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Abstract 
The electric properties of monolithic microwave integrated circuits 
can be described in terms of their scattering matrix using Maxwellian 
equations. The corresponding three-dimensional boundary value prob-
lem of the Maxwellian equations can be solved by mean.s of a finite-
volume scheme in the frequency domain. This results in a two-step 
procedure: a time and memory consuming eigenvalue problem for non-
symmetric matrices and the solution of a large-scale system of linear 
equations with indefinite symmetric matrices. 
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1 Introduction 
The design of monolithic microwave integrated circuits (MMIC) requires ef-
ficient CAD tools in order to avoid costly and time-consuming redesign cy-
cles. Commonly, network-oriented methods are used for this purpose. With 
increasing frequency and growing packaging density, however, the coupling 
effects become critical and the simple low-frequency models fail. Thus, field-
oriented simulation methods become an indispensable tool for circuit design. 
Figure 1 illustrates the principal structure under investigation. Since the elec-
tric properties are described in terms of the scattering matrix, transmission-
line sections have to be attached at the ports. This defines propagation 
constants and mode patterns required for scattering matrix calculation. Typ-
ical line structures are planar lines (microstrip, coplanar waveguide), coaxial 
line·s, or rectangular waveguides. 

a(l) ---..i 
I : cross-sectional plane 
~1) +--I : p+Lip 

I I 
I 

oo ,...__ : transmission line A 
I I 
I I 
I I 

cross-sectional plane p=l 

transmission line B : -+- oo 
I 
I 
I 

cross-sectional plane p=2 

Figure 1: Structure under investigation 

The scattering matrix describes the structure in terms of wave modes at the 
ports [2], [3], [1], which can be computed from the electromagnetic field. 
Maxwellian equations are a set of fundamental equations describing all mac-
roscopic electromagnetic phenomena. A three-dimensional boundary value 
problem can be formulated using the Maxwellian equations in order to com-
pute the electromagnetic field. 
The application of the finite-volume method to the three-dimensional bound-
ary value problem for the Maxwellian equations results in the so-called Finite-
Difference method in the Frequency Domain (FD FD). The field of applica-
tions, the advantages of this method, and a comparison to other methods are 
described in [1]. 
The program package F3D (Finite Differenzen dreidimensional) [3], [1] 
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allows to simulate the electromagnetic field of nearly arb,itrary shaped struc-
tures. 
The three-dimensional boundary region is a rectangular box, in its simplest 
case. This box is subdivided into elementary rectangular cells using a three-
dimensional non-equidistant grid. The number of cells determines the order 
of the resulting matrix equations. 
The numerical solution of the boundary value problem is very time-con-
suming and the storage requirements are high. The most time-consuming 
parts of the simulation are the computation of eigenvalues and eigenvectors 
and the solution of linear algebraic equations. Numerical improvements for 
the simulation of monolithic microwave integrated circuits are described in 
[4]. 
In the following we will describe the problem and the finite-volume method 
for the solution of the three-dimensional boundary value problem. 

2 Scattering Matrix 
The structures under investigation can be described as an interconnection of 
infinitely long transmission lines, e.g. waveguides, which must be longitudi-
nally homogeneous. Cross-sectional planes p = 1 and p = 2 (see Figure 1) 
are defined on the transmission lines. 
The junction of the transmission lines may have an arbitrary structure. 
The complex generalized scattering matrix S describes the energy exchange 
and phase relation between all outgoing modes hip) and all incoming modes 
-(p) ac . 
In general, the scattering matrix is of infinite order. But, the order of the 
scattering matrix Sis limited to the order m 9 if on each waveguide only a 
finite number of modes is considered. That is possible because the energy 
of the complex and evanescent modes decreases exponentially with the dis-
tance from the connecting structure. These modes can be neglected within 
the limit of accuracy. Only a finite number of modes is able to propagate 
and have to be taken into consideration. 
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Let be m(P) the number of modes which have to be taken into account on the 
cross-sectional plane p. Let be p the number of cross-sectional planes. Then 
we have a total sum ms of all modes which have to be taken into account: 

p 
ms= Lm(P)_ (2) 

p=l 

The modes on a cross-sectional plane p are numbered with l. Then the indices 
p (and a) are related to the mode l in the following way 

p-1 

p=l+ Lm(q)_ (3) 
q=l 

The scattering matrix S can be extracted from the orthogonal decomposition 
of the electric field at two neighboring cross-sectional planes on each wave-
guide for a number of linear independent excitations. Therefore, we need the 
electric field. 
The electric field is computed using a boundary value problem for the Max-
wellian equations. The boundary value problem is formulated in the next 
section. 
The computation of the coefficients of the scattering matrix is treated in [4]. 

3 The Boundary Value Problem 
The following assumptions are applied for the structure (see Figure 1). 

- The waveguides are longitudinally homogeneous and infinitely long. 

- The waveguides and the structure are shielded by electric or magnetic 
walls. 

- The waveguides and the enclosures are cut at cross-sectional planes p. 
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- The tangential electric or the tangential magnetic field is known on the 
whole surface. 

This means that a three-dimensional boundary value problem of the Max-
wellian equations is formulated: 

Differential form Integral form 

_. an _. 
_. Ja fi.ds l ~ 8D ~ \lxH J+ - n ( J + 8t ) · dn, - 8t ' an 

v x E BB i E·dS l a.B ~ - 8t ' = (--==). dn, 
an n 8t -· 

(4) 
_. 

fnD·dfi lp dV, \l·D p, = 
_. 

fnB·dd \l·B - 0 ' = 0 . 

The first Maxwellian equation is a generalization of Ampere's law by the 
addition of the displacement current density ~~. The second Maxwellian 
equation is Faradays theorem of induction. The two divergence equations of 
( 4) correspond to Gauss' flux laws. 
The differential and the integral form of the Maxwellian equations are related 
by Stokes' theorem and Gauss' theorem. 
In this paper we use the integral form in the frequency domain. Because 
the scattering matrix is defined in the frequency domain, it is convenient to 
restrict oneself to fields which vary with the time t according to the complex 
exponential function eJWt. Then an arbitrary time-depended field M ( x, y, z, t) 
can be expressed as 

M(x, y, z, t) = 9'.\e(M(x, y, z)e:iwt), ME {E, D, J, ii, B} , (5) 

where M ( x, y, z) is the phasor form of M ( x, y, z, t). M is a function of the 
spatial coordinates only, and in general complex. 9'.\e indicates "taking the 
real part of" quantity in brackets. M represents the complex amplitude. 
Using the phasor representation allows us to replace the time derivations :t 
by JW since 
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(6) 

We will not include the factor eJWt explicitly as this factor occurs as a common 
factor in all terms. 
E [~] and if [;!] are the electric and magnetic field intensities, and D [;!~] 
and B [~~ J are the electric and magnetic flux densities, respectively. The 
current density is denoted by J [~2 ]. p [;!~] is the electric charge density. w 
[ ~] is the circular frequency of the sinusoidal excitation, and l = -1. In the 
integral form of the first two equations of ( 4) the surface n is an open surface 
surrounded by a closed contour an, while in the last two equations of ( 4) the 
surface n is a closed surface with an interior volume V. The vector element 
afi of area an is directed outward. The direction of the vector element ds 
of the contour an is such that when a right-handed screw i~ turned in that 
direction, it will advance in the direction of the vector element an. 
To the Maxwellian equations are added the constitutive relations 

ii= µff, (7) 
describing the macroscopic properties of the medium. In the last equation 
of (7) the total current density J has been split into its conductive part K-E 
and its source part le. 
In this paper problems of electromagnetic wave propagation are treated. 
Thus, it is assumed that the field generating charges and currents are lo-
cated outside of the field domain. That means, the electric charge density p 
and the source current density le are assumed to be zero in this model: 

p = 0, le= 0 . (8) 
Then, the last relation of (7) is Ohm's law. 
The quantities µ, €, and K. (permeability, permittivity and conductivity) are 
assumed to be scalar functions of the spatial coordinates. 
The quantitiesµ and€ are constant for a vacuum and are denoted by µ0 LX":J 
and €0 [ #:n], respectively. In other media µ and € are different from µ0 and 
€0. We write 

µ = µrµo, € = fr€o , (9) 
and call µr(x,y,z) the relative permeability and €r(x,y,z) the relative per-
mittivity. 
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The dimension of K is [ n~]. 
For the sake of simplicity we describe the permittivity € and the conductivity 
K by the complex permittivity: 

(10) 

Similar to ( 9) we write 

µ = µµo, £ = E€o with µ = µr . (11) 
Taking into account the continuity equation (equation of conservation of 
electric charge) 

-+ 8p 
\J·J=--- at (12) 

and substituting the constitutive relations (7) into ( 4) and using (5, 6, 8, 9, 
10, 11) the following differential and integral forms of the Maxwellian equa-
tions in the frequency domain will result 

Differential form Integral form 

1 -+ -+ i 1 ~ L (1w€eoE) · dfi, '\! x (µµ
0
B) - JWEEoE, -_-B ·ds -an µµo 

vxi - - 1wB, i E-dS L (-JWB) . dfi, 
an 

(13) 
v · (€f.oE) 0, t (i!eoE) · dfi = 0, 

-+ fnB-dfi 0 . '\l·B - 0, 

Boundary conditions • 
At the cross-sectional planes p, that is at z = zp, the transverse electric field 
.EiP) = Et(zp) is given by superposing transmission line modes .Ei~) = Et,z(zp) 
with weighted mode-amplitude sums w~P) = wz(zp): 

mCP) 

E""'*(p) - '°' w(p)E""'*(p) 1(1)-
t - L..,; l t,l ' p = p, (14) 

Z=l 
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The weighted mode-amplitude sums wf P) are given (see [4]). 
The transverse electric mode fields E~~) are computed using an eigenvalue 
problem for the transmission lines ( se~ Section 8). 
The tangential electric or the tangential magnetic field is assumed to be zero 
at the rest of the enclosure: 

Etang = o or ff tang = o (15) 

That is, these parts of the surface are considered to be perfect conduc-
tors, either electric or magnetic. The electric case, for example, corresponds 
with practical applications where the circuits are shielded by a metallic box, 
whereas magnetic walls correspond to symmetry planes. 
At the material boundaries the tangential component of the electric field 
Eta;,,9 , the tangential component of the magnetic field Htang, t'he,normal com-
ponent of the electric flux density Dnormal and the normal component of the 
magnetic flux density Bnormal have to be continuous. 

4 The Maxwellian Grid Equations-
It is advantageous to solve the Maxwellian equations directly rather than 
solving a partial differential equation of second order derived therefrom, be-
cause the quantities µ, and € can be different from cell to cell when using 
Maxwellian equations. 
The boundary region is divided into elementary rectangular parallelepipeds 
(see Figure 2) by using a three-dimensional nonequidistant orthonormal Car-
tesian grid. 
The edges of the cells are parallel to the coordinate axes. The grid nodes 
( i, j, k ), the left corners at the front of the bottom of the parallelepipeds, are 
numbered by 

l = (k-l)nxny+(j-l)nx+i, i = l(l)n:z:, j = l(l)ny, k = l(l)nz. (16) 

ns, s E { x, y, z}, is the number of rectangular parallelepipeds in the s-direc-
tion. Partly we will also characterize the corresponding elementary cells by 
(i,j,k). 
The lengths of the edges which correspond to the grid node ( i, j, k) are de-
noted by Xi.,j,k, Yi,j,k and Zi,j,k. 

The field vectors are expressed as 
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Figure 2: Via hole with a nonequidistant grid of rectangular parallelepipeds 
(dimensions in µm) 

M = M:r;i:r; + Myiy + Mziz, ME {E, D, J, H, B} . (17) 
ix, °iy and iz are the unit vectors in x-, y- and z-direction of the Cartesian 
coordinate grid, respectively. M:r:, My and Mz are called the x, y and z com-
ponents of M. Sometimes we also use the notion component for M:r:ix, Myiy 
and Mz~· 
An obvious allocation of the three components of E and B at the same grid 
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node is not chosen in order to avoid serious problems at surfaces of materials 
where some of the field components are not continuous. 
Instead of this, the components Ex, Ey and Ez of the electric' field E are 
located in the centers of the edges of the elementary cells. The components 
Bx, By and Bz, on the other hand are normal to the face centers [8], [5], [6]. 
Thus, the electric field components form a primary grid, and the magnetic 
flux density components a dual grid (see Figure 3). 

o Ex, Ey, Ez primary grid (cell) 

Eyi+l,j,k 

I Ey I 

I : ~~ 
,---------------------~------~ I I I 

I I I 
I I I 

I I I 
I I I 

I I I 
I I I 

/ I / 
/ dual grid (cell) : / 

t I I I 
I I I I 
I I I I l ____________________________ J' 

Figure 3: Primary and dual grid 

We use the lowest-order integration formulae 
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(18) 

in order to approximate the left-hand and the right-hand sides of the first 
and the second Maxwellian equation (see (13)). 
The closed path an of the integration consists of 4 straight lines of length 
Si and is the path around the periphery of an unit cell face in the grid. fi 

, denotes the function value in the center of the side Si. The direction of the 
vectors (see Figure 3) determines the signs of fi· 
n is the area of any cell face. f denotes the function value in the center of 
the surf ace of this face. 
Second Maxwellian equation 
If we apply the second Maxwellian equation (see (13)) to the cell faces which 
correspond to Bxi,j,k' BYi,j,k and Bzi,j,k (see Figure 3, primary"gri.d) using (18) 
yields 

Yi,j,kEYi,j,h. + Zi,j+l,kEzi,j+l,h. - Yi,j,k+lEYi,j,h.+1 - Zi,j,kEzi,j,h. = 
-JWYi,j,kZi,j,kBxi,i,k , (19) 

Zi 3• kEz· · ,_ + Xi 3• k+1Ex· · L+1 - Zi+l 3" kEz·+1 · L - Xi ,· kE;. · L = I J 1. 13 11<. I I 1. 13 11<. J I 1. 1J 1t< I I 1.1J 1n-; 

-JWXi ,· kZi ,· kBy· . L ' (20) I I I I 1. 13 11<. 

Esi,i,k and Bsi,;,1c' s E {x,y,z}, are the function values of the electric field 
components and of the magnetic flux density components, respectively, in 
the elementary cell ( i, j, k ). We do not use half indices. 
First Maxwellian equation 
Similar equations can be developed for Ex, Ey and Ez if we apply the first 
Maxwellian equation (see (13)) to the corresponding cell faces (parallel to 
the (y,z)-, (x,z)- and (x,y)-coordinate plane, respectively) of the dual grid 
(see Figure 3). Because the material can be different between two elementary 
cells of the primary grid, we have to divide the integration domain: 

!( Zi,j-1,h. + :i,j-1,k-l )B . . + !( ~i,j-1,k-l + ~i,j,k-1 )B .. 
2 ili.,j-1,k /.Li,j-1,h.-l Zi,3-l,Ic 2 /.Li,j-1,k-1 µ.i,j,lc-1 Yi,3,Ic-l 

(22) 
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!(Xi,j,k + Xi-1,j,k)B _ !(Zi,j,k + Zi,j,k-1 )B -
- - x· · - - z· · 2 µi,j,k µi-1,j,k t.,3,k 2 µi,j,k µi,j,k-1 t.,3,k 

!( :_:i,j,k-1 + :i-1,;,k-1 )B . . + !( :i-1,j,k-1 + :i...:.1,;,k )B . . 
2 ~,j,k-1 µi-1,j,k-l x,.,3,k-l 2 µi.-1,j,k-l µi-1,j,k Zi-l,3,k 

x,z E == JWf.oµog.; i· k y· . k ' .. , , t.,3, (23) 

1 ( ~i,j,k + ~;.,;-1,k )B . . _ !( :_:i,;,k + :i-1,j,k )Bx· . _ 
2 µ;. 3" k ~ 3" -1 k Yt.,3,k 2 ~ 3" k µi-1 3" L i,3,k J' ' J t, J tl'lif 

!( Yi-1,j,k + Yi-l.j-1,k )B + l( Xi-1,j-l,k + Xi,j-1,k )B 
2 P.i-1,j,k jj.;._l,j-1,k Yi-l,j,Je 2 ili-l,j-1,k ji.;.,j-1,k Xi,j-l,k 

x,y E == JW€oµog.; 3· k z· · k • .. , , t.,3, (24) 

The gy,z, g:c,z and gx,y are declared in (26), (27) and (28), respectively. 
The Equations (19 - 24) form a system of linear algebraic equations for the 
computation of the electromagnetic field in the absence of any boundary con-
ditions. 
Electric-field divergence 
Dividing the integration domain of the dual grid in order to take into ac-
count the different material of the elementary cells and discretizing the third 
equation in (13) (see Figure 3) yields 

(25) 

with 

91!·~ == (Yi,j,kZi,j,k ;. . + Yi,j-1,kZi,j-1,Je ;. . + 
i,3,k 4 '-1.,3,k 4 ....,,,,3-l,k 

Yi,j-1,k-lZi,j-1,k-1 - + Yi,j,k-1Zi,j,k-l - ) 

4 Ei,j-1,k-1 4 f.i,j,k-1 , (26) 

x z ( :z:· · •-z· · L :r;· · L z· · ,_ 
9 . '. == "·'·"' i,3,,., €· . + i,3,,.-1 ,.,,,,.,_l €· . + 

i,3,k 4 i,3,k 4 i,3,k-1 

Xi-1,j,k-lZi-1,j,k-1 - Xi-1,j,kZi-1,j,k €· . ) 
4 Ei-1,j,k-1 + 4 i-l,3,k , (27) 
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97''!' = (Xi,j,kYi,j,k E· . + Xi-1,j,kYi-l,j,k E· . + 
i,3,k 4 i,3,k 4 i-l,3,k 

Xi-1,j-1,kYi-1,j-1,k - + Xi,j-1,kYi,j-1,k - ) 
4 €i-1,j-1,k 4 €i,j-1,k . (28) 

Magnetic-field divergence 
The primary grid is used to discretize the forth equation of (13): 

Y. "kZ· ·kB -y·+1 ·kz· 1 ·kB + i,J, i,3, Xi,j,k 'I. 1J1 i+ 1J1 Xi+l,j,k 

x· ·kz· ·kB - x· · 1 kZ· · 1 kB + i,3, i,3, Yi,j,k i,J+ , i,J+ , Yi,i+l,k 

(29) 

Remark 
We note that using the differential form of the Maxwellian equations the 
grid equations (19) - (24), (25) and (29) also may be derived by the finite-
difference method [8] instead of the above used finite-voluI_?.e method. 

5 The System of Linear Algebraic Equations 
The number of unknowns in the system of linear algebraic Equations (19 -
24) can be reduced by a factor of two. Substituting the components of the 
magnetic flux density in (22 - 24) using (19 - 21) and using corresponding 
manipulations of the second Maxwellian equation to neighboring elementary 
cells yields 

( z,y + y,z + z,y + y,z 2 2 y,z )E _ Q 
C· "k c. "k C· ·-1 k C· "k-1 - "'o9· "k x·. ,_ - ) i,3, i,3, i,3 ' i,3, i,3, i,3,~ 

(30) 
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( x,z + z,x + x,z + z,x 2 2 x,z )E _ o 
C· "k C· "k C· "k-1 C·-1 "k - Xo9· "k y· "L - ' i,3, i,3, i,3, i ,3, i,3, .,,, ... (31) 

( y,x + x,y + y,x + x,y 2 2 :z:,y ) E _ Q 
C· "k C· "k C·-1 "k C· ·-1 k - Xo9· "k Zi. k -i,3, i,3, i ,3, i,3 , i,3, ,3, (32) 

with 

xo = w..J€0ii0 (33) 

( 
s . . k s .,_ "I-kl-) s,t _ -3:.!2.:_ + i ,3 , 

ci ·k - - -
'3' µ. . k µ .,_ "l-kl-i,3, i ,3, 

1 s,tE{x,y,z}. (34) 

( i', j', k') are the indices of the elementary cell which is located in s-direction 
in front of the cell ( i, j, k ): 

s = x: i1 
- i - 1 J.1 - J. k' = k - ' - ' 

s =y: i' = i, j' = j - 1, k' = k 
s =z: i' = i, j' = j, k' = k - 1 

Because we use a Cartesian grid, we have 

Xi,j,k 

Yi,j,k 

Zi,j,k 

Xi-1,j,k -
Yi,j-1,k -
Zi,j,k-1 -

Xi,j-1,k 

Yi+i,i,k 

Zi+l,j,k 

Xi-1,j-1,k 

Yi-1,;-1,k 

Zi-1,j,k-1 

Xi,j+l,k 

Yi-1,;,k 

Zi-1,j,k 

Xi-I,j,k-1 

Yi,j-1,k-1 

Zi,j-1,k-1 

xo is the wavenumber in vacuo. 
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Xi,j,k-1 

Yi,j,k-1 

Zi,j-1,k 

Xi,j,k+l 

Yi,i,k+i 

Zi,j+l,k (35) 



6 The Matrix Representation of the 
Maxwellian Equations 

Second Maxwellian equation 
Let be 

with 

e:r; = ( e:r;l' e:r;2' • • • 'eXn:z:y.z:) 
ey = ( ey1 , eY2 , .•. , eYn:z:y.z: ) 
ez = ( e Zl ' e z2 ' • • • ' e Zn:z:y.z: ) 

-+ -+-+ -+T -+ 

b = (bx, by, bz) , bx = (bx1 , bx2, · .. , bXn:z:y.z:) 

by = (by1' by2' ... 'bYn:z:y.z:) 
bz = (bz1' bz2' ••• 'bZn:z:y.z:) 

(36) 

the vectors containing the electric and the magnetic field of the elementary 
cells, respectively, in the system of the linear algebraic Equations (19 - 24). 
Let be 

diag( · · · , Xi,j,k, Xi+l,j,k, ' .• , Xi,j+l,k,' · ' , Xi,j,k+1, 

· · ·, Yi,j,k, Yi+1,j,k, · • ·, Yi,j+1,k, · · ·, Yi,j,k+1, 
.•. , Zi,j,k, Zi+l,j,k, ... , Zi,j+l,k,. · · , Zi,j,k+l,' '· ) , 

(38) 

D A - diag( · · ·, Yi,j,kZi,j,k, · · ·, Xi,j,kZi,j,k, · · ·, Xi,j,kYi,j,k, · · · ) (39) 

diagonal matrices and A the following matrix: 
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A= (40) 

"' "' + "' "'.. + "' "' + i:: ·'5 i ·'5 + . .:; + 0 "' "' "' "' "' i "' ~ ·'5 + ..... . .:; ·'5 + ..... ·.:; :~ "':! :~ ·a; a a i i ~ rJ ' ' ;r ;r 0 >l >l 
P. f:i1 f:i1 f:i1 f:i1 til f:i1 til f:i1 

~ . @] 0 0 . 0 1 0 0 . -1 -1 0 . 1 0 

1 0 0 . 0 0 0 0 . 0 • 0 0 . 0 . 0 

-1 0 0 . 1 . @] 0 0 . 0 1 -1 0 . 0 

-1 0 0 . 0 0 0 0 . 0 0 0 . 0 . 0 

1 0 -1 0 -1 1 0 . 0 . @] 0 . 0 . 0 

The elements of A contained in a box are diagonal elements. 
The following scheme gives distances between the columns which contain 
the diagonal element and the values 1 and -1 in the first row of A. For 
example, nxy is the distance between the columns which correspond to EYi.,;,1c 

and EYi.,;,1c+i . 

n=y n:z: 

Ex· ·1c i,3, Ey· ·1c i,3, EYi.,j,k+l Ez· ·1c i,3, Ez;. ·+1 1c 13 I 

Ex· ·1c i,3, Ey· ·1c i,3, EYi.,j,k+l Ez· .k i,3, Ez· ·+1 1c i,3 I 

n:z:yz 

2n:z:yz 
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A is defined as the operator of the line integral and represents the curl oper-
ator ih the second Maxwellian equation (see (13)) using the primary grid. 
The diagonal matrices D s and D A contain the information on dimension for 
the structure and the corresponding mesh. The represented rows of A corre-
spond to the left-hand side of the Equations (19), (20) and (21) in this order 
extracting D8 • Using the denotations (36), (?7), (38), (39) and the definition 
of A the following matrix representation of the second Maxwellian equation 
results from (19) - (21 ): 

1 E. ds = r (-1wB). dfi :::} ADse = -1wDAb . (41) fan Jn 

First Maxwellian equation 
Let be 

diag(. . . !( :i.i,1c-1 + :i-1,j,1c-1 ) • • • !( :i-1,j-1,1c + :i,j-1,1c) 
' 2 µi,j,lc-1 µi-1,j,lc-l ' ' 2 µi-1,j-l,lc µi,j-1,lc ' 

. . . !( :i,j-1,Jc-l + :i,j,Jc-1 ) • • . .!. ( :i,j-1,Jc + :_i,j-2,lc) 
' 2 µi,j-1,Jc-l ~.j,Jc-1 ' ' 2 µi,j-1,Jc µi,j-2,Jc ' 

. . . .!. ( 'Y_.i-1,j,Jc + :i-1,j-l ,Jc ) .!. ( 'Y_.i,j,Jc + 'Y_.i,j-1,Jc ) 
' 2 ~-1,j,Jc µi-l,j-1,lc ' 2 µi,j,Jc µi,j-1,lc ' 

. . . !.( :i,j,lc-1 + :i,j,lc-2) • • • !.( :i,j-1,Jc + :i,j-1,Jc-l ) 
' 2 ~.j,lc-1 ~.j,lc-2 ' ' 2 µi,j-1,Jc ~.j-1,lc-1 ' 

. . . !( :i-1,j,Jc-l + :i-1,j,lc) !( :i,j,lc + :i,j,Jc-1 ) ••• ) 
' 2 µi-l,j,Jc-1 ~-1,j,Jc ' 2 µi,j,Jc µi,j,Jc-1 ' ' 

DAe = diag( y,z x,z x,y 
... '9i,j,k' ... '9i,j,k' ... '9i,j,k' ... ) 

diagonal matrices and A the following matrix: 
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A - (44) 

.. "'.. "' .. "' "' .. 
~ "' I .. "1 I ... "j I . .:; 

"' I "' "' I "' "' I ... "' ·'5 '':? I . .:; ·.:; .... I . .:; . .:; 
:~ .l . .:; 

a a fi ... ;f ... 
~ ;f ... ;f a .,, >.i >l >.i 

fl:l fl:l i:ti fl:l fl:l fl:l i:ti fl:l fl:l fl:l i:ti i:ti 

0 O· o@J. 1 0 0 -1 0 . -1 0 1 

-1 0 . 0 1 0 0 0 @] . 0 0 . 1 -1 

0 0 . 0 -1 0 0 . 0 0 . 0 0 . 0 0 . 

0 1 0 -1 0 0 -1 1 0 0 o@] 

0 0 . 0 1 0 . 0 0 0 • 0 0 . 0 0 

The elements of A contained in a box are diagonal elements. 
The following scheme gives distances between the columns which contain the 
diagonal element and the values 1 and -1 in the first row of A. For example, 
nxy is the distance between the columns which correspond to BYi,j,k-i and 
By .. ._. '1.,3, ... 

By··._ '1.,3, ... 

By··._ i,3, ... 
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A is defined as the operator of the line integral and represents the curl oper-
ator in the first Maxwellian equation (see (13)) using the dual grid. 
The diagonal matrices Ds/fl. and DA'i contain the information on dimension 
and material for the structure and the corresponding mesh. The represented 
rows of A correspond to the left-hand side of the Equations (22), (23) and 
( 24) in this order extracting D s Iµ.. 
Because of A= AT we get with the denotations (36), (37), ( 42) and ( 43) the 
following matrix representation of the first Maxwellian equation from (22) -
(24): 

i B 1 -I- -*' -=-. ds = (JWEEoµoE). dO 
an µ n 

(45) 

The system of linear algebraic equations 
Using (33) we get from ( 41) and ( 45) the matrix representation of the system 
of linear algebraic Equations (30) - (32): 

(46) 

with (see (34)) 

Qi = (c~'~k) · i,3, 

We have to take into account the boundary conditions (14, 15) in ( 46). Thus, 
we get from ( 46) a partitioning of the matrix Qi into the sum of two matrices: 

(47) 

where Q1,re is known. 
The matrix Q1,r contains coefficients of the corresponding rows and columns 
of the matrix Q1• The matrix Qi of ( 47) is transformed into a symmetric 
one, after some mathematical manipulations: 

l l l 

- D! QiD-; 2 D! e 
l l 1 1 1 

(D! Qi,AD-; 2 + D! Qi,rD-; 2 )D! e 
( Q1,A + Q1,r )~ 

(48) 

- 0 

with 
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and 

Q- - ~ATD n-iA t 2 i - D s sfµ. A D s - :Xo D A€ . (50) 

The matrix Qi from ( 48, 49, 50) is obviously a symmetric matrix. Qi,r 
depends on the position of the cross-sectional planes p and is also a symmetric 
matrix ( see example in this section and Figure 5). Thus, Qi,A is also a 

- T - - T - - -symmetric matrix because of ( Qi,A) = (Qi - Qi,r) = Qi - Qi,r = Qi,A· 
We get from ( 48) the system of linear algebraic equations with the matrix 
Qi,A: 

Q- = - Q- = - ~Q -~ ~ .... _ = -· i,Ae - - i,re - -Ds i,rDs Ds e - r (51) 

with 

- !. - n2-r = 9 T , - Q -r = - i,re ' (52) 

and 

Tx = (rx1 'Tx2, ... 'Txn:z:yz) ' 
~ - (ry1,rY2, ... ,rYn:z:yz) ' (53) 
iz = ( T Zl ) T z2 ) • • • ' T Zn:z:y.:z: ) • 

We do not solve the system of linear algebraic equations in this form, but 
we add the gradient of the third Maxwellian equation (see (13)) to (51). A 
motivation for this is given in [4]. 

The electric-field divergence and 
the modified system of linear algebraic equations 
Extracting DAe the matrix B (see (54)) results from (25). B consists of 3 
submatrices because of homogeneity with the first Maxwellian equation. The 
submatrix of B is defined as the operator of the surface integral or of the 
divergence in the 3rd equation of (13) using the dual grid. 
The elements of B contained in a box are diagonal elements. 
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B - (54) 

~ 
~ 'j' 

.s ..!: ..!: ~ i ..!: I ~ ..!: 
-~ ..!: ·~ i .":? -~ ·~ ·~ ..+-:. I -~ + + ..!: + ~ ~ ...... .... ·"i -~ + ·'5 + co 

r:t:l8 r:t:l8 r:t:l8 r:t rJ ~ ~ r:t:lt.r r:t:lt.r r:t:lt.r r:t:lt.r 0 
~ 

~ . -1 [] . -1 1 . -1 1 

+ -1 [] . -1 . ~. 1 . -1 . 1 . 

~ 

+ 
~ 

r! . -1 1 . -1 . [] . -1 1 

-1 1 . -1 . 1 . -1 . 1 . 

~ 

+ 

1 . -1 1 . -1 . [] 

-1 1 . -1 . 1 . -1 . 1 . 

The following scheme gives distances between the columns which contain the 
diagonal element and the values 1 and -1 in the first row of B. For example, 
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nx is the distance between the columns which correspond to EYi.,j-l,1e and 
Ey·. L" 1.,3,,.. 

1 

Ex·-1 .,_ 1. ,3,,.. Ey·. ,_ 1.,3-1,,. Ey···-"·3·"' Ez· · ... _1 ,.,3,,., 
Ex·-1 .,_ 1. ,3,,. Ey·. L 1.,3-1,,. Ey·. L 1.,3,,. Ez;. . L-1 ,3,,. 

2n:z:y.z: 

With ( 43) and the definition of B we get the following matrix r~presentation 
of the third equation of (13): 

£ EeoE · dfi = O => BDA•e= O . 

Equation (55) can be written without loosing generality as-

with 

with 

dvE.E.;. ·1e ,3, 

DnE. = diag(· · ·, dvE.E.·. L, dvE.E.· .... , dvE.E.·. L, · · ·) 
1.,3,,.. "•'•"' "·'·"' 

1( ~ 8 Xi-1,j-1,k-lYi-1,j-1,k-lZi-1,j-1,k-1 €i-1,j-1,k-1 + 
-2 

Xi,j-l,k-lYi,j-l,k-1Zi,j-l,k-1€i 3·-1 k-1 + 
' ' -2 

Xi-1,j,k-lYi-1,j,k-lZi-1,j,k-1 €i-1,j,k-1 + 
x· · · · z· · €?. + i,3,k-1Yi,3,k-1 i,3,k-1 i,3,k-1 

-2 
Xi-l,j-1,kYi-l,j-1,kZi-l,j-1,k€i-l,j-l,k + 
x· · · · z· · €?. + i,3-1,kYi,3-1,k i,3-1,k i,3-1,k 
x · · · · z· · €? . + x · · · · z· · €? . ) i-1,3,kYi-1,3,k i-1,3,k i-1,3,k i,3,kYi,3,k i,3,k i,3,k · 

Equation (56) is equivalent to (see [4]) 

V(V · €€oE) = o 
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We can transform Equation (56) into 

- - - !. _!. - l._ Q2e = 0 with Q2 =Di Q2Ds 2
, e =Die . (60) 

Q2 is obviously a symmetric matrix. The matrix Q2 will be connected to-
gether with Qi,A· Therefore, we carry out a similar partitioning like ( 48). 
We get from(60): 

(61) 

with 

(62) 

Q2,r. depends on the position of the cross-sectional planes p an_d is a symmetric 
matrix (see example in this section and Figure 6). Thus, Q2,A is also a 

· · - T - - T - - -symmetric matrix because of ( Q2,A) = ( Q2 - Q2,r) = Q2 - Q2,r = Q2,A· 
We get the system of linear algebraic equations with the matrix Q2,A: 

Q2,A~ = 0 · 

We add the Equation (63) to Equation (51) with (52). 
Thus, we get 

with 

and 

Q - Qi,A + Qi,r + Q2,A + CJ2,r 
- Q1 + Q2 

1 1 1 1 

D!Q1D; 2 + D!Q2D; 2 
1 1 

D! (Qi + Q2)D; 2 
1 l 

- D!QD-; 2 . 

Thus, we get from (66) 

with 
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QA from (64) and Q from (65, 66, 68) are obviously symmetric matrices. 
Now we specify the right-hand side r introduced in (51). The discretization 
of the domain is demonstrated in Figure 4 with nx = 5, ny = 4 and nz = 3. 

/ 
/ 

/ 

4 9 14 19 
/ 

/ 
/ 

3 8 13 J:8 
/ 

/ 
/ 

2 7 12 11 
/ 

~ 
/ 

/ 

1 6 11 J:6 

Figure 4: Decomposition of a three-dimensional domain 
into elementary cells , 

The ( :i:, y )-coordinate plane should be the cross-sectional plane on which 
Exi,;,1 and EYi,j,1' i = l(l)nx, j = l(l)ny, are known solving the eigenvalue 
problem, that is, 

ex1 - Ex111 ex2 Ex2,1,1 ' ... ' eXn:z:y Exn:z:,ny,1 (69) I I 

ey1 E eY2 E eYn:z:y E Y1,1,1 - Y2,1,1 ' ... ' Yn:z:,ny,1 
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The elements marked by o of the matrix Q1,r (see Figure 5) are zero-elements 
of the matrix Q1,A· These elements form the right-hand side r. . 
The diagonal elements ~arked by • of the matrix Q1,r (see Figure 5) are 
elements of the matrix Q1,A with the value 1. These elements form also the 
right-hand side r. 

-
,.--4 + ....... ..-.:. ~ ....... ..-1 

~:j-~+~ ~~:j-~N~ 

J.JJ:J~£ ~JiJJ~~ 
- -
-~ + 

."? + ""? 

.~-~:~. 

Figure 5: Topological structure of the matrix Q1,r and 
building of the right-hand side r 

I ' 

r 

fx. · 1= l,J, 

tX1 
-------
fx· ;2 1,1, 

fy. · 1= l,J, 

eyl 
fy. ·2 1,1, 

fz. · 1 1,J, 

rz. 1. 1 l+ ,J, 

!z. · 11 \ lJ+ ' 

The elements of the filled areas of the matrix Q2,r (see Figure 6) are zero-
elements of the matrix Q2,A· 
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- -.- ,..... +- N 

JjJ.J)Jrff 
- ,...... -: ·? ~ ·-S ~+ :} 

·? + ·-;; + """:> ·? ~ 
~p:f. ~p:f. ~ ~ ~ 

I 

...... -.- . ...;, + N . J-j J. J~ J-j 
I 

Figure 6: Topological structure of the matrix Q2 ,r 

Thus, we have 

ql,1 
qna:y,na:y 

qna:yz+l,na:yz+l 

qna:yz+na:y ,na:yz+na:y 

-c7'~ E i,3,l Yi,j,1 ' 

from (32) are known, that 1s, 

- 1 T:c1 

1 T:i;na:y 

1 Ty1 

1 TYna:y 

+ y,z E 
ci-1 3·1 :Ci-13·1 

'' r r 

E:c1,1,1 ) ... ) 

- E:cna:,ny,1 ) ... ) 
- E Y1,1,1 ) ... ) 
- E Yn;r;,ny,1 

and + c7'~ E .. i,3-l,l Y;,3-1,1 

(70) 

Tz = c1!•71E:c·. + c7·~1E . . - c1!•z1 . 1E:c· . - c7'~ 11Ey·. , (71) l i,3, i,3,l i,3, Yi,3,l i- ,31 i-l,3 11 i,3- , ;,3-1,1 

l = (j - 1 )n:c + i, with i = 1, ... , n:i;, j = 1, ... , ny. 
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Because the cross-sectional plane is located in front of the ( x, y )-coordinate 
plane in our example, -cY'1~1 Exi ..; 1 from Equation (30) and -c3!'~1 Ey- . 1 from 

~, ' tJt i,3, i,3, 

Equation (31) for k = 2 are known for i = 1, ... , nx and j = 1, ... , ny, that 
means 

(72) 

£ = (j - l)nx + i with i = 1, ... , nx, j = 1, ... , ny. 

Generally we have to summarize the known values over all modes and all 
cross-sectional planes to build the right-hand side r. 
The magnetic-field divergence 
Extracting DA (see (39)) the matrix B (see (73)) results from (29). B con-
sists of 3 submatrices because of homogeneity with the second Maxwellian 
equation. The submatrix of 13 is defined as the operator of the surface inte-
gral or of the divergence in the forth equation of (13) using the primary grid. 
The elements of B contained in a box are diagonal elements. 
The following scheme gives distances between the columns which contain the 
diagonal element and the values 1 and -1 in the second row of B. For exam-
ple, nx is the distance between the columns which correspond to BYi,i,k and 
BYi,i+l,k. 

Bx-+1 • L i ,3, .. 
Bx-+1 · L i ,3, .. 

1 

n:z:yz 

By- .k i,3, 

By- .k i,3, 

2n:::yz 

BYi,i+l,k 

BYi,i+l,k 
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B - (73) 

~ .... 
~ ~ ~ + + 

~ ~ ~ ~ + 0 ·'5 ·~ -~ -~ -~ ....... ~ "'".? .... 
-1-=' I .,.:; + I 

~ 

I + I 
~ 

I 
~ ....... .,.:; "'".? .,.:; -~ 

Cl) 

~8 ~8- 8 er! J crf er! ;,r rt ;,r ~;,r 0 
~ ~ ~ ~ ~ 

~ . lil -1 1 . -1 1 . -1 
~ . lil -1 . 1 . -1 . 1 -1 . 

- 8 
~ 

I 
~ 

+ 
1 -1 1 . -1 1 . -1 

~ 

+ 
1 -1 . lil . -1 . 1 . -1 . 

1 -1 1 . -1 1 . -1 

~ 

+ 

1 -1 . 1 . -1 . lil . -1 . 

With (39) and because of B = BT (compare (54) and (73)) we obtain the 
following matrix representation of the forth equation of (13): 
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(74) 

7 Properties of the Grid Equations 
The Maxwellian grid equations ate a consistent discrete representation of the 
analytical equations in the sense that basic properties of the analytical fields 
are maintained [7]. 
Not all of the Equations (13) are independent. 

First Maxwellian equation, electric-field divergence 
If the divergence of the first Maxwellian equation (see (13)) is taken, we get 

- -· 

. 1 - -
V · (V x (-_ -B)) = JW\7 · (€e0E) = 0 , 

µµo (75) 

because the divergence of the curl of any vector is identically zero. That 
means, we have derived for w =j:. 0 the third equation of (13) from the first 
Maxwellian equation of (13). 
The matrix representations of the first and of the third equation of (13) are 
(see ( 45) and (55), respectively) 

T - -A Ds,µ.b = JWEoµoDAee, BDAee= 0 . (76) 
In order to derive the matrix representation of the electric-field divergence 
from the first equation in (76) we have to form the divergence in the dual 
grid because of ( 75) (see also Section 4 and Figure 3). The divergence in the 
dual grid is represented by the matrix B (see (54)), that means, we have to 
multiply the first equation of (76) with B: 

(77) 
BAT in (77) is the zero matrix (for the representation of Band AT= A see 
(54) and ( 44), respectively): 

(78) 

Hence we obtain from (77) the matrix representation of the electric-field 
divergence: BD Aee = 0. This result is independent of the discretization size, 
and corresponds with (75). (77) represents the analytical identity 
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div curl= 0 . 

in the dual grid. 
The analytical identity 

curl grad = 0 

is represented in the dual grid space by 

Second Maxwellian equation, magnetic-field divergence 

(79) 

(80) 

(81) 

If the divergence of the second Maxwellian equation (see (13)) is taken, we 
obtain 

\J . (\! x E)) = -JW \J . B = 0 ' (82) 

because the divergence of the curl of any vector is identically zero. That 
means, we have derived for w -:f. 0 the forth equation of (13) from the second 
Maxwellian equation. 
The matrix representations of the second and of the forth equation of (13) 
are (see (41) and (74)) 

(83) 

In order to derive the matrix representation of the magnetic-field divergence 
from the first equation in (83) we have to form the divergence in the primary 
grid because of (82) (see also Section 4 and Figure 3). The divergence in 
the primary grid is represented by the matrix BT (see (74)), that means, we 
have to multiply the first equation of (83) with BT: 

(84) 

BT A in ( 84) is the zero matrix (for the representation of BT = B and A see 
(73) and ( 40), respectively): 

(85) 

Thus, we obtain from (84) the matrix representation of the magnetic-field 
divergence: BT DAb = 0. (85) and ABT= 0 represent the analytical identi-
ties (79) and (80) in the primary grid space, respectively. 
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Remark 
The relations A == AT and B == BT represent a topological property which is 
caused by the duality of the two grids. 

8 The Eigenvalue Problem 
The structure is shielded by an enclosure, which is assumed to be a rect-
angular parallelepiped. A short part of the transmission lines is considered 
as a part of the connecting structure, for example on the right-hand side of 
the cross-sectional plane p == 1 or the left-hand side of the cross-sectional 
plane p == 2 in Figure 1. The remaining parts of the transmission lines are 
located outside of the cross-sectional planes. The cross-sectional planes can 
be located on all faces of the enclosure, that means on the two ( x, y )-, ( x, z )-
or (y, z )-coordinate planes. The number of transmission lines and therefore 
the number of cross-sectional planes on each coordinate plane can be greater 
than one in the model used in the program package F3D. 
We consider a selected transmission line in the discussion to follow. All other 
transmission lines can be treated similarly. Let the z-direction be the lon-
gitudinal direction of the selected transmission line. The transmission lines 
are longitudinally homogeneous. Thus € and P, are functions of transverse 
position but are independent of the longitudinal direction. 

- - -
µi,j,k-1 == µi,j,k == µi,j,k+l ' 

Ei,i,k-1 == €i,i,k == €i,i,k+1 . 
(86) 

Thus, we assume that the fields vary exponentially in the longitudinal direc-
tion: 

E(x, y, z ± 2h) == E(x, y, z)e-=fJkz2h . (87) 
kz is the propagation constant. 2h is the length of an elementary cell in 
z-direction (see ( 35) and Figure 7): 

Zi,j,k 

Zi,j,k-1 

Zi+l,j,k - Zi-1,j,k - Zi,j-1,k - Zi,j+l,k 

Zi-1,j,k-1 Zi,j-1,k-1 2h · 

Applying (35) and (86) to (34), we obtain 

y,x _ y,x 
ci,j,k - ci,j,k-1' 
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(i,j,k+ 1) 

(i,j,k-1.) 

Figure 7: Reduction of the dimension 

Equation (30) contains the electric field components Exi.,J,1r.+i, Ezi.,J,1r.-i, 

Ezi.+i,;,1r.-i and Exi.,J,k-i. A substitution of the ansatz (87) into Equation (30) 
and use of (89) gives 

( z,y + 2 y,z + z,y 2 2 y,z ) E _ 0 
C· "k C· "k C· ·-1 k - "'o9· "k x·. ,_ - . 1.,3, 1.,3, i,3 ' i,3, i,3,10 (90) 
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The longitudinal electric field components Ez· . L, Ez·+1 . L in (90) can be elim-i,3,,,. i ,3,,,. 
inated by means of the 3rd equation in (13). 
Using (87) and (see (28) and (35)) 

x,y _ x,y 
9i,j,k - 9i,j,k-1 

the following form of the 3rd equation of (13) yields (see (25)) 

(1 - e+3kz;2h)E . . = Zi,3,k 

(91) 

1 
---(91!'~ Ex· . - g'!!'z . Ex· . + g:r:'~ E . . - g:r:·~ E . . ) (92) x,y i,3,k i,3,k i-l,3,k i-l,3,k i,3,k Yi,3,k i,3-l,k Yi,3-1,k 

9i,j,k 

and by index shift 

1 y,z E - '!f1~ E + :i_:,z • E - :i_:,z . E 
x,y (9i+l,j,k Xi+1,j,k 9i,3,k Xi,j,k 9i+l,3,k Yi+l,j,k 9i+l,3-l,k Yi+l,j-1,k) 

9i+l,j,k 
(93) 

A substitution of (92) and (93) into (90) and using of 

(94) 
gives (95). 

1 ( y,x y,z ( 1 + 1 ) + z,y + z,y 2~ y,z )E + 
c¥•:- L ci,j,k9i,j,k 9 ::·'!' L 9 ::+·Y1 . 1r. ci,j,k ci,j-1,k - o9i,j,k xi,j,k i,3,,., i,3,,,. i ,3, 

# (c7'7kEY. . - c7•1!kEx· ·+ .. - c7'7kEY . . L) + c.'· i,3, i+l ,3,k i,3, i,3 1,,., i,3, i,3,,,. i,3,k 

y,a: 
ci,j,k _1_(- y,z . E + :r:·~ E - ::·~ E ) -
c¥•:- g::•'!' 9i-l,3,k Xi-1,j,k 9i,3,k Yi,j,k 9i,3-l,k Yi,j-1,k i,3,k i,3,k 

1 ( z,y E + z,x E _ z,x E ) 
c¥•:- ci,j-1,k xi,;-1,1r. ci,j-1,k Yi+1,;-1,1r. ci,j-1,k Yi,;-1,1r. i,3,k 

(95) 
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The corresponding Equation (96) is obtained from (31) in a similar way: 

1 ( x,y x,z ( 1 + 1 ) + z,x + z,x 2 2 x,z ) E + :c:z- C· · · · a::y- -:c-y-- C· · C· · - X g.· .. c.'· k i,3,k9i,3,k 9. '. k g. '·+l k i,3,k i-l,3,k 0 i,3,k Yi.,3,k i.,3, i.,3, t.,3 ' 

1 ( z,y E z,x E z,y E ) + -r.r- C· · x· . - C· · . - C· · x· . c.'. k i,3,k i. 13+1,k i,3,k Yi.+1,j,k i,3,k i. 13,k i.,3, 

1 ( z,x E + z,y E z,y E ) :::,z .. C· · . . C· · x· . - C· · x· . c . . k i-l,3,k Yi.-1 13,k i-l,3,k i.-1 13+1,k i-l,3,k i.-1 13,k i.,3, 

(96) 

Thus, the problem for the transmission line region 1s reduced to a two-
dimensional problem, k = const. 
We have some simplifications in the calculation of the coefficients (34), (26) 
and (27) because of (86) and (88). Thus we denote the terms from (34), (26), 
(27) and (28) with c and g instead of c and g, respectively, and we get 

and 

-s,z 
ci,j,k 

-s,t 
ci,j,k 

4h t E {x,y}, 

( Si,j,k + 8il-,j1jkl-) _!_ { } 
ili,;,k P.i1-,;1-,1c1- 2h' s E x, y , 

s,tE{x,y}, 

g-y,z h(y· · kf· · + y· · f· · ) i,j,k i,3, i,3,k i,3-l,k i,3-l,k ' 

-x,z 
9i,j,k h(x· · -. · + x· · €· · ) i,3,kE.i,3,k i-l,3,k i-l,3,k ' 

-x,y 
9i,j,k ( 

Xi,j,kYi,j,k f. . + Xi-1,j,kYi-1 ,j,k f. . + 
4 i,3,k 4 i-1,3,k 

Xi-1,j-1,kYi-1,j-1,k f· . + Xi,j-1,kYi,j-1,k f· . ) 
4 i-l,3-l,k 4 i,3-1,k . 
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Taking into account the denotations ( 97, 98) and sorting the unknowns m 
(95, 96) in ascending order we obtain 

-z,y -y0:r: -y,z 
ci,j-1,k E ci,j,k 9i-l,j,1c E 

--::y;z:-- :r;· ·-11c - -y,z ~ :r;·-1·1c + ci,i,k i,3 , ci,j,1c 9i,j,k i ,3, 

(

-y,a: -:i:,z -z,:i: ) C· . k 9· . k c .. k 
-~;;, _;;;!i - -~;;, E . . + 
C· • ,_ 9· . ,_ c .. ,_ Yi,3,k i,3,ro i,3,,. i,3,,,. 

( 

-y,:r: -:i:,z -z,:i: ) c .. k 9·+1 . k c .. k 
- -~;;, -~.y ,3, + -~;;, E . . c .. ,_ 9·+1 . L c .. ,_ Yi+l,3,k i,3,,,. 't ,3,,. i,3, ... 

= 7(h)E:r:· . ,_ , i,3,ro (99) 

( 

-:r:,y -y,z -z,y ) 
ci,j,k 9i-l ,j,k ci-1,j,k 

- -:i:,z -:i:,y + -:i:,z E:r;·-1 . k + 
ci,j,k 9i,j,k ci,j,k i •3• 

(

-:r:,y -y,z. -z,y ) ci,j,k gi,j,k ci,j,k 
-:i:,z -:i:,y - -:i:,z E:r;· · k + 
ci,j,k 9i,j,k ci,j,k i,3• 

(100) 

On the transmission line wall, the tangential component of E or the tangen-
tial component of ii must vanish. Hence (99) and (100) form an eigenvalue 
problem for the transverse electric field on the transmission line region un-
der the boundary conditions (15). 7(h) are the eigenvalues. E:r:i,i,k' EYi,i,k' 

k = const, are the components of the eigenfunctions. Solving the eigen-
value problem the transverse electric fields E;~), l = l(l)mCP), are known at 

' 
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the cross-sectional planes p, and the boundary condition (14) can be build 
superposing the transmission line modes .E;~)' l = l(l)m(P), with weighted 
mode-amplitude sums (see [4]). ' 
If the cross-sectional plane is located on the ( x, z )-plane of the enclosure, 
we can develop in a similar way the equations which correspond to (99) and 
(100). 
We get formally the corresponding equations if we change the variable y to 
z and shift the indices j to k and k to j, j = canst. 
The same can be performed for the (y, z )-plane of the enclosure. 

9 Conclusion 
The model for the simulation of monolithic microwave integr,ated circuits, 
and the finite-volume method for the solution of the corresponding three-
dimensional boundary value problem for the Maxwellian equations has been 
presented. The application of the finite-volume method results in an eigen-
value problem for nonsymmetric matrices and the solution of a system of 
linear equations with indefinite symmetric matrices. 
Improved numerical solutions for this two time- and memory-consuming lin-
ear algebraic problems, the computation of the scattering matrix and of the 
used orthogonality relation are treated in [4]. 
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