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Marita Thomas1, Chiara Zanini 2

submitted: December 9, 2016

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: marita.thomas@wias-berlin.de

2 Department of Mathematical Sciences
Politecnico di Torino
Corso Duca degli Abruzzi 24
I-10129 Torino
Italy
E-Mail: chiara.zanini@polito.it

No. 2350

Berlin 2016

2010 Mathematics Subject Classification. 35A15, 35Q74, 74H20, 74C10, 49J53, 49J45, 74C05.

Key words and phrases. Cohesive zone delamination, weak formulation, rate-independent processes, semistable
energetic solutions, non-smooth constraint, gradient systems, dynamics, irreversibility.

This research has been carried out during several research stays of MT at Politecnico di Torino and of CZ at
WIAS, Berlin. The hospitality of the two institutions is gratefully acknowledged. MT also acknowledges the partial
financial support by GNAMPA 2014 and by the DFG Project Finite element approximation of functions of bounded
variation and application to models of damage, fracture, and plasticity within the DFG Priority Programme SPP
1748 Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretisation Methods,
Mechanical and Mathematical Analysis. CZ acknowledges the partial financial support through the ERC Project
No. 267802, Analysis of Multiscale Systems Driven by Functionals. CZ is also a member of the Progetto di Ricerca
GNAMPA 2016 Analisi di processi inelastici nella meccanica dei solidi e delle cellule: proprietá fini delle soluzioni
and of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM).



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

We study a model for the rate-independent evolution of cohesive zone delamination in a visco-
elastic solid, also exposed to dynamics effects. The main feature of this model, inspired by [OP99], is
that the surface energy related to the crack opening depends on the history of the crack separation
between the two sides of the crack path, and allows for different responses upon loading and unloading.

Due to the presence of multivalued and unbounded operators featuring non-penetration and the
‘memory’-constraint in the strong formulation of the problem, we prove existence of a weaker notion
of solution, known as semistable energetic solution, pioneered in [Rou09] and refined in [RT15a].

1 Delamination models with a process zone

In the last decade cohesive zone models have received great attention from a mathematical point of
view, and different aspects have been considered. The main feature of the cohesive zone models, cf.
e.g. [OP99, p. 1268], pioneered by Dugdale [Dug60], Barenblatt [Bar62], Rice [Ric68], and others– is to
regard fracture as a gradual phenomenon in which separation takes place across an extended crack ‘tip’,
or cohesive zone and is resisted by cohesive tractions. In this contribution we consider the case where
crack initiation and propagation are confined to a prescribed interface ΓC ⊂ Rd−1 between two parts
Ω+, Ω− of a visco-elastic solid Ω ⊂ Rd. This assumption in combination with cohesive zone fracture, has
been employed by several authors, see, e.g., [DMZ07, Cag08, CT11, Alm16, CLO16], and it is also related
to the lower semicontinuity of functionals including cohesive surface energies, cf. [BBB95, DMOT15].

Following [OP99] the cohesive phenomenon in the setting of small strains is modeled by the pair
(u(t, x), ζ(t, x)), where u : [0, T ] × Ω \ ΓC → Rd is the displacement and ζ : [0, T ] × ΓC → [0,∞) is an
internal variable. In cohesive zone models the internal variable ζ(·, x) has the purpose of ‘memory’, as it
tracks the history of the maximal separation of the two parts of the body in the material point x ∈ ΓC

during the time span [0, T ]. In other words, denoting by [[u(t, x)]]n = (u|Ω+(t, x)−u|Ω−(t, x)) ·n the jump
of the displacements (=separation) at time t ∈ [0, T ] in the point x ∈ ΓC in direction n normal to ΓC,

then, ideally, ζ(t, x) := sups∈[0,t] [[u(s, x)]]n. Thus, ζ(t, x) = 0 means that the two parts of the body have
not been separated yet in x ∈ ΓC up to time t, while ζ(t, x) = α for some α > 0 tells us that there was a
time sα ∈ [0, t], when [[u(sα, x)]]n = α and that [[u(s, x)]]n ≤ α for every s ∈ [0, t].

Adhesive contact and cohesive zone models: Building on approaches by e.g. [Fré88, Fré02],
there is a large amount of analytical results on adhesive contact delamination models, see e.g. [MM05,
KMR06, BBR08, BBR09, RSZ09, RR11, MRT12, RMP13, RPM13, RR13, VMR14, RKZ14, KPR15,
RTP15, Sca15, PMR16, AOR16]. In adhesive contact models, the internal variable z : [0, T ] × ΓC → [0, 1]

has the meaning of active bonds in the adhesive that glues the two parts of the body along ΓC. Hence,
z(t, x) = 1 indicates that the adhesive is sound in (t, x) ∈ [0, T ] × ΓC, while z(t, x) = 0 means that it is
completely broken.

Due to the different meaning of the internal variables, it turns out that t 7→ ζ(t) is increasing in time
while, the internal variable t 7→ z(t) for adhesive contact models is decreasing. Moreover the two classes
of models are also equipped with different surface energies. For adhesive contact a typical surface energy
density is given by

ϕadh(
[[
u
]]
n
, z) := κ

2 z
∣∣[[u

]]
n

∣∣2 , κ > 0 , (1.1)

i.e., ϕadh([[u]]n, ·) is linear and decreases as z decreases. In contrast, surface energy densities ϕcoh(·) in
cohesive zone models are nonlinear, bounded, and monotonically increasing wrt. ζ. Typical cohesive zone
energy densities ϕcoh from engineering literature [OP99, Kre05], are depicted in terms of the solid curves
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in column A of Fig. 1. The solid curve ϕcoh hereby represents the energy envelope determined by a
monotonically increasing (maximal) normal separation ζ. The corresponding traction stresses Dζϕcoh(ζ)

are depicted in terms of the solid curves in column B. The works [OP99, PP11, Kre05] also allow for a
non-monotone separation behavior. They propose to use linear traction-separation relations according
to the dashed lines in Fig. 1 column B, which are active while the separation decreases and subsequently
increases till the envelope Dζϕcoh(ζ) (solid curve) is reached again. Then, the traction-separation law
follows the solid curve Dζϕcoh(ζ) until the next onset of unloading.

cohesive law

vertical axis:
cohesive energy
horizontal axis:
opening displacement

vertical axis:
traction stress
horizontal axis:
opening displacement

vertical axis:
ϕcoh(ζ)/ζ2

horizontal axis:
max. opening displacement ζ

Smith-Ferrate

linear law
A B C

Figure 1: Typical cohesive laws. Solid lines: curves corresponding to maximal loading envelope, dashed
lines: loading - unloading rules.

The cohesive zone model discussed in this work: In this work we want to treat a cohesive
zone model, in the case of unidirectionality, that is, with t 7→ ζ(t) increasing, that also allows for a non-
monotone separation behavior. In the same spirit as described above, we incorporate non-monotonous
separations [[u]]n into the model by replacing the cohesive surface energy density ϕcoh by the expression

ϕcoh(
[[
u
]]
n
, ζ) :=

ϕcoh(ζ)

2ζ2

∣∣[[u
]]
n

∣∣2 . (1.2)

By the meaning assigned to the internal variable ζ in cohesive zone models, it should always hold
[[u(t, x)]]n ≤ ζ(t, x). Therefore, if [[u(t, x)]]n < ζ(t, x), the curve ϕcoh([[u(t, x)]]n, ζ(t, x)) corresponds to a
dashed curve in Fig. 1, column A, which is the energy density corresponding to a dashed traction curve
in column B. For [[u(t, x)]]n = ζ(t, x), the energy envelope ϕcoh(ζ) is reached, which again corresponds
to the energy density due to monotonically increasing (maximal) normal separation ζ. Altogether, with
ϕcoh([[u]]n, ζ) from (1.2) the surface energy ϕs in our model will have the form:

ϕs(
[[
u
]]
n
, ζ) := ϕcoh(

[[
u
]]
n
, ζ) + I[0,ζ]

([[
u
]]
n

)
+ I[0,ζ∗](ζ) + G(ζ) . (1.3)
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Hereby, the indicator term

I[0,ζ](
[[
u
]]
n
) =

{
0 if [[u]]n ∈ [0, ζ],

∞ otw.
(1.4)

enforces the non-penetration condition [[u]]n = [[u]] · n ≥ 0, as well as the ‘memory’-constraint [[u]]n ≤ ζ,

which is a relaxation of the characteristic feature ζ(t, x) = sups∈[0,t] [[u(s, x)]]n of the cohesive zone
internal variable. Observe that I[0,ζ](·) imposes a convex, non-smooth constraint on the displacements,
which depends on the internal variable ζ. This causes the main challenge in the analysis. In addition ϕs

features the indicator function I[0,ζ∗] of the fixed interval [0, ζ∗], for a fixed maximal separation amount
ζ∗. With this constraint we prevent that the separation can reach unphysically large values, larger than
ζ∗. Finally, the density G induces a regularization for ζ in terms of a Sobolev- or a Sobolev-Slobodeckij
seminorm, see (2.17e) for the details.

Relation to adhesive contact: When deciding to drop the ‘memory’-aspect [[u]]n ≤ ζ, then, in view
of the monotonically decreasing nature of the function ϕcoh(ζ)/(2ζ2), see Fig. 1, column C, one may set
z := ϕcoh(ζ)/(κζ2) and introduce z as an alternative internal variable. In particular, for Smith-Ferrate’s
cohesive law, cf. Fig. 1, line 1, also upon renormalization, the cohesive zone surface energy density ϕcoh

(without memory), then goes over to the adhesive contact energy ϕadh from (1.1). An adhesive contact
model involving ϕadh thus can be seen as a cohesive zone model without the memory of the history of
maximal separations.

Coupled rate-independent/rate-dependent evolution: In their modeling approach [OP99]
assume the cohesive internal variable ζ to evolve in a rate-independent, unidirectional way, such that
ζ̇ ≥ 0 a.e. in (0, T ). We incorporate the rate-independent, unidirectional evolution to our model with the
aid of the positively 1-homogeneous dissipation potential

R(ζ̇(t)) :=

∫

ΓC

R(ζ̇(t, x)) dx, with R(ζ̇) :=

{
ρζ̇ if ζ̇ ≥ 0, with given ρ > 0,

∞ otherwise.
(1.5)

In the bulk domain, with mechanical energy Ebulk(t, ·) we will assume a viscoelastic material response,
governed by a viscous dissipation potential V(·). More precisely, denoting by e(u) = 1

2

(
∇u + ∇u⊤)

the
symmetrized strain tensor, we introduce

Ebulk(t, u) :=

∫

Ω\ΓC

1
2Ce(u) : e(u) dx −

∫

Ω\ΓC

f(t) · u dx −
∫

ΓN

h(t) · u dHd−1 .

Here, ΓN ⊂ ∂Ω denotes the Neumann boundary and ΓD = ∂Ω\ΓN ̸= ∅ the Dirichlet boundary.
The viscous, quadratic dissipation potential takes the form

V(u̇) :=

∫

Ω\ΓC

1
2De(u̇) : e(u̇) dx . (1.6)

We refer to Sec. 2.1 for the precise assumptions on the domain, the tensors C and D, and the time-
dependent loadings f(t) and h(t). In addition, we also account for dynamic effects governed by an
acceleration term ϱü . Thus, the evolution of the pair (u, ζ) is characterized by the system of equations

ϱü − div
(
Ce(u) + De(u̇)

)
= f(t) in Ω\ΓC , (1.7a)

[[
Ce(u) + De(u̇)

]]
n

= 0 on ΓC , (1.7b)

−
(
(Ce(u) + De(u̇)) · n + Duϕcoh(

[[
u
]]
n
, ζ)

)
∈ ∂uI[0,ζ](

[[
u
]]
n
) on ΓC , (1.7c)

−
(
Dζϕ

coh(
[[
u
]]
n
, ζ) + DζG(ζ)

)
∈ ∂ζI[[[u]]n,ζ∗](ζ) + ∂ζ̇R(ζ̇) on ΓC , (1.7d)

u = 0 on ΓD , (1.7e)
(
Ce(u) + De(u̇)

)
n = h(t) on ΓN . (1.7f)
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Scope, structure, and challenges of the paper: This contribution deals with the existence
analysis for system (1.7). In fact, owing to its coupled rate-dependent/rate-independent character we
will not analyse the cohesive zone system in its strong form (1.7), but resort to a weaker notion of
solution, which combines concepts from the theory of rate-independent systems [MR15] with the one
of (viscous) gradient flows (ϱ = 0 in (1.7a)), resp. hyperbolic PDEs (ϱ > 0 in (1.7a)). Pioneered in
[Rou09] and refined in [RT15a], this concept of semistable energetic solutions is well-suited to handle
rate-independent evolution, as it replaces the subdifferential inclusion (1.7d) by a minimality condition
for ζ combined with an energy-dissipation estimate. We introduce the notion of semistable energetic
solutions at the beginning of Sec. 2, see Def. 2.1.

Observe that the transmission condition (1.7c) features the subdifferential ∂uI[0,ζ]([[u]]n) of the combined
non-penetration and ‘memory’-constraint (1.4). Indeed, to deal with this multivalued term, we will, in a
first step, replace it by its corresponding Yosida-approximation ∂uIk([[u]]n, ζk). We specify in Sec. 2.1 the
analytical setup, all the functionals and function spaces involved. Our results are presented and discussed
in Sec. 2.2. Our first result, Thm. 2.4, states the existence of semistable energetic solutions for the Yosida-
regularized model, for both cases ϱ = 0 and ϱ > 0. Our main result, Thm. 2.5, provides the existence
of semistable energetic solutions for the unregularized cohesive zone model (featuring ∂uI[0,ζ]([[u]]n)) in
the case of gradient flows, i.e. ϱ = 0 in (1.7a). Based on Thm. 2.4, whose proof is carried out in Sec.
3, the proof of Thm. 2.5 is obtained in Sec. 4 in terms of an evolutionary Γ-limit passage. Hereby, the
main challenge will lie in the fact that I[0,ζ]([[·]]n) encodes the non-smooth, bilateral non-penetration &
‘memory’-constraint which, on top, depends on the state ζ. Thus, for the limit passage, also its Yosida-
regularization Ik([[·]]n, ζk) will depend on the state ζk, the internal-variable-component of a semistable
energetic solution pair (uk, ζk) to the regularized model. An evolutionary Γ-limit passage will therefore
require the proof of Mosco-convergence for the corresponding functionals, see Prop. 4.3, with a careful
design of recovery sequences, taylored to the constraints imposed on the states varying with k.

Comparison with other existing results: The problems attached to the approximation of a
state-dependent non-smooth constraint in combination with rate-dependent effects and dynamics have
already been experienced in [RT15b, RT16]. Therein, the adhesive contact energy ϕadh from (1.1) is
used as a regularization of the brittle constraint z|[[u]]n| = 0 a.e. on ΓC. For the limit κ → ∞ in the
energy term (1.1) the brittle constraint could be re-obtained, also necessitating a sophisticated design of
recovery sequences involving the proof of additional fine convergence properties of the semistable internal
variables zk.

The history dependence of the crack opening was addressed also in [DMZ07], where existence of globally
stable quasistatic evolution (i.e. energetic solution) was obtained, in the case of a cohesive zone model
featuring a general ϕcoh without a regularizing term G for the internal variable ζ. Hence there the
main mathematical difficulty was the compactness of the approximating functions t 7→ ζk(t), solved by
introducing a new notion of convergence, which is the counterpart of the notion of convergence of sets
introduced in [DMFT05]. More recently vanishing viscosity techniques have been applied in cohesive
zone models w.r.t. the internal variable, [CT11, Alm16]. In particular, history dependence of the crack
opening was also considered in [CT11] for a cohesive zone model taking into account different responses
upon loading and unloading. Existence of a solution obtained by means of vanishing viscosity have been
established, by replacing the internal variable by a Young measure. [Cag08, ACFS16] study cohesive
zone delamination for a visco-elastic solid without introducing an internal variable and prove existence
of solutions as well as a vanishing viscosity limit. Different responses upon loading and unloading, also
related to fatigue, have been recently addressed in [CLO16], where the existence of energetic solutions
is established. Fatigue effects related to cohesive fracture, more precisely in a gradient damage model
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coupled with plasticity were discussed in [AMV14], and the authors of [DMOT16] show in a static setting
that cohesive hypersurface energy functionals can be obtained as a limit of volume damage coupled with
plasticity.

2 The mathematical model and our results

In this paper we will treat the cohesive zone model and its approximations in the framework of gradient
systems (that is, ϱ = 0 a.e. on Ω \ΓC in (1.7a)) and damped inertial systems (that is, ϱ > 0 a.e. on Ω \ΓC

in (1.7a)), which consist of:
• two Hilbert spaces

V and W, W identified with its dual W∗, such that V ⋐ W compactly and densely, (2.1a)

so that V ⊂ W = W∗ ⊂ V∗ (dual of V) continuously and densely, and ⟨w, u⟩V = (w, u)W for all
u ∈ V and w ∈ W;

• a separable Banach space Z;
• a dissipation potential V : V → [0,∞) of the form

V(v) = 1
2a(v, v) with a : V × V → R a continuous coercive bilinear form; (2.1b)

• a dissipation potential R : Z → [0, ∞], with domain dom(R), lower semicontinuous, convex, posi-
tively 1-homogeneous and coercive i.e.,

R(λζ) = λR(ζ) for all ζ ∈ Z and λ ≥ 0,

∃CR > 0 ∀ ζ ∈ Z R(ζ) ≥ CR ∥ζ∥Z ;
(2.1c)

• a kinetic energy K : W → [0, ∞), K(v) := ϱ
2∥v∥2

W, with ϱ > 0 in case of a damped inertial system
(V,W,Z, V, K, R, E) and ϱ = 0 in case of a gradient system (V,Z,V, R, E)

• an energy functional E : [0, T ] × V × Z → R ∪ {∞}, with proper domain dom(E) = [0, T ] × domu ×
domζ , such that

t 7→ E(t, u, ζ) is differentiable for all (u, ζ) ∈ domu × domζ ,

(u, ζ) 7→ E(t, u, ζ) is lower semicontinuous for all t ∈ [0, T ],

u 7→ E(t, u, ζ) is convex for all (t, ζ) ∈ [0, T ] × domζ .

(2.1d)

In what follows, we shall denote by ∂uE : [0, T ] × V × Z ⇒ V∗ the subdifferential of the functional
E(t, ·, ζ) in the sense of convex analysis. We postpone to Section 3 ahead the precise statement of the
further conditions on E required in the existence result from [RT15a] that we shall apply to deduce the
existence of solutions to the cohesive zone model and its approximants. Let us only mention here that
the assumptions on ζ 7→ E(t, u, ζ) (cf. the coercivity requirement (3.3) ahead) also involve a second space
X such that

X is the dual of a separable Banach space and X ⋐ Z compactly. (2.1e)

If ϱ = 0 we speak of a gradient system and denote it by the characterizing quintuple (V,Z, V, R, E); for
ϱ > 0 we speak of a damped inertial system, denoted by (V,W,Z, V,K, R, E).

A suitable solution concept for systems that couple rate-independent processes with rate-dependent
and dynamic ones goes back on the pioneering work [Rou09]. Based on a time-discrete scheme with
alternating (decoupled) minimization w.r.t. the variables u and ζ it was recently refined and developed
further in [RT15a, Def. 3.1]. Below in (2.2b) we denote by B([0, T ];X) the set of bounded functions
defined on [0, T ] with values on X.
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Definition 2.1 (Semistable energetic solutions). Consider a gradient system (V,Z, V, R, E), resp. a
damped inertial system (V,W,Z,V, K, R, E). We call a pair (u, ζ) : [0, T ] → V×Z a semistable energetic
solution to the gradient system (V,Z, V, R, E), resp. the damped inertial system (V,W,Z, V, K, R, E),

if

u ∈ W 1,1(0, T ;V) , and for a damped inertial system (ϱ > 0) also u̇ ∈ L∞(0, T ;W) , ü ∈ L2(0, T ;V∗) ,

(2.2a)

ζ ∈ B([0, T ];X) ∩ BV([0, T ];Z) (2.2b)

fulfill
- the subdifferential inclusion

ϱü(t) + ∂V(u̇(t)) + ∂uE(t, u(t), ζ(t)) ∋ 0 in V∗ for a.a. t ∈ (0, T ), (2.3)

- the semistability condition

E(t, u(t), ζ(t)) ≤ E(t, u(t), z̃) + R(z̃−ζ(t)) for all z̃ ∈ Z for all t ∈ [0, T ]; (2.4)

- the energy-dissipation inequality

ϱ
2∥u̇(t)∥2

W +

∫ t

0

2V(u̇(s)) ds + VarR(ζ, [0, t]) + E(t, u(t), ζ(t))

≤ ϱ
2∥u̇(0)∥2

W + E(0, u(0), ζ(0)) +

∫ t

0

∂tE(s, u(s), ζ(s)) ds for all t ∈ [0, T ] ,

(2.5)

with VarR denoting the total variation induced by the dissipation potential R, i.e.

VarR(ζ; [s, t]) := sup





N∑

j=1

R(ζ(rj) − ζ(rj−1)) : s = r0 < r1 < . . . < rN−1 < rN = t





for a given subinterval [s, t] ⊂ [0, T ].

Note that for the cohesive zone models, due to the unidirectionality incorporated in the dissipation
potential (1.5), the total variation will take the specific form

VarR(ζ; [s, t]) = R(ζ(t) − ζ(s)) . (2.6)

2.1 Basic assumptions, spaces, and functionals

2.1.1 Basic assumptions

Assumptions on the reference domain: We suppose that

Ω = int(Ω+ ∪ Ω−) ⊂ Rd, d ≥ 2, is bounded, Ω−, Ω+, Ω are Lipschitz domains, Ω+ ∩ Ω− = ∅ , (2.7a)

∂Ω = ΓD ∪ ΓN, ΓD, ΓN open subsets in ∂Ω, (2.7b)

ΓD ∩ ΓN = ∅, dist(ΓD,ΓC) = h > 0, Hd−1(ΓD ∩ Ω+) > 0 , Hd−1(ΓD ∩ Ω−) > 0 , (2.7c)

ΓC = Ω+ ∩ Ω− ⊂ Rd−1 is a “flat” surface, i.e. contained in a hyperplane of Rd,

such that, in particular, Hd−1(ΓC) = Ld−1(ΓC) > 0 ,

and ΓC has the normal vector n, defined as the outer unit normal to ∂Ω+ ∩ ΓC.

(2.7d)
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Here, Hd−1 denotes the (d−1)-dimensional Hausdorff measure and Ld−1 is the (d − 1)-dimensional
Lebesgue measure.
Assumptions on the given data: For the tensors C, D ∈ Rd×d×d×d in (1.6) & (1.7) and a time-
dependent external force f , we require that

C, D ∈ Rd×d×d×d are symmetric and positive definite, i.e.,

∃ C1
C, C2

C, C1
D, C2

D > 0, ∀ η ∈ Rd×d : C1
C|η|2 ≤ η : Cη ≤ C2

C|η|2 and C1
D|η|2 ≤ η : Dη ≤ C2

D|η|2 ,
(2.8a)

f ∈ C1([0, T ];V∗) and sup
t∈[0,T ]

(
∥f(t)∥V∗ + ∥ḟ(t)∥V∗

)
≤ Cf . (2.8b)

Hereby, the external force f may comprise both the volume force f from (1.7a) and the surface force h

from (1.7f). Moreover, to keep notation and arguments simple, we prescribe homogeneous Dirichlet data
on ΓD, as already indicated in (1.7e).
Assumptions on the cohesive surface energy density: In line of the works [OP99, PP11, Kre05]
we assume that

ϕcoh : [0, ∞) → [0, a), with a > 0 and ϕcoh(0) = 0, is continuous, non-decreasing and

the map ζ 7→ ϕcoh(ζ)

2ζ2
is continuous, monotonically decreasing and bounded by b > 0.

(2.9)

In fact, it can be seen in Figure 1, columns A & C, that typical cohesive zone energy densities ϕcoh from
engineering literature do comply with (2.9).

2.1.2 Function spaces and traces

Throughout this paper the set of function spaces described in (2.1) will be chosen as follows:
V := H1

D(Ω\ΓC; Rd) := {v ∈ H1(Ω\ΓC; Rd) : v = 0 a.e. on ΓD} , (2.10a)

W = L2(Ω; Rd) endowed with the norm ∥v∥W :=
( ∫

Ω

|v|2 dx
)1/2

, (2.10b)

Z = L1(ΓC) , (2.10c)

X =

{
W 1,r(ΓC) with r > d − 1 in Sec. 3 & 4,
H1/2(ΓC) in Sec. 3 .

(2.10d)

The space X will be related to the (gradient) regularization of the internal variable ζ contributing to the
surface energy functionals, see Φsurf ,Φsurf

k in (2.17c) & (2.19b) below. Depending on its choice we will
obtain existence results of different quality: The choice X = H1/2(ΓC) is more natural in view of (2.10a),
if one has in mind that the purpose of the internal variable in a cohesive zone model is to keep track
of the history of the maximal jumps of the displacements across ΓC. Indeed, the choice X = H1/2(ΓC)

is suited to obtain existence results both in the dynamic and in the gradient-flow case if one regularizes
the ζ-dependent indicator term in (2.17f) by its Yosida-approximation, cf. Thm. 2.4 & Sec. 3. But so
far, only the enforcement X = W 1,r(ΓC) with r > d − 1, allows it to pass from the regularized models
to a model displaying the unregularized cohesive zone energy (2.17c), cf. Thm. 2.5 & Sec. 4, by heavily
exploiting the compact embedding

W 1,r(ΓC) ⋐ C(ΓC) for r > d − 1 . (2.11)

Note that, thanks to assumption (2.7d), we have for all ζ ∈ X = H1/2(ΓC) :

∥ζ∥2
X = ∥ζ∥2

L2(ΓC) + |ζ|2H1/2(ΓC) with |ζ|2H1/2(ΓC) =

∫

ΓC

∫

ΓC

|ζ(x) − ζ(y)|2
|x − y|d dx dy , (2.12a)
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and there holds, cf. e.g. [DNPV12, Thm. 7.1],

X = H1/2(ΓC) ⋐ L2(ΓC) compactly. (2.12b)

For later purpose we verify here that the operation max{·, ·} defines a bounded operator from H1/2(ΓC)×
H1/2(ΓC) to H1/2(ΓC).

Lemma 2.2. Let ΓC ⊂ Rd−1 comply with (2.7). Then, the operator

max{·, ·} : H1/2(ΓC) × H1/2(ΓC) → H1/2(ΓC) is bounded with

|max{f, g}|2H1/2(ΓC) ≤ |f |2H1/2(ΓC) + |g|2H1/2(ΓC) for any f, g ∈ H1/2(ΓC) .
(2.13)

Proof. Consider two functions f, g ∈ H1/2(ΓC) and observe that for every x, y ∈ ΓC

|max{f(x), g(x)} − max{f(y), g(y)}| ≤ max {|f(x) − f(y)| , |g(x) − g(y)|} .

Introduce F := {(x, y) ∈ ΓC × ΓC, |f(x) − f(y)| ≥ |g(x) − g(y)|} as well as G := {(x, y) ∈ ΓC ×
ΓC, |g(x) − g(y)| ≥ |f(x) − f(y)|}. It is easy to check that ∥max{f, g}∥L2(ΓC) ≤ ∥f∥L2(ΓC) + ∥g∥L2(ΓC).
For the H1/2-seminorm we see that

| max{f, g}|2H1/2(ΓC) =

∫

ΓC

∫

ΓC

|max{f(x), g(x)} − max{f(y), g(y)}|2
|x − y|d dxdy

≤
∫

ΓC

∫

ΓC

(max{|f(x) − f(y)| , |g(x) − g(y)|})
2

|x − y|d dxdy

=

∫

F

|f(x) − f(y)|2
|x − y|d dx dy +

∫

G

|g(x) − g(y)|2
|x − y|d dxdy

≤ |f |2H1/2(ΓC) + |g|2H1/2(ΓC) ,

which concludes the proof.

2.1.3 The functionals

First and foremost, we denote by TΩ±→ΓC : H1(Ω±) → H1/2(ΓC; Rd) the trace operator from Ω± to the
interface ΓC. With its aid we introduce the operator indicating the jump of functions u ∈ H1(Ω\ΓC; Rd)

across ΓC

[[
·
]]

: H1(Ω\ΓC; Rd) → H1/2(ΓC; Rd),
[[
u
]]

:= TΩ+→ΓC(u|Ω+) − TΩ−→ΓC(u|Ω−) , (2.14)

as well as the operator indicating the jump of functions u ∈ H1(Ω\ΓC; Rd) across ΓC in normal direction
n, cf. (2.7d), [[

·
]]
n

: H1(Ω\ΓC; Rd) → H1/2(ΓC),
[[
u
]]
n

:=
[[
u
]]

· n . (2.15)

Thus, for every u ∈ V, cf. (2.10a), we have [[u]] ∈ H1/2(ΓC; Rd) and, thanks to (2.7d), also [[u]]n ∈ H1/2(ΓC).
In particular, we find that ∥[[u]]n∥H1/2(ΓC) ≤ ∥[[u]]∥H1/2(ΓC;Rd).

Clearly, both [[·]] : H1(Ω\ΓC; Rd) → H1/2(ΓC; Rd) and [[·]]n : H1(Ω\ΓC; Rd) → H1/2(ΓC) are linear,
continuous operators with derivatives

D
[[

·
]]

: H1(Ω\ΓC; Rd) → H1/2(ΓC; Rd), D
[[
u
]]
[v] =

[[
v
]]

, (2.16a)

D
[[

·
]]
n

: H1(Ω\ΓC; Rd) → H1/2(ΓC), D
[[
u
]]
n
[v] =

[[
v
]]
n

(2.16b)
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for all u, v ∈ H1(Ω\ΓC; Rd).
Thus, to model cohesive zone delamination along the interface ΓC in a visco-elastic body, we introduce

the Energy functional of the following form:

E∞ : [0, T ] × V × Z → R ∪ {∞}, E∞(t, u, ζ) := Ebulk(t, u) + Φsurf(u, ζ), with (2.17a)

Ebulk : [0, T ] × V → R, Ebulk(t, u) :=

∫

Ω\ΓC

1
2Ce(u) : e(u) dx − ⟨f(t), u⟩V , (2.17b)

Φsurf(·, ·) : V × Z → [0, ∞], Φsurf(u, ζ) :=

{
Φcoh([[u]]n, ζ) + J ([[u]]n, ζ) + G(ζ) if (u, ζ) ∈ V × X,

∞ otw.,
(2.17c)

Φcoh : L2(ΓC) × X → [0,∞], Φcoh(v, ζ) :=

∫

ΓC

ϕcoh(v, ζ) dHd−1 =

∫

ΓC

ϕcoh(ζ)

2ζ2
v2 dHd−1, (2.17d)

G : X → [0, ∞], G(ζ) :=

∫

ΓC

I[0,ζ∗](ζ) dHd−1 + |ζ|rX with r ∈
{

{2} if X = H1/2(ΓC),

[d − 1, ∞) if X = W 1,r(ΓC),
(2.17e)

and with ζ∗ a positive constant,

J (·, ·) : L2(ΓC) × X → [0, ∞], J (v, ζ) :=

∫

ΓC

I[0,ζ](v) dHd−1 . (2.17f)

The regularization G for the internal variable consists of the indicator function of the interval [0, ζ∗]

and the seminorm of the space X, cf. (2.12) for X = H1/2(ΓC), and
∫
ΓC

|∇ζ|r dHd−1 for X = W 1,r(ΓC).
The indicator term confines the values of ζ to the interval [0, ζ∗] for some ζ∗ > 0. This is done in
view of the properties of ϕcoh, cf. (1.3) and also (2.9): In order to further decrease the surface energy
Φcoh([[u]]n, ·) the model might favor to attain large values of ζ. Having in mind that the internal variable
is linked to the jump of the displacements, this may be unnatural. The indicator thus prevents too high
values of ζ. Since the internal variable has a rate-independent evolution, governed by the 1-homogeneous
dissipation potential R, cf. (1.5), the evolution equation of the variable ζ can be reformulated in terms
of the semistability inequality (2.4), which is a minimality property involving only the functionals E
and R, but not their differentials. Hence, here, the non-smooth, unbounded functionals G,J ([[u]]n, ·)
contributing to Φsurf , can be handled in the realm of calculus of variations. This is in contrast to the
rate-dependent, dynamic evolution of the displacement variable u, which is governed by the subdifferential
inclusion (2.3) that cannot be reformulated without the differential ∂uE : Here, the non-smoothness and
unboundedness of the functional J ([[·]]n, ζ) imposes an obstruction to the analysis as the constraint (2.17f)
therein implemented in particular depends on the internal variable ζ. Therefore, in order to handle the
non-smooth constraint (2.17f) in the rate-dependent setting, we will first treat a regularized problem. For
this, we replace the functional J by its Yosida-approximation

∀ k ∈ N : Jk : L2(ΓC) × X → R, Jk(v, ζ) := inf
w∈L2(ΓC)

(
J (w, ζ) + k

2

∥∥v−w
∥∥2

L2(ΓC)

)
(2.18a)

= k
2

(
∥(v)−∥2

L2(ΓC) + ∥(v − ζ)+∥2
L2(ΓC)

)
,

where (v)− := − min{v, 0} and (v)+ := max{v, 0}.
With Ebulk from (2.17b), Φcoh from (2.17d), and G from (2.17e) this leads to the Yosida-regularized

energy functionals for every k ∈ N :

Ek : [0, T ] × V × Z → R ∪ {∞}, Ek(t, u, ζ) := Ebulk(t, u) + Φsurf
k (u, ζ) (2.19a)

Φsurf
k (·, ·) : V × Z → [0, ∞], Φsurf

k (u, ζ) :=

{
Φcoh([[u]]n, ζ) + Jk([[u]]n, ζ) + G(ζ) if (u, v) ∈ V × X,

∞ otw..

(2.19b)
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We note that the domain dom(Ek) of the functionals Ek is given by

dom(Ek) = [0, T ] × domu × domζ with

domu = V and domζ = X ∩ {ζ ∈ L∞(ΓC), 0 ≤ ζ ≤ ζ∗ a.e. in ΓC} .
(2.20)

Remark 2.3 (Interpretation of the surface functionals and their derivatives). For given ζ ∈ X, (2.19b)
composes the cohesive functional Φcoh(·, ζ) : L2(ΓC) → [0, ∞) and the Yosida-regularization functional
Jk(·, ζ) : L2(ΓC) → [0,∞) with the normal jump [[·]]n : V → H1/2(ΓC), i.e., Φcoh([[·]]n, ζ) = Φcoh(·, ζ)◦[[·]]n :

V → [0, ∞), resp. Jk([[·]]n, ζ) = Jk(·, ζ) ◦ [[·]]n : V → [0,∞). Both Φcoh(·, ζ) : L2(ΓC) → [0, ∞) and
Jk(·, ζ) : L2(ΓC) → [0,∞) are convex and continuous in all points of H1/2(ΓC). This is the image of the
linear operator [[·]]n : V → H1/2(ΓC) with its derivative given by (2.16b). Thus, thanks to the chain rule
for the composition of convex (non-smooth) functionals with linear ones, cf. e.g. [IT79, Thm. 2, p. 201],
we conclude that for all u, v ∈ V and ζ ∈ X,

DuΦcoh(
[[

·
]]
n
, ζ) : V → V∗, ⟨DuΦcoh(

[[
u
]]
n
, ζ), v⟩V = ⟨D[[u]]n

Φcoh(
[[
u
]]
n
, ζ),

[[
v
]]
n
⟩H1/2(ΓC) (2.21a)

=

∫

ΓC

1
ζ2 Duϕcoh(

[[
u
]]
n
, ζ)

[[
v
]]
n

dHd−1 ,

DuJk(
[[

·
]]
n
, ζ) : V → V∗, ⟨DuJk(

[[
u
]]
n
, ζ), v⟩V = ⟨D[[u]]n

Jk(
[[
u
]]
n
, ζ),

[[
v
]]
n
⟩H1/2(ΓC) (2.21b)

=

∫

ΓC

D[[u]]n
Ik(

[[
u
]]
n
, ζ)

[[
v
]]
n

dHd−1 .

Hereby, Ik(v, ζ) = infw∈R
(
I[0,ζ](w) + k

2 |v − w|2
)

= k
2

(
|(v)−|2 + |(v − ζ)+|2

)
denotes the pointwise density

of the functional Jk : L2(ΓC) → [0, ∞).
Then, cf. e.g. [Bré73, Example 2.8.2 p.46], the Fréchet-derivative DvJk(·, ζ), which is the Yosida-

regularization to the subdifferential ∂vJ (·, ζ) of J (·, ζ) : L2(ΓC) → [0, ∞] is given by

DvJk(·, ζ) = k
(
Id − P[0,ζ]

)
, (2.22)

with Id : L2(ΓC) → L2(ΓC) the identity and P[0,ζ] : L2(ΓC) → L2(ΓC) the projection operator, i.e.,

P[0,ζ](v) =





0 if v < 0,

v if v ∈ [0, ζ],

ζ if v > ζ,

. (2.23)

Thus, the pointwise equivalent to (2.22) computes as

DvIk(v, ζ) = k
(

− (v)− + (v − ζ)+
)
, i.e., DvIk(v, ζ) =





kv if v < 0,

0 if v ∈ [0, ζ],

k(v − ζ) if v > ζ,

(2.24)

In view of this, setting ϕs
k([[u]]n, ζ) := ϕcoh([[u]]n, ζ) + Ik([[u]]n, ζ) + I[0,ζ∗](ζ) + G(ζ), we get

D[[u]]n
ϕs

k(
[[
u
]]
n
, ζ) =

ϕcoh(ζ)

ζ2

[[
u
]]
n

+ D[[u]]n
Ik(

[[
u
]]
n
, ζ)

and, moreover, for every (t, u, ζ) ∈ dom(Ek), the functional Ek(t, ·, ζ) is Gâteaux-differentiable with its
derivative given by

⟨DuEk(t, u, ζ), v⟩V

=

∫

Ω\ΓC

Ce(u) : e(v) dx − ⟨f(t), v⟩V +

∫

ΓC

(ϕcoh(ζ)

ζ2

[[
u
]]
n

+ k
(

−
([[

u
]]
n

)−
+

([[
u
]]
n

− ζ
)+))[[

v
]]
n

dHd−1 .

(2.25)
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Revisiting (2.21), by the validity of the chain rule due to the continuity of the composed function-
als, the differentials can be represented in L2(ΓC). However, this is no longer true for the non-smooth
functional J (·, ζ) : H1/2(ΓC) → H1/2(ΓC)∗, which is discontinuous on H1/2(ΓC), the image of [[·]]n. For
ξ̃ ∈ ∂uJ ([[u]]n, ζ) we have here the representation ξ̃ = ξ ◦ [[·]]n with ξ ∈ ∂[[u]]n

J ([[u]]n, ζ) i.e.,

⟨ξ̃, v⟩V = ⟨ξ,
[[
v
]]
n
⟩H1/2(ΓC) , (2.26)

but it cannot be concluded that ξ ∈ L2(ΓC). Therefore the limit passage k → ∞, i.e. from the regularized
models to the cohesive zone model, has to be carried out in the topology of V, or equivalently in H1/2(ΓC),

which is much stronger than the L2(ΓC)-topology. Exactly this strengthening of the topology for the non-
smooth constraint and its regularizations features the main challenge in the analysis of the limit passage.

2.2 Our results for the Yosida-regularized model and its cohesive limit

The Yosida-regularized models (V,Z, V, R, Ek), resp. (V,W,Z, V, K, R, Ek), fall into the class of gradient
systems, resp. damped inertial systems introduced at the beginning of Sec. 2. Based on abtract existence
results proved in [RT15a] we will establish the existence of semistable energetic solutions for the systems
(V,Z, V,R, Ek), resp. (V,W,Z, V, K,R, Ek), in Sec. 3.

Theorem 2.4 (Existence of semistable energetic solutions to the regularized systems). Let the assump-
tions (2.7)–(2.8) hold true. Then, for every k ∈ N fixed, for every initial datum
(G) (u0, ζ0) ∈ domu × domζ for the gradient system (V,Z, V,R, Ek), ϱ = 0,

(I) (u0, u1, ζ0) ∈ domu × W × domζ for the damped inertial system (V,W,Z,V, K, R, Ek), ϱ > 0,

with (u0, ζ0) satisfying (2.4) for Ek and R, the
(G) gradient system (V,Z, V,R, Ek), ϱ = 0,

(I) damped inertial system (V,W,Z, V, K, R, Ek), ϱ > 0,

given by (2.10), (2.19), (1.5), admits a semistable energetic solution (uk, ζk) in the sense of Def. 2.1 of
regularity

uk ∈ H1(0, T ;V) , (2.27)

and such that
(G) (u(0), ζ(0)) = (u0, ζ0) for the gradient system (V,Z,V, R, Ek), ϱ = 0,

(I) (u(0), u̇(0), ζ(0)) = (u0, u1, ζ0) for the damped inertial system (V,W,Z, V, K,R, Ek), ϱ > 0.

Moreover, the energy-dissipation inequality (2.5) even holds as a balance

ϱ
2∥u̇k(t)∥2

W +

∫ t

0

2V(u̇k(s)) ds + VarR(ζk, [0, t]) + Ek(t, uk(t), ζk(t))

= ϱ
2∥u̇k(0)∥2

W + Ek(0, uk(0), ζk(0)) +

∫ t

0

∂tEk(s, uk(s), ζk(s)) ds

(2.28)

for all t ∈ [0, T ], where ϱ = 0 for (V,Z,V, R, Ek) and ϱ > 0 for (V,W,Z, V,K, R, Ek).

In view of (2.24), the surface energy functional Φsurf
k , cf. (2.19b), due to the Yosida-regularization Jk,

satisfies the following k-dependent (sub)gradient estimate, evaluated along solutions (uk, ζk)

∥∂uΦsurf
k (uk, ζk)∥L2(0,T ;V∗) ≤ c

√
k + C , (2.29)

see Sec. 3 for the details of the calculation. Nevertheless, for gradient systems (V,Z, V, R, Ek), i.e. ϱ = 0 in
(2.28), a uniform bound on ∥∂uΦsurf

k (uk, ζk)∥L2(0,T ;V∗) can be obtained by comparison in the k-momentum
balance. This will be used in Sec. 4 to prove for the cohesive zone delamination model (V,Z, V, R, E∞)
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the existence of semistable energetic solutions by performing an evolutionary Γ-limit as k → ∞ from the
regularized systems (V,Z, V,R, Ek) to the cohesive limit system (V,Z, V,R, E∞). The main challenge in
this limit analysis lies in the fact that the non-smooth constraint incorporated in J ([[·]]n, ζ), cf. (2.17f),
and approximated by Jk([[·]]n, ζk), cf. (2.18a), depends on the internal variable itself. This will require
to prove the Mosco-convergence of the functionals (Jk([[·]]n, ζk))k in the topology V = H1(Ω\ΓC), cf.
Prop. 4.3. We now state the main result of this work: The existence of semistable energetic solutions to
the gradient cohesive zone system (V,Z, V, R, E∞) obtained via evolutionary Γ-convergence:

Theorem 2.5 (Evolutionary Γ-convergence of the gradient systems, ϱ = 0). Let the assumptions of
Theorem 2.4 hold true. In addition assume that X = W 1,r(ΓC) with r > d − 1 and that the initial datum
complies with the following assertion:

∃ ζ∗ with 0 < ζ∗ ≪ 1 : ζ0 ≥ ζ∗ a.e. on ΓC . (2.30)

Moreover, assume that the initial data are well-prepared, i.e., (uk(0), ζk(0)) = (uk
0 , ζk

0 ) are semistable for
(V,Z, V,R, Ek) at t = 0, Ek(0, uk

0 , ζk
0 ) → E∞(0, u0, ζ0), and J ([[u0]]n, ζ0) = 0. For each k ∈ N, let (uk, ζk)

be a semistable energetic solution to the regularized system (V,Z, V, R, Ek). Then, there exists a (not
relabeled) subsequence (uk, ζk)k and a limit pair (u, ζ) of regularity

u ∈ H1(0, T ;V) ∩ L∞(0, T ;V) and ζ ∈ L∞(0, T ;X) , (2.31)

such that the following convergences hold true

uk ⇀ u in H1(0, T ;V) , (2.32a)

ζk(t) ⇀ ζ(t) in X for all t ∈ [0, T ] , (2.32b)

ζk(t) → ζ(t) uniformly in ΓC for all t ∈ [0, T ] , (2.32c)

ζk → ζ in Lq(0, T ;Lq(ΓC)) for all q ∈ [1, ∞) , (2.32d)

DuJk(
[[
uk

]]
n
, ζk) ⇀ ξ̃ in L2(0, T ;V∗). (2.32e)

The limit pair (u, ζ) is a semistable energetic solution of the cohesive zone system (V,Z, V, R, E∞), cf.
Def. 2.1. Moreover, the following statements hold true:

1. For a.e. t ∈ (0, T ) the momentum balance takes the following form

⟨DuEbulk(u(t)) + DuΦcoh(
[[
u(t)

]]
n
, ζ(t)) + ξ̃(t) + Du̇V(u̇(t)), v⟩V = 0 (2.33)

for every v ∈ V, with ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)) for a.e. t ∈ (0, T ).
2. For all t ∈ [0, T ] the energy dissipation inequality is satisfied:

Ek(t, u(t), ζ(t)) +

∫ t

0

2V(u̇(τ)) dτ + VarR(ζ, [0, t]) ≤ E(0, u(0), ζ(0)) +

∫ t

0

∂tE(τ, u(τ), ζ(τ)) dτ .

(2.34)

Remark 2.6 (Condition on the initial datum (2.30)). The strictly positive bound from below (2.30) on the
initial datum means that the bonding along ΓC has already experienced an opening in normal direction
of at least ζ∗ in the past, and at initial time of the monitoring of the loading experiment, the maximal
opening ever experienced before in the point x ∈ ΓC takes the value ζ0(x) ≥ ζ∗. Furthermore, observe
that the unidirectionality of the 1-homogeneous dissipation potential R together with the initial condition
ζ(0) = ζ0 ≥ ζ∗ ensures that ζ(t, x) ≥ ζ0(x) ≥ ζ∗ a.e..
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Remark 2.7 (Limit passage in case of damped inertial systems). For the systems (V,W,Z, V, K, R, Ek),
a comparison argument in the subdifferential inclusion (2.3) only provides uniform bounds, independent
of k ∈ N, on the sum ϱük(t) + DuJk([[uk(t)]]n, ζk(t)), but not on the two terms separately. Moreover, in
view of (2.29) one obtains an analogous k-dependent bound on the inertial term:

ϱ∥ük∥L2(0,T ;V∗) ≤ c̃
√

k + C̃ . (2.35)

Since the bounds (2.29)&(2.35) blow up as k → ∞, one cannot use the notion of semistable energetic
solutions from Def. 2.1 to carry out an evolutionary Γ-limit passage for the damped inertial systems
(V,W,Z,V, K, R, Ek). A promising ansatz would be to follow an alternative approach established in the
recent series of works [BRSS15, SS15, Sca15] that successfully handle the analysis of problems combining
unilateral, non-smooth constraints with the visco-elastodynamic setting. Therein, the key to circumvent
the problems caused by the blow-up of the bounds (2.29)&(2.35) is to carry out the limit passage from a
regularized to the original model in a notion of solution that uses a weak formulation of the momentum
balance in Bochner spaces H1(0, T,V) instead of the pointwise-in-time formulation (2.3). But let us
stress that their approach so far has proved successful only for non-smooth unilateral constraints that are
independent of the state variables. This is in clear contrast to our model, where the constraint strongly
depends on the internal variable ζ. Exactly here lies the limitation of this approach: our models combine
the rate-dependent (and dynamic) evolution of the variable u with a rate-independent evolution of the
internal variable. As can be seen from (2.2) the internal variable has much less temporal regularity
than the displacement variable. Therefore, at the moment, it seems to be out of reach to exploit a
weak formulation of the momentum balance in (H1(0, T,V))∗ in order to pass to the cohesive zone
limit. The problem can be phrased more precisely: Passing from a pointwise-in-time formulation of (2.3)
(equivalently, from a formulation in L2(0, T ;V∗)) to a formulation in (H1(0, T,V))∗ will provide uniform
bounds on (DuJk([[uk(t)]]n, ζk(t)))k in (H1(0, T,V))∗ and necessitate the identification of the limit as
an element of the subdifferential ∂u

∫ T

0
J ([[u(t)]]n, ζ(t)) dt ⊂ (H1(0, T,V))∗. This is at the price that

Mosco-convergence of the functionals (
∫ T

0
Jk([[uk(t)]]n, ζk(t)) dt)k has to be established in H1(0, T,V).

But since the internal variable ζk is expected to be only of BV -regularity in time, the contruction of a
recovery sequence for the displacements that depends on ζk and converges strongly in H1(0, T,V) seems
to be out of reach.

In other words, the mismatch between the temporal regularity of the diplacements and the one of the
internal variable seems to inhibit the Γ-limit passage in case of damped inertial systems. This problem
might be overcome if one assumes that the internal variable has a rate-dependent evolution governed by
a viscous dissipation potential, which will be the scope of a follow-up work.

3 Proof of Theorem 2.4 – Existence of semistable energetic solu-
tions (k ∈ N fixed)

In this section we address the existence of semistable energetic solutions for the Yosida-regularized systems
(V,Z, V,R, Ek), resp. (V,W,Z, V, K,R, Ek), with k ∈ N fixed, by resorting to the abstract existence
results proved in [RT15a], cf. [RT15a, Thm. 4.9] for gradient systems, resp. [RT15a, Thm. 5.6] for damped
inertial systems. In what follows, for the reader’s convenience we shall first revisit the prerequisites on an
abstract gradient system (V,Z,V, R, E), resp. an abstract damped inertial system (V,W,Z, V, K, R, E),

underlying the existence results in [RT15a], and then verify that the systems (V,Z, V,R, Ek), resp.
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(V,W,Z,V, K, R, Ek), do comply with them, thus deducing the existence of semistable energetic solutions
for the Yosida-regularized systems.

Let (V,Z, V, R, E) be a gradient system, resp. (V,W,Z, V, K, R, E) be a damped inertial system,
complying with the basic conditions (2.1). In line with the direct method of the calculus of variations and
with tools from rate-independent and gradient systems, [RT15a, Thm. 4.9 & Thm. 5.6] put the following
additional requirements on the functionals V : V → [0,∞), R : Z → [0, ∞], and E : [0, T ] × V × Z →
R ∪ {∞}:

Boundedness from below & Weak lower semicontinuity:

E is bounded from below: ∃ C0 > 0, ∀ (t, u, ζ) ⊂ dom(E) : E(t, u, ζ) ≥ C0 ; (3.1a)

for all t ∈ [0, T ], E(t, ·, ·) is weakly sequentially lower semicontinuous on V × Z , (3.1b)

indeed, if E is bounded from below, up to a shift we can assume that it is bounded by a positive constant.

Temporal regularity and power control:

∀ (u, ζ) ∈ domu × domζ , the map t 7→ E(t, u, ζ) is differentiable with derivative ∂tE(t, u, ζ) s.t.
∃ C1, C2 > 0, ∀ (t, u, ζ) ∈ dom(E) : |∂tE(t, u, ζ)| ≤ C1(E(t, u, ζ) + C2) and fulfilling
for all sequences tn → t, un → u in V, ζn → ζ in Z with supnE(tn, un, ζn) ≤ C that
lim supn→∞ ∂tE(tn, un, ζn) ≤ ∂tE(t, u, ζ) .





(3.2)

Coercivity:

there exist τo > 0 such that for all (t, uo, ζo) ∈ [0, T ] × V × Z

the map (u, ζ) 7→ E(t, u, ζ) + τoV
(

u−uo

τo

)
+ R(ζ − ζo) has sublevels bounded in V × X .

}
(3.3)

Mutual recovery sequence condition ensuring the closedness of of stable sets:

Let (tn, un, ζn)n ⊂ dom(E) for every n ∈ N satisfy semistability condition (2.4),
let tn → t, (un, ζn) ⇀ (u, ζ) in V × Z with supn E(t, un, ζn) ≤ C for all t ∈ [0, T ].

Then, for every ζ̃ ∈ Z there exists ζ̃n ⇀ ζ̃ in Z such that
lim supn→∞

(
E(tn, un, ζ̃n) + R(ζ̃n − ζn) − E(tn, un, ζn)

)
≤ E(t, u, ζ̃) + R(ζ̃ − ζ) − E(t, u, ζ) .





(3.4)

As previouly mentioned, the existence results in [RT15a] allow for a non-smooth and even non-convex
(in lower order terms) dependence u 7→ E(t, u, ζ). However, since the energies Ek(t, ·, ζ) from (2.19) are
convex and Gâteaux-differentiable, we will confine the discussion to energies with this property and denote
by ∂uE(t, ·, ζ) the Gâteaux-differential of the convex functional E(t, ·, ζ). Following [RT15a, Thm. 4.9 &
Thm. 5.6], we need to impose a suitable condition on the differentials ∂uE in the spirit of Minty’s trick:

Continuity:

For all sequences (tn)n, tn : [0, T ] → [0, T ], (un)n ⊂ L∞(0, T ;V) ∩ H1(0, T ;V),

(ζn)n ⊂ L∞(0, T ;X) ∩ BV([0, T ];Z), (∂uE(tn, un, ζn))n ⊂ L2(0, T ;V∗) s.t.

∃ C > 0, ∀ n ∈ N, ∀ t ∈ [0, T ] : E(t, un(t), ζn(t)) ≤ C and




tn → t pointwise a.e. in (0, T ) ,

un
∗
⇀ u in L∞(0, T ;V) ∩ H1(0, T ;V) ,

ζn
∗
⇀ ζ in L∞(0, T ;X) , ζn(t)

∗
⇀ ζ(t) in X for all t ∈ [0, T ] ,

∂uE(tn, un, ζn) ⇀ ξ in L2(0, T ;V∗) , lim supn→∞
∫ T

0
⟨∂uE(tn, un, ζn), un⟩V dt ≤

∫ T

0
⟨ξ, u⟩V dt ,





then there holds ξ(t) = ∂uE(t(t), u(t), ζ(t)) for a.a. t ∈ (0, T ) .

(3.5)
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Finally, to find a bound on the inertial term, a further requirement of [RT15a, Thm. 4] is the following

Subgradient estimate:

There exists constants C3, C4, C5 > 0 and σ ∈ [1, ∞) such that

∀ (t, u, ζ) ∈ dom(E) : ∥∂uE(t, u, ζ)∥σ
V∗ ≤ C3E(t, u, ζ) + C4∥u∥V + C5 .

(3.6)

We are now in the position to recall the existence result from [RT15a] for damped inertial systems
(V,W,Z,V, K, R, E).

Theorem 3.1 ([RT15a, Thm. 5.6]). Let (V,W,Z, V, K, R, E) fulfill (2.1) & (3.1)–(3.6).
Then for every (u0, u1, ζ0) ∈ domu × W × domζ fulfilling the semistability (2.4) at t = 0, i.e.

E(0, u0, ζ0) ≤ E(0, u0, ζ̃) + R(ζ̃−ζ0) for all ζ̃ ∈ Z (3.7)

there exists a semistable energetic solution (u, ζ) (in the sense of Definition 2.1) to the damped inertial
system (V,W,Z,V, K, R, E) satisfying the Cauchy condition (u(0), u̇(0), ζ(0)) = (u0, u1, ζ0).

Moreover, the abstract existence result from [RT15a] for gradient systems (V,Z,V, R, E) reads as
follows:

Theorem 3.2 ([RT15a, Thm. 4.9]). Let (V,Z,V, R, E) fulfill (2.1) & (3.1)–(3.5).
Then, for every pair (u0, ζ0) ∈ domu × domζ complying with (3.7), there exists a semistable energetic

solution (u, ζ) (in the sense of Definition 2.1) to the gradient system (V,Z, V, R, E), satisfying the initial
condition (u(0), ζ(0)) = (u0, ζ0).

Proof of Theorem 2.4:

As a first step we will prove the mutual recovery sequence condition (3.4) as a separate lemma. The
proof of this lemma uses the approach developed in [TM10, Tho13], but is here for the first time adapted
to the character of the Sobolev-Slobodeckij seminorm. Recall from (2.17e) & (2.20) that for any triple
(t, u, ζ) belonging to the domain dom(Ek), it holds in particular that ζ ∈ [0, ζ∗] a.e. on ΓC.

Lemma 3.3 (Mutual recovery sequence condition (3.4)). Let k ∈ N fixed and consider a sequence
(tn, un, ζn)n ⊂ dom(Ek) such that tn → t in [0, T ], un ⇀ u in V and ζn ⇀ ζ in X, as well as an element
ζ̂ ∈ X. Then the sequence (ζ̂n)n ⊂ X, given by

ζ̂n := min{ζ∗,max{ζn, ζ̂ + δn}} with δn := max
{
∥ζn − ζ∥1/2

L2(ΓC), 1/n
}

, (3.8)

serves as a mutual recovery sequence for the functionals Ek(tn, un, ·) & R, i.e., Condition (3.4) is satisfied.
In particular, for ζ̂ ∈ X such that ζ̂ ≥ ζ a.e. in ΓC, the following relations hold true with r = 2 for
X = H1/2(ΓC) and r > d − 1 for X = W 1,r(ΓC):

ζ̂n ⇀ ζ̂ in X , (3.9a)

lim sup
n→∞

(∣∣ζ̂n

∣∣r
X

−
∣∣ζn

∣∣r
X

)
≤

∣∣ζ̂
∣∣r
X

−
∣∣ζ

∣∣r
X

, (3.9b)

lim
n→∞

R(ζ̂n − ζn) = R(ζ̂ − ζ) , (3.9c)

lim sup
n→∞

(
Φcoh(

[[
un

]]
n
, ζ̂n) − Φcoh(

[[
un

]]
n
, ζn)

)
= Φcoh(

[[
u
]]
n
, ζ̂) − Φcoh(

[[
u
]]
n
, ζ) , (3.9d)

(
Jk(

[[
un

]]
n
, ζ̂n) − Jk(

[[
un

]]
n
, ζn)

)
≤ 0 for every n ∈ N , (3.9e)

lim sup
n→∞

(
Jk(

[[
un

]]
n
, ζ̂n) − Jk(

[[
un

]]
n
, ζn)

)
= Jk(

[[
u
]]
n
, ζ̂) − Jk(

[[
u
]]
n
, ζ) . (3.9f)
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Proof. In the case X = W 1,r(ΓC) it is straighforward to adapt the arguments of [TM10, Thm. 3.14] to
the present situation.

Let now X = H1/2(ΓC). First of all, by Lemma 2.2 we convince ourselves that ζ̂n obtained by the
superposition of the Lipschitz-functions max and min with the functions ζn, (ζ̂+δn) ∈ X and the constant
ζ∗ according to (3.8) has a bounded H1/2-seminorm:

|ζ̂n|2H1/2(ΓC) ≤ |ζn|2H1/2(ΓC) + |ζ̂ + 1|2H1/2(ΓC) + |ζ∗|2H1/2(ΓC)

for n sufficiently large such that δn ≤ 1. Moreover, by ζ̂n ≤ ζ̂ + δn + ζn a.e. in ΓC, we find that also
∥ζ̂n∥L2(ΓC) ≤ ∥ζ∗∥L2(ΓC) + ∥ζ̂ + 1∥L2(ΓC) + ∥ζn∥L2(ΓC). Hence, ζ̂n ∈ X for all n ∈ N.

Recall now the definition of R from (1.5). If ζ̂ ∈ X is such that Ld−1([ζ̂ < ζ]) ̸= 0, then R(ζ̂ − ζ) = ∞
and thus, condition (3.4) is trivially satisfied. Therefore, let us assume from now on that ζ̂ ≥ ζ a.e. on ΓC.

Ad (3.9a): In view of (3.8) we have the uniform bound ∥ζ̂n∥X ≤ ∥ζ̂+1∥X+supn ∥ζn∥X+∥ζ∗∥L2(ΓC) ≤ C,

since ζn ⇀ ζ in X by assumption. Therefore, ζ̂n ⇀ ζ̃ in X for some ζ̃ ∈ X. Moreover, from (3.8) we see
that ζ̂n → ζ̂ pointwise a.e. in ΓC. Hence we conclude that, indeed, ζ̃ = ζ̂.
Ad (3.9b): We introduce the following notation and note that

An := [ζ∗ > ζ̂ + δn ≥ ζn] , hence ζ̂n = ζ̂ + δn on An , (3.10a)

Bn := [ζ̂ + δn < ζn] , hence ζ̂n = ζn on Bn , (3.10b)

Cn := ΓC \ (An ∪ Bn) = [ζn ≤ ζ∗ ≤ ζ̂ + δn] , hence ζ̂n = ζ∗ on Cn , (3.10c)

with the short-hand [a ≤ b] := {x ∈ ΓC, a(x) ≤ b(x) for a.e. x ∈ ΓC}. For the sets Bn we observe that

Bn = [ζ̂ + δn < ζn] ⊂ [ζ̂ + δn ≤ ζn] = [δn ≤ ζn − ζ̂] ⊂ [δn ≤ ζn − ζ] ⊂ [δn ≤ |ζn − ζ|] , (3.11)

because ζ̂ ≥ ζ by assumption. Moreover, since ζn ⇀ ζ in X by assumption, hence ζn → ζ strongly in
L2(ΓC), we find that

Ld−1(Bn) ≤ Ld−1([δn ≤ |ζn − ζ|]) ≤ 1

δ2
n

∥ζn − ζ∥2
L2 ≤ ∥ζn − ζ∥L2 → 0 , (3.12)

where we used Markoff’s inequality to obtain the second estimate. The last estimate follows from the
very definition of δn := max

{
∥ζn − ζ∥1/2

L2 , 1/n
}
, cf. (3.8). Thus, we have that

Ld−1(Bn) → 0 and Ld−1(ΓC\(An ∪ Cn)) → 0 as n → ∞ . (3.13)

We use that ΓC = (An ∪ Cn) ∪ Bn and in view of the definition of (ζ̂n)n from (3.8) the term involving
the Sobolev-Slobodeckij seminorms rewrites and estimates as follows:

∣∣ζ̂n

∣∣2
H1/2(ΓC)

−
∣∣ζn

∣∣2
H1/2(ΓC)

=

9∑

j=1

In
j , with (3.14a)

In
1 :=

∣∣ζ̂ + δn

∣∣2
H1/2(An)

−
∣∣ζn

∣∣2
H1/2(An)

, (3.14b)

In
2 :=

∣∣ζ̂n

∣∣2
H1/2(Bn)

−
∣∣ζn

∣∣2
H1/2(Bn)

= 0 , (3.14c)

In
3 :=

∫

x∈Bn

∫

y∈An

1
|x−y|d

(
− 2ζn(x)(ζ̂(y) + δn) + |ζ̂(y) + δn|2 + 2ζn(x)ζn(y) − |ζn(y)|2

)
dx dy , (3.14d)

In
4 :=

∫

x∈An

∫

y∈Bn

1
|x−y|d

(
− 2ζn(y)(ζ̂(x) + δn) + |ζ̂(x) + δn|2 + 2ζn(x)ζn(y) − |ζn(x)|2

)
dxdy , (3.14e)

In
5 :=

∣∣ζ̂n|2H1/2(Cn) −
∣∣ζn

∣∣2
H1/2(Cn)

= −
∣∣ζn

∣∣2
H1/2(Cn)

, (3.14f)
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In
6 :=

∫

x∈An

∫

y∈Cn

|ζ∗ − ζ̂(x) − δn|2
|x − y|d −

∫

x∈An

∫

y∈Cn

|ζn(x) − ζn(y)|2
|x − y|d

≤
∫

x∈An

∫

y∈Cn

|ζ̂(y) + δn − ζ̂(x) − δn|2
|x − y|d −

∫

x∈An

∫

y∈Cn

|ζn(x) − ζn(y)|2
|x − y|d , (3.14g)

In
7 :=

∫

x∈Cn

∫

y∈An

|ζ∗ − ζ̂(y) − δn|2
|x − y|d −

∫

x∈Cn

∫

y∈An

|ζn(x) − ζn(y)|2
|x − y|d

≤
∫

x∈Cn

∫

y∈An

|ζ̂(x) + δn − ζ̂(y) − δn|2
|x − y|d −

∫

x∈Cn

∫

y∈An

|ζn(x) − ζn(y)|2
|x − y|d , (3.14h)

In
8 :=

∫

x∈Bn

∫

y∈Cn

|ζn(x) − ζ∗|2
|x − y|d −

∫

x∈Bn

∫

y∈Cn

|ζn(x) − ζn(y)|2
|x − y|d

≤
∫

x∈Bn

∫

y∈Cn

|ζ̂(x) + δn − ζ̂(y) − δn|2
|x − y|d − 0 , (3.14i)

In
9 :=

∫

x∈Cn

∫

y∈Bn

|ζn(y) − ζ∗|2
|x − y|d −

∫

x∈Cn

∫

y∈Bn

|ζn(x) − ζn(y)|2
|x − y|d

≤
∫

x∈Cn

∫

y∈Bn

|ζ̂(x) + δn − ζ̂(y) − δn|2
|x − y|d − 0 . (3.14j)

Our aim is to further process the above terms in such a way that (3.14a) can be estimated from above by

∣∣ζ̂n

∣∣2
H1/2(ΓC)

−
∣∣ζn

∣∣2
H1/2(ΓC)

≤
9∑

j=1

In
j ≤

∣∣ζ̂ + δn

∣∣2
H1/2(ΓC)

−
∣∣ζn

∣∣2
H1/2(An∪Cn)

. (3.15)

We see that the terms In
1 , In

2 and In
5 –In

9 will already nicely contribute to this estimate. But it remains to
suitably estimate the mixed integrals (3.14d) & (3.14e). For this, we want to make use of the following
estimate for (the integrand of) I3

n:

−2ζn(x)(ζ̂(y)+δn)+|ζ̂(y)+δn|2+2ζn(x)ζn(y)−|ζn(y)|2 ≤ |ζ̂(x)+δn|2−2(ζ̂(x)+δn)(ζ̂(y)+δn)+|ζ̂(y)+δn|2 .

(3.16)
Verifying (3.16) is equivalent to showing that

0 ≤ |ζ̂(x) + δn|2 + |ζn(y)|2 − 2(ζ̂(x) + δn)(ζ̂(y) + δn) + 2ζn(x)(ζ̂(y) + δn) − 2ζn(x)ζn(y) . (3.17)

Using that |ζ̂(x) + δn|2 + |ζn(y)|2 ≥ 2ζn(y)(ζ̂(x) + δn) and keeping in mind that x ∈ Bn, whereas y ∈ An,

we can further estimate the right-hand side of (3.17) from below as follows

(ζ̂(x)+δn)
(
ζn(y)−(ζ̂(y)+δn)

)
+ζn(x)

(
(ζ̂(y)+δn)−ζn(y)

)
=

(
(ζ̂(y)+δn)−ζn(y)

)(
ζn(x)−(ζ̂(x)+δn)

)
≥ 0 ,

(3.18)
i.e., (3.17), resp. (3.16), is verified. With the same arguments we can deduce an analogous estimate for
the (integrand of) I4

n, essentially by swapping the meaning of the variables x and y in (3.17), resp. (3.16).
Putting these findings together, we see that

I3
n ≤

∫

An

∫

Bn

|ζ̂(x) + δn − ζ̂(y) − δn|2
|x − y|d dx dy and I4

n ≤
∫

Bn

∫

An

|ζ̂(x) + δn − ζ̂(y) − δn|2
|x − y|d dxdy ,

(3.19)
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so that indeed, (3.15) holds true. Hence, we deduce that

lim sup
n→∞

(∣∣ζ̂n

∣∣2
H1/2(ΓC)

−
∣∣ζn

∣∣2
H1/2(ΓC)

)
= lim sup

n→∞

9∑

j=1

In
j

≤ lim sup
n→∞

(∣∣ζ̂ + δn

∣∣2
H1/2(ΓC)

−
∣∣ζn

∣∣2
H1/2(An∪Cn)

)

≤
∣∣ζ̂

∣∣2
H1/2(ΓC)

− lim inf
n→∞

∣∣ζn

∣∣2
H1/2(An∪Cn)

.

In view of this, it remains to show that

− lim inf
n→∞

∣∣ζn

∣∣2
H1/2(An∪Cn)

≤ −
∣∣ζ

∣∣2
H1/2(ΓC)

. (3.20)

For this purpose, we choose a (not relabeled) subsequence (ζn)n such that lim infn→∞
∣∣ζn

∣∣2
H1/2(An∪Cn)

=

limn→∞
∣∣ζn

∣∣2
H1/2(An∪Cn)

. Moreover, in view of (3.13), we may choose a further (not relabeled) subse-
quence (ζn)n such that

∑∞
n=1 Ld−1(Bn) < ∞. For the sets ∪∞

n=NBn we thus find that

lim
N→∞

Ld−1
(

∪∞
n=N Bn

)
≤ lim

N→∞

∞∑

n=N

Ld−1(Bn) = 0 .

Hence, the complements UN := ΓC\ ∪∞
n=N Bn satisfy

∀n ≥ N ∈ N : UN := ΓC\ ∪∞
n=N Bn ⊂ (An ∪ Cn) and lim

N→∞
Ld−1((UN\ΓC) ∪ (ΓC\UN )) = 0 . (3.21)

We may now use the sets UN to further estimate the left-hand side of (3.20); i.e., for N ∈ N fixed, for
every n ≥ N we have

− lim inf
n→∞

∣∣ζn

∣∣2
H1/2(An∪Cn)

≤ − lim inf
n→∞

∣∣ζn

∣∣2
H1/2(UN )

≤ −
∣∣ζ

∣∣2
H1/2(UN )

,

due to the weak lower semicontinuity of | · |2
H1/2(UN )

and the fact that ζn ⇀ ζ in X. For N → ∞ we then
conclude (3.20). Thus, (3.9b) is proven.
Ad (3.9c): This convergence result now follows from the continuous embedding L2(ΓC) ⊂ L1(ΓC).
Ad (3.9d): In order to verify the convergence result for the cohesive surface energy Φcoh we choose further
(not relabeled) subsequences (un)n, (ζ̂n)n, (ζn)n such that lim supn→∞

(
Φcoh([[un]]n, ζ̂n)−Φcoh([[un]]n, ζn)

)
=

limn→∞
(
Φcoh([[un]]n, ζ̂n) − Φcoh([[un]]n, ζn)

)
and ζ̂n → ζ̂ as well as ζn → ζ pointwise a.e. in ΓC. With z

as a placeholder for ζ̂n and ζn we verify for the cohesive surface density ϕcoh that

|ϕcoh(
[[
un

]]
n
, z)| ≤ b

∣∣[[un

]]
n

∣∣2 , (3.22)

where we made use of the assumptions (2.9). The term on the right-hand side is integrable with∫
ΓC

b
∣∣[[un]]n

∣∣2 dx →
∫
ΓC

b
∣∣[[u]]n

∣∣2 dx thanks to the compactness of the trace operator from H1(Ω\ΓC) to
L2(ΓC). Thus, we are entitled to conclude (3.9d) with the aid of the dominated convergence theorem.
Ad (3.9e): This estimate can be verified by arguing pointwise on the density Ik of the Yosida-
regularization, i.e., Ik(r, z) = k

2 |(r)−|2 + k
2 |(r − z)+|2. Taking into account that ζ̂n ≥ ζn a.e. in ΓC

according to (3.8), we see that ([[un]]n − ζ̂n)+ ≤ ([[un]]n − ζn)+ a.e. in ΓC. Hence, (3.9e) follows.
Ad (3.9f): This convergence result follows also by the dominated convergence theorem, using that the
density Ik of the Yosida-regularization satisfies the following estimate

Ik(
[[
un

]]
n
, z) = k

2

∣∣([[un

]]
n

)−∣∣2 + k
2

∣∣([[un − z
]]
n

)+∣∣2 ≤ k
2

∣∣[[un

]]
n

∣∣2 + k
2

∣∣[[un − z
]]
n

∣∣2 , (3.23)

where the terms on the right-hand side are integrable and the integrals converge. Above, z is again a
placeholder for ζ̂n, resp. ζn.

18



With the next lemma we verify the remaining conditions (2.1)& (3.1)–(3.3), (3.5) & (3.6) ensuring the
existence of semistable energetic solutions for the Yosida-regularized systems.

Lemma 3.4. Keep k ∈ N fixed and let the assumptions of Theorem 2.4 be satisfied. Then the gradient
systems (V,Z,V, R, Ek) comply with the conditions (2.1)& (3.1)–(3.3) & (3.5) and the damped inertial
systems (V,W,Z, V, K, R, Ek) comply with the conditions (2.1)& (3.1)–(3.3), (3.5) & (3.6).

Proof. Ad (2.1): In view of (1.5), (1.6), and (2.8a) conditions (2.1b) and (2.1c) on Rk and V are verified.
Ad (3.1): To check (3.1a), we calculate in view of (2.17e) & (2.19), using Korn’s and Young’s

inequality:

Ek(t, u, z) ≥ C1
C
2 ∥e(u)∥2

L2 − ∥f(t)∥V∗∥u∥V + |ζ|rX
≥ C1

CC2
K

2 ∥u∥2
V − C1

CC2
K

4 ∥u∥2
V − 1

C1
CC2

K
∥f(t)∥2

V∗ + ∥ζ∥r
X − ζ∗Ld−1(ΓC)

≥ − c∗C
2
f − ζ∗Ld−1(ΓC) ,

(3.24)

where we used that ∥f(t)∥V∗ ≤ Cf , the bound on ζ imposed by the indicator of the interval [0, ζ∗], cf.
(2.17e), and we set 1

C1
CC2

K
= c∗. This proves (3.1a). For Ek(t, u, z) ≤ E we then find that

∥u∥2
V ≤ 4

C1
CC2

K
(E + c∗C

2
f + ζ∗Ld−1(ΓC)) and ∥z∥2

X ≤ (E + c∗C
2
f + ζ∗Ld−1(ΓC)) . (3.25)

The weak lower semicontinuity of E(t, ·, ·) follows by the fact that Ek(t, ·, ·) is separately convex and
strongly lower semicontinuous on V × Z.

Ad (3.2): Observe that ∂tE(t, u, z) = −⟨ḟ(t), u⟩V. In view of the regularity assumption (2.8b) we
have ḟ(tn) → ḟ(t) in V∗ for tn → t in [0, T ], which immediately gives the upper semicontinuity property
of the powers. In view of (3.25) and Young’s inequality we find the following power-control estimate:

|∂tEk(t, u, z)| ≤ Cf∥u∥V ≤ 1
2C2

f + 1
2∥u∥2

V

≤ 1
2C2

f + 2
C1

CC2
K

(Ek(t, u, z) + c∗C
2
f + ζ∗Ld−1(ΓC)) .

Ad (3.3): The coercivity assumption on the sum of Ek, V, and R directly follows from the the coercivity
of V and R combined with the just deduced coercivity estimate (3.24) for Ek(t, ·, ·).

Ad (3.4): cf. the preceeding Lemma 3.3.
Ad (3.5): For every (t, u, ζ) ∈ dom(Ek), the regularized functional Ek(t, ·, ζ) is Gâteaux-differentiable

with derivative DuEk(t, ·, ζ) given by (2.25). Now, due to the quadratic nature of Ek(t, ·, ζ), resp. the
linear nature of DuEk(t, ·, ζ) the closedness condition (3.5) ensues.

Ad (3.6): In order to verify the subgradient estimate (3.6) for the energy functionals Ek, cf. (2.35),
i.e.,

∀ (t, u, z) ∈ dom(E) : ∥∂uEk(t, u, z)∥σ
V∗ ≤ C3Ek(t, u, z) + C4∥u∥V + C5 , (3.26)

we will check the respective estimate for each of the contributions to Ek separately. For the bulk energy
(2.17b) we verify with standard arguments relying on assumptions (2.8):

|⟨DuEbulk(t, u), v⟩V| ≤ (C2
C∥e(u)∥L2 + Cf )∥v∥W

≤
((

2
C1

C

∫

Ω\ΓC

1
2Ce(u):e(u) dx + 1

)1/2
+ Cf

C2
C

)
C2

C∥v∥V

≤
(

2
C1

C
Ebulk(t, u) + 2

C1
C
Cf∥u∥V + 1 + Cf

C2
C

)
C2

C∥v∥V .

(3.27)

Thanks to assumption (2.9) we find for the cohesive energy (2.17d)

|⟨DuΦcoh(
[[
u
]]
n
, ζ),

[[
v
]]
n
⟩L2(ΓC)| =

∣∣∣
∫

ΓC

ϕcoh(ζ)

2ζ2

[[
u
]]
n
·
[[
v
]]
n

dHd−1
∣∣∣ ≤ b

( ∫

ΓC

ϕcoh(ζ)

2ζ2

∣∣[[u
]]
n

∣∣2 dHd−1+1
)
∥v∥V .

(3.28)
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For the Yosida-regularization term we find

|⟨DuJk(
[[
u
]]
n
, ζ),

[[
v
]]
n
⟩L2(ΓC)| =

∣∣∣
∫

ΓC

k
((

−
[[
u
]]
n

)−
+

([[
u
]]
n

− ζ
)+)

·
[[
v
]]
n

dHd−1
∣∣∣

≤
√

k

∫

ΓC

(
k
∣∣( −

[[
u
]]
n

)−∣∣2 + k
∣∣([[u

]]
n

− ζ
)+∣∣2 + 1

)
dHd−1∥v∥V

≤
√

k
(
Jk(

[[
u
]]
, ζ) + 1

)
∥v∥V .

(3.29)

To conclude the proof of Theorem 2.4 it remains to verify the validity of the energy dissipation balance
(2.28). For this, we will make use of a general result, cf. Thm. 3.5 below, drawn from [RT15a]. In fact,
the proof of Thm. 3.5 below, cf. [RT15a, Thm. 3.6], provides the following integral chain-rule inequality

∫ t

0

⟨ξ(s), u̇(s)⟩V ds

≤ E(t, u(t), ζ(t)) − E(0, u(0), ζ(0)) −
∫ t

0

∂tE(s, u(s), ζ(s)) ds + VarR(ζ, [0, t]) for all t ∈ [0, T ],

(3.30)

in the case the map u 7→ E(t, u, ζ) is Gâteaux-differentiable, from the semistability condition (2.4). This is
achieved by mimicking the Riemann-sum procedure from the proof of [Rou09, Prop. 5.4], see also [Rou10,
Prop. 4.3], which in turn is based on the argument first developed in [DMFT05].

Theorem 3.5 ([RT15a, Thm. 3.6]). Assume that the functionals E , V, and R satisfy conditions (2.1),
(3.1) & (3.2). Moreover, assume that for every (t, ζ) ∈ [0, T ] × domζ the map u 7→ E(t, u, ζ) is Gâteaux-
differentiable, and that

∀ M > 0 ∃S > 0 ∀ t ∈ [0, T ], ∀u, u1, u2 ∈ domu, ζ̄ ∈ domζ :




(u, ζ̄) ∈ SM ⇒ ∥DuE(t, u, ζ̄)∥V∗ ≤ S,

(u1, ζ̄), (u2, ζ̄) ∈ SM ⇒ ∥DuE(t, u1, ζ̄) − DuE(t, u2, ζ̄)∥V∗ ≤ S∥u1 − u2∥V,

(3.31a)

with SM := {(u, ζ) ∈ domu × domζ , supt∈[0,T ] E(t, u, ζ) ≤ M} the energy sublevel with M ∈ R, and that
∂tE satisfies analogous Lipschitz estimates, i.e.

∀ M̃ > 0 ∃ S̃ > 0 ∀ t1, t2 ∈ [0, T ], ∀u1, u2 ∈ domu, ζ̄ ∈ domζ :

(u1, ζ̄), (u2, ζ̄) ∈ S
M̃

⇒





∣∣∂tE(t1, u1, ζ̄) − ∂tE(t2, u1, ζ̄)
∣∣ ≤ S̃|t1 − t2|,∣∣∂tE(t1, u1, ζ̄) − ∂tE(t1, u2, ζ̄)
∣∣ ≤ S̃∥u1 − u2∥V.

(3.31b)

Let (u, ζ) be a semistable energetic solution to the gradient system (V,Z, V, R, E), resp. to the damped
inertial system (V,W,Z, V, K,R, E). Then, (u, ζ) complies with (3.30) and the energy-dissipation in-
equality (2.5) holds as an identity.

Observe that the conditions (2.1), (3.1) & (3.2) are already verified as a part of Lemma 3.4. Thus, in
view of the above statement we now check that the Yosida-regularized energy functional Ek from (2.19)
satisfies the conditions (3.31).

Lemma 3.6. Let the assumptions of Theorem 2.4 hold true and keep k ∈ N fixed. Then, the energy
functional Ek from (2.19) complies with condition (3.31). Hence, for every k ∈ N, the energy dissipation
balance (2.28) holds true for the Yosida-regularized system (V,Z, V, R, Ek), resp. (V,W,Z, V, K,R, Ek).
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Proof. Ad (3.31a): We observe that the first statement of (3.31a) is a direct consequence of the sub-
gradient estimate (3.6), which has been already verified for the functional Ek along with Lemma 3.4.
Moreover, for the second statement of (3.31a), we recall the form of DuEk(t, ·, z) from (2.25), and ob-
serve that the bulk contribution DuEbulk(t, ·) and the contribution arising from Φcoh(·, z), thanks to
their linear character, directly comply with the second of (3.31a). We now check that also the term
arising from DuJk(·, z) complies with the second of (3.31a). For this, we observe that the function
( · )−, resp. ( · )+, is Lipschitz-continuous, such that |([[u1]]n)− − ([[u2]]n)−| ≤ |[[u1]]n − [[u2]]n|, resp.
|([[u1]]n − z̄)− + ([[u2]]n − z̄)+| ≤ |[[u1]]n − [[u2]]n|. Because of this, the second of (3.31a) also holds
true for the term arising from the Yosida-regularization. Thus, (3.31a) is verified for Ek.

Ad (3.31b): Recall that ∂tE(t, u, z) = ⟨ḟ(t), u⟩V, with f of regularity (2.8b). Hence, (3.31b) holds
true.

4 Limit passage for gradient systems – Proof of Theorem 2.5

In this section we carry out the evolutionary Γ-limit passage from the Yosida-regularized gradient systems
(V,Z, V,R, Ek) to the cohesive zone gradient system (V,Z, V, R, E∞). After deducing the compactness
properties (2.32) here below in Prop. 4.1, we establish the limit passage in the semistable inequality in
Sec. 4.1 and the passage in the momentum & energy inequality in Sec. 4.2, respectively.

Proposition 4.1 (Compactness (2.32)). Let the assumptions of Thm. 2.5 be satisfied. Then there ex-
ists a (not relabeled) subsequence (uk, ζk)k of semistable energetic solutions to the regularized systems
(V,Z, V,R, Ek) and a limit pair (u, ζ) of regularity (2.31) such that convergences (2.32) hold true.

Proof. First of all, from (2.28), and recalling (2.6), we get the following uniform bounds along the
semistable energetic solutions (uk, ζk)k of the systems (V,Z, V,R, Ek):

sup
t∈[0,T ]

|Ek(t, uk(t), ζk(t))| +

∫ T

0

V(u̇k(s)) ds + R(ζk(T ) − ζ0) ≤ C . (4.1)

In view of the assumptions (2.8), cf. also (3.25), this amounts to:

∥uk∥H1(0,T ;V) ≤ C (4.2a)

∥uk(t)∥V ≤ C for all t ∈ [0, T ] , (4.2b)

∥ζk(t)∥X ≤ C for all t ∈ [0, T ] , (4.2c)

∥ζk(t)∥C(ΓC) ≤ ζ∗ for all t ∈ [0, T ] . (4.2d)

Moreover, a comparison in the time-integrated momentum balance
∫ T

0

⟨DuEbulk(t, uk(t)) + DuΦcoh(
[[
uk(t)

]]
n
, ζk(t)) + DuJk(

[[
uk(t)

]]
n
, ζk(t)) + Du̇V(u̇k(t)), v(t)⟩V dt = 0

for every v ∈ L2(0, T ;V), provides

sup
v∈L2(0,T ;V), ∥v∥L2(0,T ;V)=1

∫ T

0

⟨DuJk(
[[
uk(t)

]]
n
, ζk(t)), v⟩V dt ≤ C . (4.2e)

The existence of a subsequence complying with (2.32a) is a direct consequence of the uniform bound
(4.2a). Moreover, from the uniform bound on R(ζk(t) − ζ0) ≤ R(ζk(T ) − ζ0) ≤ C together with (4.2c) &
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(4.2d), using a generalized version of Helly’s selection principle, cf. [MR15, Thm. 2.1.24], the existence
of a subsequence satisfying (2.32b) ensues. Consequently, from the embedding X = W 1,r(ΓC) ⋐ C(ΓC)

for r > d − 1 convergences (2.32c) and (2.32d) follow. Moreover, (2.32e) is concluded from the bound
(4.2e).

4.1 Limit passage in the semistability inequality

In order to show that the limit pair (u, ζ) extracted by the convergences (2.32) complies with the semista-
bility inequality for the cohesive zone system (V,Z, V, R, E∞), cf. Def. 2.1, we will make use of a mutual
recovery sequence condition akin to (3.4). More precisely, given a sequence (uk, ζk)k ∈ V × Z, with
supk Ek(t, uk, ζk) ≤ C for all t ∈ [0, T ] and, for every k ∈ N (uk, ζk) being semistable for the functionals
Ek, R, and such that (uk, ζk) ⇀ (u, ζ) in V × Z, and for every ζ̂ ∈ Z there exists a sequence (ζ̂k)k ⊂ Z,

ζ̂k ⇀ ζ̂ in Z such that

lim sup
k→∞

(
Ek(t, uk, ζ̂k) − Ek(t, uk, ζk) + R(ζ̂k − ζk)

)
≤ E∞(t, u, ζ̂) − E∞(t, u, ζ) + R(ζ̂ − ζ) . (4.3)

Proposition 4.2 (Semistability of the system (V,Z, V, R, E∞)). Let the assumptions of Theorem 2.5 hold
true. Then, for each t ∈ [0, T ] fixed, the sequence (uk, ζk)k of semistable energetic solutions to the systems
(V,Z, V,R, Ek)k and the limit pair (u, ζ) extracted by convergences (2.32) satisfy the mutual recovery
condition (4.3). Hence, (u, ζ) is semistable for the cohesive zone delamination system (V,Z, V, R, E∞).

Moreover, ζk(t) → ζ(t) even strongly in X for all t ∈ [0, T ].

Proof. Taking into account the properties of E∞ and of R from (1.5) and (2.17), we see that the right-hand
side of (4.3) is finite if and only if ζ̂ ∈ X such that

ζ∗ ≥ ζ̂ ≥ ζ ≥
[[
u
]]
n

a.e. in ΓC . (4.4)

If this is not the case, then (4.3) is trivially satisfied. Hence, assume from now on that the competitor ζ̂

complies with (4.4).
Since X = W 1,r(ΓC) with r > d − 1, due to the compact embedding X = W 1,r(ΓC) ⋐ C(ΓC), it can

be verified that ζ̂k := min{ζ∗, ζ̂ + ∥ζk − ζ∥C(ΓC)} is a suitable recovery sequence for ζ̂ ≥ ζ that satisfies
ζk ≤ ζ̂k ≤ ζ∗ and additionally converges strongly in X. To see the strong convergence ζ̂k → ζ̂ in X

it has to be used that the superposition operator min{ζ∗, ·} : R → R is Lipschitz-continuous. Then,
[MM79, Sec. 2] provides that the superposition of a W 1,r(ΓC)-function with min{ζ∗, ·} yields a W 1,r-
function, and that the operator min{ζ∗, ·} : W 1,r(ΓC) → W 1,r(ΓC) is continuous. Further note that, by
construction, property (3.9e) holds true here as well. Thus, by the strong convergence of (ζ̂k)k, and the
lower semicontinuity of the W 1,r-seminorm it can be verified that

lim sup
k→∞

(
Ek(t, uk, ζ̂k) − Ek(t, uk, ζk) + R(ζ̂k − ζk)

)

≤ lim sup
k→∞

(
Φcoh(

[[
uk

]]
n
, ζ̂k) + |ζ̂k|rX − Φcoh(

[[
uk

]]
n
, ζk) − |ζk|rX + R(ζ̂k − ζk)

)

≤ E∞(t, u, ζ̂) − E∞(t, u, ζ) + R(ζ̂ − ζ) .

This proves the mutual recovery condition (4.3).
To verify the strong convergence of the semistable sequence (ζk(t))k, we observe that, by the monotonic-

ity assumption (2.9) and by (3.9e), the semistability inequality can be further reduced to the following
expression

|ζk(t)|rX ≤ |ζ̂k|rX + R(ζ̂k − ζk(t)) . (4.5)
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Applying the construction to ζ̂ = ζ(t), i.e., ζ̂k := min{ζ∗, ζ(t) + ∥ζk(t) − ζ(t)∥C(ΓC)}, and inserting this
in (4.5), allows us to verify that lim supk→∞ |ζk(t)|rX ≤ |ζ(t)|rX. Together with the weak convergence
ζk(t) ⇀ ζ(t) in X from (2.32b) and the weak lower semicontinuity of the norm this yields ζk → ζ strongly
in X.

4.2 Limit passage in the momentum balance and in the energy-dissipation
inequality

The momentum balance of the regularized systems (V,Z, V, R, Ek), integrated over (0, T ), is given by:
∫ T

0

⟨DuEbulk(t, uk(t)) + DuΦcoh(
[[
uk(t)

]]
n
, ζk(t)) + DuJk(

[[
uk(t)

]]
n
, ζk(t)) + Du̇V(u̇k(t)), v(t)⟩V dt = 0

(4.6)
for every v ∈ L2(0, T ;V). Due to the well-preparedness of the initial data it is (uk(0), ζk(0)) = (u0, ζ0)

for every k ∈ N and thanks to convergences (2.32), together with (4.2d)-(4.2e), we have

ζk
∗
⇀ ζ in L∞(0, T ;X) , (4.7a)

ζk(t) ⇀ ζ(t) in X for all t ∈ [0, T ] , (4.7b)

e(uk(t)) ⇀ e(u(t)) in L2(Ω; Rd×d) for a.a. t ∈ (0, T ) , (4.7c)

e(u̇k) ⇀ e(u̇) in L2(0, T ; L2(Ω; Rd×d)) , (4.7d)

DuJk(
[[
uk

]]
n
, ζk) ⇀ ξ̃ in L2(0, T ;V∗) . (4.7e)

This will allow us in Prop. 4.4 below to pass to the limit k → ∞ in (4.6) and thus to find for the cohesive
zone system (V,Z,V, R, E∞) the following time-integrated momentum balance:

∫ T

0

⟨DuEbulk(t, u(t)) + DuΦcoh(
[[
u(t)

]]
n
, ζ(t)) + ξ̃(t) + Du̇V(u̇(t)), v(t)⟩V dt = 0 . (4.8)

Its corresponding pointwise-in-time version can then be concluded by arguing via the fundamental lemma
of calculus of variations using specific test functions ϕ = vη ∈ L2(0, T ;V) with v ∈ V and η ∈ L2(0, T ).
In this way, we find for a.e. t ∈ (0, T ), for all v ∈ V:

⟨DuEbulk(t, u(t)) + DuΦcoh(
[[
u(t)

]]
n
, ζ(t)) + ξ̃(t) + Du̇V(u̇(t)), v⟩V = 0 . (4.9)

The information that ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)) for a.a. t ∈ (0, T ) can be established by passing to the
limit in the definition of the subdifferential of the functional J̃ T

k (uk, ζk) defined below. More precisely, we
argue on the time-integrated versions of the functionals Jk & J from (2.18a) & (2.17f) which are defined
by:

J̃ T
k (

[[
·
]]
n
, ζk) : L2(0, T ;V) → [0, ∞) , J̃ T

k (
[[
w

]]
n
, ζk) :=

∫ T

0

Jk(
[[
w(s)

]]
n
, ζk(s)) ds , (4.10a)

J̃ T (
[[

·
]]
n
, ζk) : L2(0, T ;V) → {0, ∞} , J̃ T (

[[
w

]]
n
, ζk) :=

∫ T

0

J (
[[
w(s)

]]
n
, ζ(s)) ds . (4.10b)

In other words, we have to pass to the limit in the inequality:

J̃ T
k (

[[
vk

]]
n
, ζk) − J̃ T

k (
[[
uk

]]
n
, ζk) ≥ ⟨DuJ̃ T

k (
[[
uk

]]
n
, ζk), vk − uk⟩L2(0,T ;V) . (4.11)

Supposed that this limit passage is successful, we can then argue for the limit ξ̃ from (4.7e) that ξ̃ ∈
∂uJ̃ T ([[u]]n, ζ) if and only if ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)) for a.e. t ∈ (0, T ), by the fact that (L2(0, T ;V))∗ ∼=
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L2(0, T ;V∗). However, the above limit passage makes it necessary on the one hand, as already indicated,
for any v ∈ L2(0, T ;V) with v(t) ≤ ζ(t) a.e. in ΓC for a.e. t ∈ (0, T ), to construct a recovery sequence
(vk)k ⊂ L2(0, T ;V) that prevents the blow-up of J̃ T

k ([[vk]]n, ζk). To pass to the limit on the right-hand
side of (4.11), in particular to find that lim infk→∞⟨DuJ̃ T

k ([[uk]]n, ζk), vk⟩L2(0,T ;V) ≥ ⟨ξ̃, v⟩L2(0,T ;V), in
view of the weak convergences (4.7e), requires that (a subsequence of) the constructed recovery sequence
(vk)k converges strongly in L2(0, T ;V). The term ⟨DuJ̃ T

k ([[uk]]n, ζk), −uk⟩L2(0,T ;V) can standardly be
handled by verifying the following lim sup-estimate

lim sup
k→∞

⟨DuJ̃ T
k (

[[
uk

]]
n
, ζk), uk⟩L2(0,T ;V) ≤ ⟨ξ̃, u⟩L2(0,T ;V) . (4.12)

We also refer to [Att84, Sec. 3] for more details. But let us stress here that interpreting the Yosida-
approximants Jk(·, ζk(t)) as functionals restricted to the traces of functions from V instead of defining
them on the full L2(ΓC), now requires to prove the strong convergence of recovery sequences vk → v

in V = H1(Ω\ΓC; Rd). In other words, it has to be shown that the functionals Jk([[·]]n, ζk(t)) Mosco-
converge in V to J ([[·]]n, ζ(t)). But since Jk([[·]]n, ζk(t)) strongly depends on ζk ∈ X, in order to find
the convergence Jk([[vk]]n, ζk(t)) → 0 the construction of vk involves ζk and hence, the convergence
properties of (vk)k depend on those of semistable sequences (ζk)k. In view of Prop. 4.2, the desired
Mosco-convergence result for Jk([[·]]n, ζk(t)) and, in turn, for J̃ T

k ([[·]]n, ζk) can be established thanks to
X = W 1,r(ΓC) with r ≥ d − 1.

Proposition 4.3 (Mosco-convergence of (Jk([[·]]n, ζk(t)))k and (J̃ T
k ([[·]]n, ζk))k). Let the assumptions of

Thm. 2.5 be satisfied. Assume that ζk(s) ⇀ ζ(s) in X = W 1,r(ΓC) for all s ∈ [0, T ] and ζk
∗
⇀ ζ in

L∞(0, T ;X) with ζk(s), ζ(s) ≥ ζ∗ a.e. in ΓC for a.e. s ∈ (0, T ). Then, the functionals

Jk(·, ζk(t)) : V → [0, ∞) Mosco-converge to J (·, ζ(t)) : V → {0, ∞} , (4.13a)

J̃ T
k (

[[
·
]]
n
, ζk) : L2(0, T ;V) → [0, ∞) Mosco-converge to J̃ T (

[[
·
]]
n
, ζ) : L2(0, T ;V) → {0, ∞} . (4.13b)

Proof. In a first step we verify the Mosco-convergence result (4.13a), which will then be carried over to
the time-integrated functionals in a second step.

Ad (4.13a): To verify the Mosco-convergence of (Jk([[·]]n, ζk(t)))k we first show the Γ-lim inf-relation
and secondly prove the Γ-lim sup-relation to hold with a recovery sequence that converges strongly in V.

Ad Γ-lim inf for (4.13a): Consider a sequence vk ⇀ v in V. Denoting their normal jumps as
[[vk]]n := vk, [[v]]n := v we thus have vk ⇀ v in H1/2(ΓC). By the compact embedding (2.12) it holds
vk → v in L2(ΓC) and, for a (not relabeled) subsequence, vk → v pointwise a.e. in ΓC and almost uniformly.

If J (v, ζ(t)) = 0, due to Jk(vk, ζk(t)) ≥ 0 for all k ∈ N, it is lim infk→∞ Jk(vk, ζk(t)) ≥ J (v, ζ(t)).
If J (v, ζ(t)) = ∞, then either Hd−1([v > ζ(t)]) > 0 or Hd−1([v < 0]) > 0, or both (the nota-

tion for the sets is the same introduced in the proof of Lemma 2.2). We consider a subsequence
(vkl

, ζkl
(t))l ⊂ (vk, ζk(t))k, such that vkl

→ v almost uniformly and which additionally realizes the lim inf,

i.e. lim infk→∞ Jk(vk, ζk(t)) = liml→∞ Jkl
(vkl

, ζkl
(t)). Observe that the existence of an almost uniformly

converging subsequence of (vk)k is implied by the compact embedding H1/2(ΓC) ⋐ L2(ΓC).
First, assume that Hd−1([v < 0]) > 0. Then, we find ε > 0 such that also Hd−1([v + 2ε < 0]) > 0.

By the almost uniform convergence of the sequence, for ε, δ > 0 we find an index l(ε, δ) as well as a set
Bδ ⊂ B := [v + 2ε < 0] ⊂ ΓC of measure Hd−1(Bδ) ≤ δ, such that, for all l ≥ l(ε, δ) we have |vkl

− v| < ε

and hence v − ε < vkl
< v + ε < −ε on Bc

δ := B\Bδ. Then, Jk(vkl
, ζkl

(t)) ≥ k
2

∫
Bc

δ
|([[vkl

]]n)−|2 dHd−1 ≥
k
2

∫
Bc

δ
|(−ε)−|2 dHd−1 → ∞ as k → ∞.

Now, assume that Hd−1([v > ζ(t)]) > 0. Again we find ε > 0 such that Hd−1([v − ζ(t) > 2ε]) > 0 and,
thanks to almost uniform convergence, for ε, δ > 0 there is an index l(ε, δ) as well as a set Bδ ⊂ [v−ζ > 2ε]
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of measure Hd−1(Bδ) ≤ δ, such that, for all l ≥ l(ε, δ) we have on Bc
δ that |vkl

−ζkl
(t)−(v−ζ(t))| < ε, hence

ε < v − ζ(t)− ε < vkl
− ζkl

(t) < v − ζ(t)+ ε. This yields Jk(vkl
, ζkl

(t)) ≥ k
2

∫
Bc

δ
|(vkl

− ζkl
(t))+|2 dHd−1 ≥

k
2

∫
Bc

δ
|(ε)+|2 dHd−1 → ∞ as k → ∞.

Ad ∃ recovery sequence for (4.13a): First, consider v ∈ V with J ([[v]]n, ζ(t)) = ∞. Then, we may
choose the constant sequence vk = v for all k ∈ N to find that lim supk→∞ Jk([[vk]]n, ζk(t)) ≤ J ([[v]]n, ζ(t)).

We now verify the Γ-lim sup-estimate for functions v ∈ V with J ([[v]]n, ζ(t)) = 0, i.e., the constraint
0 ≤ [[v]]n ≤ ζ(t) is satisfied a.e. in ΓC. We have to find a sequence (vk)k ⊂ V with 0 ≤ [[vk]]n ≤ ζk(t) a.e.
in ΓC and such that vk → v strongly in V. For this, observe that ζk(t) → ζ(t) uniformly on ΓC thanks to
ζk(t) → ζ(t) in W 1,r(ΓC) ⋐ C(ΓC) with r > d − 1, cf. Prop. 4.2. Moreover, ζ(t), ζk(t) ≥ ζ∗ in ΓC by (2.30)
and the unidirectionality of R. Thus, the quotient ζk(t)/ζ(t) is well-defined in ΓC. We introduce the set
Bk := [ζ(t) ≥ ζk(t)] and find

γk := inf
x∈Bk

∣∣∣∣
ζk(t, x)

ζ(t, x)

∣∣∣∣ ≤ 1 and γk → 1 . (4.14)

The convergence can be seen from the fact that 1 ≥ γk = infx∈Bk
|1− ζ(t,x)−ζk(t,x)

ζ(t) | ≥ infx∈Bk
|1− εk

ζ∗
| for

every k ≥ k(ζ∗) with k(ζ∗) such that εk < ζ∗, and supx∈ΓC
|ζ(x) − ζk(x)| =: εk → 0. In view of (4.14) we

have that
0 ≤ γk

[[
v
]]
n

≤ γkζ(t) ≤ ζk(t) and γkv ∈ V with γkv → v strongly in V . (4.15)

We conclude that vk := γkv is a suitable recovery sequence.
Ad (4.13b): In order to deduce the Γ-lim inf-relation, consider a sequence vk ⇀ v in L2(0, T ;V), i.e.,

for all µ ∈ (L2(0, T ;V))∗ ∼= L2(0, T ;V∗) we have
∫ T

0
⟨µ(t), vk(t)⟩V dt →

∫ T

0
⟨µ(t), v(t)⟩V dt. Choose now

µ := ηµ̂ ∈ L2(0, T ;V∗) with µ̂ ∈ V∗ and η ∈ C∞
0 (0, T ). Then, the fundamental lemma of calculus

of variations implies that ⟨µ̂, vk(t)⟩V → ⟨µ̂, v(t)⟩V, i.e., vk(t) ⇀ v(t) in V for a.e. t ∈ (0, T ). This
allows us to carry over the arguments from the proof of (4.13a). As for the Γ-lim sup-relation, due to
supt∈[0,T ] γk(t) ≤ C by (4.2d) and (2.30) we see by dominated convergence that the pointwise construction
of the recovery sequence from (4.13a) is applicable as well.

Thanks to the Mosco-convergence result we are now in the position to verify the momentum balance
of the limit system (4.9) to hold with ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)) for a.e. t ∈ (0, T ) and to deduce enhanced
convergence of solutions (uk)k.

Proposition 4.4 (Momentum balance of the cohesive zone system (V,Z, V,R, E∞)). Let the assumptions
of Thm. 2.5 hold true. Then, in addition to convergences (4.7) the following statements are satisfied:

1. The following convergences hold true:

DuEbulk(t, uk(t)) ⇀ DuEbulk(t, u(t)) in V∗ for all t ∈ [0, T ] , (4.16a)

DuΦcoh(
[[
uk(t)

]]
n
, ζk(t)) ⇀ DuΦcoh(

[[
u(t)

]]
n
, ζ(t)) in V∗ for all t ∈ [0, T ] , (4.16b)

Du̇V(u̇k) ⇀ Du̇V(u̇) in L2(0, T ;V∗) . (4.16c)

2. For a.a. t ∈ (0, T ) the limit pair (u, ζ) ∈ V×Z extracted by convergences (2.32) satisfies momentum
balance (4.8)& (4.9);

3. (4.12) is satisfied, hence, ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)) for a.a. t ∈ (0, T ).

Proof. Ad 1.: Convergences (4.16a) & (4.16c) directly ensue from (4.7c) & (4.7d). In order to deduce
(4.16b) we will invoke the dominated convergence theorem. For this, we observe that convergences (4.7b)
& (4.7c) ensure that ζk(t) → ζ(t) in L2(ΓC) as well as [[uk(t)]]n → [[u(t)]]n in L2(ΓC), thus, convergence
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in measure. Moreover, by (2.9), for any v ∈ V, it is ϕcoh(ζk(t))
ζ2

k(t)
[[uk(t)]]n[[v(t)]]n ≤ b

∣∣[[uk(t)]]n[[v(t)]]n
∣∣ ≤

b
∣∣[[uk(t)]]n

∣∣∣∣[[v(t)]]n
∣∣. Hence,

∫
ΓC

ϕcoh(ζk(t))
|ζk(t)|2 [[uk(t)]]n[[v]]n dHd−1 →

∫
ΓC

ϕcoh(ζ(t))
|ζ(t)|2 [[u(t)]]n[[v]]n dHd−1 by the

dominated convergence theorem, i.e. (4.16b).
Ad 2.: Thanks to convergences (4.16) we can pass to the limit in (4.6) and conclude (4.8); the

pointwise-in-time balance (4.9) is then obtained as described along with (4.8)-(4.9).
Ad 3.: To prove (4.12) we pass through the time-integrated k-momentum balance and exploit conver-

gences (4.7e) in combination with the lower semicontinuity of time-integrated versions of the functionals
Ebulk, V, Φcoh. The latter holds true by Ioffe’s semicontinuity theorem, cf. e.g. [Iof77, Thm. 1]. Then,
starting from (4.6) and invoking the already deduced momentum balance (4.9) of the limit system, we
find the following chain of inequalities

lim sup
k→∞

⟨DuJ̃ T
k (

[[
uk

]]
n
, ζk), uk⟩L2(0,T ;V)

= lim sup
k→∞

(
−

(
⟨DuEbulk(·, uk) + Du̇V(u̇k), uk⟩L2(0,T ;V) + ⟨DuΦcoh(

[[
uk

]]
n
, ζk), uk⟩L2(0,T ;V)

))

≤ − lim inf
k→∞

∫ T

0

∫

Ω\ΓC

Ce(uk(s)) : e(uk(s)) dx − ⟨f(s), uk(s)⟩V ds − lim inf
k→∞

(
V(uk(t)) − V(uk(0))

)

− lim inf
k→∞

∫ t

0

2Φcoh(
[[
uk(s)

]]
n
, ζk(s)) ds

≤ −
∫ T

0

∫

Ω\ΓC

Ce(u(s)) : e(u(s)) dx − ⟨f(s), u(s)⟩V ds −
(
V(u(t)) − V(u(0))

)
−

∫ T

0

2Φcoh(
[[
u(s)

]]
n
, ζ(s)) ds

=
(

−
(
⟨DuEbulk(·, u) + Du̇V(u̇), u⟩L2(0,T ;V) + ⟨DuΦcoh(

[[
u
]]
n
, ζ), u⟩L2(0,T ;V)

))

= ⟨ξ̃, u⟩L2(0,T ;V)

which proves (4.12). Thanks to this, as outlined along with (4.11), cf. also [Att84, Lemma 3.57]) for more
details, we are entitled to conclude that ξ̃ ∈ ∂uJ̃ T ([[u]]n, ζ), which yields that ξ̃(t) ∈ ∂uJ ([[u(t)]]n, ζ(t)),

for a.a. t ∈ (0, T ).

From the lower Γ-limit provided by the Mosco-convergence of the functionals (Jk([[·]]n, ζk(t)))k and
the uniform bound on (Ek(t, uk(t), ζk(t)))k it can be concluded that indeed 0 = J ([[u(t)]]n, ζ(t)). Also
exploiting the lower semicontinuity properties of Ebulk and Φcoh in combination with convergences (2.32)
we obtain the energy-dissipation inequality (2.34) of the limit systems (V,Z, V, R, E∞).

Corollary 4.5 (Energy-dissipation estimate for (V,Z, V, R, E∞)). Let the assumptions of Thm. 2.5
be satisfied. Then the limit pair (u, z) extracted by convergences (2.32) satisfies the energy-dissipation
inequality

Ek(t, u(t), ζ(t)) +

∫ t

0

2V(u̇(τ)) dτ + VarR(ζ, [s, t]) ≤ E(0, u(0), ζ(0)) +

∫ t

0

∂tE(τ, u(τ), ζ(τ)) dτ .

(4.17)
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