseness and by the Banach-valued Riesz-Markov-Kakutani Theorem A.7 the claim follows.
The proof for the metric case is the same if we replace X by Lip(Z).
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Remark 2.14. A word of warning is appropriate here: even in the case Z =X∗ and for differen-
tiable f one does not in general have δḟ = δ̇f viewed as elements of rca (0, T ; Lip(X∗)∗). To see

this, take a f ∈ W 1,1(0, T ;X∗) and a φ ∈ C1
0(0, T ;C1

b (X∗)) and apply two partial integrations to
get:

⟪φ, δ̇f⟫ = ∫ T

0
X∗∗⟨∇f ⟨φ(t), f(t)], ḟ(t)⟩X∗ dt, and

⟪φ, δḟ⟫ = ∫ T

0
⟨φ(t), ḟ(t)]dt.

Hence in general the two only agree when integrated against test functions that are linear in f ,
that is φ ∈ C0(0, T ;X).

In many cases the measure-valued derivative can itself be identified with a function. This is
captured by the following definition and result.

Definition 2.15. Let Z be a metric space and let f ∈ BV(0, T ;Z). We say that f is p-absolutely
continuous, if there exists v ∈ Lp(0, T ) such that

d (fcadlag(t) − fcadlag(τ)) ≤ ∫ τ

t
v(s)ds ∀0 ≤ t ≤ τ ≤ T . (2.7)

In the next lemma we show that p-absolutely continuity is equivalent to Lp-regularity of the
derivative . This result is known in the literature for reflexive Banach spaces (see for instance [5,
Rem. 1.1.3]).

Lemma 2.16 (Absolute continuity). Let Z be a complete separable metric space. Then f ∈
BV(0, T ;Z) is p-absolutely continuous if and only if δ̇f ∈ Lp(0, T ; Lip(Z)∗). Let Z =X∗ be a dual

Banach space. Then f ∈ BV(0, T ;X∗) is p-absolutely continuous if and only if ḟ ∈ Lp(0, T ;X∗).
Furthermore, v = ∣δ̇f ∣ is optimal in (2.7).

Proof. We first prove the Banach case. Let ḟ ∈ Lp(0, T ;X∗). Then (2.7) holds for v(t) ∶= ∥ḟ(t)∥X∗ .
On the other hand, let (2.7) hold. As explained in Section A.1, we may take the supremum over
finite sub-intervals in the definition of the R-valued measure ∣ḟ ∣. Therefore we get that for every
interval (a, b] ⊂ (0, T ),

∣ḟ ∣(a, b] = sup
a<t0<⋯≤tn≤b

n∑
i=1

∥ḟ((ti−1, ti])∥X∗
(2.8)= sup

a<t0<⋯≤tn≤b
n∑
i=1

∥f(ti+) − f(ti−1+)∥X∗
(2.7)≤ sup

a<t0<⋯≤tn≤b
n∑
i=1
∫ ti

ti−1
v(s)ds ≤ ∫(a,b]v(s)ds.

By the classical Nikodym theorem, there exists a measurable function w ∶ (0, T ) → [0,1] such
that ∣ḟ ∣(ds) = v(s)w(s)ds. By the generalized Lebesgue-Nikodym Theorem A.8, there exists
u ∶ (0, T )→X∗ with ∥u(t)∥X∗ ≤ 1 for every t ∈ (0, T ) such that for all φ ∈ Cc(0, T ;X)

⟪φ, ḟ⟫ = ∫ T

0
⟨φ(t), u(t)⟩ ∣ḟ ∣(dt) = ∫ T

0
⟨φ(t), u(t)⟩ v(t)w(t)dt .

This implies ḟ = uvw and hence ∥ḟ∥
Lp(0,T ;X∗) ≤ ∥v∥Lp(0,T ) and v = ∣ḟ ∣ is optimal in (2.7).

The general metric case now follows immediately.

We now show how a function of bounded variation can be reconstructed from its derivative.
For this, we first need two lemmas which can be proved the same way as in [4, Example 1.75,
Proposition 3.2 & Theorem 3.27].

Lemma 2.17. Let Z = X∗ be a dual Banach space, µ ∈ rca(0, T ;X∗), and define g(t) ∶= µ((0, t])
for all t ∈ (0, T ). Then g ∈ BV(0, T ;X∗) and µ = ġ = ∂g, where ∂g is the Stieltjes measure from
Theorem A.3.
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Lemma 2.18. Let Z = X∗ be a dual Banach space. If u, v ∈ BV(0, T ;X∗) such that u̇ = v̇, then
u ≡ v + c for some constant c ∈X∗.

As a corollary of Lemmas 2.17, 2.18 and Theorem A.3 we obtain the following.

Corollary 2.19. Let X be a Banach space with dual space X∗ and let f ∈ BV(0, T ;X∗). Then
the càdlàg version of Proposition 2.3 can be written as

fcadlag(t) = ḟ((0, t]) + f(0+). (2.8)

Similarly, if Z is a metric space and f ∈ BV(0, T ;Z) then

δfcadlag(t) = (δf)cadlag
(t) = δ̇f((0, t]) + δf(0+).

We now prove a number of useful results related to the derivative: a product rule, a mollifica-
tion, an approximation result, and an integration by parts formula. The following two statements
(Proposition 2.20 and Theorem 2.21) can be proved along the same lines as [4, Prop. 3.2, Thm. 3.9],
using Lemma’s A.10 and A.11 from Appendix A.3.

Proposition 2.20. Let X be a separable Banach space and f ∈ BV(0, T ;X∗).

1. For any Lipschitz function ψ ∶ (0, T )→ R the product fψ ∈ BV(0, T ;X∗) and

d

dt
(fψ) = fψ̇ + ḟψ .

2. If ψη ∈ C∞
c (R) is a mollifier with suppψη ⊂ [−η, η] then

d

dt
(ψη ∗ f)(t) = (ψη ∗ ḟ) (t) ∀t ∈ (η, T − η) .

Theorem 2.21 (Approximation of BV(0, T ;X∗)-functions by smooth functions.). Let X be a
separable Banach space and let f ∈ L1(0, T ;X∗). Then f ∈ BV (0, T ;X∗) if and only if there exists
a sequence of functions (fε)ε>0 with fε ∈ C∞(0, T ;X∗) such that for all ε it holds

∥f − fε∥L1(0,T ;X∗) < ε , ∥ḟε∥L1(0,T ;X∗) ≤ epvar(f) + ε. (2.9)

Finally we give an integration by parts formula for the general metric case:

Theorem 2.22 (Integration by parts). Let Z be a complete metric space, and f ∈ BV(0, T ;Z)
and φ ∈W 1,∞(0, T ; Lip(Z)) (φ is identified with its Lipschitz continuous representative). Then

⟪φ̇, f]] + ⟪φ, δ̇f⟫ = ⟨φ(T−), f(T−)] − ⟨φ(0+), f(0+)].
Proof. Let k ∈ N satisfy 1/k < T /4. Choose χ, ρ ∈ C2

c (R;R) such that 1[1/k,T−1/k] ≥ χ ≥ 1[2/k,T−2/k]
and ρ ≥ 0 with support contained in [−1/2k,1/2k] and ∫ ρ(t)dt = 1. Define φk ∈ C2

c (0, T ; Lip(Z))
by φk ∶= (χφ) ∗ ρ. Then, since k > 4/T ,

∣⟪φ̇, f]] + ⟪φ, δ̇f⟫ − φ(T−) (f(T−)) + φ(0+) (f(0+))∣
≤ ∣⟪φ̇, f]] − ⟪φ̇k, f]] − φ(T−) (f(T−)) + φ(0+) (f(0+))∣

+ ∣⟪φ̇k, f]] + ⟪φk, δ̇f⟫∣ + ∣⟪φ, δ̇f⟫ − ⟪φk, δ̇f⟫∣ .
Now ∣⟪φ̇k, f]] + ⟪φk, δ̇f⟫∣ is 0 by the definition of ḟ since φk ∈ C2

c (0, T ; Lip(Z)). Also for every t ∈(0, T ) limk→∞ φk(t) = φ(t) and ∥φk∥L∞(0,T ;Lip(Z)) ≤ ∥φ∥L∞(0,T ;Lip(Z)) so by dominated convergence

∣⟪φ, δ̇f⟫ − ⟪φk, δ̇f⟫∣ ≤ ∫ T

0
∥φ(t) − φk(t)∥Lip(Z) ∣δ̇f ∣ (dt) k→∞ÐÐÐ→ 0.
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The remaining term can be estimated by noting d
dt
φk ≡ (χφ̇) ∗ ρ + (χ̇φ) ∗ ρ, using Lemma 2.5

and noting that if s, t ↘ 0 then φ(s) (f(t)) → φ(0+) (f(0+)) along with the analogous result for
T−.

Remark 2.23. For the case Z = X∗ we obtain a stronger integration-by-parts result with δ̇f
replaced by ḟ .

3 Properties of topologies on the space BV(0, T ;Z)
In this section we investigate a number of important properties of the topologies introduced in
Section 1. Although the norm topology is clearly metrisable, it is not separable and it is rarely
possible to establish precompactness results. Therefore we restrict our analysis to the weak*,
hybrid and strict topologies. For each of these we will characterise convergence, the dual space,
discuss regularity properties, and give sufficient conditions for compactness. Some of the results in
this section hold when Z is a general metric space, but many others require the dual Banach space
structure Z =X∗. These results then also hold in the metric setting after embedding BV(0, T ;Z)
into BV(0, T ; Lip(Z)∗).
3.1 The weak-∗ topology

Recall from (1.13) and (1.17) that fn ⇀⇀ f whenever fn
vagueÐÐÐ→ f and ḟn

vagueÐÐÐ→ ḟ , and for the metric

case fn ⇀⇀m f whenever δfn
vagueÐÐÐ→ δf and δ̇fn

vagueÐÐÐ→m δ̇f .

Characterisation of convergence

Proposition 3.1. Let (fn)n be a net and f an element in BV(0, T ;Z). If Z = X∗ is a dual
Banach space, then

fn ⇀⇀ f ⇐Ô fn
vagueÐÐÐ→ f and sup

n
var(fn) <∞,

and equivalence holds when (fn)n is a sequence. If Z is a complete metric space, then the same

result holds if we replace fn
vagueÐÐÐ→ f by δfn

vagueÐÐÐ→ δf .

Proof. Let X∗ be a dual Banach space and fn
vagueÐÐÐ→ f a convergent net in BV(0, T ;Z) with

supn var(fn) < ∞. Now approximate an arbitrary test function φ ∈ C0(0, T ;X) by a sequence(φk)k ⊂ C1
0(0, T ;X) such that ∥φ − φk∥∞ → 0. Since the variation is lower semicontinuous in the

vague topology, we automatically get var(f) ≤ supn var(fn). It then follows that

∣⟪φ, ḟn⟫ − ⟪φ, ḟ⟫∣ ≤ ∣⟪φk, ḟn − ḟ⟫∣ + ∣⟪φ − φk, ḟn − ḟ⟫∣
≤ ∣⟪φ̇k, fn − f⟫∣ + 2∥φ − φk∥∞ sup

n̂
var(fn̂)

Ð→
n

2∥φ − φk∥∞ sup
n̂

var(fn̂)Ð→
k

0,

which together with fn
vagueÐÐÐ→ f shows that fn ⇀⇀ f .

On the other hand, if (fn)n is a weak-∗ convergent sequence, then supn⟪φ, fn⟫ < ∞ and by
Banach-Steinhaus it follows that supn var(fn) <∞.

The proof in the metric case is analogous once we replace f and ḟ by δf and δ̇f .

We now compare the Banach-case Definition 1.3 of convergence with the metric-case Defini-
tion 1.5.
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Proposition 3.2. Let Z = X∗ be a dual Banach space. Let (fn)n be a net and f an element in
BV(0, T ;X∗). Then

fn ⇀⇀ f ⇐Ô fn ⇀⇀m f.
Moreover, if supn epvar(fn) < ∞, for example because (fn)n is a sequence, then the implication

is in fact an equivalence.

Proof. If fn ⇀⇀m f , then fn ⇀⇀ f is immediate from C0(0, T ;X) ↪ C0(0, T ; Lip(X∗)). The converse
is Proposition 3.1.

Duality

We first show that the space of functions of bounded variation can itself be regarded as a dual
space. This theorem works as in the finite-dimensional case (see [4, Rem. 3.12]) and we include it
here to provide the full details. To shorten notation, we introduce the spaces:

Φ ∶= C0(0, T ;X) ×C0(0, T ;X) and Φ∂t ∶= {(φ̇2, φ2) ∶ φ2 ∈ C∞
c (0, T ;X)} ⊂ Φ,

both equipped with the uniform norm ∥φ∥Φ ∶= supt∈(0,T )∥φ1(t)∥X + supt∈(0,T )∥φ2(t)∥X .

Theorem 3.3. Let Z =X∗ be a dual Banach space. Then the Banach space (BV(0, T ;X∗), ∥⋅∥BV)
is isometrically isomorphic to (Φ/Φ∂t)∗, and the weak-* convergence corresponds to the conver-
gence defined in (1.13).

Proof. Observe that for any f ∈ BV(0, T ;X∗), by Theorem 2.13 the derivative ḟ is well-defined as

an object in C0(0, T ;X)∗ ≅ rca(0, T ;X∗). Define the map T ∶ BV(0, T ;X∗)→ Φ∗ by Tf ∶= (f̂ , ḟ),
where f̂(dt) ∶= f(t)dt. We can then characterise the annihilator of the closure Φ∂t as (see [29,
Sec. 4.6])

Φ∂t
⊥ ∶= {µ ∈ Φ∗ ∶ ⟨µ,φ⟩ = 0 for all φ ∈ Φ∂t}= {µ ∈ Φ∗ ∶ ⟨µ,φ⟩ = 0 for all φ ∈ Φ∂t}= RanT. (3.1)

The first equality follows immediately from the fact that Φ∂t is strongly dense in its own closure.
For the second equality, the direction ⊇ follows immediately from the definitions of ḟ and Φ∂t. For
the direction ⊆, pick a µ ∈ Φ∗ for which ⟨µ,φ⟩ = ⟨µ1, φ̇2⟩+⟨µ2, φ2⟩ = 0 for all φ2 ∈ C∞

c (0, T ;X). If we
define f(t) ∶= µ2((0, t]), then Lemma 2.17 yields that f ∈ BV(0, T ;X∗) and ⟨f, φ̇2⟩ = −⟨µ2, φ2⟩ =⟨µ1, φ̇2⟩ for all φ2 ∈ C∞

c (0, T ;X). We therefore find that µ1(dt) = f(t)dt, and hence indeed
µ ∈ RanT , which proves the equality (3.1).

Exploiting (3.1), by [29, Th. 4.9(b)] there exists a isometric isomorphism τ ∶ (Φ/Φ∂t )∗ →
Φ∂t

⊥ = RanT . It is easily verified that ∥f∥BV = ∥Tf∥Φ∗ . Therefore the map τ−1 ○T is an isometric

isomorphism between BV(0, T ;X∗) and (Φ/Φ∂t)∗.

Finally, the desired weak* convergence is characterised by convergence against Φ/Φ∂t. In fact,
it again suffices to test against functions in Φ/Φ∂t because of the (strong) density. Then by
definition,

fn
∗⇀ f ∶⇐⇒ (τ−1 ○ T )(fn) ∗⇀ (τ−1 ○ T )(f)

∶⇐⇒ ⟨(fn dx, ḟn), (ψ1, ψ2)⟩RanT Φ/Φ∂t → ⟨(f dx, ḟ), (ψ1, ψ2)⟩RanT Φ/Φ∂t
for all (ψ1, ψ2) = (ψ1, ψ2) + (φ̇2, φ2) ∈ Φ/Φ∂t⇐⇒ ⟨fn, ψ1⟩ + ⟨ḟn, ψ2⟩→ ⟨f,ψ1⟩ + ⟨ḟ , ψ2⟩ for all ψ1, ψ2 ∈ C0(0, T ;X)⇐⇒ fn ⇀⇀ f.
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Now that we have a predual at hand, it is easy to see what the dual space for the weak-*
topology is.

Corollary 3.4. Let Z =X∗ be a dual Banach space. Then (BV(0, T ;X∗),weak-∗)∗ is isomorphic

to Φ/Φ∂t.
Proof. This is a general property of weak-* topologies, see for example [11, Th. V.1.3].

Regularity

Using Theorem 3.3 we can deduce many topological properties of the weak-* topology. In general,
weak-∗ topologies are not metrisable. Nevertheless, the compact sets are metrisable under a
separability assumption. For this we first state the following simple lemma.

Lemma 3.5. Let X be a Banach space. Then C0(0, T ;X) is separable if and only if X is separable.

Proof. Let X be separable, with countable dense subset Q ⊂ X. Take a countable dense subset
Ψ ⊂ C0(0, T ). Then the countable set {∑∞

i=1 ψi(t)qi ∶ (ψi)i ⊂ Ψ, (qi)i ⊂ Q} lies dense in C0(0, T ;X).
On the other hand, assume that C0(0, T ;X) has a countable dense subset Λ. Take a function
ψ ∈ C0(0, T ) with ψ(T /2) = 1. Then for any arbitrary x ∈ X there exists a sequence (λn)n ⊂ Λ
such that λn → ψx. Let πT /2 ∶ C0(0, T ;X) → X with πT /2[φ] ∶= φ(T /2). By continuity of this
evaluation map we get that πT /2[λn] → πT /2[ψx] = x. Hence the countable set πT /2[Λ] lies dense
in X.

From this we deduce that:

Proposition 3.6. Let Z =X∗ be a dual Banach space. All weak-∗ compact sets in BV(0, T ;X∗)
are metrisable if and only if X is separable.

Proof. By Lemma 3.5 the predual Φ/Φ∂t ⊂ C0(0, T ;X)×C0(0, T ;X) from Theorem 3.3 is separable
if and only if X is separable. The claim then follows from [9, Th. III.25].

Proposition 3.7. Let Z = X∗ where X is a separable Banach space. Then the topological space(BV(0, T ;X∗),weak-∗) is separable.

Proof. Again by Lemma 3.5 the predual Φ/Φ∂t ⊂ C0(0, T ;X) × C0(0, T ;X) of BV(0, T ;X∗) is
separable. By Corollary 3.4 this space Φ/Φ∂t is also the dual of (BV(0, T ;X∗),weak-∗). It then

follows [9, Th. III.23] that (BV(0, T ;X∗),weak-∗) is also separable.

Compactness criteria

Again by Theorem 3.3 it is easy to get compactness:

Corollary 3.8. Let X be a Banach space, then any set of bounded BV-norm is relatively compact
in (BV(0, T ;X∗),weak-∗).

Proof. By Banach-Alaoglu.

Remark 3.9. Again after using the embedding δz ∶ Z → Lip(Z)∗, the same argument applies to
the case where Z is a metric space. However, the limit of a relatively compact sequence/net in
BV(0, T ;Z) might end up in the bigger space BV(0, T ; Lip(Z)∗). In an abstract sense such limit
can be interpreted as a Young measure.

3.2 The hybrid topology

Recall from (1.12) and (1.16) that fn ⇀→ f whenever fn
L1Ð→ f and ḟn

vagueÐÐÐ→ ḟ , and for the metric

case fn ⇀→m f whenever fn
L1Ð→ f and δ̇fn

vagueÐÐÐ→m δ̇f .
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Characterisation of convergence

Proposition 3.10. Let Z be a complete metric space, (fn)n be a net and f an element in
BV(0, T ;Z), then

fn ⇀→mf ⇐Ô fn
L1Ð→ f and sup

n
var(fn) <∞,

and equivalence holds when (fn)n is a sequence.

Proof. The convergence fn
L1Ð→ f implies ⟪φ, ḟn⟫ → ⟪φ, ḟ⟫ for all φ ∈ C1

0(0, T ;X) in the case
Z =X∗ with X Banach, and ⟪φ, δ̇fn⟫→ ⟪φ, δ̇f⟫ for all φ ∈ C1

0(0, T ; Lip(Z)∗) in the general metric
case. The proof is then the same as for Proposition 3.1.

The previous result even holds if one weakens the condition on the variations by only requiring
that there is some n0 in the index set of the net such that supn≥n0

var(fn) <∞ .
We again compare the Banach-case Definition 1.3 of convergence with the metric-case Defini-

tion 1.5.

Proposition 3.11. Let Z =X∗ be a dual Banach space. Let (fn)n be a net and f an element in
BV(0, T ;X∗). Then

fn ⇀→ f ⇐Ô fn ⇀→m f.
Moreover, if supn epvar(fn) <∞, for example because (fn)n is a sequence, then the implication is
in fact an equivalence.

Proof. The proof is the same as the proof of Proposition 3.2 if we replace fn
vagueÐÐÐ→ f by fn

L1Ð→
f .

This results extends to the case where there is an n0 in the index set of the net such that
supn≥n0

epvar(fn) < ∞, but we are not able to determine whether fn ⇀→ f implies fn ⇀→m f for
arbitrary nets and thus whether the metric version of the hybrid topology is strictly finer than the
Banach version when Z =X∗ a dual Banach space. We write τhybrid for the topology corresponding
to ⇀→ and τhybrid,m for the topology corresponding to ⇀→m.

Duality

Proposition 3.12. Let Z = X∗ be a dual Banach space. Suppose l∶BV(0, T ;X∗) → R is linear
and τhybrid-continuous, then

lf = Ψf + ⟪φ, ḟ⟫
for some Ψ ∈ L1 (0, T ;X∗)∗ and φ ∈ C0(0, T ;X). In particular, if X∗∗ has the Radon-Nikodym
property with respect to the Lebesgue measure on (0, T ), then Ψf = ⟪ψ, f⟫ for some ψ ∈ L∞(0, T ;X∗∗).

Proof. By linearity we only need to consider ∣lf ∣ < 1. Since l is hybrid-continuous, the inverse
image l−1((−1,1)) contains a hybrid-open set from the subbase, centered around 0. Hence one
can find an a ≥ 0, n ∈ N and (φi)ni=1 ⊂ C0 (0, T ;X) such that

{f ∈ BV(0, T ;X∗)∶a ∥f∥L1 < 1, ∣⟪φi, ḟ⟫∣ < 1, i = 1, . . . , n} ⊂ l−1((−1,1)).
Here, we rescaled a and φi such that the (semi-) balls have radii 1. Observe that all φi may be
zero; this reflects the fact that l is also L1-continuous. Similarly a could be 0 as well. Now define
Φ∶BV(0, T ;X∗)→ Rn by

Φf = (⟪φ1, ḟ⟫, . . . ,⟪φn, ḟ⟫)
and set

ker(Φ) = n⋂
i=1

{f ∈ BV(0, T ;X∗)∶⟪φi, ḟ⟫ = 0} .
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If a = 0 then ker(Φ) ⊂ ker(l) and from [29, Lemma 3.9] it follows that lf = ⟪φ, ḟ⟫ where
φ = ∑ni=1 αiφi ∈ C0(0, T ;X) for some numbers αi ∈ R.

If a > 0, then for f ∈ ker(Φ) with a ∥f∥L1 < 1 it holds ∣lf ∣ < 1 so l∣ker(Φ) is L1-continuous and can
be extended to an L1-continuous linear functional Ψ on all of BV(0, T ;X∗) with norm at most a.
We then have ker(Φ) ⊂ ker(l −Ψ) and so one can now find φ as in the case a = 0.

Finally, if X∗∗ has the Radon-Nikodym property then L1(0, T ;X∗)∗ can be identified with
L∞(0, T ;X∗∗) [13, Ch. IV, Th. 1].

It is easy to see that Ψ1f + ⟪φ1, ḟ⟫ = Ψ2f + ⟪φ2, ḟ⟫ for all f ∈ BV(0, T ;X∗) if and only if(Ψ1 −Ψ2) f = −⟪φ1 −φ2, ḟ⟫. Thus if X∗∗ has the Radon-Nikodym property the hybrid dual space
may be identified with

L∞ (0, T ;X∗∗) ×C0 (0, T ;X) / {(φ, φ̇) ∶φ ∈W 1,∞
0 (0, T ;X)}

Regularity

Proposition 3.13. Let Z be a complete, separable metric space. Then (BV(0, T ;Z), τhybrid,m) is

also separable and if X∗ is a dual Banach space then the result is also true for (BV(0, T ;X∗), τhybrid).

Proof. The proof of Proposition 3.26 applies in both cases.

Recall that the hybrid topology is not metrisable, and not even sequential. Nonetheless, we
shall see in Section 4 that it has many ‘good’ properties due to the fact that it is perfectly normal.
In order to prove this, we first show that the space is completely regular and Souslin.

Proposition 3.14. Let Z be a complete, separable metric space and X∗ a dual Banach space, then(BV(0, T ;Z), τhybrid,m) and (BV(0, T ;X∗), τhybrid) are both Souslin, i.e. the continuous image of
a (in this case unspecified) Polish space.

Proof. For any n ∈ N define the balls:

An ∶= {f ∈ BV(0, T ;Z)∶var(f) ≤ n} .
By Proposition 3.10 τhybrid,m restricted to An is the same as the L1 topology also restricted to
An. Moreover, the L1 subspace topology on each An is Polish. Thus BV(0, T ;Z) = ⋃nAn, which
is Souslin by [8, Th. 6.6.6]. The proof for τhybrid is the same.

Theorem 3.15. Let Z be a complete, separable metric space and X∗ a dual Banach space. Then(BV(0, T ;Z), τhybrid,m) and (BV(0, T ;X∗), τhybrid) are perfectly normal topological spaces.

Proof. The spaces are Souslin by proposition 3.14 and completely regular, because the hybrid
topologies are locally convex topologies. The statement then follows from [8, Theorem 6.7.7].

Although the hybrid topology is not metrisable, we do have the following simple result:

Proposition 3.16. Let Z be a complete separable metric space and X∗ a dual Banach space.
Then τhybrid,m is metrisable on its own compact subsets of BV(0, T ;Z) and τhybrid is metrisable
on its own compact subsets of BV(0, T ;X∗).

Proof. We mainly follow the idea of [29, Th. 3.16]
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Compactness criteria

The next two results also hold in the case that Z =X∗ a dual Banach space provided one

Theorem 3.17. Let Z be a complete metric space. If F ⊂ BV(0, T ;Z) is relatively compact
in (BV(0, T ;Z), ρL1) and supf∈F epvar(f) < ∞ then F is (both topologically and sequentially)

relatively compact in (BV(0, T ;Z), τhybrid,m) and if Z =X∗ a dual Banach space the compactness
results also hold with respect to τhybrid.

Proof. For any net or sequence in F there exists a ρL1-convergent subnet or subsequence respec-
tively. Recall from Corollary 2.11 that var(δf) = epvar(f). Hence by Proposition 3.10 the subnet
or subsequence is also hybrid-convergent.

Theorem 3.18. Let Z be a complete metric space, and let F ⊂ BV(0, T ;Z) satisfy

1. supf∈F ∫ T0 d(z0, f(t))dt + epvar(f) <∞,

2. for some countable and dense Q ⊂ (0, T ) there exist compact sets Kq ⊂ Z with ⋃f∈F {f(q+)} ⊂
Kq for all q ∈ Q,

then F is (both topologically and sequentially) relatively compact in (BV(0, T ;Z), τhybrid,m) and if
Z =X∗ a dual Banach space the result also holds in τhybrid.

We note that a closely related result was obtained by Mainik and Mielke [23] within the classical
pvar-setting of BV-Functions.

Proof. We will establish the relative compactness of F in the ρL1 topology and then use Theo-
rem 3.17. The L1-compactness proof is an adaptation of the standard proof of the Arzela-Ascoli
compactness result [15, IV.6, Th. 7] for sets of continuous functions. Since the ρL1 -topology is
clearly metric it is sufficient to show that every sequence in F has a converging subsequence.

Take a sequence (fn)n in F , identify each function with its càdlàg representative. We divide
the remaining proof into four steps.

1. Since the Kq is compact for every q ∈ Q, by a diagonal argument we can construct a subse-
quence, which we will also denote (fn)n, such that fn(q+) converges for each q ∈ Q, and we
denote these limits f̃(q).

2. For any t ∈ (0, T ) one can now define

f̃(t) = lim
q∈Q,q>t,q→t f̃(q).

To see that this limit is well defined, pick an arbitrary t ∈ (0, T ) and suppose the converse.
Then as in the proof of Proposition 2.1 there would be an ε > 0 and a sequence (qi)i ⊂ Q
converging monotonely to t from above such that d(f̃(qi), f̃(qi+1)) ≥ ε. Then for any N ∈ N
one could find an n0 such that d(fn(qi+), f̃(qi)) < ε/N for all n ≥ n0 and for all i = 1, . . . ,N .
This would imply that pvar(fn) = epvar(fn) ≥ (N −2)ε, which is a contradiction for large N .

3. Let ε > 0, k ∈ N and 0 < t0 < t1 < ⋅ ⋅ ⋅ < tk < T then by the construction of f̃ one can find n ∈ N
and qi ∈ Q satisfying 0 < q0 < q1 < ⋅ ⋅ ⋅ < qk < T and qi > ti such that maxi d (f̃(ti), fn(qi)) < ε/k.
Thus

epvar(f̃) = pvar(f̃) ≤ sup
g∈F epvar(g).

4. Now take an arbitrary ε > 0. Since Q is dense one can find 0 < q̃1 < ⋅ ⋅ ⋅ < q̃N < T , all in Q
such that maxi=2,...,N (q̃i − q̃i−1) < ε and q̃1, T − q̃N < ε. Let

σ(t) ∶= q̃11(0,q̃1](t) + N−1∑
i=2

q̃i1(q̃i−1,q̃i](t) + q̃N1(q̃N ,T )(t).
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Then, using Lemma 2.5 (the fn and f̃ are càdlàg) and the pointwise convergence of the fn
on Q

lim
n→∞∫ T

0
d (fn(t), f̃(t))dt

≤ lim
n→∞∫ T

0
d (fn(t+), fn (σ(t)+))dt + lim

n→∞∫ T

0
d (fn (σ(t)+) , f̃ (σ(t)))dt

+ ∫ T

0
d (f̃ (σ(t)) , f̃(t))dt

≤ 3ε sup
n

epvar(fn) + lim
n→∞

N∑
i=1

(q̃i − q̃i−1)d (fn (q̃i+) , g (q̃i)) + 3ε epvar(g)
≤ 6ε sup

g∈F epvar(g).
Since ε > 0 is arbitrary limn→∞ ρL1(fn, g) = 0 and hence F is indeed L1 compact.

We stress that the above compactness results are stated for a metric space Z without the em-
bedding to the larger space Lip(Z)∗. In particular, relative compactness of a set F in BV(0, T ;Z)
implies that the closure of F remains in BV(0, T ;Z).

As an important application of Theorem 3.18, we provide the following generalization of the
classical Lemma by Aubin and Lions:

Theorem 3.19. Let 1 ≤ p < ∞. Let X∗ be the dual of a Banach space and let Y,Z be Banach
spaces such that Y ↪ Z compactly and Z ↪X∗ continuously. Denote

BVp(0, T ;Y,X∗) ∶= {f ∈ Lp(0, T ;Y ) ∶ ḟ ∈ rca(0, T ;X∗)} .
Then, the embedding BVp(0, T ;Y,X∗)↪ Lp(0, T ;Z) is compact.

Proof. By a contradiction argument, we easily verify that any bounded set F ⊂ BV(0, T ;X∗) is
bounded in L∞(0, T ;X∗). Hence, due to Simon [30, Section 8, Theorem 5] we only have to show
that every bounded set F ⊂ BVp(0, T ;Y,X∗) satisfies

lim
h→0

sup
f∈F ∥f(h + ⋅) − f(⋅)∥L1(0,T−h;X∗) = 0 .

This can be verified as follows:

∫ T−h
0

∣f(t + h) − f(t)∣dt ≤ ∫ T−h
0

∫ t+h
t

d∣ḟ ∣(s) ≤ 2h∫ T

0
d∣ḟ ∣(s) .

Let us also mention that the classic result [4, Th. 3.23] coincides with Theorem 3.18 in case
Z = R; it is proven via the Arzela-Ascoli theorem for compactness in the space of continuous
functions, by substantially the same compact containment condition and diagonal argument as
the present theorem. More generally, if Z is locally compact, then Condition 2 of Theorem 3.18 is
redundant, since the functions are almost everywhere in bounded Z-balls, which are automatically
compact. On the other hand, Condition 2 is not necessary as the following example shows.

Example 3.20. Suppose Z =X =X∗ is a separable Hilbert space with orthonormal basis (en)n∈N0 ,
and define the sequence of functions

fn(t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n(t − 1

2
T ) + 1)en t ∈ [ 1

2
T − 1

n
, 1

2
T ](n( 1

2
T − t) + 1)en t ∈ [ 1

2
T, 1

2
T + 1

n
]

0 otherwise.

(3.2)
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Then clearly limn→∞ ∫ T0 d(0, fn(t))dt = 0 and the derivative also converge vaguely to the 0-measure.
For any t ∈ (0, T /2)∪ (T /2, T ), the value fn(t) lies in the compact set {0} for n large enough, but
how large n should be depends on t. Therefore Condition 2 cannot be satisfied even though the
sequence is hybrid convergent.

3.3 The strict topology

Recall from (1.11) and (1.15) that fn
strict⇀→ f whenever fn

L1Ð→ f and ∥ḟn∥TV → ∥ḟ∥TV, and for the

metric case fn
strict⇀→mf whenever fn

L1Ð→ f and ∥δ̇fn∥TV → ∥δ̇f∥TV.

Characterisation of convergence

Let Z be a metric space. By its definition, The strict topology on BV(0, T ;Z) is metrizable by

ρstrict(f, g) ∶= ρL1(f, g) + ∣∥δ̇g∥TV − ∥δ̇f∥TV∣. (3.3)

The following Proposition is stated for convergent sequences and may actually fail for convergent
nets, see the discussion in Section A.4. However, since the strict topology is metrisable, it is fully
characterised by its convergent sequences.

Proposition 3.21. Let Z be a metric space, and let (fn)n be a sequence and f an element in
BV(0, T ;Z). If Z =X∗ is a dual Banach space then

fn
strict⇀→ f Ô⇒ fn

L1Ð→ f and ḟn
narrowÐÐÐÐ→ ḟ .

If Z is a complete metric space, then

fn
strict⇀→mf Ô⇒ fn

L1Ð→ f and δ̇fn
narrowÐÐÐÐ→ δ̇f .

Proof. For a strictly convergent sequence fn
strict⇀→ f we have supn≥N var(fn) < ∞. By Proposi-

tion 3.10 we thus have in particular ḟn
vagueÐÐÐ→ ḟ . Using Proposition A.14, this implies together

with ∥ḟn∥TV → ∥ḟ∥TV that ḟn
narrowÐÐÐÐ→ ḟ .

It turns out that if Z =X∗, then the topologies induced by strict⇀→ and strict⇀→m coincide:

Proposition 3.22. Let Z =X∗ be a dual Banach space. Let (fn)n be a net and f an element in
BV(0, T ;X∗). Then

fn
strict⇀→ f ⇐⇒ fn

strict⇀→m f.

Proof. Observe that the L1 norm and metric are equivalent, and that Corollary 2.11 and Theorem
2.13 imply for Z = X∗ that ∥ḟ∥TV = epvar(f) = epvar(δf) = ∥δ̇f∥TV and similarly ∥ḟn∥TV =∥δ̇fn∥TV.

Remark 3.23. The same argument shows that if Z = X∗, then strong topologies induced by →→
and →→m also coincide.

Remark 3.24. It is still an open question whether the converse of Proposition 3.21 is also true;
since the converse of of Proposition A.14 does not hold (see Remark A.15), the proof of this
statement seems to be more involved than in the case X = R.
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Duality

Proposition 3.25. Let Z = X∗ be a dual Banach space. Suppose l∶BV(0, T ;X∗) → R is linear
and strictly continuous, then

lf = Ψf + ⟪φ, ḟ⟫
for some Ψ ∈ L1 (0, T ;X∗)∗ and φ ∈ Cb(0, T ;X). In particular, if X∗∗ has the Radon-Nikodym
property with respect to the Lebesgue measure on (0, T ), then Ψf = ⟪ψ, f⟫ for some ψ ∈ L∞(0, T ;X∗∗).

Proof. This exactly follows the proof of Proposition 3.12.

Regularity

Proposition 3.26. Let Z be complete and separable (in its metric topology), then (BV(0, T ;Z), strict)
is separable.

Proof. Let f ∈ BV(0, T ;Z). For n ∈ N define the piecewise constant function gn ∈ BV(0, T ;Z) by

gn(t) ≡ f ( (i − 1)T
n

+) for t ∈ [ (i − 1)T
n

,
iT

n
), i = 1,⋯, n.

Note firstly that ρL1 (gn, f) ≤ var(f)T /n→ 0 and further that

pvar(fn) = n∑
i=1

d(f( (i−1)T
n

+ ), f( iT
n
+ )) ≤ pvar(fcadlag) = var(f).

Since Z is separable one can take zin from a countable subset such that

d(zin, f( iTn + )) ≤ 1

2n2
∀n, i ≤ n.

Define the piecewise constant function fn ∈ BV(0, T ;Z) by

fn(t) ≡ zin for t ∈ [ (i − 1)T
n

,
iT

n
), i = 1,⋯, n.

Then ρL1 (fn, f) ≤ ρL1 (fn, gn) + ρL1 (gn, f) → 0 and var(fn) ≤ var(f) + 1/n so by the L1 lower
semi-continuity of the variation var(fn)→ var(f).

The strict metric is not a complete metric: consider fn ∈ BV(0,1;R), fn(t) = 1(0,1/n)(t). Then
var(fn) = 1 for all n so ρstrict (fn, fm) = ∣n −m∣ /nm. The sequence fn is thus Cauchy for ρstrict,
but ρL1(fn,0)→ 0 so it cannot converge in the strict metric.

Compactness criteria

As mentioned in Remark 3.24, it is still unclear whether the strict topology is the same as the
topology characterised by the convergence

fn
L1Ð→ f and ḟn

narrowÐÐÐÐ→ ḟ , or in the metric case: fn
L1Ð→ f and δ̇fn

narrowÐÐÐÐ→ δ̇f . (3.4)

However, it is the latter topology for which we state a compactness result:

Proposition 3.27. Let Z be a metric space or a dual Banach space, let F ⊂ BV(0, T ;Z) be
compact in the hybrid topology and suppose additionally that the set {∣δ̇f ∣ ∶ f ∈ F} ⊂ rca(0, T ) is
tight. Then F is compact in the topology characterised by (3.4).

Proof. By Lemma A.13 every hybridly convergent subnet of an arbitrary net is also convergent in
the sense of (3.4).
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4 Application to stochastic processes

We now prove a number of results that provide a basis for considering stochastic processes with
bounded variation paths. Because measure theory is based on countable numbers of operations,
many results will require the metric topology on Z to be separable.

Firstly we consider possible σ-algebras. As usual, the Borel σ-algebra generated by a topology
is the smallest σ-algebra containing all open sets, the Baire σ-algebra is the smallest σ-algebra
making all continuous functions measurable. Let πt ∶ BV(0, T ;Z) → Z with πt(f) = f(t+) for
t ∈ [0, T ) and note that by Proposition 2.1 this is well defined on L1-equivalence classes. The
product σ-algebra is defined to be the smallest σ-algebra making all the πt measurable.

Most results in this section hold true for BV(0, T ;Z) with the norm, strict and hybrid topology.
The key fact that makes this work is the following:

Proposition 4.1. Let Z be a complete metric space, and let BV(0, T ;Z) be equipped with the
strong or the strict topology; alternatively, let Z also be separable, and let BV(0, T ;Z) be equipped
with the hybrid topology. Then in each of these three cases the Baire and the Borel σ-algebras
coincide.

Proof. The norm and the strict topologies are metrisable and therefore perfectly normal. If Z is
separable then by Proposition 3.15 the hybrid topology is perfectly normal. By [8, Prop. 6.3.4]
the Baire and Borel σ-algebras of a perfectly normal topological spaces coincide.

For brevity we will write σL1 for the Borel σ-algebra generated by the ρL1 topology on
BV(0, T ;Z).
Proposition 4.2. Let Z be a complete, separable metric space, then the functions π are measurable
with respect to σL1 .

Proof. The metric topology on Z is separable so every open set can be written as a countable
union of open balls Uz,δ ∶= {y ∈ Z ∶d(y, z) < δ} for z ∈ Z and δ > 0. Hence it suffices to prove
π−1
t (Uz,δ) ∈ σL1 for arbitrary z and δ.

Now note that

f(t+) ∈ Uz,δ ⇐⇒ lim
ε↘0

1

ε
∫ t+ε
t

d (f(s), z)ds < δ.
Further, for fixed ε, t, z the function f ↦ 1

ε ∫ t+εt d (f(s), z)ds is L1-continuous and thus σL1 mea-
surable, so that the limit as ε↘ 0 is also σL1 measurable.

Proposition 4.3. Let Z be a complete, separable metric space. Then the function f ↦ var(f) is
measurable with respect to σL1 on BV(0, T ;Z).

Proof. Use Proposition 4.2 and note that the variation can be written as the supremum over
rational partitions.

From Proposition 4.3 one sees that An ∶= {f ∈ BV(0, T ;Z)∶var(f) ≤ n} ∈ σL1 . By Propo-
sition 3.10 the hybrid- and L1-topologies coincide on each An and thus the associated Borel
σ-algebras are equal on each An. In particular, any hybrid open set, U , can be written as

U = ⋃
n∈NU ∩An = ⋃

n∈NVn ∩An (4.1)

for some Vn ∈ σL1 . It then follows that:

Corollary 4.4. The Borel σ-algebras generated by the L1 and hybrid topologies on BV(0, T ;Z)
are identical.

Theorem 4.5. Let Z be a complete, separable metric space. Then the Borel σ-algebras of the
topological spaces (BV(0, T ;Z), τhybrid,m) and (BV(0, T ;Z), ρL1) are both equal to the product
σ-algebra.
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Proof. Using Propositions 4.2&4.4 it is sufficient to prove that all L1-measurable functions are
product measurable. To this end note that

ρL1(f, g) = ∫ T

0
d(f(t), g(t))dt = ∫ T

0
d(f(t+), g(t+))dt = lim

n→∞ T
n

n∑
i=1

d(f( iT
n
+), g( iT

n
+)),

and that for fixed n ∈ N and f ∈ BV(0, T ;Z) the mapping g ↦ ∑ni=1 d(f( iTn +), g( iTn +)) is mea-
surable in the product σ-algebra (defined above as making the evaluations πt measurable). Since
countable limits of measurable functions are measurable, the balls {g ∈ BV(0, T ;Z) ∶ ρL1(f, g) < ε}
are therefore also measurable in the product σ-algebra. Finally, Z and BV(0, T ;Z) are separable
so that every open set can be written as a countable union of such balls.

We now study the space of Borel probability measures P(BV(0, T ;Z)) on the space BV(0, T ;Z)
equipped with the norm, strict or hybrid topology. Narrow convergence of probability measures
in this space is characterised by the following Portemanteau theorem:

Proposition 4.6 (Portemanteau Theorem, [8, Th. 8.2.10]). Let Z be a metric space, and let
BV(0, T ;Z) be equipped with the norm or the strict topology; alternatively, let Z be a separable
metric space, and let BV(0, T ;Z) be equipped with the hybrid topology. Let (νn)n be a net and ν
be an element of the Borel probability measures P(BV(0, T ;Z)). Then the following statements
are equivalent:

(i) νn ⇀ ν, that is, ∫ Φdνn → ∫ Φdν for all Φ ∈ Cb(BV(0, T ;Z)),

(ii) lim supn νn(F) ≤ ν(F) for all closed sets F ⊂ BV(0, T ;Z),

(iii) lim infn νn(U) ≤ ν(U) for all open sets U ⊂ BV(0, T ;Z),

(iv) limn νn(C) ≤ ν(C) for all continuity sets C ⊂ BV(0, T ;Z), i.e. ν(C/C̊) = 0.

Proof. This is again a consequence of the fact that the topologies perfectly normal, see [8,
Th. 8.2.10].

The forward part of Prohorov’s theorem also holds:

Proposition 4.7 (Generalised Prohorov). Let Z be a complete separable metric space. Then a
tight collection of probability measures on (BV(0, T ;Z), τhybrid,m) is topologically and sequentially
compact. If Z = X∗ a dual Banach space, then the result also holds for probability measures on(BV(0, T ;X∗), τhybrid).

Proof. Both BV spaces are Souslin by Proposition 3.14 so [8, Theorem 7.4.3] shows that the
probability measures are Radon measures (by Theorem 4.5 it is no restriction to assume that they
are Borel). Hybrid-compact sets are metrisable by Proposition 3.16 and so the result follows from
[8, Theorem 8.6.7].

Proposition 4.8. Let Z be a complete separable metric space, and let BV(0, T ;Z) be equipped with
τhybrid,m, or let Z =X∗ be a dual Banach space, and let BV(0, T ;X∗) be equipped with τhybrid. Let(νn)n be a sequence or net and ν be an element of the Borel probability measures P(BV(0, T ;Z)).

For each t ∈ (0, T ) define the finite-dimensional distributions by πt#νn(Z) ∶= νn(π−1
t (Z)) and

similarly for ν. Assume:

(i) the sequence νn is tight;

(ii) the finite-dimensional distributions πt#νn ⇀ πt#ν convergence narrowly for each t ∈ (0, T ).

Then the sequence converges narrowly νn ⇀ ν.

Proof. By Proposition 4.7 the net (or sequence) (νn)n has a narrowly convergent subnet (or
subsequence). Since the finite-dimensional distributions convergence, any cluster point agrees
with ν on the finite-dimensional distributions. Because of Theorem 4.5, a measure is uniquely
characterised by its finite-dimensional distributions and hence ν is the unique limit.
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A Preliminaries on Banach-valued measures and integra-
tion

We summarize the main concepts of the theory of Banach-valued measures. For a deeper insight
into this subject, we refer the reader to the classical books [13, 14] and [15, § IV.10] and the recent
monograph by Ma [22]. In what follows, we mostly stick to the presentation in [22]. While the
Bochner theory of Banach-valued functions has become very popular among analysts, this seems
not to be the case for Banach-valued measures. Banach-valued measures are defined similarly to
classical measures and one often can prove the intuitive analogues of classical results from (R-
or C-) measure theory. The theory of Banach-valued measures is useful to understand the time
derivative of a X∗-valued function of bounded variation.

A.1 Banach-valued measures

For T > 0, let B denote the set of all Borel-sets of the interval (0, T ) and let X be a Banach space.
For a set function µ ∶ B →X we define the set function ∣µ∣ ∶ B → R through ([22, Paragraph 17-4.1])

∣µ∣(A) ∶= sup
P ∈Q(0,T ) ∑D∈P ∥µ(A ∩D)∥X ∀A ∈ B . (A.1)

where the supremum is taken over all finite families P of disjoint subsets of (0, T ). Observe that it
is not a priori clear whether it suffices to take the supremum over intervals 0 < t1,⋯ < tn < T , like
in Definition 1.1 of the pointwise variation. However, in the case where A is the full interval (0, T )
and µ ∈ rca(0, T ;X∗), we get by Theorem A.7 that ∣µ∣(0, T ) = ∥µ∥TV, the total (not bounded)
variation norm defined in (A.4).

Definition A.1. [14, 22, 15] Let X be a Banach space and B be the Borel σ-algebra on (0, T ).

� A set function µ ∶ B →X is called an X-valued measure on (0, T ) if

1. it is of finite total variation, i.e. ∣µ∣(0, T ) <∞ and

2. it is countably additive, i.e. for every disjoint union A = ⋃j∈NBj, where A ∈ B and
Bj ∈ B for all j ∈ N

µ(A) = ∑
j∈Nµ(Bj) .

� An X-valued measure µ is called regular if for every A ∈ B and every ε > 0, there exists
a compact (some authors only require closed, but here closed and compact are equivalent)
set K ⊂ A and an open set G ⊃ A such that for all A′ ∈ B with K ⊆ A′ ⊆ G it holds∥µ(A′) − µ(A)∥X ≤ ε

2
.

� We denote
rca(0, T ;X) ∶= {µ ∶ B →X regular X-valued measure},

which is a Banach space with norm µ↦ ∣µ∣ (0, T ) = ∥µ∥TV by Theorem A.7 or [15, Chapter III
§7].

We make a few observations about this definition. First of all, this definition only allows for finite
measures, that is, measures of finite total variation. This is related to the fact that the measures
take values in a Banach space, where each element x ∈ X is of finite norm (see e.g. [15, IV.10,
Cor. 2]). Secondly, we note that the countable additivity is equivalent to µ(Aj)→ µ(A) whenever
Aj ⊃ Aj+1 for all j and ⋂Aj = A [22, 17-5.4]. Thirdly, we point out that every X-valued regular
Borel-measure of finite total variation has the direct sum property of [14, Def. 10-7.1].

Theorem A.2. Suppose µ ∈ rca (0, T ;X) then ∣µ∣ ∈ rca (0, T ;R).
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Proof. That ∣µ∣ is a measure (a countably additive set function) is the content of [15, III.4.7],
however all (real-valued) Borel measures on a metric space are regular by [8, Theorem 7.1.7]. An
extensive discussion leads up to the statement of this result as [14, Chapter 3 §15 Proposition 21].

For a map g ∶ (0, T )→X, we define the set function ∂g through the sets:

∂g((a, b]) ∶= g(b) − g(a).
Recall the function t↦ pvar(g; (0, t]) from (2.1). We then find the following important theorem.

Theorem A.3 ([22, Ths. 17-7.4 and 17-7.9]). Let X be a Banach space and let g ∶ (0, T ) → X
be of finite pointwise variation. Then ∂g is a Banach-valued measure on B if and only if g is
right-continuous. In this case, ∣∂g∣ = ∂tpvar(0,t](g) and ∂g is called the Stieltjes’ measure induced
by g.

A.2 Integration theory for Banach-valued measures

Let X,Y,Z be Banach spaces with a bilinear continuous mapping pXY ∶ X × Y → Z, B the Borel
algebra on (0, T ) and let µ ∶ B → Y be a Y -valued measure. In this section we will introduce the

Z-valued integral ∫ T0 pXY (φ(t), µ(dt)). Recall from Appendix A the definition of the R-valued
measure ∣µ∣. With this we define the space

Lpµ(0, T ;X,Y ) ∶= {φ ∶ (0, T )→X ∶ ∥φ∥p
Lpµ(0,T ;X,Y ) ∶= ∫ T

0
∥φ(t)∥pX ∣µ∣(dt) <∞}.

A B-step X-map φ ∶ (0, T )→X (or simple function) is of the form ∑Nj=1 αjχAj , where αj ∈X and
χAj is the indicator function for the set Aj ∈ B. We define the step-integral

IpXY (φ) ∶= N∑
j=1

pXY (αj , µ(Aj)) for φ = N∑
j=1

αjχAj . (A.2)

This map can be extended to an integral in the following way (see [22, Sec. 21]). First, one can
show that for every φ ∈ Lpµ(0, T ;X,Y ) there exists a sequence of B-step X-maps φn, such that∥φn(t)∥X ↑ ∥φ(t)∥X and φn(t)→ φ(t) for ∣µ∣-almost every t ∈ (0, T ). Then, for such approximating
sequences (φn)n, one can show that the limit limn→∞ IpXY (φn) is independent of the choice of the

sequence (φn)n. This defines the integral ∫ T0 pXY (φ(t), µ(dt)).
For 1 ≤ p <∞ one can show that the set of B-step X-maps is dense in Lpµ(0, T ;X,Y ). This in

turn implies that the functions Cc(0, T ;X) are dense in Lpµ(0, T ;X,Y ). From [22, Th. 21-2.11],

we obtain that for every integrable map φ ∈ L1
µ(0, T ;X,Y ), we have

∥∫ T

0
pXY (φ,dµ)∥

Z

≤ ∥pXY ∥∫ T

0
∥φ∥X d∣µ∣ . (A.3)

Remark A.4. The above definition of the integral is very general. Let us mention four possible
settings here:

(A) Let Y = R, Z = X is a Banach space, and pXY (x, y) ∶= xy. Then the theory in [22] is the
commonly used Bochner theory.

(B) The case Y = Z and X = R is a further connection to Bochner theory.

(C) Let X and Z be Banach spaces, and let Y = L(X;Z) with pXY (x, y) ∶= y(x).

(D) Let X be a Banach space, Y = X∗ and Z = R with pXY (x, y) ∶= ⟨x, y⟩. This is the setting of
the main content of this paper.
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The following generalisations of the classical Riesz-Markov-Kakutuni result on the duality
between Cc(0, T ;R)∗ and rca(0, T ;R) will turn out to be very useful in the proof of Theorem 2.13.
For this we first define:

Definition A.5. Let X and Z be Banach spaces. A linear mapping U ∶ Cc(0, T ;X)→ Z is called
dominated if there exists a regular positive Borel measure ν such that

∥U(φ)∥Z ≤ ∫ T

0
∥φ(t)∥X ν(dt) ∀φ ∈ Cc(0, T ;X) .

Proposition A.6 ([14, §19, Prop. 2 and Th. 3]). Let U ∶ Cc(0, T ;X) → R be linear. Then U is
dominated if and only if ∥U∥Cc(0,T ;X)∗ <∞.

The previous result will enable us to apply the generalised Riesz-Markov-Kakutani result to
the settings (C) and (D) from Remark A.4.

Theorem A.7 ([14, §19, Th. 2]). (i) Assume X and Z are Banach spaces, Y = L(X;Z) with
pXY (x, y) ∶= y(x). Then there exists an isomorphism between the dominated linear operators
U ∶ Cc(0, T ;X)→ Z and rca(0, T ;L(X;Z)), given by the equality

U(φ) = ∫ T

0
pXY (φ,dµ) .

(ii) Assume X is a Banach space, Y = X∗ and Z = R with pXY (x, y) ∶= ⟨x, y⟩. Then there ex-
ists an isomorphism between Cc(0, T ;X)∗ = C0(0, T ;X)∗ and rca(0, T ;X∗), with ∣µ∣(0, T ) =∥U∥Cc(0,T ;X)∗ = ∥µ∥TV, where

∥µ∥TV ∶= sup
φ∈C0(0,T ;X)∶∥φ∥∞≤1

⟪φ,µ⟫. (A.4)

We finally cite the following Lebesgue-Nikodym Theorem. Recall in this context, every X∗-
valued Borel-measure µ of finite variation has the direct sum property of [14].

Theorem A.8 (General Lebesgue-Nikodym Theorem, [14, §13, Th. 4] ). Let µ ∶ B → X∗ be a
measure of finite total variation. There exists a function u ∶ (0, T ) → X∗ such that ∥u(t)∥X∗ = 1
for ∣µ∣-almost every t ∈ (0, T ) and

∫ T

0
⟨φ, dµ⟩ = ∫ T

0
⟨φ,u⟩d∣µ∣ ∀φ ∈ Cc(0, T ;X) .

Theorem A.8 is less general than the classical Radon-Nikodym theorem as it only postulates
the existence of a density for µ with respect to ∣µ∣ instead of a density with respect to a general
real measure ν. If in the statement of Theorem A.8, we would want to replace ∣µ∣ by a general
real measure ν, the space X∗ would need to satisfy the Radon-Nikodym property. This holds for
example if X is reflexive or if X∗ is separable, see [13].

Remark A.9. Using the Lebesgue-Nikodym Theorem, we can decompose any µ ∈ rca(0, T ;X∗)
into an absolute continuous part µc, an atomic part µa and a diffuse singular part µd (without
atoms). This can be seen as follows: The measure ∣µ∣ can be decomposed into absolute continuous,
atomic and diffuse singular parts ∣µ∣ = ∣µ∣c+ ∣µ∣a+ ∣µ∣d, see [4] (3.26). By Theorem A.8, there exists
an u ∶ (0, T )→X∗ such that µ = u∣µ∣ and thus, we can set µc = u∣µ∣c, µa = u∣µ∣a and µd = u∣µ∣d.

A.3 Regularisation

In this section we recall some standard regularisation results that are needed to prove Proposi-
tion 2.20 and Theorem 2.21.
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Given µ ∈ rca(0, T ;X∗) and ψ ∈ Cc(R), we define the convolution through

ψ ∗ µ(t) ∶= ∫R
ϕ(t − s)µ(ds) .

Of particular interest are measures of the form µ(dt) = f(t)dt for some f ∈ Lp(0, T ;X∗). Recall
the definition of Lpµ(0, T ;X,Y ) from Appendix A.2. We now have the following lemma:

Lemma A.10. Let (ψη)η>0 ⊂ Cc(R) be a Dirac-sequence and let 1 ≤ p < ∞. For all φ ∈
Lp(0, T ;X,Y,µ) we have ψη ∗ φ→ φ in Lpµ(0, T ;X,Y ) as η → 0.

Proof. If (ψη)η>0 ⊂ C∞
c (R) is a Dirac-sequence, one can use the denseness of Cc(0, T ;X) in

Lp(0, T ;X,Y,µ) and the uniform convergence of ψη ∗ φ→ φ for φ ∈ Cc(0, T ;X).
Lemma A.11. Let ψ ∈ C∞

c (R) be non-negative, symmetric, with support in (−1,1) and with
total mass ∫Rψ(t)dt = 1, and define the family of mollifiers ψη(t) ∶= η−1ψ(t/η). For any µ ∈
rca(0, T ;X∗) and η > 0, the functions ψη∗µ belong to C∞(0, T ;X∗) and d

dt
(ψη∗µ)(t) = (ψ̇η∗µ)(t).

Moreover, the measures ψη ∗ µ converge weakly-∗ to µ as η → 0 and the following estimate holds
for all Borel-sets I ⊂ (0, T ):

∫
I
∣ψη ∗ µ∣(t)dt ≤ ∣µ∣(⋃t∈I(t − η, t + η)) ,

Proof. The proof follows the lines of [4, Theorem 2.2].

A.4 Topologies on Banach-valued measures

In this section we recall the most relevant topologies on the space rca(0, T ;X∗), where X is a
Banach space. Although rca(0, T ;X∗) is a Banach space with norm ∥⋅∥TV, its norm topology is
too strong for many practical purposes. Instead, we mostly work with the weak-* topology, which
is sometimes called the vague topology. On the other hand, motivated by the duality between
Cb(0, T ;X) and the space of finite, finitely additive regular signed Borel set functions (see [15,
Th. IV.6.2] for the finite-dimensional version), one often also works with the topology induced
by duality with Cb(0, T ;X), which is sometimes called the narrow or weak topology. To avoid
confusion, we will avoid calling these topologies weak or weak-*, and stick to vague and narrow
instead. To be more precise, we define:

Definition A.12. Let (µn)n be a net and µ an element in rca(0, T ;X∗). We say that

µn converges to µ in the vague topology whenever:

µn
vagueÐÐÐ→ µ ∶⇐⇒ ⟪φ,µn⟫→ ⟪φ,µ⟫ for all φ ∈ C0(0, T ;X), (A.5)

µn converges to µ in the narrow topology whenever:

µn
narrowÐÐÐÐ→ µ ∶⇐⇒ ⟪φ,µn⟫→ ⟪φ,µ⟫ for all φ ∈ Cb(0, T ;X). (A.6)

Moreover, we will say that a net (fn)n ⊂ L1(0, T ;X∗) converges to an element f ∈ L1(0, T ;X∗) in
the vague or narrow topology whenever the measures (fn(t)dt)n converge to f(t)dt in the vague
or narrow topology respectively.

The vague topology is not metrisable, since it is really a weak-* topology; in particular it cannot
be fully characterised through its convergent sequences. It should be noted that vague convergence
is often also defined as convergence against compactly supported test functions φ ∈ Cc(0, T ;X), in
which case it would be metrisable. For measures of uniformly bounded finite total variation (e.g.
probabililty measures) the two notions coincide; this is not the case in the present work and we
work with test functions in C0(0, T ;X).

Clearly the narrow topology is stronger then the vague topology. As in the case of real-valued
measures, vague convergence can be strengthened by a tightness argument.
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Lemma A.13. Let (µn)n be a net and µ an element in rca(0, T ;X∗). If µn
vagueÐÐÐ→ µ and the

sequence (∣µn∣)n ⊂ rca(0, T ) is tight, then µn
narrowÐÐÐÐ→ µ.

Proof. Take an arbitrary test function φ ∈ Cb(0, T ;X) and an arbitrary ε > 0. By the tightness
there exists a compact set Kε ⊂ (0, T ) for which ∣µn∣(Kc

ε ) ≤ ε for all n and without loss of generality
we can assume that ∣µ∣(Kc

ε ) < ε since ∣µ∣ is regular. Take a test function ψ ∈ C0(0, T ;X) such that
φ∣Kε ≡ ψ∣Kε . Then

∣⟪φ,µn − µ⟫∣ ≤ ∣⟪ψ,µn − µ⟫∣ + (∥ψ∥∞ + ∥φ∥∞)(∣µn∣(Kc
ε ) + ∣µ∣(Kc

ε ))< ∣⟪ψ,µn − µ⟫∣ + 2ε(∥ψ∥∞ + ∥φ∥∞)→ 2ε(∥ψ∥∞ + ∥φ∥∞),
which proves the statement as ε was arbitrary.

We can also strengthen vague convergence if one knows that the total variations converge. The
proof requires sequences; the argument breaks down for general nets since a convergent net does
not necessarily form a compact set.

Proposition A.14. Let (µn)n be a sequence and µ an element in rca(0, T ;X∗). If µn
vagueÐÐÐ→ µ

and ∥µn∥TV → ∥µ∥TV then µn
narrowÐÐÐÐ→ µ.

Proof. First we show by standard approximation arguments that the ∣µn∣ converge narrowly, which
implies the tightness of the variation measures. Then we exploit the tightness to strengthen the
vague convergence to the narrow convergence.

Recall from Theorem A.7 that

∥∣µn∣∥TV
= ∥µn∥TV → ∥µ∥TV = ∥∣µ∣∥

TV
. (A.7)

Therefore the variation measures ∣µn∣ are bounded and a subsequence converges vaguely to some
finite, positive measure ν ∈ rca(0, T ). Because of Theorem A.8, for any φ ∈ C0(0, T ;X) and along
the convergent subsequence,

⟪φ,µ⟫← ⟪φ,µn⟫ ≤ ∫ T

0
∥φ(t)∥X ∣µn∣(dt)→ ∫ T

0
∥φ(t)∥X ν(dt).

Taking the supremum over test function yields the inequality,

∥µ∥TV = sup
φ∈C0(0,T ;X)⟪φ,µ⟫ ≤ sup

φ∈C0(0,T ;X)∫
T

0
∥φ(t)∥X ν(dt) ≤ sup

ψ∈C0(0,T )∫
T

0
ψ(t) ν(dt) = ∥ν∥TV.

However, the other direction is immediately from the vague lower semicontinuity of the total

variation and so ∥ν∥TV = ∥µ∥TV. Together with (A.7) and ∣µn∣ vagueÐÐÐ→ ν, this implies that ∣µn∣ narrowÐÐÐÐ→
ν. Hence by the (real-valued) Prohorov Theorem the measures ∣µn∣ are tight, and by Lemma A.13
the measures µn convergence narrowly to µ.

Remark A.15. The converse statement is, in general, wrong. To see this let X be a separable
Hilbert space with basis (en)n∈N and set µn = enL. Then

∀f ∈ Cb(0, T ;X) ∫ T

0
⟨f, dµn⟩ = ⟨∫ T

0
f dt, en⟩→ 0

but ∥µn∥TV = 1 for every n.
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2nd edition, 2008.

[6] L. Ambrosio, R. Ghezzi, and V. Magnani. BV functions and sets of finite perimeter in sub-
Riemannian manifolds. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 32
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