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Abstract

We prove a conditional stability estimate of log-type for determining unknown boundaries from
a single Cauchy data taken on an accessible subboundary. Our approach relies on new interior
and boundary estimates derived from the Carleman estimate for elliptic equations. A local stability
result for target identification of an acoustic sound-soft scatterer from a single far-field pattern is also
obtained.

1 Introduction and main results

Let Ω ⊂ Rn, n = 2, 3 be a bounded domain with smooth boundary ∂Ω. Consider the elliptic differential
operator

(Au)(x) := −
n∑

i,j=1

∂i(aij(x)∂ju) +
n∑
i=1

bi(x)∂iu+ c(x)u, x ∈ Ω, (1)

where aij = aji ∈ C1(Ω), bi, c ∈ L∞(Ω), c ∈ L∞(Ω), 1 ≤ i, j ≤ n, and there exists a positive
constant σ such that

n∑
i,j=1

aij(x)ξiξj ≥ σ
n∑
i=1

ξ2
i , ξ1, ..., ξn ∈ R, x ∈ Ω. (2)

We assume that

0 ≤ c in Ω. (3)

Let D ⊂ Ω be a simply connected star-shaped subdomain such that D ⊂ Ω. Throughout the paper, we
define the complement of D in Ω as Dc := Ω \D and suppose that ∂D and ∂Ω are both of C4-class.
Let u = u(D) be a solution to the Dirichlet boundary value problem

Au = 0 in Dc, u|∂D = 0.

For simplicity we write ∂Au =
∑n

i,j=1 aij(∂ju)νi, which will be referred to as the Neumann data of u
at ∂D where ν = (ν1, ...., νn) denotes the unit outward normal vector at ∂Ω. One aim of this paper
concerns a stability estimate of the following inverse problem with a single Cauchy data:

Inverse Problem 1 (IP1): Determine the shape ∂D from knowledge of the Cauchy data (u, ∂Au)|Γ
where Γ ⊂ ∂Ω is an arbitrarily chosen subboundary.

The above inverse problem arises from, for example, the detection of the inaccessible interior corroded
boundary ∂D by the measurement data taken on an accessible outer subboundary Γ. There have been
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many works on this inverse boundary problem. As for works in view of numerics related to non-destructive
testing technique, we refer, for example, to [3,4,22,24,25].

The purpose of this paper is to propose a novel approach based only on Carleman estimates for proving
a conditional stability estimate of logarithmic type. Let D1, D2 ⊂ Ω be two simply connected domains
such that Dj ⊂ Ω and ∂Dj is of C4-class. Let uj = u(Dj) satisfy

Auj = 0 in Dc
j ,

uj = 0 on ∂Dj,

uj = gj, ∂Auj = hj on Γ

(4)

for j = 1, 2, where gj ∈ H3(Γ) and hj ∈ H2(Γ). Since c ≥ 0 (see (3)), it is well-known that the above
boundary value problem admits a unique solution uj ∈ H4(Dc

j).

For (IP1), we suppose the following conditions hold:

Condition A: There exist M > 0 and δ > 0 such that

|∂Dj| ≤M, ‖uj‖C1(Dcj )
+ ‖uj‖H4(Dcj )

≤M, j = 1, 2

dist (∂Dj, ∂Ω) ≥ δ > 0
(5)

where |∂D| means the Lebesgue measure of the boundary ∂D.

Condition B:

inf
x∈Γ
|gj(x)| > C0 > 0, j = 1, 2. (6)

We are ready to state the first result of this paper.

Theorem 1.1. Under the conditions (A) and (B) there exists a constant θ ∈ (0, 1) such that

d (∂D1, ∂D2) ≤ C

 1

log 1
‖u1−u2‖H3(Γ)+‖∂A(u1−u2)‖H2(Γ)

θ

provided ‖u1−u2‖H3(Γ) +‖∂A(u1−u2)‖H2(Γ) is sufficiently small. Here d(∂D1, ∂D2) is the Hausdorff
distance.

Remark 1.1. Our argument may be applied to vectorial elliptic equations such as Lamé system and the
Navier-Stokes equations. In an analogous manner we can also establish the single logarithmic conditional
stability.

If the condition (3) is not fulfilled, additional assumptions on the geometry ofD are needed in order to get
the same stability estimate. In the special case of aij(x) ≡ δij , bi = 0 and c(x) = −k2 for some k > 0,
the equation −Au = 0 reduces to the Helmholtz equation (∆ + k2)u = 0 which models the time-
harmonic acoustic wave propagation in an isotropic homogeneous medium. Hence, our inverse problem
(IP1) in this case is closely related to the shape identification problem arising from inverse obstacle
scattering with a single incoming wave. Below we present a local stability result for target identification of
a sound-soft obstacle from a single far-field pattern with a priori assumptions on the underlying scatterer.
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Let D1, D2 ∈ Rn be two distinct sound-soft obstacles embedded in an isotropic homogeneous medium.
Assume an incoming wave of the form uin(x) = exp(ikα · x), α ∈ Sn−1, is incident onto Dj , where
k > 0 is the wavenumber. Denote by uj = uj(Dj) the total field corresponding toDj . Then the scattered
field uscj := uj − uin satisfies the boundary value problem

(∆ + k2)uscj = 0 in Rn\Dj, uscj = −uin on ∂Dj, (7)

and the Sommerfeld radiation condition

lim
|x|→∞

|x|
n−1

2

{
∂uscj
∂|x|

− ikuscj
}

= 0, j = 1, 2. (8)

In particular, the Sommerfeld radiation condition (8) leads to the asymptotic expansion

usc(x) =
eik|x|

|x|(n−1)/2
u∞(x̂) +O

(
1

|x|n/2

)
, |x| → +∞, (9)

uniformly in all directions x̂ := x/|x| ∈ Sn−1. The function u∞(x̂) is an analytic function defined on
Sn−1 and is referred to as the far-field pattern or the scattering amplitude. The vector x̂ ∈ Sn−1 is called
the observation direction of the far field. The classical inverse obstacle scattering problem can be stated
as

Inverse Problem 2 (IP2): Determine the boundary ∂D from a single far-field pattern u∞(x̂) for all x̂ ∈
Sn−1 with fixed k > 0.

It remains a long-standing open problem whether a single Cauchy data (or equivalently, a single far-field
pattern) can uniquely determine the boundary of a general sound-soft scatterer; see e.g., Colton and
Kress [11, Chapter 5.1]. Local uniqueness results were obtained in [12] and [28] under the smallness and
closeness assumptions. Correspondingly, local stability estimates of logarithmic type were verified in [21]
and [27] under thesea priori assumptions. Note that the arguments of [27] are closest to those of [1]
using three spheres inequalities, and that in [27] a sharper upper bound of the closeness of two sound-
soft obstacles were derived from the Faber-Krahn inequality. As a by-product of the proof of Theorem 1.1,
we present a novel approach to the stable determination of the boundary of a soft obstacle from a single
far-field pattern.

Let BR(z) = {x ∈ Rn : |x− z| = R} and BR = BR(O). Clearly, B1 is the unit ball in Rn. Denote by
Vol(D) the volume of D in Rn. We assume one of the following a priori conditions holds:

Condition C:

Dj ⊂ BR with kR < ηn, n = 1, 2, (10)

where ηn denotes the first root of the spherical Bessel function (n = 3) or Bessel function (n = 2)
of the first order.

Condition D: There exist two bounded connected domains D± ⊂ Rn such that

D− ⊂ Dj ⊂ D+, Vol (D+\D−) ≤ (
ηn
k

)n Vol(B1), (11)

where ηn is defined as the same as in Condition C.

3



The stability of the inverse problem (IP2) is stated as follows.

Theorem 1.2. Suppose that Dj (j = 1, 2) are sound-soft obstacles with C4-smooth boundaries which
satisfy either the smallness Condition C or the closeness type Condition D. Then the Hausdorff distance
of ∂D1 and ∂D2 can be estimated by

d (∂D1, ∂D2) ≤ C

 1

log 1
||u∞1 −u∞2 ||L2(Sn−1)

θ

,

provided ||u∞1 − u∞2 ||L2(Sn−1) < 1/e. Here, the constants θ ∈ (0, 1) and C > 0 depend on the
wavenumber k, the regions D± under Condition D or the radius R under Condition C.

Remark 1.2. The upper bounds in (10) and (11) are derived from the Faber-Krahn inequality which
provides a lower bound for the first Dirichlet eigenvalue λ1(Ω) of the Laplace equation over a bounded
domain Ω ⊂ Rn , i.e.,

λ1(Ω) ≥ λ1(B1)

(
Vol (B1)

Vol (Ω)

)2/n

. (12)

The inequality (12) has been used in ( [14]) to improve the local uniqueness results of inverse obstacle
scattering in [12] and [28].

Our arguments rely essentially on new elliptic interior and boundary estimates (see Lemmas 2.1 and 2.3
in Section 2) in combination of quantitative unique continuation (see Lemma 3.1 in Section 3), all of which
are verified using Carleman estimates for elliptic equations (see Lemma 2.2). For completeness, we will
provide in the appendix a proof of the elliptic Carleman estimate based on the integration by parts only.
The proofs of Theorems 1.1 and 1.2 will be carried out in Section 4.

2 Interior and boundary estimates

2.1 Interior stability estimate and elliptic Carleman estimate

We introduce the notation Λ(y, λ, ν) before stating our interior estimate. An essential ingredient in our
analysis is the solution estimate in a level set Λ(y, λ, ν) + δν defined below. Given y = (y1, · · · , yn) ∈
Ω, λ > 0 and a unit vector ν ∈ Sn−1, we denote by Λ(y, λ, ν) a paraboloidal domain with the vertex
located at y and the axis parallel to ν which is congruent to yn < −λ

∑n−1
j=1 y

2
j . For δ > 0, set

Λ(y, λ, ν) + δν := {x : x− δν ∈ Λ(y, λ, ν)} =
⋃

x∈Λ(y,λ,ν)

{x+ δν}, (13)

that is, the translation of Λ(y, λ, ν) along the direction ν. Note that there are exactly two paraboloidal
domains Λ(y, λ, ν) uniquely determined by y, λ and µ. In this paper, Λ(y, λ, ν) is always chosen such
that Λ(y, λ, ν) + δν ⊂ Λ(y, λ, ν) for any δ > 0. Since Λ(y, λ, ν) ∩ Ω may have several disconnected
components if Ω is not convex, we make the convention that the paraboloidal domain Λ(y, λ, ν) always
means the connected component of Λ(y, λ, ν)∩Ω whose boundary contains y. Analogously, the notation
Λ(y, λ, ν) ∩ ∂Ω always means the intersection of the boundary of this connected domain with ∂Ω. This
convention also applies to the paraboloidal domain Λ(y, λ, ν) + δν for δ > 0.
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Figure 1: Configurations of Λ, Λδ := (Λ(y, λ, ν) + δν) ∩ Ω with y ∈ Ω and γ := ∂Ω ∩ Λ(y, λ, ν).

Lemma 2.1. (interior estimate) Let Ω ⊂ Rn be a bounded connected domain with the boundary ∂Ω of
C2-class. Let y ∈ Ω, γ = ∂Ω ∩ Λ(y, λ, ν) and ` = min{t : y + tν ∈ ∂Ω, t > 0}. For 0 < δ < `,
set Λδ := (Λ(y, λ, ν) + δν) ∩ Ω (see Figure 1). Suppose that u ∈ H2(Ω) is a solution to the elliptic
equation (1). Then there exist constants C > 0 and κ ∈ (0, 1), which depend on l, δ, λ, aij, bi and c,
such that

||u||H1(Λδ)

≤ C
(
||u||H1(γ) + ||∂νu||L2(γ)

)
+ C

(
||u||H1(γ) + ||∂νu||L2(γ)

)κ ||u||1−κH1(Ω).

Here C and κ do not depend on γ.

Lemma 2.1 yields a stability estimate for u provided that ||u||H1(Ω) is bounded which is called a condi-
tional stability estimate. Further, it implies that a solution to the elliptic equation (1) with vanishing Cauchy
data on an arbitrary non-empty open sub-boundary of ∂Ω must vanish identically. Lemma 2.1 was proved
in [16] by applying the following elliptic Carleman estimate.

Lemma 2.2. (Carleman estimate) Let Ω ⊂ Rn be a bounded connected domain with the boundary ∂Ω
of C2-class, and let D ⊂ Ω be a domain such that D ⊂ Ω and ∂D is of C2-class. Suppose that
d ∈ C2(Ω) satisfy |∇d| 6= 0 on Ω and set

ϕ(x) := eλd(x), x ∈ Ω,

with a positive parameter λ > 0. There exists positive constants λ0, s0(λ) and C(s0, λ) such that∫
D

{sλ2ϕ|∇u|2 + s3λ4ϕ3u2}e2sϕdx

≤ C

∫
D

|Au|2e2sϕdx+ CeC(λ)s

∫
∂D

(|∇u|2 + |u|2) ds

for all s > s0, λ ≥ λ0 and for all u ∈ H2(D). Here the constants s0, C are dependent on λ,
but independent of s and the geometry of D, and are bounded provided that max1≤i,j≤n ‖aij‖C1(Ω),
max1≤i≤n ‖bi‖L∞(Ω), ‖c‖L∞(Ω), ‖d‖C2(Ω) are bounded.
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Figure 2: Configurations of Λ(x0, λ, ν) with x0 ∈ ∂Ω and Γ := ∂Ω ∩ Λ(x0, λ, ν).

In particular, fixing λ > 0 sufficiently large, we can rewrite the above estimate as∫
D

{s|∇u|2 + s3u2}e2sϕdx

≤ C

∫
D

|Au|2e2sϕdx+ CeCs
∫
∂D

(|∇u|2 + |u|2) ds (14)

for all s > s0 and all u ∈ H2(D).

For clarity we shall present the proof of Lemma 2.2 in the Appendix. We emphasize that the proofs of our
interior estimate (see Lemma 2.1) and the estimate at a boundary point (see Lemma 2.3 below) both rely
heavily on the Carleman estimate (14).

2.2 Stability at a boundary point

For a boundary point x0 ∈ ∂Ω, let ν = ν(x0) be the unit normal vector pointing into the interior of Ω.
Given λ > 0, we denote by Λ(x0, λ, ν) the paraboloidal domain with the vertex located at x0 and the axis
parallel to ν which is congruent to xn < −λ

∑n−1
i=1 x

2
i . Further, one can observe that ∂Ω intersect with

Λ(x0, λ, ν) tangentially at x0. Moreover, we assume that the surface Γ := {Λ(x0, λ, ν) ∩ ∂Ω} \ {x0}
is a non-empty connected relatively open subset of ∂Ω and there exists x̃ ∈ Γ such that x0x̃ is parallel
to ν. We set ` = |x0x̃|. Assume that ∂Ω is of C4-class and u ∈ H4(Ω) is a solution to (1). Next we
discuss a conditional stability estimate of u at the boundary point x0.

Lemma 2.3. (i) There exist constants C2 > 0 and κ1 ∈ (0, 1), which depend on
`, λ, max1≤i,j≤n ‖aij‖C1(Ω), max1≤i≤n ‖bi‖L∞(Ω), ‖c‖L∞(Ω), such that

|u(x0)| ≤ C2 max{1, ‖u‖H3(Ω)}

{(
1

| ln 1/%|

) 1
2

+ %κ1

}
. (15)

Here C2 and κ1 are independent of choice of x0, and can be chosen uniformly in ` ∈ [`0, `1],
where `0, `1 > 0 are arbitrarily fixed such that `0 < `1.
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(ii) If % ≤ 1/e where e ≈ 2.718281828, then the estimate in the first assertion can be rewritten as

|u(x0)| ≤ C2 max{1, ‖u‖H3(Ω)}
(

1

ln 1/%

)min{ 1
2
,κ1}

.

Proof. (i) By the Sobolev embedding we have |u(x0)| ≤ C2 ||u||H3(Ω), whence the first assertion follows
if % ≥ 1. Hence, it remains to prove the lemma under the assumption that % ≤ 1.

Without loss of generality, after translation and rotation we can define the paraboloidal domain Λ(x0, λ, ν)
as

Λ(x0, λ, ν) = {(x′, xn) : xn < −λ
n−1∑
i=1

x2
i + `}, λ, ` > 0

with ν = (0, · · · , 0,−1), x0 = (0, · · · , 0, `). Further, we may assume that the point x̃ ∈ Γ coincides
with the origin O. Set

d(x) = −xn − λ
n−1∑
i=1

x2
i + `, Dt := {x ∈ Λ(x0, λ, ν) ∩ Ω : d(x) > t} for 0 ≤ t < l/2.

We note thatDt2 ⊂ Dt1 if t1 < t2 andDt = (Λ(x0, λ, ν)+tν)∩Ω. In particular,D0 = Λ(x0, λ, ν)∩Ω.
We can always choose a cut-off function χt ∈ C∞(Rn) such that 0 ≤ χt ≤ 1 and

χt(x) =

{
1, x ∈ Dt,
0, x ∈ D0 \Dt/2,

‖χt‖C2(Rn) ≤ C3/t
2, 0 ≤ t < l/2. (16)

In fact, we may choose χ̃ ∈ C∞(Rn) such that 0 ≤ χ̃ ≤ 1 and

χ̃(η) =

{
1, η ≥ 1,
0, η ≤ 0.

Then the function χt(x) = χ̃
(

2d(x)−t
t

)
satisfies (16). Set v := χtu. Using the fact that D2t ⊂ D0 and

applying the Carleman estimate to v in D0, we obtain∫
D2t

(s|∇v|2 + s3v2)e2sϕdx

≤
∫
D0

(s|∇v|2 + s3v2)e2sϕdx

≤ C

∫
D0

∣∣∣∣∣
n∑

i,j=1

aij((∂iχt)∂ju+ (∂jχt)∂iu+ (∂i∂jχt)u) +
n∑
i=1

bi(∂iχt)u

∣∣∣∣∣
2

e2sϕdx

+CeCs
∫

Γ

(|∇v|2 + v2)ds

≤ C

∫
Dt/2\Dt

∣∣∣∣∣
n∑

i,j=1

aij((∂iχt)∂ju+ (∂jχt)∂iu+ (∂i∂jχt)u) +
n∑
i=1

bi(∂iχt)u

∣∣∣∣∣
2

e2sϕdx

+CeCs
∫

Γ

(|∇u|2 + u2)ds

7



where ϕ = exp(λd(x)), λ > 0 is sufficiently large and s > s0 for some s0 > 0. Since ϕ(x) ≥
exp(2λt) in D2t and ϕ(x) ≤ exp(λt) in Dt/2\Dt, it can be derived from the previous relation that

‖u‖2
H1(D2t)

≤ C4

t4
e−2sr(t)‖u‖2

H1(Ω) + C5e
C0s(‖u‖2

H1(Γ) + ‖∂Au‖2
L2(Γ)) (17)

for all s ≥ s0, with r(t) := e2λt − eλt. Analogously, applying the Carleman estimate to vi = χt∂iu and
vij = χt∂i∂ju, 1 ≤ i, j ≤ n we can obtain

‖∇u‖2
H1(D2t)

+ ‖∇2u‖2
H1(D2t)

≤ C4

t4
e−2sr(t)M2 + C5e

C0s %2, s ≥ s0, (18)

where ‖u‖H3(Ω) ≤M. Combining (17) and (18) gives

‖u‖2
H3(D2t)

≤ C4

t4
e−2sr(t)M2 + C5e

C0s%2, s ≥ s0, (19)

We fix an arbitrary t0 ∈ [0, l/2) and t0 ≤ 1. By the Sobolev embedding theorem, there exists a constant
C6 = C6(t) > 0 such that

‖u‖C1(D2t)
≤ C6(t) ‖u‖H3(D2t), 0 ≤ t ≤ t0.

Recalling that Dt is defined by a translation of D0 and that D2t0 6= ∅, D2t0 ⊂ D2t ⊂ D0. Choose a
constant C7 > 0 uniformly in all t ∈ [0, t0] such that

‖u‖C1(D2t)
≤ C7 ‖u‖H3(D2t), for all 0 ≤ t ≤ t0.

Hence, it follows from (19) that

‖u‖C1(D2t)
≤ C8

t2
e−sr(t)M + C8e

C0s% (20)

for all s ≥ 0 and all t ∈ [0, t0]. We find a value s minimizing the right-hand side of (20) that is, we choose
s ≥ s0 such that

e−sr(t)M = eC0s %.

Consequently we have

‖u‖C1(D2t)
≤ C9

t2
M

C0
C0+r(t)%

r(t)
C0+r(t) ≤ C9

t2
M1%

r(t)
C0+r(t) (21)

for all 0 ≤ t ≤ t0, where we set M1 := max{M, 1}.
For simplicity we write ∂n = ∂/∂xn . Since (0, ..., 0, `− 2t) ∈ D2t, we observe from (2) that

|∂nu(0, ..., 0, `− 2t)| ≤ C9

t2
M1 %

r(t)
C0+r(t) , 0 ≤ t ≤ t0. (22)

Using the inequalities

e2λt − 2eλt + 1 ≥ 0, eλt − λt− 1 ≥ 0 for all t > 0,

8



it is easy to check that

r(t)

C0 + r(t)
≥ eλt − 1

C0 + eλ`0 − e
λ`0
2

≥ λ

C0 + eλ`0 − e
λ`0
2

t ≡ C10t (23)

for some C10 > 0. Since % ≤ 1, we have by (22) and (23) that

|∂nu(0, ..., 0, `− 2t)| ≤ C9

t2
M1%

C10t, 0 ≤ t ≤ t0.

Hence

|∂nu(0, ..., 0, `− 2t)|
= |∂nu(0, ..., 0, `− 2t)|3/4 |∂nu(0, ..., 0, `− 2t)|1/4

≤ ‖u‖3/4

C1(Ω)

(
C9 t

−2M1%
C10t
)1/4

≤ M3/4M11/4C
1/4
9 t−1/2%C10t/4

≤ C11M1 t
−1/2 %C12t,

where in the last equality we have used again the Sobolev embedding ‖u‖C1(Ω) ≤ C ‖u‖H3(Ω). There-
fore, by (21) we obtain

|u(x0)| = |u(0, ..., 0, `)| =
∣∣∣∣u(0, ..., 0, `− 2t0) +

∫ 0

t0

∂

∂t
(u(0, ..., 0, `− 2t))dt

∣∣∣∣
≤ ‖u‖C(D2t0 ) +

∫ t0

0

2C11M1 t
−1/2 %C12tdt

≤ C14‖u‖H2(D2t0 ) +

∫ t0

0

C14M1 t
−1/2 exp

(
−
(
C12 log

1

%

)
t

)
dt

≤ C9

t20
M1%

r(t0)
C0+r(t0) + C14M1

∫ ∞
0

t−1/2 exp

(
−
(
C12 log

1

%

)
t

)
dt

= C15M1%
κ0 + C14M1

Γ
(

1
2

)(
C12 log 1

%

) 1
2

from which the stability estimate (15) follows.

(ii) The second assertion follows straightforwardly from the first assertion in combination with the inequal-
ity

% ≤ 1/e

log 1
%

<
1

log 1
%

for all 0 ≤ % ≤ 1

e
.

3 Quantitative unique continuation

The aim of this section is to verify the quantitative unique continuation for solutions of the elliptic equation
Au = 0 (see (1)). Set m =

[
n
2

]
+ 2, where the notation [a] denotes the largest natural number not

exceeding a > 0.
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Lemma 3.1. (Quantitative unique continuation) Let Au = 0 in Ω and ||u||Hm(Ω) ≤ M , where M > 0
is an a priori bound. We assume there exists z ∈ Ω such that |u(z)| > C0. Suppose further that

|u(x)| < δ for all x ∈ Br(y) ⊂ Ω, (24)

for some y ∈ Ω and δ, r > 0, then an upper bound of the radius r can be estimated by

r ≤ C/Cκ
0 δ

θ,

where κ, θ and C are positive constants depending only on the space dimension, the region Ω and the
distance between z and ∂Ω.

The unique continuation follows directly from Lemma 3.1.

Corollary 3.1. Let Au = 0 in Ω and u ≡ 0 in Br(y) ⊂ Ω for some r > 0, y ∈ Ω. Then u ≡ 0.

Proof. Assume on the contrary that |u(z)| > C0 > 0 for some z ∈ Ω. Since u ≡ 0 in Br(y), we have
|u(x)| < δ for any δ > 0 and for all x ∈ Br(y). Applying Lemma 3.1 we see r ≤ C/Cκ

0 δ
θ for all

δ > 0. Now, letting δ → 0 yields the relation r = 0, which contradicts the fact that r > 0. Hence u ≡ 0
in Ω.

Below we carry out the proof of Lemma 3.1, relying on the use of the interior estimate in Lemma 2.1.

Proof of Lemma 3.1. For notational convenience, we write x′ = (x2, · · · , xn) so that x = (x1, x
′), z =

(z1, z
′) ∈ Rn. Without loss of generality we suppose that y coincides with the origin O, |z′| = 0 and

0 < r < 1. Using the interior estimate (see [13]), it follows from (24) that

||∇u||L∞(Br/2) ≤ C1/r||u||L∞(Br) ≤ C1δ/r, (25)

where the constant C1 > 0 is independent of r. Hence,

||u||W 1,∞(Br/2) ≤ C1δ(1 + 1/r). (26)

We may always choose a paraboloidal domain Λ(y, λ, ν) with y ∈ Ω, ν = (−1, 0, · · · , 0) such that
Brr0(z) ⊂ {Λ(y, λ, ν) + δ0ν} ∩Ω for some r0, δ0 > 0. Note that the point y and the parameters λ, r0

and δ involved are dependent only on the geometry of Ω and the distance between z and ∂Ω. By Lemma
2.1,

||u||H1(Brr0 (z)) ≤ ||u||H1(Ωδ) ≤ C2 (||u||H1(γ) + ||∂νu||L2(γ))
κ (27)

for some κ ∈ (0, 1] and C2 > 0 independent of γ = {Λ(y, λ, ν) + δ0ν} ∩ ∂Ω. Further, without loss
of generality we may suppose that γ ⊂ {(0, x′) : |x′| < r/2}. Otherwise, this can be achieved by
constructing a family of paraboloidal domains. Combining the estimates in (26) and (27), we obtain

||u||H1(Brr0 (z)) ≤ C2(C1δ(1 + 1/r) r(n−1)/2)κ ≤ C3 δ
κ (1 + rn−3)κ/2, (28)

where C3 > 0 does not depend on δ. Moreover, recalling the inequality (rn−3)
κ
2 ≤ Cr−κ for all r ∈

(0, 1] , it holds that
‖u‖H1(Brr0 (z)) ≤ C4δ

κ r−κ, C4 > 0.
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Now, applying Lemma 3.2 below we obtain for m = [n
2
] + 1 and θ = 1/m ∈ (0, 1) that

‖u‖L∞(Brr0 (z)) ≤ C (rr0)−m−n/2||u||θH1(Brr0 (z))

≤ C r
−m−n

2
0 r−m−

n
2 r−κθδκθ

= C r−µ1δµ2

where µ1 = m+ n
2

+ κθ > 0 and µ2 = κθ ∈ (0, 1). Since |u(z)| > C0 > 0, we have

C0 ≤ ‖u1‖L∞(Brr0 (z)) < Cr−µ1δµ2 ,

leading to the relation
rµ1 ≤ C C−1

0 δµ2 .

Finally, an upper bound of r can be estimated by

r ≤ C/C
1/µ1

0 δµ2/µ1 .

The proof of the lemma is complete. �

In proving the quantitative unique continuation we have used the following result.

Lemma 3.2. Let Br = Br(O) ⊂ Rn for some r ∈ (0, 1). Suppose that

||u||Hm+1(Br) ≤M, m :=
[
n/2
]

+ 1.

Then there exists a constant C = C(M,n) > 0 such that

||u||L∞(Br) ≤ C r−m−n/2 ||u||1/mH1(Br)
. (29)

Proof. By the change of variables y = x/r and ũ(y) := u(x), we have∫
Br

∑
|α|≤m

|∂αxu|2dx =

∫
B1

∑
|α|≤m

|∂αy ũ|2rn−2αdy.

Hence there exist C0, C1 > 0 independent of r ∈ (0, 1) such that

C0r
n
2 ‖ũ‖Hm(B1) ≤ ‖u‖Hm(Br) ≤ C1 r

n
2
−m‖ũ‖Hm(B1). (30)

Let m =
[
n
2

]
+ 1 and m′ =

[
n
2

]
+ 2. In B1 we have an interpolation inequality:

‖ũ‖Hm(B1) ≤ C‖ũ‖
m′−m
m′−1

H1(B1)‖ũ‖
m−1
m′−1

Hm′ (B1)
= C‖ũ‖1/m

H1(B1)‖ũ‖
1−1/m

Hm′ (B1)
.

Making use of (30) we get

‖u‖Hm(Br) ≤ C2 r
−m‖u‖1/m

H1(Br)
‖u‖1−1/m

Hm′ (Br)
. (31)

Moreover, applying the Sobolev embedding theorem yields

‖ũ‖L∞(B1) ≤ C3‖ũ‖Hm(B1).

Together with the first inequality in (30), this implies that

‖u‖L∞(Br) ≤ C3C
−1
0 r−

n
2 ‖u‖Hm(Br).

We use (31) to estimate the right hand side of the previous inequality to obtain

‖u‖L∞(Br) ≤ C4 r
−m−n

2 ‖u‖1/m

H1(Br)
‖u‖1−1/m

Hm′ (Br)
≤ C5 r

−m−n
2 ‖u‖1/m

H1(Br)
,

which proves (29).
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Figure 3: Illustration of two sub-boundaries ∂D1, ∂D2 and the domain E := Dc
1\D

c

2.

4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Set
u = u1 − u2 in Dc

1 ∩Dc
2

and
% := ‖u1 − u2‖H3(Γ) + ‖∂A(u1 − u2)‖H2(Γ).

Let Ωε = {x : dist (x, ∂Ω) < ε} with sufficiently small ε > 0; see Figure 3. Since the parameter λ > 0
of the parabolic domain Λ(y, λ, ν) in Lemma 2.1 can be chosen arbitrarily large, we can always construct
a family of paraboloidal domains to prove that

‖u‖H1(Ωε) ≤ C1%
κ1 ,

where the constant κ1 ∈ (0, 1] depend on ∂Ω and ε only and the constant C1 relies on the upper bound
M involved in Condition A. We set Γε = ∂Ωε \ ∂Ω. By the interpolation inequality and Condition A, we
find

‖u‖H7/2(Ωε) ≤ C‖u‖
1
6

H1(Ωε)
‖u‖

5
6

H4(Ωε)
≤ C2 %

κ2 .

Applying the trace theorem gives

‖u‖H3(Γε) + ‖∂Au‖H2(Γε) ≤ C3 %
κ2 ,

where C3 > 0 depends on ∂Ω, ε and M . Let E be any connected component of Dc
1\Dc

2; see the
shadow area in Figure 3. Since ∂D2 is star-shaped, the boundary ∂E ∩ ∂D2 can be connected to Γ
in Ω \ (D1 ∪D2). We apply Lemma 2.3 (ii) to the region Ω \ (D1 ∪D2) to obtain an estimate of u on
∂E ∩ ∂D2:

‖u‖L∞(∂E∩∂D2) ≤ C4

 1

log 1
‖u‖H3(Γε)+‖∂Au‖H2(Γε)

κ3

≤ C4

(
1

log 1/%

)κ3

,

for some κ3 ∈ (0, 1/2], where % > 0 is supposed to be sufficiently small. Since u2 = 0 on ∂D2, we
have

‖u1‖L∞(∂E∩∂D2) ≤ C4

(
1

log 1/%

)κ3

.
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Using the fact that u1 = 0 on ∂D1, the previous inequality can be written as

‖u1‖L∞(∂E) ≤ C4

(
1

log 1/%

)κ3

. (32)

We set Br(z) = {x ∈ Rn; |x− z| < r}. Let

r0 = sup{r : Br(z) ⊂ E with some z ∈ E}.

That is, r0 is the radius of the inscribed ball in E. Suppose that Br0(z0) ⊂ E for some z0 ∈ E. The
maximum principle in E yields

‖u1‖L∞(Br0 (z0)) ≤ ‖u1‖L∞(E) ≤ C4

(
1

log 1/%

)κ3

:= δ0. (33)

On the other hand, it is seen form Condition B that there existC0 > 0 and z ∈ Γ such that |u1(z)| ≥ C0.
Now applying the quantitative unique continuation, we see that

r0 ≤ C δκ0 ≤ C

(
1

log 1/%

)θ
(34)

for some κ, θ ∈ (0, 1). Note that the constant C depends on the a priori bounds involved in Conditions
A and B, the region Ω and the upper bounds of the coefficients in equation (1). Since the estimate (34)
applies to the radius of the inscribed ball in any connected component of Dc

1\Dc
2 and Dc

1\Dc
2, we finish

the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let D ⊂ Rn be the unbounded connected component of (Rn\D1)∩ (Rn\D2).
Analogously to the proof of Theorem 1.1, we set

u := u1 − u2 in D, % := ‖u∞1 − u∞2 ‖L2(Sn−1).

We first estimate the near field data in D from the far field pattern. By [21], there exist a radius R1 > R
and a constant C > 0 such that

||u||L2(BR1+1\BR1
) ≤ C %α(%),

where the function α : R+ → R is defined as

α(%) := (1 + log(− log %+ e))−1.

Setting Ω := BR1+1/2 and Γ = ∂Ω = {|x| = R1 + 1/2}, it follows from the elliptic interior estimate
that

||u||H3(Γ) + ||∂νu||H2(Γ) ≤ C %α(%).

Now, we may restrict our discussions to the bounded domain Ω, following the lines in the proof of Theorem
1.1. For this purpose it is necessary to check the Conditions A and B for the inverse problem (IP1). By well-
posedness of the forward scattering and the smoothness assumption of ∂Dj , there exist M, δ > 0 such
that the relations in (5) hold. On the other hand, Since |uin(x)| = 1 in Rn, the boundary Γ = {|x| = R1}
of ∂Ω can be chosen depending on the a priori data only such that (see e.g., [26, Corollary 3.3])

|uj(x)| > 1/2, for all x ∈ Γ, j = 1, 2,
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which implies the Condition B in (6). Arguing as in the proof of Theorem 1.1, we get (cf. (32))

‖u1‖L∞(∂E) ≤ C |α(%) log %|−θ := δ0, θ ∈ (0, 1), (35)

where the region E ⊂ Ω is defined the same as in the proof of Theorem 1.1. Under the Condition C or
D, k2 is not a Dirichlet eigenvalue of −∆ in E. Hence the estimate (33) still holds with δ0 given in (35).
Consequently,

d(∂D1, ∂D2) ≤ C |α(%) log %|−θ, (36)

for some θ ∈ (0, 1). If % ≤ %0 < 1/e for some %0 > 0, we may rewrite (36) as

d(∂D1, ∂D2) ≤ C

(
1

log 1/%

)θ′
,

for some 0 < θ′ < θ. �

5 Appendix: Proof of Carleman estimate

Here we give a direct derivation of the Carleman estimate for the elliptic operator A, i.e., Lemma 2.2.
There is an approach based on the general theory (e.g., [15,19,20]), but we present a direct proof which
is based on integration by parts. One can refer to [17, 18] for similar direct derivation of a parabolic
Carleman estimate and [5] for a hyperbolic Carleman estimate.

Thanks to the large parameter s, it is sufficient to prove the Carleman estimate in the case of bi = c = 0,
1 ≤ i ≤ n, i.e., to verify Lemma 2.2 for the principal part of the elliptic operator A, given by

(A0u)(x) ≡ −
n∑

i,j=1

aij(x)∂i∂ju = f, x ∈ Ω.

In fact, regarding the lower-order part
∑n

i=1 bi∂iu+cu as the right-hand side, we can absorb the weighted
L2-norms of the lower-order part into the left-hand side by applying the Carleman estimate for A0 and
taking the parameter s > 0 sufficiently large.

Let D ⊂ Ω and ϕ(x) = eλd(x) be given as in Lemma 2.2. For notational simplicity we set

σ(x) =
n∑

i,j=1

aij(x)(∂id)(x)(∂jd)(x), x ∈ D.

Define
w(x) := esϕ(x)u(x)

and
Pw(x, t) := esϕA0(e−sϕw) = esϕA0u = esϕ f.

Below we give some technical remarks on the proof of the Carleman estimate. The derivation argument
consists of three steps:
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Step 1: Decomposition of the differential operator P into the sum of P1 and P2, where P1 is composed
of the second-order and zeroth-order terms in x, whereas P2 is composed of first-order terms in
x. Here the terms in Pw are classified by the highest order of s, λ and ϕ.

Step 2: Estimation of
∫
D

2(P1w)(P2w)dx from below.

Step 3: Derivation of another estimate for∫
D

Pw × [the term u with second highest order of s, λ, ϕ among Pw].

Moreover the estimate in the second step produces the estimate of u with desirable order of s, λ, ϕ but
not the term of∇u. This is caused by the different orders of the derivatives of terms under consideration.
Therefore another estimate in the third step is necessary. Such kind of double estimates is also used in
proving the observability inequality of the time-dependent wave equation by the multiplier method. As for
the multiplier method, the two estimates are obtained from (see e.g., Komornik [23, Pages 36-39]):∫ T

0

∫
Ω

(∂2
t v −∆v)(h(x) · ∇v)dxdt

and ∫ T

0

∫
Ω

(∂2
t v −∆v)vdxdt

respectively, with a suitable vector-valued function h(x), and then the estimates are summed up to obtain
an L2-estimate of v. The second estimate for the wave equation via the multiplier method is similar to the
third step in our case.

Proof of Lemma 2.2.

Step 1. Let ν = ν(x) be the outward unit normal vector to ∂D. Simple calculations show that

Pw = −
n∑

i,j=1

aij ∂i∂jw + 2sλϕ
n∑

i,j=1

aij ∂id ∂jw

−s2λ2ϕ2σw + sλ2ϕσw + sλϕw
n∑

i,j=1

aij∂i∂jd

in D. Note that in the previous identity we have specified all the dependency of coefficients on s, λ and
ϕ. The last two terms in Pw can be rewritten as A1w, where A1 = A1(x; s, λ, ϕ, σ) is defined as

A1(x; s, λ, ϕ, σ) := sλ2ϕσ + sλϕ

n∑
i,j=1

aij∂i∂jd =: sλ2ϕa1(x; s, λ),

a1(x; s, λ) := σ + (1/λ)
n∑

i,j=1

aij∂i∂jd.

Hence,

Pw = −
n∑

i,j=1

aij(x)∂i∂jw + 2sλϕ
n∑

i,j=1

aij(x)(∂id)∂jw − s2λ2ϕ2σw + A1w.
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We note that a1 depends on s and λ, and

|a1(x; s, λ)| ≤ C for x ∈ D and all sufficiently large λ > 0 and s > 0.

Here and henceforth byC ,C1, etc., we denote generic constants which are dependent on λ, but indepen-
dent of s and the geometry of D, and are bounded provided that max1≤i,j≤n ‖aij‖C1(Ω),
max1≤i≤n ‖bi‖L∞(Ω), ‖c‖L∞(Ω), ‖d‖C2(Ω) are bounded.

Taking into account the orders of (s, λ, ϕ), we split P into the sum of P1 and P2, where P1 is composed
of second-order and zeroth-order terms in x, whereas P2 is composed of first-order terms in x. That is,

P1w := −
n∑

i,j=1

aij(x)∂i∂jw − s2λ2ϕ2wσ(x) + A1w,

P2w := 2sλϕ
n∑

i,j=1

aij(x)(∂id)∂jw.

By ‖fesϕ‖2
L2(D) = ‖P1w + P2w‖2

L2(D), we have

2

∫
D

(P1w)(P2w)dx ≤
∫
D

f 2e2sϕdx. (37)

Step 2: We need to derive a lower bound of the left hand side of (37). Clearly, we have∫
D

(P1w)(P2w)dx =
3∑

k=1

Jk,

where

J1 := −
n∑

i,j=1

∫
D

aij(∂i∂jw)2sλϕ
n∑

k,`=1

ak`(∂kd)(∂`w)dx,

J2 := −
∫
D

2s3λ3ϕ3σw

n∑
i,j=1

aij(∂id)(∂jw)dx,

J3 :=

∫
D

(A1w)2sλϕ
n∑

i,j=1

aij(∂id)(∂jw)dx.

(38)

Now, applying integration by parts, aij = aji and u ∈ H2(D) and assuming that λ > 1 and s > 1
are sufficiently large, we reduce all the derivatives of w to w, ∂iw. We continue the estimation of Jk,
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k = 1, 2, 3 as follows. First,

J1 = −
n∑

i,j=1

n∑
k,`=1

∫
D

2sλϕaijak`(∂kd)(∂`w)(∂i∂jw)dx

= 2sλ

∫
D

n∑
i,j=1

n∑
k,`=1

λ(∂id)ϕaijak`(∂kd)(∂`w)(∂jw)dx

+2sλ

∫
D

n∑
i,j=1

n∑
k,`=1

ϕ∂i(aijak`∂kd)(∂`w)(∂iw)dx

+2sλ

∫
D

n∑
i,j=1

n∑
k,`=1

ϕaijak`(∂kd)(∂i∂`w)(∂jw)dx

:= J
(1)
1 + J

(2)
1 + J

(3)
1 .

The first and third terms in J1 can be estimated by

J
(1)
1 = 2sλ2

∫
D

ϕ

∣∣∣∣∣
n∑

i,j=1

aij(∂id)(∂jw)

∣∣∣∣∣
2

dx ≥ 0,

and

J
(3)
1 =

∫
D

2sλ
n∑

k,`=1

(∑
i>j

ϕaijak`(∂kd){(∂i∂`w)(∂jw) + (∂j∂`w)(∂iw)}dx

+
n∑

k,`=1

n∑
i=1

ϕaiiak`(∂kd)(∂i∂`w)(∂iw)

)
dx

= sλ
n∑

i,j=1

n∑
k,`=1

∫
D

ϕaijak`(∂kd)∂`((∂iw)(∂jw))dx

= sλ

∫
∂D

n∑
i,j=1

n∑
k,`=1

ϕaijak`(∂kd)(∂iw)(∂jw)ν`ds

−sλ2

∫
D

ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx

−sλ
∫
D

ϕ

n∑
i,j=1

n∑
k,`=1

∂`(aijak`∂kd)(∂iw)(∂jw)dx.
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Hence, we can estimate J1 from below by

J1 ≥ −
∫
D

sλ2ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx

−C
∫
D

sλϕ|∇w|2dx+ 2sλ2

∫
D

ϕ

∣∣∣∣∣
n∑

i,j=1

aij(∂id)(∂jw)

∣∣∣∣∣
2

dx

+sλ

∫
∂D

n∑
i,j=1

n∑
k,`=1

ϕaijak`(∂kd)(∂iw)(∂jw)ν`dS

≥ −
∫
D

sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw)dx− C
∫
D

sλϕ|∇w|2dx

−Csλ
∫
∂D

ϕ|∇w|2ds. (39)

On the other hand, the other two terms J2 and J3 in the integral
∫
D

2(P1w)(P2w)dx can be estimated
by

J2 = −
∫
D

2s3λ3ϕ3σw
n∑

i,j=1

aij(∂id)(∂jw)dx

= −
∫
D

s3λ3ϕ3

n∑
i,j=1

σaij(∂id)∂j(w
2)dx

=

∫
D

s3λ3

n∑
i,j=1

3ϕ2{λ(∂jd)ϕ}σaij(∂id)w2dx

+

∫
D

s3λ3ϕ3

n∑
i,j=1

∂j(σaij∂id)w2dx−
∫
∂D

n∑
i,j=1

s3λ3ϕ3σaij(∂id)w2νjdS

≥
∫
D

3s3λ4ϕ3σ2w2dx− C
∫
D

s3λ3ϕ3w2dx− C
∫
∂D

s3λ3ϕ3w2ds (40)

and

|J3| =

∣∣∣∣∣
∫
D

sλ2ϕa1 × 2sλϕw
n∑

i,j=1

aij(∂id)(∂jw)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
D

2a1s
2λ3ϕ2

n∑
i,j=1

aij(∂id)w(∂jw)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
D

a1s
2λ3ϕ2

n∑
i,j=1

aij(∂id)∂j(w
2)dx

∣∣∣∣∣
=

∣∣∣∣∣−
∫
D

n∑
i,j=1

∂j(a1s
2λ3ϕ2aij(∂id))w2dx+

∫
∂D

n∑
i,j=1

a1s
2λ3ϕ2aij(∂id)w2νjdS

∣∣∣∣∣
≤ C

∫
D

s2λ4ϕ2w2dx+ C

∫
∂D

s2λ3ϕ2w2ds. (41)
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Hence, combining (38)-(41) we obtain∫
D

(P1w)(P2w)dx ≥ 3

∫
D

s3λ4ϕ3σ2w2dx−
∫
D

sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw)dx

−C
∫
D

sλϕ|∇w|2dx− C
∫
D

(s3λ3ϕ3 + s2λ4ϕ2)w2dx

−C
∫
∂D

sλϕ|∇w|2dS − C
∫
∂D

(s3λ3ϕ3 + s2λ3ϕ2)w2ds.

Rearranging the terms in the previous inequality yields

3

∫
D

s3λ4ϕ3σ2w2dx−
∫
D

sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw)dx

≤ 1

2

∫
D

f 2e2sϕdx+ C

∫
D

sλϕ|∇w|2dx

+C

∫
D

(s3λ3ϕ3 + s2λ4ϕ2)w2dx

+C

∫
∂D

(sλϕ|∇w|2 + (s3λ3ϕ3 + s2λ3ϕ2)w2)ds. (42)

Step 3. The first and the second terms on the left-hand side of (42) have different signs, so we need
another estimate. In this step will obtain another estimation of∫

D

sλ2ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx

by means of ∫
D

(P1w + P2w)× (sλ2ϕσw)dx.

Here the factor sλ2ϕσw is necessary for obtaining the term of |∇w|2 with the desirable (s, λ, ϕ)-factor
sλ2ϕ. That is, multiplying sλ2ϕσw to both sides of the equation

2sλϕ
n∑

i,j=1

aij(∂id)(∂jw)−
n∑

i,j=1

aij∂i∂jw − s2λ2ϕ2σw + A1w = fesϕ,

we obtain ∫
D

fesϕsλ2ϕσwdx =
4∑

k=1

Ik, (43)

where

I1 :=

∫
D

2sλϕ
n∑

i,j=1

aij(∂id)(∂jw)sλ2ϕσwdx, I2 := −
∫
D

(
n∑

i,j=1

aij∂i∂jw

)
sλ2ϕσwdx,

I3 := −
∫
D

s3λ4ϕ3σ2w2dx, I4 :=

∫
D

(A1w)(sλ2ϕσw)dx.
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Now, using integration by parts and the relation ∂iϕ = λ(∂id)ϕ, we estimate the terms Ij (j = 1, 2, 3, 4)
as follows.

|I1| =

∣∣∣∣∣
∫
D

s2λ3ϕ2σ

n∑
i,j=1

aij(∂id)∂j(w
2)dx

∣∣∣∣∣
=

∣∣∣∣∣−
∫
D

n∑
i,j=1

s2λ3{2λ(∂jd)ϕ2}σaij(∂id)w2dx

−
n∑

i,j=1

s2λ3ϕ2∂j(σaij(∂id))w2dx+

∫
∂D

n∑
i,j=1

s2λ3ϕ2σaij(∂id)w2νjdS

∣∣∣∣∣
≤ C

∫
D

s2λ4ϕ2w2dx+ C

∫
∂D

s2λ3ϕ2w2ds; (44)

I2 = −
∫
D

sλ2

n∑
i,j=1

ϕσaijw(∂i∂jw)dx

=

∫
D

sλ2

n∑
i,j=1

ϕσaij(∂iw)(∂jw)dx+

∫
D

sλ2

n∑
i,j=1

∂i(ϕσaij)w(∂jw)dx

−
∫
∂D

sλ2

n∑
i,j=1

ϕσaijw(∂jw)νids

≥
∫
D

sλ2ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx− C
∫
D

sλ3ϕ|∇w||w|dx

−C
∫
∂D

sλ2ϕ|w||∇w|ds; (45)

I3 = −
∫
D

s3λ4ϕ3σ2w2dx; (46)

|I4| ≤ C

∣∣∣∣∫
D

sλ2ϕ× sλ2ϕσw2dx

∣∣∣∣ ≤ C

∫
D

s2λ4ϕ2w2dx. (47)

Hence, by (43)-(47) we obtain∫
D

sλ2ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx−
∫
D

s3λ4ϕ3σ2w2dx

≤ C

∫
D

|fesϕsλ2ϕσw|dx+ C

∫
D

s2λ4ϕ2w2dx+ C

∫
D

sλ3ϕ|∇w||w|dx

+C

∫
∂D

(s2λ3ϕ2w2 + sλ2ϕ|w||∇w|)ds. (48)

Since
sλ3ϕ|∇w||w| = (sλ2ϕ|w|)(λ|∇w|) ≤ 1/2s2λ4ϕ2w2 + 1/2λ2|∇w|2,
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we have ∫
D

sλ3ϕ|∇w||w|dx ≤ 1/2

∫
D

(s2λ4ϕ2w2 + λ2|∇w|2)dx. (49)

Furthermore, using the inequalities

sλ2ϕ|w||∇w| = (s1/2λ1/2ϕ1/2|∇w|)(s1/2λ
3
2ϕ1/2w)

≤ 1/2sλϕ|∇w|2 + 1/2sλ3ϕw2,

|fesϕsλ2ϕσw| ≤ 1/2f 2e2sϕ + 1/2s2λ4ϕ2σ2w2

≤ 1/2f 2e2sϕ + Cs2λ4ϕ2w2,

it follows from (48) and (49) that∫
D

sλ2ϕσ
n∑

i,j=1

aij(∂iw)(∂jw)dx−
∫
D

s3λ4ϕ3σ2w2dx

≤ C

∫
D

f 2e2sϕdx+ C

∫
D

s2λ4ϕ2w2dx+ C

∫
D

λ2|∇w|2dx

+C

∫
∂D

(sλϕ|∇w|2 + (sλ3ϕ+ s2λ3ϕ2)w2)ds. (50)

End of the proof. Multiplying (50) by two, adding the resulting expression to (42), and making use of (2)
and the relation σ0 ≡ inf(x,t)∈Q σ(x, t) > 0, we obtain∫

D

s3λ4ϕ3σ2
0w

2dx+

∫
D

sλ2ϕ|∇w|2dx

≤ C

∫
D

f 2e2sϕdx+ C

∫
D

(sλϕ+ λ2)|∇w|2dx

+C

∫
D

(s3λ3ϕ3 + s2λ4ϕ2)w2dx

+C

∫
∂D

(sλϕ|∇w|2 + (s3λ3ϕ3 + s2λ3ϕ2 + sλ3ϕ)w2)ds. (51)

Therefore, taking λ > 0 and s > 0 sufficiently large, we can absorb the second and the third terms on
the right-hand side of (51) into the left-hand side. Consequently, it follows that∫

D

s3λ4ϕ3w2dx+

∫
D

sλ2ϕ|∇w|2dx

≤ C

∫
D

f 2e2sϕdx+ C

∫
∂D

(sλϕ|∇w|2 + s3λ3ϕ3w2)ds.

Noting w = uesϕ, we have ∫
D

(sλ2ϕ|∇u|2 + s3λ4ϕ3u2)e2sϕdx

≤ C

∫
D

f 2e2sϕdxd+ CeC(λ)s

∫
∂D

(|∇u|2 + u2)ds,

which finishes the proof of the Carleman estimate. �
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